fpc/compiler/defutil.pas
Michaël Van Canneyt b5bccf7a77 * Fix typo
2025-03-11 09:56:55 +01:00

2260 lines
73 KiB
ObjectPascal

{
Copyright (c) 1998-2006 by Florian Klaempfl
This unit provides some help routines for type handling
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
****************************************************************************
}
unit defutil;
{$i fpcdefs.inc}
interface
uses
globtype,globals,constexp,
symconst,symtype,symdef,
cgbase,cpubase;
type
tmmxtype = (mmxno,mmxu8bit,mmxs8bit,mmxu16bit,mmxs16bit,
mmxu32bit,mmxs32bit,mmxfixed16,mmxsingle,mmxs64bit,mmxu64bit);
{*****************************************************************************
Basic type functions
*****************************************************************************}
{# Returns true, if definition defines an ordinal type }
function is_ordinal(def : tdef) : boolean;
{# Returns true, if definition defines a string type }
function is_string(def : tdef): boolean;
{# Returns True, if definition defines a type that behaves like a string,
namely that can be joined and compared with another string-like type }
function is_stringlike(def : tdef) : boolean;
{# Returns the typedef for the char type that matches the stringlike }
function chartype_for_stringlike(def : tdef) : tdef;
{# Returns True, if definition defines an enumeration type }
function is_enum(def : tdef) : boolean;
{# Returns True, if definition defines a set type }
function is_set(def : tdef) : boolean;
{# Returns the minimal integer value of the type }
function get_min_value(def : tdef) : TConstExprInt;
{# Returns the maximal integer value of the type }
function get_max_value(def : tdef) : TConstExprInt;
{# Returns basetype of the specified integer range }
function range_to_basetype(const l,h:TConstExprInt):tordtype;
procedure range_to_type(const l,h:TConstExprInt;var def:tdef);
procedure int_to_type(const v:TConstExprInt;var def:tdef);
{# Return true if the type (orddef or enumdef) spans its entire bitrange }
function spans_entire_range(def: tdef): boolean;
{# Returns true, if definition defines an integer type }
function is_integer(def : tdef) : boolean;
{# Returns true if definition is a boolean }
function is_boolean(def : tdef) : boolean;
{# Returns true if definition is a Pascal-style boolean (1 = true, zero = false) }
function is_pasbool(def : tdef) : boolean;
{# Returns true if definition is a C-style boolean (non-zero value = true, zero = false) }
function is_cbool(def : tdef) : boolean;
{# Returns true if definition is a char
This excludes the unicode char.
}
function is_char(def : tdef) : boolean;
{# Returns true if definition is a widechar }
function is_widechar(def : tdef) : boolean;
{# Returns true if definition is either an AnsiChar or a WideChar }
function is_anychar(def : tdef) : boolean;
{# Returns true if definition is a void}
function is_void(def : tdef) : boolean;
{# Returns true if definition is a smallset}
function is_smallset(p : tdef) : boolean;
{# Returns true, if def defines a signed data type
(only for ordinal types)
}
function is_signed(def : tdef) : boolean;
{# Returns an unsigned integer type of the same size as def; def must be
an ordinal or enum }
function get_unsigned_inttype(def: tdef): torddef;
{# Returns a signed integer type of the same size as def; def must be
an ordinal or enum }
function get_signed_inttype(def: tdef): torddef;
{# Returns whether def_from's range is comprised in def_to's if both are
orddefs, false otherwise }
function is_in_limit(def_from,def_to : tdef) : boolean;
{# Returns whether def is reference counted }
function is_managed_type(def: tdef) : boolean;{$ifdef USEINLINE}inline;{$endif}
{ # Returns whether def is needs to load RTTI for reference counting }
function is_rtti_managed_type(def: tdef) : boolean;
{ function is_in_limit_value(val_from:TConstExprInt;def_from,def_to : tdef) : boolean;}
{*****************************************************************************
Array helper functions
*****************************************************************************}
{# Returns true, if p points to a zero based (non special like open or
dynamic array def).
This is mainly used to see if the array
is convertable to a pointer
}
function is_zero_based_array(p : tdef) : boolean;
{# Returns true if p points to an open array definition }
function is_open_array(p : tdef) : boolean;
{# Returns true if p points to a dynamic array definition }
function is_dynamic_array(p : tdef) : boolean;
{# Returns true, if p points to an array of const definition }
function is_array_constructor(p : tdef) : boolean;
{# Returns true, if p points to a variant array }
function is_variant_array(p : tdef) : boolean;
{# Returns true, if p points to an array of const }
function is_array_of_const(p : tdef) : boolean;
{# Returns true if p is an arraydef that describes a constant string }
function is_conststring_array(p : tdef) : boolean;
{# Returns true, if p points any kind of special array
That is if the array is an open array, a variant
array, an array constants constructor, or an
array of const.
Bitpacked arrays aren't special in this regard though.
}
function is_special_array(p : tdef) : boolean;
{# Returns true, if p points to a normal array, bitpacked arrays are included }
function is_normal_array(p : tdef) : boolean;
{# Returns true if p is a bitpacked array }
function is_packed_array(p: tdef) : boolean;
{# Returns true if p is a bitpacked record }
function is_packed_record_or_object(p: tdef) : boolean;
{# Returns true if p is a char array def }
function is_chararray(p : tdef) : boolean;
{# Returns true if p is a wide char array def }
function is_widechararray(p : tdef) : boolean;
{# Returns true if p is a open char array def }
function is_open_chararray(p : tdef) : boolean;
{# Returns true if p is a open wide char array def }
function is_open_widechararray(p : tdef) : boolean;
{*****************************************************************************
String helper functions
*****************************************************************************}
{# Returns true if p points to an open string type }
function is_open_string(p : tdef) : boolean;
{# Returns true if p is an ansi string type }
function is_ansistring(p : tdef) : boolean;
{# Returns true if p is an ansi string type with codepage 0 }
function is_rawbytestring(p : tdef) : boolean;
{# Returns true if p is a long string type }
function is_longstring(p : tdef) : boolean;
{# returns true if p is a wide string type }
function is_widestring(p : tdef) : boolean;
{# true if p is an unicode string def }
function is_unicodestring(p : tdef) : boolean;
{# true if p is an unicode/wide/ansistring string def }
function is_dynamicstring(p : tdef) : boolean;
{# returns true if p is a wide or unicode string type }
function is_wide_or_unicode_string(p : tdef) : boolean;
{# Returns true if p is a short string type }
function is_shortstring(p : tdef) : boolean;
{# Returns true if p is any pointer def }
function is_pointer(p : tdef) : boolean;
{# Returns true p is an address: pointer, classref, ansistring, ... }
function is_address(p : tdef) : boolean;
{# Returns true if p is a pchar def }
function is_pchar(p : tdef) : boolean;
{# Returns true if p is a pwidechar def }
function is_pwidechar(p : tdef) : boolean;
{# Returns true if p is a voidpointer def }
function is_voidpointer(p : tdef) : boolean;
{# Returns true if p is a cyclic reference (refers to itself at some point via pointer or array) }
function is_cyclic(p : tdef): Boolean; {$ifdef USEINLINE}inline;{$endif USEINLINE}
{# Returns true, if definition is a float }
function is_fpu(def : tdef) : boolean;
{# Returns true, if def is a currency type }
function is_currency(def : tdef) : boolean;
{# Returns true, if def is a comp type (handled by the fpu) }
function is_fpucomp(def : tdef) : boolean;
{# Returns true, if def is a single type }
function is_single(def : tdef) : boolean;
{# Returns true, if def is a double type }
function is_double(def : tdef) : boolean;
{# Returns true, if def is an extended type }
function is_extended(def : tdef) : boolean;
{# Returns true, if def is quad type }
function is_quad(def : tdef) : boolean;
{# Returns true, if definition is a "real" real (i.e. single/double/extended) }
function is_real(def : tdef) : boolean;
{# Returns true for single,double,extended and cextended }
function is_real_or_cextended(def : tdef) : boolean;
{ true, if def is a 8 bit int type }
function is_8bitint(def : tdef) : boolean;
{ true, if def is a 8 bit ordinal type }
function is_8bit(def : tdef) : boolean;
{ true, if def is a 16 bit int type }
function is_16bitint(def : tdef) : boolean;
{ true, if def is a 16 bit ordinal type }
function is_16bit(def : tdef) : boolean;
{# Returns true, if def is a 32 bit integer type }
function is_32bitint(def : tdef) : boolean;
{# Returns true, if def is a 32 bit ordinal type }
function is_32bit(def : tdef) : boolean;
{# Returns true, if def is a 64 bit integer type }
function is_64bitint(def : tdef) : boolean;
{# Returns true, if def is a 64 bit signed integer type }
function is_s64bitint(def : tdef) : boolean;
{# Returns true, if def is a qword type }
function is_u64bitint(def : tdef) : boolean;
{# Returns true, if def is a 64 bit ordinal type }
function is_64bit(def : tdef) : boolean;
{ returns true, if def is a longint type }
function is_s32bitint(def : tdef) : boolean;
{ returns true, if def is a dword type }
function is_u32bitint(def : tdef) : boolean;
{ true, if def1 and def2 are both integers of the same bit size and sign }
function are_equal_ints(def1, def2: tdef): boolean;
{ true, if def is an int type, larger than the processor's native int size }
function is_oversizedint(def : tdef) : boolean;
{ true, if def is an ordinal type, larger than the processor's native int size }
function is_oversizedord(def : tdef) : boolean;
{ true, if def is an int type, equal in size to the processor's native int size }
function is_nativeint(def : tdef) : boolean;
{ true, if def is an ordinal type, equal in size to the processor's native int size }
function is_nativeord(def : tdef) : boolean;
{ true, if def is an unsigned int type, equal in size to the processor's native int size }
function is_nativeuint(def : tdef) : boolean;
{ true, if def is a signed int type, equal in size to the processor's native int size }
function is_nativesint(def : tdef) : boolean;
{ true, if the char type is a widechar in the system unit }
function is_systemunit_unicode : boolean;
type
tperformrangecheck = (
rc_internal, { nothing, internal conversion }
rc_explicit, { no, but this is an explcit user conversion and hence can still give warnings in some cases (or errors in case of enums) }
rc_implicit, { no, but this is an implicit conversion and hence can still give warnings/errors in some cases }
rc_yes { yes }
);
{# If @var(l) isn't in the range of todef a range check error (if not explicit) is generated and
the value is placed within the range
}
procedure adaptrange(todef : tdef;var l : tconstexprint; rangecheck: tperformrangecheck);
{ for when used with nf_explicit/nf_internal/cs_check_range nodeflags }
procedure adaptrange(todef : tdef;var l : tconstexprint; internal, explicit, rangecheckstate: boolean);
{# Returns the range of def, where @var(l) is the low-range and @var(h) is
the high-range.
}
procedure getrange(def : tdef;out l, h : TConstExprInt);
procedure getrangedefmasksize(def: tdef; out rangedef: tdef; out mask: TConstExprInt; out size: longint);
{ Returns the range type of an ordinal type in the sense of ISO-10206 }
function get_iso_range_type(def: tdef): tdef;
{ is the type a vector, or can it be transparently used as one? }
function is_vector(p : tdef) : boolean;
{ return a real/hardware vectordef representing this def }
function to_hwvectordef(p: tdef; nil_on_error: boolean): tdef;
{ some type helper routines for MMX support }
function is_mmx_able_array(p : tdef) : boolean;
{# returns the mmx type }
function mmx_type(p : tdef) : tmmxtype;
{ returns if the passed type (array) fits into an mm register }
function fits_in_mm_register(p : tdef) : boolean;
{# From a definition return the abstract code generator size enum. It is
to note that the value returned can be @var(OS_NO) }
function def_cgsize(def: tdef): tcgsize;
{ #Return an orddef (integer) correspondig to a tcgsize }
function cgsize_orddef(size: tcgsize): torddef;
{# Same as def_cgsize, except that it will interpret certain arrays as
vectors and return OS_M* sizes for them }
function def_cgmmsize(def: tdef): tcgsize;
{# returns true, if the type passed is can be used with windows automation }
function is_automatable(p : tdef) : boolean;
{ # returns true if the procdef has no parameters and no specified return type }
function is_bareprocdef(pd : tprocdef): boolean;
{ returns true if the procdef is a C-style variadic function }
function is_c_variadic(pd: tabstractprocdef): boolean; {$ifdef USEINLINE}inline;{$endif}
{ # returns the smallest base integer type whose range encompasses that of
both ld and rd; if keep_sign_if_equal, then if ld and rd have the same
signdness, the result will also get that signdness }
function get_common_intdef(ld, rd: torddef; keep_sign_if_equal: boolean): torddef;
{ # calculates "not v" based on the provided def; returns true if the def
was negatable, false otherwise }
function calc_not_ordvalue(var v:Tconstexprint; var def:tdef):boolean;
{ # returns whether the type is potentially a valid type of/for an "univ" parameter
(basically: it must have a compile-time size) }
function is_valid_univ_para_type(def: tdef): boolean;
{ # returns whether the procdef/procvardef represents a nested procedure
or not }
function is_nested_pd(def: tabstractprocdef): boolean;{$ifdef USEINLINE}inline;{$endif}
{ # returns whether def is a type parameter of a generic }
function is_typeparam(def : tdef) : boolean;{$ifdef USEINLINE}inline;{$endif}
{ returns true of def is a methodpointer }
function is_methodpointer(def : tdef) : boolean;
{ returns true if def is a function reference }
function is_funcref(def:tdef):boolean;
{ returns true if def is an invokable interface }
function is_invokable(def:tdef):boolean;
{ returns true if def is a C "block" }
function is_block(def: tdef): boolean;
{ returns the TTypeKind value of the def }
function get_typekind(def: tdef): byte;
{ returns the Invoke procdef of a function reference interface }
function get_invoke_procdef(def:tobjectdef):tprocdef;
{ returns whether the invokable has an Invoke overload that can be called
without arguments }
function invokable_has_argless_invoke(def:tobjectdef):boolean;
implementation
uses
verbose,cutils,
symtable, // search_system_type
symsym,
cpuinfo;
{ returns true, if def uses FPU }
function is_fpu(def : tdef) : boolean;
begin
is_fpu:=(def.typ=floatdef);
end;
{ returns true, if def is a currency type }
function is_currency(def : tdef) : boolean;
begin
case s64currencytype.typ of
orddef :
result:=(def.typ=orddef) and
(torddef(s64currencytype).ordtype=torddef(def).ordtype);
floatdef :
result:=(def.typ=floatdef) and
(tfloatdef(s64currencytype).floattype=tfloatdef(def).floattype);
else
internalerror(200304222);
end;
end;
function is_fpucomp(def: tdef): boolean;
begin
result:=(def.typ=floatdef) and
(tfloatdef(def).floattype=s64comp);
end;
{ returns true, if def is a single type }
function is_single(def : tdef) : boolean;
begin
result:=(def.typ=floatdef) and
(tfloatdef(def).floattype=s32real);
end;
{ returns true, if def is a double type }
function is_double(def : tdef) : boolean;
begin
result:=(def.typ=floatdef) and
(tfloatdef(def).floattype=s64real);
end;
{ returns true, if def is an extended type }
function is_extended(def : tdef) : boolean;
begin
result:=(def.typ=floatdef) and
(tfloatdef(def).floattype in [s80real,sc80real]);
end;
{ returns true, if def is a quad type }
function is_quad(def : tdef) : boolean;
begin
result:=(def.typ=floatdef) and
(tfloatdef(def).floattype=s128real);
end;
{ returns true, if definition is a "real" real (i.e. single/double/extended) }
function is_real(def : tdef) : boolean;
begin
result:=(def.typ=floatdef) and
(tfloatdef(def).floattype in [s32real,s64real,s80real]);
end;
function is_real_or_cextended(def: tdef): boolean;
begin
result:=(def.typ=floatdef) and
(tfloatdef(def).floattype in [s32real,s64real,s80real,sc80real]);
end;
function range_to_basetype(const l,h:TConstExprInt):tordtype;
begin
{ prefer signed over unsigned }
if (l>=int64(-128)) and (h<=127) then
range_to_basetype:=s8bit
else if (l>=0) and (h<=255) then
range_to_basetype:=u8bit
else if (l>=int64(-32768)) and (h<=32767) then
range_to_basetype:=s16bit
else if (l>=0) and (h<=65535) then
range_to_basetype:=u16bit
else if (l>=int64(low(longint))) and (h<=high(longint)) then
range_to_basetype:=s32bit
else if (l>=low(cardinal)) and (h<=high(cardinal)) then
range_to_basetype:=u32bit
else if (l>=low(int64)) and (h<=high(int64)) then
range_to_basetype:=s64bit
else
range_to_basetype:=u64bit;
end;
procedure range_to_type(const l,h:TConstExprInt;var def:tdef);
begin
{ prefer signed over unsigned }
if (l>=int64(-128)) and (h<=127) then
def:=s8inttype
else if (l>=0) and (h<=255) then
def:=u8inttype
else if (l>=int64(-32768)) and (h<=32767) then
def:=s16inttype
else if (l>=0) and (h<=65535) then
def:=u16inttype
else if (l>=int64(low(longint))) and (h<=high(longint)) then
def:=s32inttype
else if (l>=low(cardinal)) and (h<=high(cardinal)) then
def:=u32inttype
else if (l>=low(int64)) and (h<=high(int64)) then
def:=s64inttype
else
def:=u64inttype;
end;
procedure int_to_type(const v:TConstExprInt;var def:tdef);
begin
range_to_type(v,v,def);
end;
{ true if p is an ordinal }
function is_ordinal(def : tdef) : boolean;
var
dt : tordtype;
begin
case def.typ of
orddef :
begin
dt:=torddef(def).ordtype;
is_ordinal:=dt in [uchar,uwidechar,
u8bit,u16bit,u32bit,u64bit,
s8bit,s16bit,s32bit,s64bit,
pasbool1,pasbool8,pasbool16,pasbool32,pasbool64,
bool8bit,bool16bit,bool32bit,bool64bit,customint];
end;
enumdef :
is_ordinal:=true;
else
is_ordinal:=false;
end;
end;
{ true if p is a string }
function is_string(def : tdef) : boolean;
begin
is_string := (assigned(def) and (def.typ = stringdef));
end;
function is_stringlike(def : tdef) : boolean;
begin
result := is_string(def) or
is_anychar(def) or
is_pchar(def) or
is_pwidechar(def) or
is_chararray(def) or
is_widechararray(def) or
is_open_chararray(def) or
is_open_widechararray(def) or
(def=java_jlstring);
end;
function chartype_for_stringlike(def : tdef) : tdef;
begin
if is_string(def) then
result:=tstringdef(def).get_default_char_type
else if is_anychar(def) then
result:=def
else if is_pchar(def) or is_chararray(def) or is_open_chararray(def) then
result:=cansichartype
else if is_pwidechar(def) or is_pwidechar(def) or is_open_widechararray(def) then
result:=cwidechartype
else if def=java_jlstring then
result:=cwidechartype
else
internalerror(2023012501);
end;
function is_enum(def : tdef) : boolean;
begin
result:=def.typ=enumdef;
end;
function is_set(def : tdef) : boolean;
begin
result:=def.typ=setdef;
end;
{ returns the min. value of the type }
function get_min_value(def : tdef) : TConstExprInt;
begin
case def.typ of
orddef:
result:=torddef(def).low;
enumdef:
result:=int64(tenumdef(def).min);
else
result:=0;
end;
end;
{ returns the max. value of the type }
function get_max_value(def : tdef) : TConstExprInt;
begin
case def.typ of
orddef:
result:=torddef(def).high;
enumdef:
result:=tenumdef(def).max;
else
result:=0;
end;
end;
function spans_entire_range(def: tdef): boolean;
var
lv, hv: Tconstexprint;
mask: qword;
size: longint;
begin
case def.typ of
orddef,
enumdef:
getrange(def,lv,hv);
else
internalerror(2019062203);
end;
size:=def.size;
case size of
1: mask:=$ff;
2: mask:=$ffff;
4: mask:=$ffffffff;
8: mask:=qword(-1);
else
internalerror(2019062204);
end;
result:=false;
if is_signed(def) then
begin
if (lv.uvalue and mask)<>(qword(1) shl (size*8-1)) then
exit;
if (hv.uvalue and mask)<>(mask shr 1) then
exit;
end
else
begin
if lv<>0 then
exit;
if hv.uvalue<>mask then
exit;
end;
result:=true;
end;
{ true if p is an integer }
function is_integer(def : tdef) : boolean;
begin
result:=(def.typ=orddef) and
(torddef(def).ordtype in [u8bit,u16bit,u32bit,u64bit,
s8bit,s16bit,s32bit,s64bit,
customint]);
end;
{ true if p is a boolean }
function is_boolean(def : tdef) : boolean;
begin
result:=(def.typ=orddef) and
(torddef(def).ordtype in [pasbool1,pasbool8,pasbool16,pasbool32,pasbool64,bool8bit,bool16bit,bool32bit,bool64bit]);
end;
function is_pasbool(def : tdef) : boolean;
begin
result:=(def.typ=orddef) and
(torddef(def).ordtype in [pasbool1,pasbool8,pasbool16,pasbool32,pasbool64]);
end;
{ true if def is a C-style boolean (non-zero value = true, zero = false) }
function is_cbool(def : tdef) : boolean;
begin
result:=(def.typ=orddef) and
(torddef(def).ordtype in [bool8bit,bool16bit,bool32bit,bool64bit]);
end;
{ true if p is a void }
function is_void(def : tdef) : boolean;
begin
result:=(def.typ=orddef) and
(torddef(def).ordtype=uvoid);
end;
{ true if p is a char }
function is_char(def : tdef) : boolean;
begin
result:=(def.typ=orddef) and
(torddef(def).ordtype=uchar);
end;
{ true if p is a wchar }
function is_widechar(def : tdef) : boolean;
begin
result:=(def.typ=orddef) and
(torddef(def).ordtype=uwidechar);
end;
{ true if p is a char or wchar }
function is_anychar(def : tdef) : boolean;
begin
result:=(def.typ=orddef) and
(torddef(def).ordtype in [uchar,uwidechar])
end;
{ true if p is signed (integer) }
function is_signed(def : tdef) : boolean;
begin
case def.typ of
orddef :
result:=torddef(def).low < 0;
enumdef :
result:=tenumdef(def).min < 0;
arraydef :
result:=is_signed(tarraydef(def).rangedef);
else
result:=false;
end;
end;
function get_unsigned_inttype(def: tdef): torddef;
begin
case def.typ of
orddef,
enumdef:
result:=cgsize_orddef(tcgsize2unsigned[def_cgsize(def)]);
else
internalerror(2016062001);
end;
end;
function get_signed_inttype(def: tdef): torddef;
begin
case def.typ of
orddef,
enumdef:
result:=cgsize_orddef(tcgsize2signed[def_cgsize(def)]);
else
internalerror(2022093007);
end;
end;
function is_in_limit(def_from,def_to : tdef) : boolean;
begin
if (def_from.typ<>def_to.typ) or
not(def_from.typ in [orddef,enumdef,setdef]) then
begin
is_in_limit := false;
exit;
end;
case def_from.typ of
orddef:
is_in_limit:=(torddef(def_from).low>=torddef(def_to).low) and
(torddef(def_from).high<=torddef(def_to).high);
enumdef:
is_in_limit:=(tenumdef(def_from).min>=tenumdef(def_to).min) and
(tenumdef(def_from).max<=tenumdef(def_to).max);
setdef:
is_in_limit:=(tsetdef(def_from).setbase>=tsetdef(def_to).setbase) and
(tsetdef(def_from).setmax<=tsetdef(def_to).setmax);
else
is_in_limit:=false;
end;
end;
function is_managed_type(def: tdef): boolean;{$ifdef USEINLINE}inline;{$endif}
begin
result:=def.needs_inittable;
end;
function is_rtti_managed_type(def: tdef): boolean;
begin
result:=def.needs_inittable and not (
is_interfacecom_or_dispinterface(def) or
(def.typ=variantdef) or
(
(def.typ=stringdef) and
(tstringdef(def).stringtype in [st_ansistring,st_widestring,st_unicodestring])
)
);
end;
{ true, if p points to an open array def }
function is_open_string(p : tdef) : boolean;
begin
is_open_string:=(p.typ=stringdef) and
(tstringdef(p).stringtype=st_shortstring) and
(tstringdef(p).len=0);
end;
{ true, if p points to a zero based array def }
function is_zero_based_array(p : tdef) : boolean;
begin
result:=(p.typ=arraydef) and
(tarraydef(p).lowrange=0) and
not(is_special_array(p));
end;
{ true if p points to a dynamic array def }
function is_dynamic_array(p : tdef) : boolean;
begin
result:=(p.typ=arraydef) and
(ado_IsDynamicArray in tarraydef(p).arrayoptions);
end;
{ true, if p points to an open array def }
function is_open_array(p : tdef) : boolean;
begin
{ check for sizesinttype is needed, because for unsigned the high
range is also -1 ! (PFV) }
result:=(p.typ=arraydef) and
(tarraydef(p).rangedef=sizesinttype) and
(ado_OpenArray in tarraydef(p).arrayoptions) and
((tarraydef(p).arrayoptions * [ado_IsVariant,ado_IsArrayOfConst,ado_IsConstructor,ado_IsDynamicArray])=[]);
end;
{ true, if p points to an array of const def }
function is_array_constructor(p : tdef) : boolean;
begin
result:=(p.typ=arraydef) and
(ado_IsConstructor in tarraydef(p).arrayoptions);
end;
{ true, if p points to a variant array }
function is_variant_array(p : tdef) : boolean;
begin
result:=(p.typ=arraydef) and
(ado_IsVariant in tarraydef(p).arrayoptions);
end;
{ true, if p points to an array of const }
function is_array_of_const(p : tdef) : boolean;
begin
result:=(p.typ=arraydef) and
(ado_IsArrayOfConst in tarraydef(p).arrayoptions) and
{ consider it an array-of-const in the strict sense only if it
isn't an array constructor }
not (ado_IsConstructor in tarraydef(p).arrayoptions);
end;
function is_conststring_array(p: tdef): boolean;
begin
result:=(p.typ=arraydef) and
(ado_IsConstString in tarraydef(p).arrayoptions);
end;
{ true, if p points to a special array, bitpacked arrays aren't special in this regard though }
function is_special_array(p : tdef) : boolean;
begin
result:=(p.typ=arraydef) and
(
((tarraydef(p).arrayoptions * [ado_IsVariant,ado_IsArrayOfConst,ado_IsConstructor,ado_IsDynamicArray])<>[]) or
is_open_array(p)
);
end;
{ true, if p points to a normal array, bitpacked arrays are included }
function is_normal_array(p : tdef) : boolean;
begin
result:=(p.typ=arraydef) and
((tarraydef(p).arrayoptions * [ado_IsVariant,ado_IsArrayOfConst,ado_IsConstructor,ado_IsDynamicArray])=[]) and
not(is_open_array(p));
end;
{ true if p is an ansi string def }
function is_ansistring(p : tdef) : boolean;
begin
is_ansistring:=(p.typ=stringdef) and
(tstringdef(p).stringtype=st_ansistring);
end;
{ true if p is an ansi string def with codepage CP_NONE }
function is_rawbytestring(p : tdef) : boolean;
begin
is_rawbytestring:=(p.typ=stringdef) and
(tstringdef(p).stringtype=st_ansistring) and
(tstringdef(p).encoding=globals.CP_NONE);
end;
{ true if p is an long string def }
function is_longstring(p : tdef) : boolean;
begin
is_longstring:=(p.typ=stringdef) and
(tstringdef(p).stringtype=st_longstring);
end;
{ true if p is an wide string def }
function is_widestring(p : tdef) : boolean;
begin
is_widestring:=(p.typ=stringdef) and
(tstringdef(p).stringtype=st_widestring);
end;
function is_dynamicstring(p: tdef): boolean;
begin
is_dynamicstring:=(p.typ=stringdef) and
(tstringdef(p).stringtype in [st_ansistring,st_widestring,st_unicodestring]);
end;
{ true if p is an wide string def }
function is_wide_or_unicode_string(p : tdef) : boolean;
begin
is_wide_or_unicode_string:=(p.typ=stringdef) and
(tstringdef(p).stringtype in [st_widestring,st_unicodestring]);
end;
{ true if p is an unicode string def }
function is_unicodestring(p : tdef) : boolean;
begin
is_unicodestring:=(p.typ=stringdef) and
(tstringdef(p).stringtype=st_unicodestring);
end;
{ true if p is an short string def }
function is_shortstring(p : tdef) : boolean;
begin
is_shortstring:=(p.typ=stringdef) and
(tstringdef(p).stringtype=st_shortstring);
end;
{ true if p is bit packed array def }
function is_packed_array(p: tdef) : boolean;
begin
is_packed_array :=
(p.typ = arraydef) and
(ado_IsBitPacked in tarraydef(p).arrayoptions);
end;
{ true if p is bit packed record def }
function is_packed_record_or_object(p: tdef) : boolean;
begin
is_packed_record_or_object :=
(p.typ in [recorddef,objectdef]) and
(tabstractrecorddef(p).is_packed);
end;
{ true if p is a char array def }
function is_chararray(p : tdef) : boolean;
begin
is_chararray:=(p.typ=arraydef) and
is_char(tarraydef(p).elementdef) and
not(is_special_array(p));
end;
{ true if p is a widechar array def }
function is_widechararray(p : tdef) : boolean;
begin
is_widechararray:=(p.typ=arraydef) and
is_widechar(tarraydef(p).elementdef) and
not(is_special_array(p));
end;
{ true if p is a open char array def }
function is_open_chararray(p : tdef) : boolean;
begin
is_open_chararray:= is_open_array(p) and
is_char(tarraydef(p).elementdef);
end;
{ true if p is a open wide char array def }
function is_open_widechararray(p : tdef) : boolean;
begin
is_open_widechararray:= is_open_array(p) and
is_widechar(tarraydef(p).elementdef);
end;
{ true if p is any pointer def }
function is_pointer(p : tdef) : boolean;
begin
is_pointer:=(p.typ=pointerdef);
end;
function is_address(p: tdef): boolean;
begin
is_address:=
(p.typ in [classrefdef,formaldef,undefineddef,procdef]) or
is_pointer(p) or
is_implicit_array_pointer(p) or
is_implicit_pointer_object_type(p) or
((p.typ=procvardef) and
(tprocvardef(p).is_addressonly or
is_block(p)
)
)
end;
{ true if p is a pchar def }
function is_pchar(p : tdef) : boolean;
begin
is_pchar:=(p.typ=pointerdef) and
(is_char(tpointerdef(p).pointeddef) or
(is_zero_based_array(tpointerdef(p).pointeddef) and
is_chararray(tpointerdef(p).pointeddef)));
end;
{ true if p is a pwidechar def }
function is_pwidechar(p : tdef) : boolean;
begin
is_pwidechar:=(p.typ=pointerdef) and
(is_widechar(tpointerdef(p).pointeddef) or
(is_zero_based_array(tpointerdef(p).pointeddef) and
is_widechararray(tpointerdef(p).pointeddef)));
end;
{ true if p is a voidpointer def }
function is_voidpointer(p : tdef) : boolean;
begin
is_voidpointer:=(p.typ=pointerdef) and
(tpointerdef(p).pointeddef.typ=orddef) and
(torddef(tpointerdef(p).pointeddef).ordtype=uvoid);
end;
type
PDefListItem = ^TDefListItem;
TDefListItem = record
Next: PDefListItem;
Def: tdef;
end;
{ See "is_cyclic" below }
function is_cyclic_internal(const def: tdef; const first: PDefListItem): Boolean;
var
thisdef: TDefListItem;
curitem: PDefListItem;
begin
if not (def.typ in [arraydef, pointerdef]) then
Exit(False);
curitem := first;
while assigned(curitem) do
begin
if curitem^.Def = def then
Exit(True);
curitem := curitem^.Next;
end;
thisdef.Next := first;
thisdef.Def := def;
case def.typ of
arraydef:
Result := is_cyclic_internal(tarraydef(def).elementdef, @thisdef);
pointerdef:
Result := is_cyclic_internal(tabstractpointerdef(def).pointeddef, @thisdef);
else
InternalError(2022120301);
end;
end;
{ true, if p is a cyclic reference (refers to itself at some point via pointer or array) }
function is_cyclic(p : tdef): Boolean; {$ifdef USEINLINE}inline;{$endif USEINLINE}
begin
Result := is_cyclic_internal(p, nil);
end;
{ true, if def is a 8 bit int type }
function is_8bitint(def : tdef) : boolean;
begin
result:=(def.typ=orddef) and (torddef(def).ordtype in [u8bit,s8bit])
end;
{ true, if def is a 8 bit ordinal type }
function is_8bit(def : tdef) : boolean;
begin
result:=(def.typ=orddef) and (torddef(def).ordtype in [u8bit,s8bit,pasbool1,pasbool8,bool8bit,uchar])
end;
{ true, if def is a 16 bit int type }
function is_16bitint(def : tdef) : boolean;
begin
result:=(def.typ=orddef) and (torddef(def).ordtype in [u16bit,s16bit])
end;
{ true, if def is a 16 bit ordinal type }
function is_16bit(def : tdef) : boolean;
begin
result:=(def.typ=orddef) and (torddef(def).ordtype in [u16bit,s16bit,pasbool16,bool16bit,uwidechar])
end;
{ true, if def is a 32 bit int type }
function is_32bitint(def : tdef) : boolean;
begin
result:=(def.typ=orddef) and (torddef(def).ordtype in [u32bit,s32bit])
end;
{ true, if def is a 32 bit ordinal type }
function is_32bit(def: tdef): boolean;
begin
result:=(def.typ=orddef) and (torddef(def).ordtype in [u32bit,s32bit,pasbool32,bool32bit])
end;
{ true, if def is a 64 bit int type }
function is_64bitint(def : tdef) : boolean;
begin
is_64bitint:=(def.typ=orddef) and (torddef(def).ordtype in [u64bit,s64bit])
end;
function is_s64bitint(def: tdef): boolean;
begin
is_s64bitint:=(def.typ=orddef) and (torddef(def).ordtype=s64bit)
end;
function is_u64bitint(def: tdef): boolean;
begin
is_u64bitint:=(def.typ=orddef) and (torddef(def).ordtype=u64bit)
end;
{ true, if def is a 64 bit type }
function is_64bit(def : tdef) : boolean;
begin
is_64bit:=(def.typ=orddef) and (torddef(def).ordtype in [u64bit,s64bit,scurrency,pasbool64,bool64bit])
end;
{ returns true, if def is a longint type }
function is_s32bitint(def : tdef) : boolean;
begin
result:=(def.typ=orddef) and
(torddef(def).ordtype=s32bit);
end;
{ returns true, if def is a dword type }
function is_u32bitint(def : tdef) : boolean;
begin
result:=(def.typ=orddef) and
(torddef(def).ordtype=u32bit);
end;
{ true, if def1 and def2 are both integers of the same bit size and sign }
function are_equal_ints(def1, def2: tdef): boolean;
begin
result:=(def1.typ=orddef) and (def2.typ=orddef) and
(torddef(def1).ordtype in [u8bit,u16bit,u32bit,u64bit,
s8bit,s16bit,s32bit,s64bit,customint]) and
(torddef(def1).ordtype=torddef(def2).ordtype) and
((torddef(def1).ordtype<>customint) or
((torddef(def1).low=torddef(def2).low) and
(torddef(def1).high=torddef(def2).high)));
end;
{ true, if def is an int type, larger than the processor's native int size }
function is_oversizedint(def : tdef) : boolean;
begin
{$if defined(cpu8bitalu)}
result:=is_64bitint(def) or is_32bitint(def) or is_16bitint(def);
{$elseif defined(cpu16bitalu)}
result:=is_64bitint(def) or is_32bitint(def);
{$elseif defined(cpu32bitaddr)}
result:=is_64bitint(def);
{$elseif defined(cpu64bitaddr)}
result:=false;
{$endif}
end;
{ true, if def is an ordinal type, larger than the processor's native int size }
function is_oversizedord(def : tdef) : boolean;
begin
{$if defined(cpu8bitalu)}
result:=is_64bit(def) or is_32bit(def) or is_16bit(def);
{$elseif defined(cpu16bitalu)}
result:=is_64bit(def) or is_32bit(def);
{$elseif defined(cpu32bitaddr)}
result:=is_64bit(def);
{$elseif defined(cpu64bitaddr)}
result:=false;
{$endif}
end;
{ true, if def is an int type, equal in size to the processor's native int size }
function is_nativeint(def: tdef): boolean;
begin
{$if defined(cpu8bitalu)}
result:=is_8bitint(def);
{$elseif defined(cpu16bitalu)}
result:=is_16bitint(def);
{$elseif defined(cpu32bitaddr)}
result:=is_32bitint(def);
{$elseif defined(cpu64bitaddr)}
result:=is_64bitint(def);
{$endif}
end;
{ true, if def is an ordinal type, equal in size to the processor's native int size }
function is_nativeord(def: tdef): boolean;
begin
{$if defined(cpu8bitalu)}
result:=is_8bit(def);
{$elseif defined(cpu16bitalu)}
result:=is_16bit(def);
{$elseif defined(cpu32bitaddr)}
result:=is_32bit(def);
{$elseif defined(cpu64bitaddr)}
result:=is_64bit(def);
{$endif}
end;
{ true, if def is an unsigned int type, equal in size to the processor's native int size }
function is_nativeuint(def: tdef): boolean;
begin
result:=is_nativeint(def) and (def.typ=orddef) and (torddef(def).ordtype in [u64bit,u32bit,u16bit,u8bit]);
end;
{ true, if def is a signed int type, equal in size to the processor's native int size }
function is_nativesint(def: tdef): boolean;
begin
result:=is_nativeint(def) and (def.typ=orddef) and (torddef(def).ordtype in [s64bit,s32bit,s16bit,s8bit]);
end;
function is_systemunit_unicode: boolean;
var
t : ttypesym;
begin
if cchartype=nil then
begin
t:=search_system_type('CHAR');
if t<>nil then
cchartype:=t.typedef;
end;
if cchartype=nil then
is_systemunit_unicode:=(sizeof(char)=2)
else
is_systemunit_unicode:=(cchartype.size=2);
end;
{ if l isn't in the range of todef a range check error (if not explicit) is generated and
the value is placed within the range }
procedure adaptrange(todef : tdef;var l : tconstexprint; rangecheck: tperformrangecheck);
var
lv,hv,oldval,sextval,mask: TConstExprInt;
rangedef: tdef;
rangedefsize: longint;
warned: boolean;
begin
getrange(todef,lv,hv);
if (l<lv) or (l>hv) then
begin
warned:=false;
if rangecheck in [rc_implicit,rc_yes] then
begin
if (rangecheck=rc_yes) or
(todef.typ=enumdef) then
Message3(type_e_range_check_error_bounds,tostr(l),tostr(lv),tostr(hv))
else
Message3(type_w_range_check_error_bounds,tostr(l),tostr(lv),tostr(hv));
warned:=true;
end
{ give warnings about range errors with explicit typeconversions if the target
type does not span the entire range that can be represented by its bits
(subrange type or enum), because then the result is undefined }
else if (rangecheck<>rc_internal) and
(not is_pasbool(todef) and
not spans_entire_range(todef)) then
begin
Message3(type_w_range_check_error_bounds,tostr(l),tostr(lv),tostr(hv));
warned:=true;
end;
{ Fix the value to fit in the allocated space for this type of variable }
oldval:=l;
getrangedefmasksize(todef,rangedef,mask,rangedefsize);
l:=l and mask;
{reset sign, i.e. converting -1 to qword changes the value to high(qword)}
l.signed:=false;
sextval:=0;
{ do sign extension if necessary (JM) }
case rangedefsize of
1: sextval.svalue:=shortint(l.svalue);
2: sextval.svalue:=smallint(l.svalue);
4: sextval.svalue:=longint(l.svalue);
8: sextval.svalue:=l.svalue;
else
internalerror(201906230);
end;
sextval.signed:=true;
{ Detect if the type spans the entire range, but more bits were specified than
the type can contain, e.g. shortint($fff).
However, none of the following should result in a warning:
1) shortint($ff) (-> $ff -> $ff -> $ffff ffff ffff ffff)
2) shortint(longint(-1)) ($ffff ffff ffff ffff ffff -> $ff -> $ffff ffff ffff ffff
3) cardinal(-1) (-> $ffff ffff ffff ffff -> $ffff ffff)
}
if not warned and
(rangecheck<>rc_internal) and
(oldval.uvalue<>l.uvalue) and
(oldval.uvalue<>sextval.uvalue) then
begin
Message3(type_w_range_check_error_bounds,tostr(oldval),tostr(lv),tostr(hv));
end;
if is_signed(rangedef) then
l:=sextval;
end;
end;
procedure adaptrange(todef: tdef; var l: tconstexprint; internal, explicit, rangecheckstate: boolean);
begin
if internal then
adaptrange(todef, l, rc_internal)
else if explicit then
adaptrange(todef, l, rc_explicit)
else if not rangecheckstate then
adaptrange(todef, l, rc_implicit)
else
adaptrange(todef, l, rc_yes)
end;
{ return the range from def in l and h }
procedure getrange(def : tdef;out l, h : TConstExprInt);
begin
case def.typ of
orddef :
begin
l:=torddef(def).low;
h:=torddef(def).high;
end;
enumdef :
begin
l:=int64(tenumdef(def).min);
h:=int64(tenumdef(def).max);
end;
arraydef :
begin
l:=int64(tarraydef(def).lowrange);
h:=int64(tarraydef(def).highrange);
end;
undefineddef:
begin
l:=torddef(sizesinttype).low;
h:=torddef(sizesinttype).high;
end;
else
internalerror(200611054);
end;
end;
procedure getrangedefmasksize(def: tdef; out rangedef: tdef; out mask: TConstExprInt; out size: longint);
begin
case def.typ of
orddef, enumdef:
begin
rangedef:=def;
size:=def.size;
case size of
1: mask:=$ff;
2: mask:=$ffff;
4: mask:=$ffffffff;
8: mask:=$ffffffffffffffff;
else
internalerror(2019062305);
end;
end;
arraydef:
begin
rangedef:=tarraydef(def).rangedef;
getrangedefmasksize(rangedef,rangedef,mask,size);
end;
undefineddef:
begin
rangedef:=sizesinttype;
size:=rangedef.size;
mask:=-1;
end;
else
internalerror(2019062306);
end;
end;
function mmx_type(p : tdef) : tmmxtype;
begin
mmx_type:=mmxno;
if is_mmx_able_array(p) then
begin
if tarraydef(p).elementdef.typ=floatdef then
case tfloatdef(tarraydef(p).elementdef).floattype of
s32real:
mmx_type:=mmxsingle;
else
;
end
else
case torddef(tarraydef(p).elementdef).ordtype of
u8bit:
mmx_type:=mmxu8bit;
s8bit:
mmx_type:=mmxs8bit;
u16bit:
mmx_type:=mmxu16bit;
s16bit:
mmx_type:=mmxs16bit;
u32bit:
mmx_type:=mmxu32bit;
s32bit:
mmx_type:=mmxs32bit;
else
;
end;
end;
end;
{ The range-type of an ordinal-type that is a subrange-type shall be the host-type (see 6.4.2.4) of the subrange-type.
The range-type of an ordinal-type that is not a subrange-type shall be the ordinal-type.
The subrange-bounds shall be of compatible ordinal-types, and the range-type (see 6.4.2.1) of the ordinal-types shall
be designated the host-type of the subrange-type. }
function get_iso_range_type(def: tdef): tdef;
begin
result:=nil;
case def.typ of
orddef:
begin
if is_integer(def) then
begin
if (torddef(def).low>=torddef(sinttype).low) and
(torddef(def).high<=torddef(sinttype).high) then
result:=sinttype
else
range_to_type(torddef(def).low,torddef(def).high,result);
end
else case torddef(def).ordtype of
pasbool1:
result:=pasbool1type;
pasbool8:
result:=pasbool8type;
pasbool16:
result:=pasbool16type;
pasbool32:
result:=pasbool32type;
pasbool64:
result:=pasbool64type;
bool8bit:
result:=bool8type;
bool16bit:
result:=bool16type;
bool32bit:
result:=bool32type;
bool64bit:
result:=bool64type;
uchar:
result:=cansichartype;
uwidechar:
result:=cwidechartype;
scurrency:
result:=s64currencytype;
else
internalerror(2018010901);
end;
end;
enumdef:
begin
while assigned(tenumdef(def).basedef) do
def:=tenumdef(def).basedef;
result:=def;
end
else
internalerror(2018010701);
end;
end;
function is_vector(p : tdef) : boolean;
begin
result:=(p.typ=arraydef) and
(tarraydef(p).is_hwvector { or
(not(is_special_array(p)) and
(tarraydef(p).elementdef.typ in [floatdef,orddef]) and
(tarraydef(p).elementdef.typ=floatdef) and
(tfloatdef(tarraydef(p).elementdef).floattype in [s32real,s64real])
) }
);
end;
{ returns if the passed type (array) fits into an mm register }
function fits_in_mm_register(p : tdef) : boolean;
begin
{$ifdef x86}
result:= is_vector(p) and
(
(
(tarraydef(p).elementdef.typ=floatdef) and
(
(tarraydef(p).lowrange=0) and
((tarraydef(p).highrange=3) or
(UseAVX and (tarraydef(p).highrange=7)) or
(UseAVX512 and (tarraydef(p).highrange=15))
) and
(tfloatdef(tarraydef(p).elementdef).floattype=s32real)
)
) or
(
(tarraydef(p).elementdef.typ=floatdef) and
(
(tarraydef(p).lowrange=0) and
((tarraydef(p).highrange=1) or
(UseAVX and (tarraydef(p).highrange=3)) or
(UseAVX512 and (tarraydef(p).highrange=7))
)and
(tfloatdef(tarraydef(p).elementdef).floattype=s64real)
)
) {or
// MMX registers
(
(tarraydef(p).elementdef.typ=floatdef) and
(
(tarraydef(p).lowrange=0) and
(tarraydef(p).highrange=1) and
(tfloatdef(tarraydef(p).elementdef).floattype=s32real)
)
) or
(
(tarraydef(p).elementdef.typ=orddef) and
(
(tarraydef(p).lowrange=0) and
(tarraydef(p).highrange=1) and
(torddef(tarraydef(p).elementdef).ordtype in [s32bit,u32bit])
)
) or
(
(tarraydef(p).elementdef.typ=orddef) and
(
(tarraydef(p).lowrange=0) and
(tarraydef(p).highrange=3) and
(torddef(tarraydef(p).elementdef).ordtype in [s16bit,u16bit])
)
) or
(
(tarraydef(p).elementdef.typ=orddef) and
(
(tarraydef(p).lowrange=0) and
(tarraydef(p).highrange=7) and
(torddef(tarraydef(p).elementdef).ordtype in [s8bit,u8bit])
)
) }
);
{$else x86}
result:=false;
{$endif x86}
end;
function to_hwvectordef(p: tdef; nil_on_error: boolean): tdef;
begin
result:=nil;
if p.typ=arraydef then
begin
if tarraydef(p).is_hwvector then
result:=p
else if fits_in_mm_register(p) then
result:=carraydef.getreusable_vector(tarraydef(p).elementdef,tarraydef(p).elecount)
else if not nil_on_error then
internalerror(2022090811);
end
else if not nil_on_error then
internalerror(2022090810);
end;
function is_mmx_able_array(p : tdef) : boolean;
begin
{$ifdef SUPPORT_MMX}
if (cs_mmx_saturation in current_settings.localswitches) then
begin
is_mmx_able_array:=(p.typ=arraydef) and
not(is_special_array(p)) and
(
(
(tarraydef(p).elementdef.typ=orddef) and
(
(
(tarraydef(p).lowrange=0) and
(tarraydef(p).highrange=1) and
(torddef(tarraydef(p).elementdef).ordtype in [u32bit,s32bit])
)
or
(
(tarraydef(p).lowrange=0) and
(tarraydef(p).highrange=3) and
(torddef(tarraydef(p).elementdef).ordtype in [u16bit,s16bit])
)
)
)
or
(
(
(tarraydef(p).elementdef.typ=floatdef) and
(
(tarraydef(p).lowrange=0) and
(tarraydef(p).highrange=1) and
(tfloatdef(tarraydef(p).elementdef).floattype=s32real)
)
)
)
);
end
else
begin
is_mmx_able_array:=(p.typ=arraydef) and
(
(
(tarraydef(p).elementdef.typ=orddef) and
(
(
(tarraydef(p).lowrange=0) and
(tarraydef(p).highrange=1) and
(torddef(tarraydef(p).elementdef).ordtype in [u32bit,s32bit])
)
or
(
(tarraydef(p).lowrange=0) and
(tarraydef(p).highrange=3) and
(torddef(tarraydef(p).elementdef).ordtype in [u16bit,s16bit])
)
or
(
(tarraydef(p).lowrange=0) and
(tarraydef(p).highrange=7) and
(torddef(tarraydef(p).elementdef).ordtype in [u8bit,s8bit])
)
)
)
or
(
(tarraydef(p).elementdef.typ=floatdef) and
(
(tarraydef(p).lowrange=0) and
(tarraydef(p).highrange=1) and
(tfloatdef(tarraydef(p).elementdef).floattype=s32real)
)
)
);
end;
{$else SUPPORT_MMX}
is_mmx_able_array:=false;
{$endif SUPPORT_MMX}
end;
function def_cgsize(def: tdef): tcgsize;
begin
case def.typ of
orddef,
enumdef,
setdef:
begin
result:=int_cgsize(def.size);
if is_signed(def) then
result:=tcgsize(ord(result)+(ord(OS_S8)-ord(OS_8)));
end;
classrefdef,
pointerdef:
begin
result:=int_cgsize(def.size);
{ can happen for far/huge pointers on non-i8086 }
if result=OS_NO then
internalerror(2013052201);
end;
formaldef:
result := int_cgsize(voidpointertype.size);
procvardef:
result:=int_cgsize(def.size);
stringdef :
result:=int_cgsize(def.size);
objectdef :
result:=int_cgsize(def.size);
floatdef:
if (cs_fp_emulation in current_settings.moduleswitches)
{$ifdef xtensa}
or not(tfloatdef(def).floattype=s32real)
or not(FPUXTENSA_SINGLE in fpu_capabilities[current_settings.fputype])
{$endif xtensa}
then
result:=int_cgsize(def.size)
else
result:=tfloat2tcgsize[tfloatdef(def).floattype];
recorddef :
{$ifdef wasm32}
if (def.size in [4,8]) and (trecorddef(def).contains_float_field) then
result:=int_float_cgsize(def.size)
else
{$endif wasm32}
result:=int_cgsize(def.size);
arraydef :
begin
if is_dynamic_array(def) or not is_special_array(def) then
begin
if is_vector(def) and ((TArrayDef(def).elementdef.typ = floatdef) and not (cs_fp_emulation in current_settings.moduleswitches)) then
begin
{ Determine if, based on the floating-point type and the size
of the array, if it can be made into a vector }
case tfloatdef(tarraydef(def).elementdef).floattype of
s32real:
result := float_array_cgsize(def.size);
s64real:
result := double_array_cgsize(def.size);
else
{ If not, fall back }
result := int_cgsize(def.size);
end;
end
else
result := int_cgsize(def.size);
end
else
result := OS_NO;
end;
else
begin
{ undefined size }
result:=OS_NO;
end;
end;
end;
function cgsize_orddef(size: tcgsize): torddef;
begin
case size of
OS_8:
result:=torddef(u8inttype);
OS_S8:
result:=torddef(s8inttype);
OS_16:
result:=torddef(u16inttype);
OS_S16:
result:=torddef(s16inttype);
OS_32:
result:=torddef(u32inttype);
OS_S32:
result:=torddef(s32inttype);
OS_64:
result:=torddef(u64inttype);
OS_S64:
result:=torddef(s64inttype);
else
internalerror(2012050401);
end;
end;
function def_cgmmsize(def: tdef): tcgsize;
begin
case def.typ of
arraydef:
begin
case tarraydef(def).elementdef.typ of
orddef:
begin
{ this is not correct, OS_MX normally mean that the vector
contains elements of size X. However, vectors themselves
can also have different sizes (e.g. a vector of 2 singles on
SSE) and the total size is currently more important }
case def.size of
1: result:=OS_M8;
2: result:=OS_M16;
4: result:=OS_M32;
8: result:=OS_M64;
16: result:=OS_M128;
32: result:=OS_M256;
64: result:=OS_M512;
else
internalerror(2013060103);
end;
end;
floatdef:
begin
case TFloatDef(tarraydef(def).elementdef).floattype of
s32real:
case def.size of
4: result:=OS_M32;
16: result:=OS_M128;
32: result:=OS_M256;
64: result:=OS_M512;
else
internalerror(2017121400);
end;
s64real:
case def.size of
8: result:=OS_M64;
16: result:=OS_M128;
32: result:=OS_M256;
64: result:=OS_M512;
else
internalerror(2017121401);
end;
else
internalerror(2017121402);
end;
end;
else
result:=def_cgsize(def);
end;
end
else
result:=def_cgsize(def);
end;
end;
{ In Windows 95 era, ordinals were restricted to [u8bit,s32bit,s16bit,bool16bit]
As of today, both signed and unsigned types from 8 to 64 bits are supported. }
function is_automatable(p : tdef) : boolean;
begin
case p.typ of
orddef:
result:=torddef(p).ordtype in [u8bit,s8bit,u16bit,s16bit,u32bit,s32bit,
u64bit,s64bit,bool16bit,scurrency];
floatdef:
result:=tfloatdef(p).floattype in [s64currency,s64real,s32real];
stringdef:
result:=tstringdef(p).stringtype in [st_ansistring,st_widestring,st_unicodestring];
variantdef:
result:=true;
objectdef:
result:=tobjectdef(p).objecttype in [odt_interfacecom,odt_dispinterface,odt_interfacecorba];
else
result:=false;
end;
end;
{# returns true, if the type passed is a varset }
function is_smallset(p : tdef) : boolean;
begin
{$if defined(cpu8bitalu)}
result:=(p.typ=setdef) and (p.size = 1)
{$elseif defined(cpu16bitalu)}
result:=(p.typ=setdef) and (p.size in [1,2])
{$else}
result:=(p.typ=setdef) and (p.size in [1,2,4])
{$endif}
end;
function is_bareprocdef(pd : tprocdef): boolean;
begin
result:=(pd.maxparacount=0) and
(is_void(pd.returndef) or
(pd.proctypeoption = potype_constructor));
end;
function is_c_variadic(pd: tabstractprocdef): boolean;
begin
result:=
(po_varargs in pd.procoptions) or
(po_variadic in pd.procoptions);
end;
function get_common_intdef(ld, rd: torddef; keep_sign_if_equal: boolean): torddef;
var
llow, lhigh: tconstexprint;
begin
llow:=min(ld.low,rd.low);
lhigh:=max(ld.high,rd.high);
case range_to_basetype(llow,lhigh) of
s8bit:
result:=torddef(s8inttype);
u8bit:
result:=torddef(u8inttype);
s16bit:
result:=torddef(s16inttype);
u16bit:
result:=torddef(u16inttype);
s32bit:
result:=torddef(s32inttype);
u32bit:
result:=torddef(u32inttype);
s64bit:
result:=torddef(s64inttype);
u64bit:
result:=torddef(u64inttype);
else
begin
{ avoid warning }
result:=nil;
internalerror(200802291);
end;
end;
if keep_sign_if_equal and
(is_signed(ld)=is_signed(rd)) and
(is_signed(result)<>is_signed(ld)) then
case result.ordtype of
s8bit:
result:=torddef(u8inttype);
u8bit:
result:=torddef(s16inttype);
s16bit:
result:=torddef(u16inttype);
u16bit:
result:=torddef(s32inttype);
s32bit:
result:=torddef(u32inttype);
u32bit:
result:=torddef(s64inttype);
s64bit:
result:=torddef(u64inttype);
else
;
end;
end;
function calc_not_ordvalue(var v:Tconstexprint;var def:tdef):boolean;
begin
if not assigned(def) or (def.typ<>orddef) then
exit(false);
result:=true;
case torddef(def).ordtype of
pasbool1,
pasbool8,
pasbool16,
pasbool32,
pasbool64:
v:=byte(not(boolean(int64(v))));
bool8bit,
bool16bit,
bool32bit,
bool64bit:
begin
if v=0 then
v:=-1
else
v:=0;
end;
uchar,
uwidechar,
u8bit,
s8bit,
u16bit,
s16bit,
s32bit,
u32bit,
s64bit,
u64bit:
begin
{ unsigned, equal or bigger than the native int size? }
if (torddef(def).ordtype in [u64bit,u32bit,u16bit,u8bit,uchar,uwidechar]) and
(is_nativeord(def) or is_oversizedord(def)) then
begin
{ Delphi-compatible: not dword = dword (not word = longint) }
{ Extension: not qword = qword }
v:=qword(not qword(v));
{ will be truncated by the ordconstnode for u32bit }
end
else
begin
v:=int64(not int64(v));
def:=get_common_intdef(torddef(def),torddef(sinttype),false);
end;
end;
else
result:=false;
end;
end;
function is_valid_univ_para_type(def: tdef): boolean;
begin
result:=
not is_open_array(def) and
not is_void(def) and
(def.typ<>formaldef);
end;
function is_nested_pd(def: tabstractprocdef): boolean;{$ifdef USEINLINE}inline;{$endif}
begin
result:=def.parast.symtablelevel>normal_function_level;
end;
function is_typeparam(def : tdef) : boolean;{$ifdef USEINLINE}inline;{$endif}
begin
result:=(def.typ=undefineddef) or (df_genconstraint in def.defoptions);
end;
function is_methodpointer(def: tdef): boolean;
begin
result:=(def.typ=procvardef) and (po_methodpointer in tprocvardef(def).procoptions);
end;
function is_funcref(def:tdef):boolean;
begin
result:=(def.typ=objectdef) and (oo_is_funcref in tobjectdef(def).objectoptions);
end;
function is_invokable(def:tdef):boolean;
begin
result:=(def.typ=objectdef) and (oo_is_invokable in tobjectdef(def).objectoptions);
end;
function is_block(def: tdef): boolean;
begin
result:=(def.typ=procvardef) and (po_is_block in tprocvardef(def).procoptions)
end;
function get_typekind(def:tdef):byte;
begin
case def.typ of
arraydef:
if ado_IsDynamicArray in tarraydef(def).arrayoptions then
result:=tkDynArray
else
result:=tkArray;
recorddef:
result:=tkRecord;
pointerdef:
result:=tkPointer;
orddef:
case torddef(def).ordtype of
u8bit,
u16bit,
u32bit,
s8bit,
s16bit,
s32bit:
result:=tkInteger;
u64bit:
result:=tkQWord;
s64bit:
result:=tkInt64;
pasbool1,
pasbool8,
pasbool16,
pasbool32,
pasbool64,
bool8bit,
bool16bit,
bool32bit,
bool64bit:
result:=tkBool;
uchar:
result:=tkChar;
uwidechar:
result:=tkWChar;
scurrency:
result:=tkFloat;
else
result:=tkUnknown;
end;
stringdef:
case tstringdef(def).stringtype of
st_shortstring:
result:=tkSString;
st_longstring:
result:=tkLString;
st_ansistring:
result:=tkAString;
st_widestring:
result:=tkWString;
st_unicodestring:
result:=tkUString;
end;
enumdef:
result:=tkEnumeration;
objectdef:
case tobjectdef(def).objecttype of
odt_class,
odt_javaclass:
result:=tkClass;
odt_object:
result:=tkObject;
odt_interfacecom,
odt_dispinterface,
odt_interfacejava:
result:=tkInterface;
odt_interfacecorba:
result:=tkInterfaceCorba;
odt_helper:
result:=tkHelper;
else
result:=tkUnknown;
end;
{ currently tkFile is not used }
{filedef:
result:=tkFile;}
setdef:
result:=tkSet;
procvardef:
if tprocvardef(def).is_methodpointer then
result:=tkMethod
else
result:=tkProcVar;
floatdef:
result:=tkFloat;
classrefdef:
result:=tkClassRef;
variantdef:
result:=tkVariant;
else
result:=tkUnknown;
end;
end;
function get_invoke_procdef(def:tobjectdef):tprocdef;
var
sym : tsym;
begin
repeat
if not is_invokable(def) then
internalerror(2022011701);
sym:=tsym(def.symtable.find(method_name_funcref_invoke_find));
if assigned(sym) and (sym.typ<>procsym) then
sym:=nil;
def:=def.childof;
until assigned(sym) or not assigned(def);
if not assigned(sym) then
internalerror(2021041001);
if sym.typ<>procsym then
internalerror(2021041002);
if tprocsym(sym).procdeflist.count=0 then
internalerror(2021041003);
result:=tprocdef(tprocsym(sym).procdeflist[0]);
end;
function invokable_has_argless_invoke(def:tobjectdef):boolean;
var
i,j : longint;
sym : tsym;
pd : tprocdef;
para : tparavarsym;
allok : boolean;
begin
result:=false;
repeat
if not is_invokable(def) then
internalerror(2022020701);
sym:=tsym(def.symtable.find(method_name_funcref_invoke_find));
if assigned(sym) and (sym.typ=procsym) then
begin
for i:=0 to tprocsym(sym).procdeflist.count-1 do
begin
pd:=tprocdef(tprocsym(sym).procdeflist[i]);
if (pd.paras.count=0) or
(
(pd.paras.count=1) and
(vo_is_result in tparavarsym(pd.paras[0]).varoptions)
) then
exit(true);
allok:=true;
for j:=0 to pd.paras.count-1 do
begin
para:=tparavarsym(pd.paras[j]);
if vo_is_hidden_para in para.varoptions then
continue;
if assigned(para.defaultconstsym) then
continue;
allok:=false;
break;
end;
if allok then
exit(true);
end;
if not (sp_has_overloaded in sym.symoptions) then
break;
end;
def:=def.childof;
until not assigned(def);
end;
end.