fpc/compiler/tcmem.pas
peter d3aa211230 * don't allow pointer indexing in non-fpc modes
* array type required message instead of type mismatch (merged)
2000-08-20 15:05:45 +00:00

663 lines
23 KiB
ObjectPascal

{
$Id$
Copyright (c) 1998-2000 by Florian Klaempfl
Type checking and register allocation for memory related nodes
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
****************************************************************************
}
unit tcmem;
interface
uses
tree;
procedure firstloadvmt(var p : ptree);
procedure firsthnew(var p : ptree);
procedure firstnew(var p : ptree);
procedure firsthdispose(var p : ptree);
procedure firstsimplenewdispose(var p : ptree);
procedure firstaddr(var p : ptree);
procedure firstdoubleaddr(var p : ptree);
procedure firstderef(var p : ptree);
procedure firstsubscript(var p : ptree);
procedure firstvec(var p : ptree);
procedure firstself(var p : ptree);
procedure firstwith(var p : ptree);
implementation
uses
globtype,systems,
cobjects,verbose,globals,
symconst,symtable,aasm,types,
htypechk,pass_1,cpubase
{$ifdef newcg}
,cgbase
{$else newcg}
,hcodegen
{$endif newcg}
;
{*****************************************************************************
FirstLoadVMT
*****************************************************************************}
procedure firstloadvmt(var p : ptree);
begin
p^.registers32:=1;
p^.location.loc:=LOC_REGISTER;
end;
{*****************************************************************************
FirstHNew
*****************************************************************************}
procedure firsthnew(var p : ptree);
begin
end;
{*****************************************************************************
FirstNewN
*****************************************************************************}
procedure firstnew(var p : ptree);
begin
{ Standardeinleitung }
if assigned(p^.left) then
firstpass(p^.left);
if codegenerror then
exit;
if assigned(p^.left) then
begin
p^.registers32:=p^.left^.registers32;
p^.registersfpu:=p^.left^.registersfpu;
{$ifdef SUPPORT_MMX}
p^.registersmmx:=p^.left^.registersmmx;
{$endif SUPPORT_MMX}
end;
{ result type is already set }
procinfo^.flags:=procinfo^.flags or pi_do_call;
if assigned(p^.left) then
p^.location.loc:=LOC_REGISTER
else
p^.location.loc:=LOC_REFERENCE;
end;
{*****************************************************************************
FirstDispose
*****************************************************************************}
procedure firsthdispose(var p : ptree);
begin
firstpass(p^.left);
if codegenerror then
exit;
p^.registers32:=p^.left^.registers32;
p^.registersfpu:=p^.left^.registersfpu;
{$ifdef SUPPORT_MMX}
p^.registersmmx:=p^.left^.registersmmx;
{$endif SUPPORT_MMX}
if p^.registers32<1 then
p^.registers32:=1;
{
if p^.left^.location.loc<>LOC_REFERENCE then
CGMessage(cg_e_illegal_expression);
}
if p^.left^.location.loc=LOC_CREGISTER then
inc(p^.registers32);
p^.location.loc:=LOC_REFERENCE;
p^.resulttype:=ppointerdef(p^.left^.resulttype)^.pointertype.def;
end;
{*****************************************************************************
FirstSimpleNewDispose
*****************************************************************************}
procedure firstsimplenewdispose(var p : ptree);
begin
{ this cannot be in a register !! }
make_not_regable(p^.left);
firstpass(p^.left);
if codegenerror then
exit;
{ check the type }
if p^.left^.resulttype=nil then
p^.left^.resulttype:=generrordef;
if (p^.left^.resulttype^.deftype<>pointerdef) then
CGMessage1(type_e_pointer_type_expected,p^.left^.resulttype^.typename);
if (p^.left^.location.loc<>LOC_REFERENCE) {and
(p^.left^.location.loc<>LOC_CREGISTER)} then
CGMessage(cg_e_illegal_expression);
p^.registers32:=p^.left^.registers32;
p^.registersfpu:=p^.left^.registersfpu;
{$ifdef SUPPORT_MMX}
p^.registersmmx:=p^.left^.registersmmx;
{$endif SUPPORT_MMX}
p^.resulttype:=voiddef;
procinfo^.flags:=procinfo^.flags or pi_do_call;
end;
{*****************************************************************************
FirstAddr
*****************************************************************************}
procedure firstaddr(var p : ptree);
var
hp : ptree;
hp2 : pparaitem;
hp3 : pabstractprocdef;
begin
make_not_regable(p^.left);
if not(assigned(p^.resulttype)) then
begin
{ tp @procvar support (type of @procvar is a void pointer)
Note: we need to leave the addrn in the tree,
else we can't see the difference between @procvar and procvar.
we set the procvarload flag so a secondpass does nothing for
this node (PFV) }
if (m_tp_procvar in aktmodeswitches) then
begin
hp:=p^.left;
case hp^.treetype of
calln :
begin
{ is it a procvar? }
hp:=hp^.right;
if assigned(hp) then
begin
{ remove calln node }
putnode(p^.left);
p^.left:=hp;
firstpass(hp);
p^.procvarload:=true;
end;
end;
loadn,
subscriptn,
typeconvn,
vecn,
derefn :
begin
firstpass(hp);
if codegenerror then
exit;
if hp^.resulttype^.deftype=procvardef then
begin
p^.procvarload:=true;
end;
end;
end;
end;
if p^.procvarload then
begin
p^.registers32:=p^.left^.registers32;
p^.registersfpu:=p^.left^.registersfpu;
{$ifdef SUPPORT_MMX}
p^.registersmmx:=p^.left^.registersmmx;
{$endif SUPPORT_MMX}
if p^.registers32<1 then
p^.registers32:=1;
p^.location.loc:=p^.left^.location.loc;
p^.resulttype:=voidpointerdef;
exit;
end;
{ proc 2 procvar ? }
if p^.left^.treetype=calln then
begin
{ generate a methodcallnode or proccallnode }
{ we shouldn't convert things like @tcollection.load }
if (p^.left^.symtableprocentry^.owner^.symtabletype=objectsymtable) and
not(assigned(p^.left^.methodpointer) and (p^.left^.methodpointer^.treetype=typen)) then
begin
hp:=genloadmethodcallnode(pprocsym(p^.left^.symtableprocentry),p^.left^.symtableproc,
getcopy(p^.left^.methodpointer));
disposetree(p);
firstpass(hp);
p:=hp;
exit;
end
else
hp:=genloadcallnode(pprocsym(p^.left^.symtableprocentry),p^.left^.symtableproc);
{ result is a procedure variable }
{ No, to be TP compatible, you must return a pointer to
the procedure that is stored in the procvar.}
if not(m_tp_procvar in aktmodeswitches) then
begin
p^.resulttype:=new(pprocvardef,init);
{ it could also be a procvar, not only pprocsym ! }
if p^.left^.symtableprocentry^.typ=varsym then
hp3:=pabstractprocdef(pvarsym(p^.left^.symtableentry)^.vartype.def)
else
hp3:=pabstractprocdef(pprocsym(p^.left^.symtableprocentry)^.definition);
pprocvardef(p^.resulttype)^.proctypeoption:=hp3^.proctypeoption;
pprocvardef(p^.resulttype)^.proccalloptions:=hp3^.proccalloptions;
pprocvardef(p^.resulttype)^.procoptions:=hp3^.procoptions;
pprocvardef(p^.resulttype)^.rettype:=hp3^.rettype;
pprocvardef(p^.resulttype)^.symtablelevel:=hp3^.symtablelevel;
{ method ? then set the methodpointer flag }
if (hp3^.owner^.symtabletype=objectsymtable) and
(pobjectdef(hp3^.owner^.defowner)^.is_class) then
include(pprocvardef(p^.resulttype)^.procoptions,po_methodpointer);
{ we need to process the parameters reverse so they are inserted
in the correct right2left order (PFV) }
hp2:=pparaitem(hp3^.para^.last);
while assigned(hp2) do
begin
pprocvardef(p^.resulttype)^.concatpara(hp2^.paratype,hp2^.paratyp,hp2^.defaultvalue);
hp2:=pparaitem(hp2^.previous);
end;
end
else
p^.resulttype:=voidpointerdef;
disposetree(p^.left);
p^.left:=hp;
end
else
begin
firstpass(p^.left);
{ what are we getting the address from an absolute sym? }
hp:=p^.left;
while assigned(hp) and (hp^.treetype in [vecn,derefn,subscriptn]) do
hp:=hp^.left;
if assigned(hp) and (hp^.treetype=loadn) and
((hp^.symtableentry^.typ=absolutesym) and
pabsolutesym(hp^.symtableentry)^.absseg) then
begin
if not(cs_typed_addresses in aktlocalswitches) then
p^.resulttype:=voidfarpointerdef
else
p^.resulttype:=new(ppointerdef,initfardef(p^.left^.resulttype));
end
else
begin
if not(cs_typed_addresses in aktlocalswitches) then
p^.resulttype:=voidpointerdef
else
p^.resulttype:=new(ppointerdef,initdef(p^.left^.resulttype));
end;
end;
end;
firstpass(p^.left);
{ this is like the function addr }
inc(parsing_para_level);
set_varstate(p^.left,false);
dec(parsing_para_level);
if codegenerror then
exit;
{ don't allow constants }
if is_constnode(p^.left) then
begin
aktfilepos:=p^.left^.fileinfo;
CGMessage(type_e_no_addr_of_constant);
end
else
begin
{ we should allow loc_mem for @string }
if not(p^.left^.location.loc in [LOC_MEM,LOC_REFERENCE]) then
begin
aktfilepos:=p^.left^.fileinfo;
CGMessage(cg_e_illegal_expression);
end;
end;
p^.registers32:=p^.left^.registers32;
p^.registersfpu:=p^.left^.registersfpu;
{$ifdef SUPPORT_MMX}
p^.registersmmx:=p^.left^.registersmmx;
{$endif SUPPORT_MMX}
if p^.registers32<1 then
p^.registers32:=1;
{ is this right for object of methods ?? }
p^.location.loc:=LOC_REGISTER;
end;
{*****************************************************************************
FirstDoubleAddr
*****************************************************************************}
procedure firstdoubleaddr(var p : ptree);
begin
make_not_regable(p^.left);
firstpass(p^.left);
inc(parsing_para_level);
set_varstate(p^.left,false);
dec(parsing_para_level);
if p^.resulttype=nil then
p^.resulttype:=voidpointerdef;
if codegenerror then
exit;
if (p^.left^.resulttype^.deftype)<>procvardef then
CGMessage(cg_e_illegal_expression);
if (p^.left^.location.loc<>LOC_REFERENCE) then
CGMessage(cg_e_illegal_expression);
p^.registers32:=p^.left^.registers32;
p^.registersfpu:=p^.left^.registersfpu;
{$ifdef SUPPORT_MMX}
p^.registersmmx:=p^.left^.registersmmx;
{$endif SUPPORT_MMX}
if p^.registers32<1 then
p^.registers32:=1;
p^.location.loc:=LOC_REGISTER;
end;
{*****************************************************************************
FirstDeRef
*****************************************************************************}
procedure firstderef(var p : ptree);
begin
firstpass(p^.left);
set_varstate(p^.left,true);
if codegenerror then
begin
p^.resulttype:=generrordef;
exit;
end;
p^.registers32:=max(p^.left^.registers32,1);
p^.registersfpu:=p^.left^.registersfpu;
{$ifdef SUPPORT_MMX}
p^.registersmmx:=p^.left^.registersmmx;
{$endif SUPPORT_MMX}
if p^.left^.resulttype^.deftype<>pointerdef then
CGMessage(cg_e_invalid_qualifier);
p^.resulttype:=ppointerdef(p^.left^.resulttype)^.pointertype.def;
p^.location.loc:=LOC_REFERENCE;
end;
{*****************************************************************************
FirstSubScript
*****************************************************************************}
procedure firstsubscript(var p : ptree);
begin
firstpass(p^.left);
if codegenerror then
begin
p^.resulttype:=generrordef;
exit;
end;
p^.resulttype:=p^.vs^.vartype.def;
p^.registers32:=p^.left^.registers32;
p^.registersfpu:=p^.left^.registersfpu;
{$ifdef SUPPORT_MMX}
p^.registersmmx:=p^.left^.registersmmx;
{$endif SUPPORT_MMX}
{ classes must be dereferenced implicit }
if (p^.left^.resulttype^.deftype=objectdef) and
pobjectdef(p^.left^.resulttype)^.is_class then
begin
if p^.registers32=0 then
p^.registers32:=1;
p^.location.loc:=LOC_REFERENCE;
end
else
begin
if (p^.left^.location.loc<>LOC_MEM) and
(p^.left^.location.loc<>LOC_REFERENCE) then
CGMessage(cg_e_illegal_expression);
set_location(p^.location,p^.left^.location);
end;
end;
{*****************************************************************************
FirstVec
*****************************************************************************}
procedure firstvec(var p : ptree);
var
harr : pdef;
ct : tconverttype;
{$ifdef consteval}
tcsym : ptypedconstsym;
{$endif}
begin
firstpass(p^.left);
firstpass(p^.right);
if codegenerror then
exit;
{ range check only for arrays }
if (p^.left^.resulttype^.deftype=arraydef) then
begin
if (isconvertable(p^.right^.resulttype,parraydef(p^.left^.resulttype)^.rangetype.def,
ct,ordconstn,false)=0) and
not(is_equal(p^.right^.resulttype,parraydef(p^.left^.resulttype)^.rangetype.def)) then
CGMessage(type_e_mismatch);
end;
{ Never convert a boolean or a char !}
{ maybe type conversion }
if (p^.right^.resulttype^.deftype<>enumdef) and
not(is_char(p^.right^.resulttype)) and
not(is_boolean(p^.right^.resulttype)) then
begin
p^.right:=gentypeconvnode(p^.right,s32bitdef);
firstpass(p^.right);
if codegenerror then
exit;
end;
{ are we accessing a pointer[], then convert the pointer to
an array first, in FPC this is allowed for all pointers in
delphi/tp7 it's only allowed for pchars }
if (p^.left^.resulttype^.deftype=pointerdef) and
((m_fpc in aktmodeswitches) or
is_pchar(p^.left^.resulttype)) then
begin
{ convert pointer to array }
harr:=new(parraydef,init(0,$7fffffff,s32bitdef));
parraydef(harr)^.elementtype.def:=ppointerdef(p^.left^.resulttype)^.pointertype.def;
p^.left:=gentypeconvnode(p^.left,harr);
firstpass(p^.left);
if codegenerror then
exit;
p^.resulttype:=parraydef(harr)^.elementtype.def
end;
{ determine return type }
if not assigned(p^.resulttype) then
if p^.left^.resulttype^.deftype=arraydef then
p^.resulttype:=parraydef(p^.left^.resulttype)^.elementtype.def
else if p^.left^.resulttype^.deftype=stringdef then
begin
{ indexed access to strings }
case pstringdef(p^.left^.resulttype)^.string_typ of
{
st_widestring : p^.resulttype:=cwchardef;
}
st_ansistring : p^.resulttype:=cchardef;
st_longstring : p^.resulttype:=cchardef;
st_shortstring : p^.resulttype:=cchardef;
end;
end
else
CGMessage(type_e_array_required);
{ the register calculation is easy if a const index is used }
if p^.right^.treetype=ordconstn then
begin
{$ifdef consteval}
{ constant evaluation }
if (p^.left^.treetype=loadn) and
(p^.left^.symtableentry^.typ=typedconstsym) then
begin
tcsym:=ptypedconstsym(p^.left^.symtableentry);
if tcsym^.defintion^.typ=stringdef then
begin
end;
end;
{$endif}
p^.registers32:=p^.left^.registers32;
{ for ansi/wide strings, we need at least one register }
if is_ansistring(p^.left^.resulttype) or
is_widestring(p^.left^.resulttype) then
p^.registers32:=max(p^.registers32,1);
end
else
begin
{ this rules are suboptimal, but they should give }
{ good results }
p^.registers32:=max(p^.left^.registers32,p^.right^.registers32);
{ for ansi/wide strings, we need at least one register }
if is_ansistring(p^.left^.resulttype) or
is_widestring(p^.left^.resulttype) then
p^.registers32:=max(p^.registers32,1);
{ need we an extra register when doing the restore ? }
if (p^.left^.registers32<=p^.right^.registers32) and
{ only if the node needs less than 3 registers }
{ two for the right node and one for the }
{ left address }
(p^.registers32<3) then
inc(p^.registers32);
{ need we an extra register for the index ? }
if (p^.right^.location.loc<>LOC_REGISTER)
{ only if the right node doesn't need a register }
and (p^.right^.registers32<1) then
inc(p^.registers32);
{ not correct, but what works better ?
if p^.left^.registers32>0 then
p^.registers32:=max(p^.registers32,2)
else
min. one register
p^.registers32:=max(p^.registers32,1);
}
end;
p^.registersfpu:=max(p^.left^.registersfpu,p^.right^.registersfpu);
{$ifdef SUPPORT_MMX}
p^.registersmmx:=max(p^.left^.registersmmx,p^.right^.registersmmx);
{$endif SUPPORT_MMX}
if p^.left^.location.loc in [LOC_CREGISTER,LOC_REFERENCE] then
p^.location.loc:=LOC_REFERENCE
else
p^.location.loc:=LOC_MEM;
end;
{*****************************************************************************
FirstSelf
*****************************************************************************}
procedure firstself(var p : ptree);
begin
if (p^.resulttype^.deftype=classrefdef) or
((p^.resulttype^.deftype=objectdef)
and pobjectdef(p^.resulttype)^.is_class
) then
p^.location.loc:=LOC_CREGISTER
else
p^.location.loc:=LOC_REFERENCE;
end;
{*****************************************************************************
FirstWithN
*****************************************************************************}
procedure firstwith(var p : ptree);
var
symtable : pwithsymtable;
i : longint;
begin
if assigned(p^.left) and assigned(p^.right) then
begin
firstpass(p^.left);
unset_varstate(p^.left);
set_varstate(p^.left,true);
if codegenerror then
exit;
symtable:=p^.withsymtable;
for i:=1 to p^.tablecount do
begin
if (p^.left^.treetype=loadn) and
(p^.left^.symtable=aktprocsym^.definition^.localst) then
symtable^.direct_with:=true;
symtable^.withnode:=p;
symtable:=pwithsymtable(symtable^.next);
end;
firstpass(p^.right);
if codegenerror then
exit;
left_right_max(p);
p^.resulttype:=voiddef;
end
else
begin
{ optimization }
disposetree(p);
p:=nil;
end;
end;
end.
{
$Log$
Revision 1.6 2000-08-20 15:05:45 peter
* don't allow pointer indexing in non-fpc modes
* array type required message instead of type mismatch (merged)
Revision 1.5 2000/08/04 22:00:52 peter
* merges from fixes
Revision 1.4 2000/08/02 19:49:59 peter
* first things for default parameters
Revision 1.3 2000/07/13 12:08:28 michael
+ patched to 1.1.0 with former 1.09patch from peter
Revision 1.2 2000/07/13 11:32:52 michael
+ removed logs
}