mirror of
https://gitlab.com/freepascal.org/fpc/source.git
synced 2025-05-11 04:22:44 +02:00

truncated to their max/min legal value but left alone (jsut an "and" is done to make sure they fit in the allocated space if necessary)
1102 lines
39 KiB
ObjectPascal
1102 lines
39 KiB
ObjectPascal
{
|
|
$Id$
|
|
Copyright (C) 1993-98 by Florian Klaempfl
|
|
|
|
This unit provides some help routines for type handling
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
|
|
****************************************************************************
|
|
}
|
|
unit types;
|
|
interface
|
|
|
|
uses
|
|
cobjects,symtable;
|
|
|
|
type
|
|
tmmxtype = (mmxno,mmxu8bit,mmxs8bit,mmxu16bit,mmxs16bit,
|
|
mmxu32bit,mmxs32bit,mmxfixed16,mmxsingle);
|
|
|
|
const
|
|
{ true if we must never copy this parameter }
|
|
never_copy_const_param : boolean = false;
|
|
|
|
{*****************************************************************************
|
|
Basic type functions
|
|
*****************************************************************************}
|
|
|
|
{ returns true, if def defines an ordinal type }
|
|
function is_ordinal(def : pdef) : boolean;
|
|
|
|
{ returns the min. value of the type }
|
|
function get_min_value(def : pdef) : longint;
|
|
|
|
{ returns true, if def defines an ordinal type }
|
|
function is_integer(def : pdef) : boolean;
|
|
|
|
{ true if p is a boolean }
|
|
function is_boolean(def : pdef) : boolean;
|
|
|
|
{ true if p is a char }
|
|
function is_char(def : pdef) : boolean;
|
|
|
|
{ true if p is a void}
|
|
function is_void(def : pdef) : boolean;
|
|
|
|
{ true if p is a smallset def }
|
|
function is_smallset(p : pdef) : boolean;
|
|
|
|
{ returns true, if def defines a signed data type (only for ordinal types) }
|
|
function is_signed(def : pdef) : boolean;
|
|
|
|
{*****************************************************************************
|
|
Array helper functions
|
|
*****************************************************************************}
|
|
|
|
{ true, if p points to a zero based (non special like open or
|
|
dynamic array def, mainly this is used to see if the array
|
|
is convertable to a pointer }
|
|
function is_zero_based_array(p : pdef) : boolean;
|
|
|
|
{ true if p points to an open array def }
|
|
function is_open_array(p : pdef) : boolean;
|
|
|
|
{ true, if p points to an array of const def }
|
|
function is_array_constructor(p : pdef) : boolean;
|
|
|
|
{ true, if p points to a variant array }
|
|
function is_variant_array(p : pdef) : boolean;
|
|
|
|
{ true, if p points to an array of const }
|
|
function is_array_of_const(p : pdef) : boolean;
|
|
|
|
{ true, if p points any kind of special array }
|
|
function is_special_array(p : pdef) : boolean;
|
|
|
|
{ true if p is a char array def }
|
|
function is_chararray(p : pdef) : boolean;
|
|
|
|
{*****************************************************************************
|
|
String helper functions
|
|
*****************************************************************************}
|
|
|
|
{ true if p points to an open string def }
|
|
function is_open_string(p : pdef) : boolean;
|
|
|
|
{ true if p is an ansi string def }
|
|
function is_ansistring(p : pdef) : boolean;
|
|
|
|
{ true if p is a long string def }
|
|
function is_longstring(p : pdef) : boolean;
|
|
|
|
{ true if p is a wide string def }
|
|
function is_widestring(p : pdef) : boolean;
|
|
|
|
{ true if p is a short string def }
|
|
function is_shortstring(p : pdef) : boolean;
|
|
|
|
{ true if p is a pchar def }
|
|
function is_pchar(p : pdef) : boolean;
|
|
|
|
{ returns true, if def uses FPU }
|
|
function is_fpu(def : pdef) : boolean;
|
|
|
|
{ true if the return value is in EAX }
|
|
function ret_in_acc(def : pdef) : boolean;
|
|
|
|
{ true if uses a parameter as return value }
|
|
function ret_in_param(def : pdef) : boolean;
|
|
|
|
{ true, if def is a 64 bit int type }
|
|
function is_64bitint(def : pdef) : boolean;
|
|
|
|
function push_high_param(def : pdef) : boolean;
|
|
|
|
{ true if a parameter is too large to copy and only the address is pushed }
|
|
function push_addr_param(def : pdef) : boolean;
|
|
|
|
{ true, if def1 and def2 are semantical the same }
|
|
function is_equal(def1,def2 : pdef) : boolean;
|
|
|
|
{ checks for type compatibility (subgroups of type) }
|
|
{ used for case statements... probably missing stuff }
|
|
{ to use on other types }
|
|
function is_subequal(def1, def2: pdef): boolean;
|
|
|
|
{ same as is_equal, but with error message if failed }
|
|
function CheckTypes(def1,def2 : pdef) : boolean;
|
|
|
|
{ true, if two parameter lists are equal }
|
|
{ if value_equal_const is true, call by value }
|
|
{ and call by const parameter are assumed as }
|
|
{ equal }
|
|
function equal_paras(paralist1,paralist2 : plinkedlist;value_equal_const : boolean) : boolean;
|
|
|
|
|
|
{ true if a type can be allowed for another one
|
|
in a func var }
|
|
function convertable_paras(paralist1,paralist2 : plinkedlist;value_equal_const : boolean) : boolean;
|
|
|
|
{ true if a function can be assigned to a procvar }
|
|
function proc_to_procvar_equal(def1:pprocdef;def2:pprocvardef) : boolean;
|
|
|
|
{ if l isn't in the range of def a range check error is generated and
|
|
the value is placed within the range }
|
|
procedure testrange(def : pdef;var l : longint);
|
|
|
|
{ returns the range of def }
|
|
procedure getrange(def : pdef;var l : longint;var h : longint);
|
|
|
|
{ some type helper routines for MMX support }
|
|
function is_mmx_able_array(p : pdef) : boolean;
|
|
|
|
{ returns the mmx type }
|
|
function mmx_type(p : pdef) : tmmxtype;
|
|
|
|
{ returns true, if sym needs an entry in the proplist of a class rtti }
|
|
function needs_prop_entry(sym : psym) : boolean;
|
|
|
|
implementation
|
|
|
|
uses
|
|
strings,globtype,globals,htypechk,
|
|
tree,verbose,symconst;
|
|
|
|
function needs_prop_entry(sym : psym) : boolean;
|
|
|
|
begin
|
|
needs_prop_entry:=(sp_published in psym(sym)^.symoptions) and
|
|
(sym^.typ in [propertysym,varsym]);
|
|
end;
|
|
|
|
function equal_paras(paralist1,paralist2 : plinkedlist;value_equal_const : boolean) : boolean;
|
|
var
|
|
def1,def2 : pparaitem;
|
|
begin
|
|
def1:=pparaitem(paralist1^.first);
|
|
def2:=pparaitem(paralist2^.first);
|
|
while (assigned(def1)) and (assigned(def2)) do
|
|
begin
|
|
if value_equal_const then
|
|
begin
|
|
if not(is_equal(def1^.paratype.def,def2^.paratype.def)) or
|
|
((def1^.paratyp<>def2^.paratyp) and
|
|
((def1^.paratyp=vs_var) or
|
|
(def1^.paratyp=vs_var)
|
|
)
|
|
) then
|
|
begin
|
|
equal_paras:=false;
|
|
exit;
|
|
end;
|
|
end
|
|
else
|
|
begin
|
|
if not(is_equal(def1^.paratype.def,def2^.paratype.def)) or
|
|
(def1^.paratyp<>def2^.paratyp) then
|
|
begin
|
|
equal_paras:=false;
|
|
exit;
|
|
end;
|
|
end;
|
|
def1:=pparaitem(def1^.next);
|
|
def2:=pparaitem(def2^.next);
|
|
end;
|
|
if (def1=nil) and (def2=nil) then
|
|
equal_paras:=true
|
|
else
|
|
equal_paras:=false;
|
|
end;
|
|
|
|
function convertable_paras(paralist1,paralist2 : plinkedlist;value_equal_const : boolean) : boolean;
|
|
var
|
|
def1,def2 : pparaitem;
|
|
doconv : tconverttype;
|
|
begin
|
|
def1:=pparaitem(paralist1^.first);
|
|
def2:=pparaitem(paralist2^.first);
|
|
while (assigned(def1)) and (assigned(def2)) do
|
|
begin
|
|
if value_equal_const then
|
|
begin
|
|
if (isconvertable(def1^.paratype.def,def2^.paratype.def,doconv,callparan,false)=0) or
|
|
((def1^.paratyp<>def2^.paratyp) and
|
|
((def1^.paratyp=vs_var) or
|
|
(def1^.paratyp=vs_var)
|
|
)
|
|
) then
|
|
begin
|
|
convertable_paras:=false;
|
|
exit;
|
|
end;
|
|
end
|
|
else
|
|
begin
|
|
if (isconvertable(def1^.paratype.def,def2^.paratype.def,doconv,callparan,false)=0) or
|
|
(def1^.paratyp<>def2^.paratyp) then
|
|
begin
|
|
convertable_paras:=false;
|
|
exit;
|
|
end;
|
|
end;
|
|
def1:=pparaitem(def1^.next);
|
|
def2:=pparaitem(def2^.next);
|
|
end;
|
|
if (def1=nil) and (def2=nil) then
|
|
convertable_paras:=true
|
|
else
|
|
convertable_paras:=false;
|
|
end;
|
|
|
|
|
|
{ true if a function can be assigned to a procvar }
|
|
function proc_to_procvar_equal(def1:pprocdef;def2:pprocvardef) : boolean;
|
|
const
|
|
po_comp = po_compatibility_options-[po_methodpointer];
|
|
var
|
|
ismethod : boolean;
|
|
begin
|
|
proc_to_procvar_equal:=false;
|
|
if not(assigned(def1)) or not(assigned(def2)) then
|
|
exit;
|
|
{ check for method pointer }
|
|
ismethod:=assigned(def1^.owner) and
|
|
(def1^.owner^.symtabletype=objectsymtable);
|
|
{ I think methods of objects are also not compatible }
|
|
{ with procedure variables! (FK)
|
|
and
|
|
assigned(def1^.owner^.defowner) and
|
|
(pobjectdef(def1^.owner^.defowner)^.is_class); }
|
|
if (ismethod and not (po_methodpointer in def2^.procoptions)) or
|
|
(not(ismethod) and (po_methodpointer in def2^.procoptions)) then
|
|
begin
|
|
Message(type_e_no_method_and_procedure_not_compatible);
|
|
exit;
|
|
end;
|
|
{ check return value and para's and options, methodpointer is already checked
|
|
parameters may also be convertable }
|
|
if is_equal(def1^.rettype.def,def2^.rettype.def) and
|
|
(equal_paras(def1^.para,def2^.para,false) or
|
|
convertable_paras(def1^.para,def2^.para,false)) and
|
|
((po_comp * def1^.procoptions)= (po_comp * def2^.procoptions)) then
|
|
proc_to_procvar_equal:=true
|
|
else
|
|
proc_to_procvar_equal:=false;
|
|
end;
|
|
|
|
|
|
{ returns true, if def uses FPU }
|
|
function is_fpu(def : pdef) : boolean;
|
|
begin
|
|
is_fpu:=(def^.deftype=floatdef) and (pfloatdef(def)^.typ<>f32bit);
|
|
end;
|
|
|
|
|
|
{ true if p is an ordinal }
|
|
function is_ordinal(def : pdef) : boolean;
|
|
var
|
|
dt : tbasetype;
|
|
begin
|
|
case def^.deftype of
|
|
orddef :
|
|
begin
|
|
dt:=porddef(def)^.typ;
|
|
is_ordinal:=dt in [uchar,
|
|
u8bit,u16bit,u32bit,u64bit,
|
|
s8bit,s16bit,s32bit,s64bit,
|
|
bool8bit,bool16bit,bool32bit];
|
|
end;
|
|
enumdef :
|
|
is_ordinal:=true;
|
|
else
|
|
is_ordinal:=false;
|
|
end;
|
|
end;
|
|
|
|
|
|
{ returns the min. value of the type }
|
|
function get_min_value(def : pdef) : longint;
|
|
begin
|
|
case def^.deftype of
|
|
orddef:
|
|
get_min_value:=porddef(def)^.low;
|
|
enumdef:
|
|
get_min_value:=penumdef(def)^.min;
|
|
else
|
|
get_min_value:=0;
|
|
end;
|
|
end;
|
|
|
|
|
|
{ true if p is an integer }
|
|
function is_integer(def : pdef) : boolean;
|
|
begin
|
|
is_integer:=(def^.deftype=orddef) and
|
|
(porddef(def)^.typ in [uauto,u8bit,u16bit,u32bit,u64bit,
|
|
s8bit,s16bit,s32bit,s64bit]);
|
|
end;
|
|
|
|
|
|
{ true if p is a boolean }
|
|
function is_boolean(def : pdef) : boolean;
|
|
begin
|
|
is_boolean:=(def^.deftype=orddef) and
|
|
(porddef(def)^.typ in [bool8bit,bool16bit,bool32bit]);
|
|
end;
|
|
|
|
|
|
{ true if p is a void }
|
|
function is_void(def : pdef) : boolean;
|
|
begin
|
|
is_void:=(def^.deftype=orddef) and
|
|
(porddef(def)^.typ=uvoid);
|
|
end;
|
|
|
|
|
|
{ true if p is a char }
|
|
function is_char(def : pdef) : boolean;
|
|
begin
|
|
is_char:=(def^.deftype=orddef) and
|
|
(porddef(def)^.typ=uchar);
|
|
end;
|
|
|
|
|
|
{ true if p is signed (integer) }
|
|
function is_signed(def : pdef) : boolean;
|
|
var
|
|
dt : tbasetype;
|
|
begin
|
|
case def^.deftype of
|
|
orddef :
|
|
begin
|
|
dt:=porddef(def)^.typ;
|
|
is_signed:=(dt in [s8bit,s16bit,s32bit,s64bit]);
|
|
end;
|
|
enumdef :
|
|
is_signed:=false;
|
|
else
|
|
is_signed:=false;
|
|
end;
|
|
end;
|
|
|
|
|
|
{ true, if p points to an open array def }
|
|
function is_open_string(p : pdef) : boolean;
|
|
begin
|
|
is_open_string:=(p^.deftype=stringdef) and
|
|
(pstringdef(p)^.string_typ=st_shortstring) and
|
|
(pstringdef(p)^.len=0);
|
|
end;
|
|
|
|
|
|
{ true, if p points to a zero based array def }
|
|
function is_zero_based_array(p : pdef) : boolean;
|
|
begin
|
|
is_zero_based_array:=(p^.deftype=arraydef) and
|
|
(parraydef(p)^.lowrange=0) and
|
|
not(is_special_array(p));
|
|
end;
|
|
|
|
{ true, if p points to an open array def }
|
|
function is_open_array(p : pdef) : boolean;
|
|
begin
|
|
{ check for s32bitdef is needed, because for u32bit the high
|
|
range is also -1 ! (PFV) }
|
|
is_open_array:=(p^.deftype=arraydef) and
|
|
(parraydef(p)^.rangetype.def=pdef(s32bitdef)) and
|
|
(parraydef(p)^.lowrange=0) and
|
|
(parraydef(p)^.highrange=-1) and
|
|
not(parraydef(p)^.IsConstructor) and
|
|
not(parraydef(p)^.IsVariant) and
|
|
not(parraydef(p)^.IsArrayOfConst);
|
|
|
|
end;
|
|
|
|
{ true, if p points to an array of const def }
|
|
function is_array_constructor(p : pdef) : boolean;
|
|
begin
|
|
is_array_constructor:=(p^.deftype=arraydef) and
|
|
(parraydef(p)^.IsConstructor);
|
|
end;
|
|
|
|
{ true, if p points to a variant array }
|
|
function is_variant_array(p : pdef) : boolean;
|
|
begin
|
|
is_variant_array:=(p^.deftype=arraydef) and
|
|
(parraydef(p)^.IsVariant);
|
|
end;
|
|
|
|
{ true, if p points to an array of const }
|
|
function is_array_of_const(p : pdef) : boolean;
|
|
begin
|
|
is_array_of_const:=(p^.deftype=arraydef) and
|
|
(parraydef(p)^.IsArrayOfConst);
|
|
end;
|
|
|
|
{ true, if p points to a special array }
|
|
function is_special_array(p : pdef) : boolean;
|
|
begin
|
|
is_special_array:=(p^.deftype=arraydef) and
|
|
((parraydef(p)^.IsVariant) or
|
|
(parraydef(p)^.IsArrayOfConst) or
|
|
(parraydef(p)^.IsConstructor) or
|
|
is_open_array(p)
|
|
);
|
|
end;
|
|
|
|
{ true if p is an ansi string def }
|
|
function is_ansistring(p : pdef) : boolean;
|
|
begin
|
|
is_ansistring:=(p^.deftype=stringdef) and
|
|
(pstringdef(p)^.string_typ=st_ansistring);
|
|
end;
|
|
|
|
|
|
{ true if p is an long string def }
|
|
function is_longstring(p : pdef) : boolean;
|
|
begin
|
|
is_longstring:=(p^.deftype=stringdef) and
|
|
(pstringdef(p)^.string_typ=st_longstring);
|
|
end;
|
|
|
|
|
|
{ true if p is an wide string def }
|
|
function is_widestring(p : pdef) : boolean;
|
|
begin
|
|
is_widestring:=(p^.deftype=stringdef) and
|
|
(pstringdef(p)^.string_typ=st_widestring);
|
|
end;
|
|
|
|
|
|
{ true if p is an short string def }
|
|
function is_shortstring(p : pdef) : boolean;
|
|
begin
|
|
is_shortstring:=(p^.deftype=stringdef) and
|
|
(pstringdef(p)^.string_typ=st_shortstring);
|
|
end;
|
|
|
|
{ true if p is a char array def }
|
|
function is_chararray(p : pdef) : boolean;
|
|
begin
|
|
is_chararray:=(p^.deftype=arraydef) and
|
|
is_equal(parraydef(p)^.elementtype.def,cchardef) and
|
|
not(is_special_array(p));
|
|
end;
|
|
|
|
|
|
{ true if p is a pchar def }
|
|
function is_pchar(p : pdef) : boolean;
|
|
begin
|
|
is_pchar:=(p^.deftype=pointerdef) and
|
|
is_equal(Ppointerdef(p)^.pointertype.def,cchardef);
|
|
end;
|
|
|
|
|
|
{ true if p is a smallset def }
|
|
function is_smallset(p : pdef) : boolean;
|
|
begin
|
|
is_smallset:=(p^.deftype=setdef) and
|
|
(psetdef(p)^.settype=smallset);
|
|
end;
|
|
|
|
|
|
{ true if the return value is in accumulator (EAX for i386), D0 for 68k }
|
|
function ret_in_acc(def : pdef) : boolean;
|
|
begin
|
|
ret_in_acc:=(def^.deftype in [orddef,pointerdef,enumdef,classrefdef]) or
|
|
((def^.deftype=stringdef) and (pstringdef(def)^.string_typ in [st_ansistring,st_widestring])) or
|
|
((def^.deftype=procvardef) and not(po_methodpointer in pprocvardef(def)^.procoptions)) or
|
|
((def^.deftype=objectdef) and pobjectdef(def)^.is_class) or
|
|
((def^.deftype=setdef) and (psetdef(def)^.settype=smallset)) or
|
|
((def^.deftype=floatdef) and (pfloatdef(def)^.typ=f32bit));
|
|
end;
|
|
|
|
|
|
{ true, if def is a 64 bit int type }
|
|
function is_64bitint(def : pdef) : boolean;
|
|
begin
|
|
is_64bitint:=(def^.deftype=orddef) and (porddef(def)^.typ in [u64bit,s64bit])
|
|
end;
|
|
|
|
|
|
{ true if uses a parameter as return value }
|
|
function ret_in_param(def : pdef) : boolean;
|
|
begin
|
|
ret_in_param:=(def^.deftype in [arraydef,recorddef]) or
|
|
((def^.deftype=stringdef) and (pstringdef(def)^.string_typ in [st_shortstring,st_longstring])) or
|
|
((def^.deftype=procvardef) and (po_methodpointer in pprocvardef(def)^.procoptions)) or
|
|
((def^.deftype=objectdef) and not(pobjectdef(def)^.is_class)) or
|
|
((def^.deftype=setdef) and (psetdef(def)^.settype<>smallset));
|
|
end;
|
|
|
|
|
|
function push_high_param(def : pdef) : boolean;
|
|
begin
|
|
push_high_param:=is_open_array(def) or
|
|
is_open_string(def) or
|
|
is_array_of_const(def);
|
|
end;
|
|
|
|
|
|
{ true if a parameter is too large to copy and only the address is pushed }
|
|
function push_addr_param(def : pdef) : boolean;
|
|
begin
|
|
push_addr_param:=false;
|
|
if never_copy_const_param then
|
|
push_addr_param:=true
|
|
else
|
|
begin
|
|
case def^.deftype of
|
|
formaldef :
|
|
push_addr_param:=true;
|
|
recorddef :
|
|
push_addr_param:=(def^.size>4);
|
|
arraydef :
|
|
push_addr_param:=((Parraydef(def)^.highrange>Parraydef(def)^.lowrange) and (def^.size>4)) or
|
|
is_open_array(def) or
|
|
is_array_of_const(def) or
|
|
is_array_constructor(def);
|
|
objectdef :
|
|
push_addr_param:=not(pobjectdef(def)^.is_class);
|
|
stringdef :
|
|
push_addr_param:=pstringdef(def)^.string_typ in [st_shortstring,st_longstring];
|
|
procvardef :
|
|
push_addr_param:=(po_methodpointer in pprocvardef(def)^.procoptions);
|
|
setdef :
|
|
push_addr_param:=(psetdef(def)^.settype<>smallset);
|
|
end;
|
|
end;
|
|
end;
|
|
|
|
{ test if l is in the range of def, outputs error if out of range }
|
|
procedure testrange(def : pdef;var l : longint);
|
|
var
|
|
lv,hv: longint;
|
|
|
|
begin
|
|
{ for 64 bit types we need only to check if it is less than }
|
|
{ zero, if def is a qword node }
|
|
if is_64bitint(def) then
|
|
begin
|
|
if (l<0) and (porddef(def)^.typ=u64bit) then
|
|
begin
|
|
l:=0;
|
|
if (cs_check_range in aktlocalswitches) then
|
|
Message(parser_e_range_check_error)
|
|
else
|
|
Message(parser_w_range_check_error);
|
|
end;
|
|
end
|
|
else
|
|
begin
|
|
getrange(def,lv,hv);
|
|
if (def^.deftype=orddef) and
|
|
(porddef(def)^.typ=u32bit) then
|
|
begin
|
|
if lv<=hv then
|
|
begin
|
|
if (l<lv) or (l>hv) then
|
|
begin
|
|
if (cs_check_range in aktlocalswitches) then
|
|
Message(parser_e_range_check_error)
|
|
else
|
|
Message(parser_w_range_check_error);
|
|
end;
|
|
end
|
|
else
|
|
{ this happens with the wrap around problem }
|
|
{ if lv is positive and hv is over $7ffffff }
|
|
{ so it seems negative }
|
|
begin
|
|
if ((l>=0) and (l<lv)) or
|
|
((l<0) and (l>hv)) then
|
|
begin
|
|
if (cs_check_range in aktlocalswitches) then
|
|
Message(parser_e_range_check_error)
|
|
else
|
|
Message(parser_w_range_check_error);
|
|
end;
|
|
end;
|
|
end
|
|
else if (l<lv) or (l>hv) then
|
|
begin
|
|
if (def^.deftype=enumdef) or
|
|
(cs_check_range in aktlocalswitches) then
|
|
Message(parser_e_range_check_error)
|
|
else
|
|
Message(parser_w_range_check_error);
|
|
{ Fix the value to fit in the allocated space for this type of variable }
|
|
case def^.size of
|
|
1: l := l and $ff;
|
|
2: l := l and $ffff;
|
|
end
|
|
{ l:=lv+(l mod (hv-lv+1));}
|
|
end;
|
|
end;
|
|
end;
|
|
|
|
|
|
{ return the range from def in l and h }
|
|
procedure getrange(def : pdef;var l : longint;var h : longint);
|
|
begin
|
|
case def^.deftype of
|
|
orddef :
|
|
begin
|
|
l:=porddef(def)^.low;
|
|
h:=porddef(def)^.high;
|
|
end;
|
|
enumdef :
|
|
begin
|
|
l:=penumdef(def)^.min;
|
|
h:=penumdef(def)^.max;
|
|
end;
|
|
arraydef :
|
|
begin
|
|
l:=parraydef(def)^.lowrange;
|
|
h:=parraydef(def)^.highrange;
|
|
end;
|
|
else
|
|
internalerror(987);
|
|
end;
|
|
end;
|
|
|
|
|
|
function mmx_type(p : pdef) : tmmxtype;
|
|
begin
|
|
mmx_type:=mmxno;
|
|
if is_mmx_able_array(p) then
|
|
begin
|
|
if parraydef(p)^.elementtype.def^.deftype=floatdef then
|
|
case pfloatdef(parraydef(p)^.elementtype.def)^.typ of
|
|
s32real:
|
|
mmx_type:=mmxsingle;
|
|
f16bit:
|
|
mmx_type:=mmxfixed16
|
|
end
|
|
else
|
|
case porddef(parraydef(p)^.elementtype.def)^.typ of
|
|
u8bit:
|
|
mmx_type:=mmxu8bit;
|
|
s8bit:
|
|
mmx_type:=mmxs8bit;
|
|
u16bit:
|
|
mmx_type:=mmxu16bit;
|
|
s16bit:
|
|
mmx_type:=mmxs16bit;
|
|
u32bit:
|
|
mmx_type:=mmxu32bit;
|
|
s32bit:
|
|
mmx_type:=mmxs32bit;
|
|
end;
|
|
end;
|
|
end;
|
|
|
|
|
|
function is_mmx_able_array(p : pdef) : boolean;
|
|
begin
|
|
{$ifdef SUPPORT_MMX}
|
|
if (cs_mmx_saturation in aktlocalswitches) then
|
|
begin
|
|
is_mmx_able_array:=(p^.deftype=arraydef) and
|
|
not(is_special_array(p)) and
|
|
(
|
|
(
|
|
(parraydef(p)^.elementtype.def^.deftype=orddef) and
|
|
(
|
|
(
|
|
(parraydef(p)^.lowrange=0) and
|
|
(parraydef(p)^.highrange=1) and
|
|
(porddef(parraydef(p)^.elementtype.def)^.typ in [u32bit,s32bit])
|
|
)
|
|
or
|
|
(
|
|
(parraydef(p)^.lowrange=0) and
|
|
(parraydef(p)^.highrange=3) and
|
|
(porddef(parraydef(p)^.elementtype.def)^.typ in [u16bit,s16bit])
|
|
)
|
|
)
|
|
)
|
|
or
|
|
(
|
|
(
|
|
(parraydef(p)^.elementtype.def^.deftype=floatdef) and
|
|
(
|
|
(parraydef(p)^.lowrange=0) and
|
|
(parraydef(p)^.highrange=3) and
|
|
(pfloatdef(parraydef(p)^.elementtype.def)^.typ=f16bit)
|
|
) or
|
|
(
|
|
(parraydef(p)^.lowrange=0) and
|
|
(parraydef(p)^.highrange=1) and
|
|
(pfloatdef(parraydef(p)^.elementtype.def)^.typ=s32real)
|
|
)
|
|
)
|
|
)
|
|
);
|
|
end
|
|
else
|
|
begin
|
|
is_mmx_able_array:=(p^.deftype=arraydef) and
|
|
(
|
|
(
|
|
(parraydef(p)^.elementtype.def^.deftype=orddef) and
|
|
(
|
|
(
|
|
(parraydef(p)^.lowrange=0) and
|
|
(parraydef(p)^.highrange=1) and
|
|
(porddef(parraydef(p)^.elementtype.def)^.typ in [u32bit,s32bit])
|
|
)
|
|
or
|
|
(
|
|
(parraydef(p)^.lowrange=0) and
|
|
(parraydef(p)^.highrange=3) and
|
|
(porddef(parraydef(p)^.elementtype.def)^.typ in [u16bit,s16bit])
|
|
)
|
|
or
|
|
(
|
|
(parraydef(p)^.lowrange=0) and
|
|
(parraydef(p)^.highrange=7) and
|
|
(porddef(parraydef(p)^.elementtype.def)^.typ in [u8bit,s8bit])
|
|
)
|
|
)
|
|
)
|
|
or
|
|
(
|
|
(parraydef(p)^.elementtype.def^.deftype=floatdef) and
|
|
(
|
|
(
|
|
(parraydef(p)^.lowrange=0) and
|
|
(parraydef(p)^.highrange=3) and
|
|
(pfloatdef(parraydef(p)^.elementtype.def)^.typ=f32bit)
|
|
)
|
|
or
|
|
(
|
|
(parraydef(p)^.lowrange=0) and
|
|
(parraydef(p)^.highrange=1) and
|
|
(pfloatdef(parraydef(p)^.elementtype.def)^.typ=s32real)
|
|
)
|
|
)
|
|
)
|
|
);
|
|
end;
|
|
{$else SUPPORT_MMX}
|
|
is_mmx_able_array:=false;
|
|
{$endif SUPPORT_MMX}
|
|
end;
|
|
|
|
|
|
function is_equal(def1,def2 : pdef) : boolean;
|
|
var
|
|
b : boolean;
|
|
hd : pdef;
|
|
begin
|
|
{ both types must exists }
|
|
if not (assigned(def1) and assigned(def2)) then
|
|
begin
|
|
is_equal:=false;
|
|
exit;
|
|
end;
|
|
|
|
{ be sure, that if there is a stringdef, that this is def1 }
|
|
if def2^.deftype=stringdef then
|
|
begin
|
|
hd:=def1;
|
|
def1:=def2;
|
|
def2:=hd;
|
|
end;
|
|
b:=false;
|
|
|
|
{ both point to the same definition ? }
|
|
if def1=def2 then
|
|
b:=true
|
|
else
|
|
{ pointer with an equal definition are equal }
|
|
if (def1^.deftype=pointerdef) and (def2^.deftype=pointerdef) then
|
|
begin
|
|
{ here a problem detected in tabsolutesym }
|
|
{ the types can be forward type !! }
|
|
if assigned(def1^.typesym) and (ppointerdef(def1)^.pointertype.def^.deftype=forwarddef) then
|
|
b:=(def1^.typesym=def2^.typesym)
|
|
else
|
|
b:=ppointerdef(def1)^.pointertype.def=ppointerdef(def2)^.pointertype.def;
|
|
end
|
|
else
|
|
{ ordinals are equal only when the ordinal type is equal }
|
|
if (def1^.deftype=orddef) and (def2^.deftype=orddef) then
|
|
begin
|
|
case porddef(def1)^.typ of
|
|
u8bit,u16bit,u32bit,
|
|
s8bit,s16bit,s32bit:
|
|
b:=((porddef(def1)^.typ=porddef(def2)^.typ) and
|
|
(porddef(def1)^.low=porddef(def2)^.low) and
|
|
(porddef(def1)^.high=porddef(def2)^.high));
|
|
uvoid,uchar,
|
|
bool8bit,bool16bit,bool32bit:
|
|
b:=(porddef(def1)^.typ=porddef(def2)^.typ);
|
|
end;
|
|
end
|
|
else
|
|
if (def1^.deftype=floatdef) and (def2^.deftype=floatdef) then
|
|
b:=pfloatdef(def1)^.typ=pfloatdef(def2)^.typ
|
|
else
|
|
{ strings with the same length are equal }
|
|
if (def1^.deftype=stringdef) and (def2^.deftype=stringdef) and
|
|
(pstringdef(def1)^.string_typ=pstringdef(def2)^.string_typ) then
|
|
begin
|
|
b:=not(is_shortstring(def1)) or
|
|
(pstringdef(def1)^.len=pstringdef(def2)^.len);
|
|
end
|
|
else
|
|
if (def1^.deftype=formaldef) and (def2^.deftype=formaldef) then
|
|
b:=true
|
|
{ file types with the same file element type are equal }
|
|
{ this is a problem for assign !! }
|
|
{ changed to allow if one is untyped }
|
|
{ all typed files are equal to the special }
|
|
{ typed file that has voiddef as elemnt type }
|
|
{ but must NOT match for text file !!! }
|
|
else
|
|
if (def1^.deftype=filedef) and (def2^.deftype=filedef) then
|
|
b:=(pfiledef(def1)^.filetyp=pfiledef(def2)^.filetyp) and
|
|
((
|
|
((pfiledef(def1)^.typedfiletype.def=nil) and
|
|
(pfiledef(def2)^.typedfiletype.def=nil)) or
|
|
(
|
|
(pfiledef(def1)^.typedfiletype.def<>nil) and
|
|
(pfiledef(def2)^.typedfiletype.def<>nil) and
|
|
is_equal(pfiledef(def1)^.typedfiletype.def,pfiledef(def2)^.typedfiletype.def)
|
|
) or
|
|
( (pfiledef(def1)^.typedfiletype.def=pdef(voiddef)) or
|
|
(pfiledef(def2)^.typedfiletype.def=pdef(voiddef))
|
|
)))
|
|
{ sets with the same element type are equal }
|
|
else
|
|
if (def1^.deftype=setdef) and (def2^.deftype=setdef) then
|
|
begin
|
|
if assigned(psetdef(def1)^.elementtype.def) and
|
|
assigned(psetdef(def2)^.elementtype.def) then
|
|
b:=(psetdef(def1)^.elementtype.def^.deftype=psetdef(def2)^.elementtype.def^.deftype)
|
|
else
|
|
b:=true;
|
|
end
|
|
else
|
|
if (def1^.deftype=procvardef) and (def2^.deftype=procvardef) then
|
|
begin
|
|
{ poassembler isn't important for compatibility }
|
|
{ if a method is assigned to a methodpointer }
|
|
{ is checked before }
|
|
b:=(pprocvardef(def1)^.proctypeoption=pprocvardef(def2)^.proctypeoption) and
|
|
(pprocvardef(def1)^.proccalloptions=pprocvardef(def2)^.proccalloptions) and
|
|
((pprocvardef(def1)^.procoptions * po_compatibility_options)=
|
|
(pprocvardef(def2)^.procoptions * po_compatibility_options)) and
|
|
is_equal(pprocvardef(def1)^.rettype.def,pprocvardef(def2)^.rettype.def) and
|
|
equal_paras(pprocvardef(def1)^.para,pprocvardef(def2)^.para,false);
|
|
end
|
|
else
|
|
if (def1^.deftype=arraydef) and (def2^.deftype=arraydef) then
|
|
begin
|
|
if is_open_array(def1) or is_open_array(def2) or
|
|
is_array_of_const(def1) or is_array_of_const(def2) then
|
|
begin
|
|
if parraydef(def1)^.IsArrayOfConst or parraydef(def2)^.IsArrayOfConst then
|
|
b:=true
|
|
else
|
|
b:=is_equal(parraydef(def1)^.elementtype.def,parraydef(def2)^.elementtype.def);
|
|
end
|
|
else
|
|
begin
|
|
b:=not(m_tp in aktmodeswitches) and
|
|
not(m_delphi in aktmodeswitches) and
|
|
(parraydef(def1)^.lowrange=parraydef(def2)^.lowrange) and
|
|
(parraydef(def1)^.highrange=parraydef(def2)^.highrange) and
|
|
is_equal(parraydef(def1)^.elementtype.def,parraydef(def2)^.elementtype.def) and
|
|
is_equal(parraydef(def1)^.rangetype.def,parraydef(def2)^.rangetype.def);
|
|
end;
|
|
end
|
|
else
|
|
if (def1^.deftype=classrefdef) and (def2^.deftype=classrefdef) then
|
|
begin
|
|
{ similar to pointerdef: }
|
|
if assigned(def1^.typesym) and (pclassrefdef(def1)^.pointertype.def^.deftype=forwarddef) then
|
|
b:=(def1^.typesym=def2^.typesym)
|
|
else
|
|
b:=is_equal(pclassrefdef(def1)^.pointertype.def,pclassrefdef(def2)^.pointertype.def);
|
|
end;
|
|
is_equal:=b;
|
|
end;
|
|
|
|
|
|
function is_subequal(def1, def2: pdef): boolean;
|
|
Begin
|
|
is_subequal := false;
|
|
if assigned(def1) and assigned(def2) then
|
|
Begin
|
|
if (def1^.deftype = orddef) and (def2^.deftype = orddef) then
|
|
Begin
|
|
{ see p.47 of Turbo Pascal 7.01 manual for the separation of types }
|
|
{ range checking for case statements is done with testrange }
|
|
case porddef(def1)^.typ of
|
|
u8bit,u16bit,u32bit,
|
|
s8bit,s16bit,s32bit :
|
|
is_subequal:=(porddef(def2)^.typ in [s32bit,u32bit,u8bit,s8bit,s16bit,u16bit]);
|
|
bool8bit,bool16bit,bool32bit :
|
|
is_subequal:=(porddef(def2)^.typ in [bool8bit,bool16bit,bool32bit]);
|
|
uchar :
|
|
is_subequal:=(porddef(def2)^.typ=uchar);
|
|
end;
|
|
end
|
|
else
|
|
Begin
|
|
{ I assume that both enumerations are equal when the first }
|
|
{ pointers are equal. }
|
|
if (def1^.deftype = enumdef) and (def2^.deftype =enumdef) then
|
|
Begin
|
|
if penumdef(def1)^.firstenum = penumdef(def2)^.firstenum then
|
|
is_subequal := TRUE;
|
|
end;
|
|
end;
|
|
end; { endif assigned ... }
|
|
end;
|
|
|
|
function CheckTypes(def1,def2 : pdef) : boolean;
|
|
|
|
var
|
|
s1,s2 : string;
|
|
|
|
begin
|
|
if not is_equal(def1,def2) then
|
|
begin
|
|
{ Crash prevention }
|
|
if (not assigned(def1)) or (not assigned(def2)) then
|
|
Message(type_e_mismatch)
|
|
else
|
|
begin
|
|
s1:=def1^.typename;
|
|
s2:=def2^.typename;
|
|
if (s1<>'<unknown type>') and (s2<>'<unknown type>') then
|
|
Message2(type_e_not_equal_types,def1^.typename,def2^.typename)
|
|
else
|
|
Message(type_e_mismatch);
|
|
end;
|
|
CheckTypes:=false;
|
|
end
|
|
else
|
|
CheckTypes:=true;
|
|
end;
|
|
|
|
end.
|
|
{
|
|
$Log$
|
|
Revision 1.94 2000-01-04 16:35:58 jonas
|
|
* when range checking is off, constants that are out of bound are no longer
|
|
truncated to their max/min legal value but left alone (jsut an "and" is done to
|
|
make sure they fit in the allocated space if necessary)
|
|
|
|
Revision 1.93 1999/12/31 14:26:28 peter
|
|
* fixed crash with empty array constructors
|
|
|
|
Revision 1.92 1999/11/30 10:40:59 peter
|
|
+ ttype, tsymlist
|
|
|
|
Revision 1.91 1999/11/06 14:34:31 peter
|
|
* truncated log to 20 revs
|
|
|
|
Revision 1.90 1999/10/26 12:30:46 peter
|
|
* const parameter is now checked
|
|
* better and generic check if a node can be used for assigning
|
|
* export fixes
|
|
* procvar equal works now (it never had worked at least from 0.99.8)
|
|
* defcoll changed to linkedlist with pparaitem so it can easily be
|
|
walked both directions
|
|
|
|
Revision 1.89 1999/10/01 10:04:07 peter
|
|
* fixed is_equal for proc -> procvar which didn't check the
|
|
callconvention and type anymore since the splitting of procoptions
|
|
|
|
Revision 1.88 1999/10/01 08:02:51 peter
|
|
* forward type declaration rewritten
|
|
|
|
Revision 1.87 1999/09/15 22:09:27 florian
|
|
+ rtti is now automatically generated for published classes, i.e.
|
|
they are handled like an implicit property
|
|
|
|
Revision 1.86 1999/09/11 09:08:35 florian
|
|
* fixed bug 596
|
|
* fixed some problems with procedure variables and procedures of object,
|
|
especially in TP mode. Procedure of object doesn't apply only to classes,
|
|
it is also allowed for objects !!
|
|
|
|
Revision 1.85 1999/08/13 21:27:08 peter
|
|
* more fixes for push_addr
|
|
|
|
Revision 1.84 1999/08/13 15:38:23 peter
|
|
* fixed push_addr_param for records < 4, the array high<low range check
|
|
broke this code.
|
|
|
|
Revision 1.83 1999/08/07 14:21:06 florian
|
|
* some small problems fixed
|
|
|
|
Revision 1.82 1999/08/07 13:36:56 daniel
|
|
* Recommitted the arraydef overflow bugfix.
|
|
|
|
Revision 1.80 1999/08/05 22:42:49 daniel
|
|
* Fixed potential bug for open arrays (Their size is not known at
|
|
compilation time).
|
|
|
|
Revision 1.79 1999/08/03 22:03:41 peter
|
|
* moved bitmask constants to sets
|
|
* some other type/const renamings
|
|
|
|
Revision 1.78 1999/07/30 12:26:42 peter
|
|
* array is_equal disabled for tp,delphi mode
|
|
|
|
Revision 1.77 1999/07/29 11:41:51 peter
|
|
* array is_equal extended
|
|
|
|
Revision 1.76 1999/07/27 23:39:15 peter
|
|
* open array checks also for s32bitdef, because u32bit also has a
|
|
high range of -1
|
|
|
|
Revision 1.75 1999/07/06 21:48:29 florian
|
|
* a lot bug fixes:
|
|
- po_external isn't any longer necessary for procedure compatibility
|
|
- m_tp_procvar is in -Sd now available
|
|
- error messages of procedure variables improved
|
|
- return values with init./finalization fixed
|
|
- data types with init./finalization aren't any longer allowed in variant
|
|
record
|
|
|
|
Revision 1.74 1999/07/01 15:49:24 florian
|
|
* int64/qword type release
|
|
+ lo/hi for int64/qword
|
|
|
|
Revision 1.73 1999/06/28 22:29:22 florian
|
|
* qword division fixed
|
|
+ code for qword/int64 type casting added:
|
|
range checking isn't implemented yet
|
|
|
|
Revision 1.72 1999/06/13 22:41:08 peter
|
|
* merged from fixes
|
|
|
|
Revision 1.71.2.1 1999/06/13 22:37:17 peter
|
|
* convertable para's doesn't check for equal, added equal para's to
|
|
proc2procvar check
|
|
|
|
Revision 1.71 1999/06/03 09:34:13 peter
|
|
* better methodpointer check for proc->procvar
|
|
|
|
}
|