fpc/compiler/types.pas
1998-07-20 23:35:50 +00:00

931 lines
35 KiB
ObjectPascal

{
$Id$
Copyright (C) 1993-98 by Florian Klaempfl
This unit provides some help routines for type handling
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
****************************************************************************
}
unit types;
interface
uses
cobjects,globals,symtable;
type
tmmxtype = (mmxno,mmxu8bit,mmxs8bit,mmxu16bit,mmxs16bit,
mmxu32bit,mmxs32bit,mmxfixed16,mmxsingle);
{ returns true, if def defines an ordinal type }
function is_ordinal(def : pdef) : boolean;
{ true if p points to an open array def }
function is_open_array(p : pdef) : boolean;
{ true if o is an ansi string def }
function is_ansistring(p : pdef) : boolean;
{ true if o is a long string def }
function is_longstring(p : pdef) : boolean;
{ true if o is a wide string def }
function is_widestring(p : pdef) : boolean;
{ true if o is a short string def }
function is_shortstring(p : pdef) : boolean;
{ returns true, if def defines a signed data type (only for ordinal types) }
function is_signed(def : pdef) : boolean;
{ returns true, if def uses FPU }
function is_fpu(def : pdef) : boolean;
{ true if the return value is in EAX }
function ret_in_acc(def : pdef) : boolean;
{ true if uses a parameter as return value }
function ret_in_param(def : pdef) : boolean;
{ true if a const parameter is too large to copy }
function dont_copy_const_param(def : pdef) : boolean;
{ true if we must never copy this parameter }
const
never_copy_const_param : boolean = false;
{ true, if def1 and def2 are semantical the same }
function is_equal(def1,def2 : pdef) : boolean;
{ checks for type compatibility (subgroups of type) }
{ used for case statements... probably missing stuff }
{ to use on other types }
function is_subequal(def1, def2: pdef): boolean;
{ true, if two parameter lists are equal }
{ if value_equal_const is true, call by value }
{ and call by const parameter are assumed as }
{ equal }
function equal_paras(def1,def2 : pdefcoll;value_equal_const : boolean) : boolean;
{ if l isn't in the range of def a range check error is generated }
procedure testrange(def : pdef;l : longint);
{ returns the range of def }
procedure getrange(def : pdef;var l : longint;var h : longint);
{ generates a VMT for _class }
procedure genvmt(_class : pobjectdef);
{ some type helper routines for MMX support }
function is_mmx_able_array(p : pdef) : boolean;
{ returns the mmx type }
function mmx_type(p : pdef) : tmmxtype;
implementation
uses verbose,aasm;
function equal_paras(def1,def2 : pdefcoll;value_equal_const : boolean) : boolean;
begin
while (assigned(def1)) and (assigned(def2)) do
begin
if value_equal_const then
begin
if not(is_equal(def1^.data,def2^.data)) or
((def1^.paratyp<>def2^.paratyp) and
((def1^.paratyp=vs_var) or
(def1^.paratyp=vs_var)
)
) then
begin
equal_paras:=false;
exit;
end;
end
else
begin
if not(is_equal(def1^.data,def2^.data)) or
(def1^.paratyp<>def2^.paratyp) then
begin
equal_paras:=false;
exit;
end;
end;
def1:=def1^.next;
def2:=def2^.next;
end;
if (def1=nil) and (def2=nil) then
equal_paras:=true
else
equal_paras:=false;
end;
{ returns true, if def uses FPU }
function is_fpu(def : pdef) : boolean;
begin
is_fpu:=(def^.deftype=floatdef) and (pfloatdef(def)^.typ<>f32bit);
end;
function is_ordinal(def : pdef) : boolean;
var
dt : tbasetype;
begin
case def^.deftype of
orddef : begin
dt:=porddef(def)^.typ;
is_ordinal:=dt in [uchar,u8bit,u16bit,u32bit,s8bit,s16bit,s32bit,bool8bit,bool16bit,bool32bit];
end;
enumdef : is_ordinal:=true;
else
is_ordinal:=false;
end;
end;
function is_signed(def : pdef) : boolean;
var
dt : tbasetype;
begin
case def^.deftype of
orddef : begin
dt:=porddef(def)^.typ;
is_signed:=(dt in [s8bit,s16bit,s32bit]);
end;
enumdef : is_signed:=false;
else
is_signed:=false;
end;
end;
{ true, if p points to an open array def }
function is_open_array(p : pdef) : boolean;
begin
is_open_array:=(p^.deftype=arraydef) and
(parraydef(p)^.lowrange=0) and
(parraydef(p)^.highrange=-1);
end;
{ true if o is an ansi string def }
function is_ansistring(p : pdef) : boolean;
begin
is_ansistring:=(p^.deftype=stringdef) and
(pstringdef(p)^.string_typ=st_ansistring);
end;
{ true if o is an long string def }
function is_longstring(p : pdef) : boolean;
begin
is_longstring:=(p^.deftype=stringdef) and
(pstringdef(p)^.string_typ=st_longstring);
end;
{ true if o is an wide string def }
function is_widestring(p : pdef) : boolean;
begin
is_widestring:=(p^.deftype=stringdef) and
(pstringdef(p)^.string_typ=st_widestring);
end;
{ true if o is an short string def }
function is_shortstring(p : pdef) : boolean;
begin
is_shortstring:=(p^.deftype=stringdef) and
(pstringdef(p)^.string_typ=st_shortstring);
end;
{ true if the return value is in accumulator (EAX for i386), D0 for 68k }
function ret_in_acc(def : pdef) : boolean;
begin
ret_in_acc:=(def^.deftype in [orddef,pointerdef,enumdef,classrefdef]) or
((def^.deftype=stringdef) and (pstringdef(def)^.string_typ in [st_ansistring,st_widestring])) or
((def^.deftype=procvardef) and ((pprocvardef(def)^.options and pomethodpointer)=0)) or
((def^.deftype=objectdef) and pobjectdef(def)^.isclass) or
((def^.deftype=setdef) and (psetdef(def)^.settype=smallset)) or
((def^.deftype=floatdef) and (pfloatdef(def)^.typ=f32bit));
end;
{ true if uses a parameter as return value }
function ret_in_param(def : pdef) : boolean;
begin
ret_in_param:=(def^.deftype in [arraydef,recorddef]) or
((def^.deftype=stringdef) and (pstringdef(def)^.string_typ in [st_shortstring,st_longstring])) or
((def^.deftype=procvardef) and ((pprocvardef(def)^.options and pomethodpointer)<>0)) or
((def^.deftype=objectdef) and ((pobjectdef(def)^.options and oois_class)=0)) or
((def^.deftype=setdef) and (psetdef(def)^.settype<>smallset));
end;
{ true if a const parameter is too large to copy }
function dont_copy_const_param(def : pdef) : boolean;
begin
dont_copy_const_param:=(def^.deftype in [arraydef,objectdef,formaldef,recorddef]) or
((def^.deftype=stringdef) and (pstringdef(def)^.string_typ in [st_ansistring,st_shortstring,st_longstring])) or
((def^.deftype=procvardef) and ((pprocvardef(def)^.options and pomethodpointer)<>0)) or
((def^.deftype=setdef) and (psetdef(def)^.settype<>smallset));
end;
procedure testrange(def : pdef;l : longint);
var
lv,hv: longint;
begin
getrange(def,lv,hv);
if (def^.deftype=orddef) and
(porddef(def)^.typ=u32bit) then
begin
if lv<=hv then
begin
if (l<lv) or (l>hv) then
Message(parser_e_range_check_error);
end
else
{ this happens with the wrap around problem }
{ if lv is positive and hv is over $7ffffff }
{ so it seems negative }
begin
if ((l>=0) and (l<lv)) or
((l<0) and (l>hv)) then
Message(parser_e_range_check_error);
end;
end
else if (l<lv) or (l>hv) then
Message(parser_e_range_check_error);
end;
procedure getrange(def : pdef;var l : longint;var h : longint);
begin
case def^.deftype of
orddef : begin
l:=porddef(def)^.low;
h:=porddef(def)^.high;
end;
enumdef : begin
l:=0;
h:=penumdef(def)^.max;
end;
end;
end;
function mmx_type(p : pdef) : tmmxtype;
begin
mmx_type:=mmxno;
if is_mmx_able_array(p) then
begin
if parraydef(p)^.definition^.deftype=floatdef then
case pfloatdef(parraydef(p)^.definition)^.typ of
s32real:
mmx_type:=mmxsingle;
f16bit:
mmx_type:=mmxfixed16
end
else
case porddef(parraydef(p)^.definition)^.typ of
u8bit:
mmx_type:=mmxu8bit;
s8bit:
mmx_type:=mmxs8bit;
u16bit:
mmx_type:=mmxu16bit;
s16bit:
mmx_type:=mmxs16bit;
u32bit:
mmx_type:=mmxu32bit;
s32bit:
mmx_type:=mmxs32bit;
end;
end;
end;
function is_mmx_able_array(p : pdef) : boolean;
begin
{$ifdef SUPPORT_MMX}
if (cs_mmx_saturation in aktswitches) then
begin
is_mmx_able_array:=(p^.deftype=arraydef) and
(
((parraydef(p)^.definition^.deftype=orddef) and
(
(parraydef(p)^.lowrange=0) and
(parraydef(p)^.highrange=1) and
(porddef(parraydef(p)^.definition)^.typ in [u32bit,s32bit])
) or
(
(parraydef(p)^.lowrange=0) and
(parraydef(p)^.highrange=3) and
(porddef(parraydef(p)^.definition)^.typ in [u16bit,s16bit])
)
)
) or
(
((parraydef(p)^.definition^.deftype=floatdef) and
(
(parraydef(p)^.lowrange=0) and
(parraydef(p)^.highrange=3) and
(pfloatdef(parraydef(p)^.definition)^.typ=f16bit)
) or
(
(parraydef(p)^.lowrange=0) and
(parraydef(p)^.highrange=1) and
(pfloatdef(parraydef(p)^.definition)^.typ=s32real)
)
)
);
end
else
begin
is_mmx_able_array:=(p^.deftype=arraydef) and
(
((parraydef(p)^.definition^.deftype=orddef) and
(
(parraydef(p)^.lowrange=0) and
(parraydef(p)^.highrange=1) and
(porddef(parraydef(p)^.definition)^.typ in [u32bit,s32bit])
) or
(
(parraydef(p)^.lowrange=0) and
(parraydef(p)^.highrange=3) and
(porddef(parraydef(p)^.definition)^.typ in [u16bit,s16bit])
) or
(
(parraydef(p)^.lowrange=0) and
(parraydef(p)^.highrange=7) and
(porddef(parraydef(p)^.definition)^.typ in [u8bit,s8bit])
)
)
) or
(
((parraydef(p)^.definition^.deftype=floatdef) and
(
(parraydef(p)^.lowrange=0) and
(parraydef(p)^.highrange=3) and
(pfloatdef(parraydef(p)^.definition)^.typ=f32bit)
)
or
(
(parraydef(p)^.lowrange=0) and
(parraydef(p)^.highrange=1) and
(pfloatdef(parraydef(p)^.definition)^.typ=s32real)
)
)
);
end;
{$else SUPPORT_MMX}
is_mmx_able_array:=false;
{$endif SUPPORT_MMX}
end;
function is_equal(def1,def2 : pdef) : boolean;
var
b : boolean;
hd : pdef;
hp1,hp2 : pdefcoll;
begin
{ both types must exists }
if not (assigned(def1) and assigned(def2)) then
begin
is_equal:=false;
exit;
end;
{ be sure, that if there is a stringdef, that this is def1 }
if def2^.deftype=stringdef then
begin
hd:=def1;
def1:=def2;
def2:=hd;
end;
b:=false;
{ wenn beide auf die gleiche Definition zeigen sind sie wohl gleich...}
if def1=def2 then
b:=true
else
{ pointer with an equal definition are equal }
if (def1^.deftype=pointerdef) and (def2^.deftype=pointerdef) then
{ here a problem detected in tabsolutesym }
{ the types can be forward type !! }
begin
if assigned(def1^.sym) and ((def1^.sym^.properties and sp_forwarddef)<>0) then
b:=(def1^.sym=def2^.sym)
else
b:=is_equal(ppointerdef(def1)^.definition,ppointerdef(def2)^.definition);
end
else
{ ordinals are equal only when the ordinal type is equal }
if (def1^.deftype=orddef) and (def2^.deftype=orddef) then
begin
case porddef(def1)^.typ of
u8bit,u16bit,u32bit,
s8bit,s16bit,s32bit:
b:=((porddef(def1)^.typ=porddef(def2)^.typ) and
(porddef(def1)^.low=porddef(def2)^.low) and
(porddef(def1)^.high=porddef(def2)^.high));
uvoid,uchar,
bool8bit,bool16bit,bool32bit:
b:=(porddef(def1)^.typ=porddef(def2)^.typ);
end;
end
else
if (def1^.deftype=floatdef) and (def2^.deftype=floatdef) then
b:=pfloatdef(def1)^.typ=pfloatdef(def2)^.typ
else
{ strings with the same length are equal }
if (def1^.deftype=stringdef) and (def2^.deftype=stringdef) and
(pstringdef(def1)^.len=pstringdef(def2)^.len) then
b:=true
{ STRING[N] ist equivalent zu ARRAY[0..N] OF CHAR (N<256) }
{
else if ((def1^.deftype=stringdef) and (def2^.deftype=arraydef)) and
(parraydef(def2)^.definition^.deftype=orddef) and
(porddef(parraydef(def1)^.definition)^.typ=uchar) and
(parraydef(def2)^.lowrange=0) and
(parraydef(def2)^.highrange=pstringdef(def1)^.len) then
b:=true }
else
if (def1^.deftype=formaldef) and (def2^.deftype=formaldef) then
b:=true
{ file types with the same file element type are equal }
{ this is a problem for assign !! }
{ changed to allow if one is untyped }
{ all typed files are equal to the special }
{ typed file that has voiddef as elemnt type }
{ but must NOT match for text file !!! }
else
if (def1^.deftype=filedef) and (def2^.deftype=filedef) then
b:=(pfiledef(def1)^.filetype=pfiledef(def2)^.filetype) and
((
((pfiledef(def1)^.typed_as=nil) and
(pfiledef(def2)^.typed_as=nil)) or
(
(pfiledef(def1)^.typed_as<>nil) and
(pfiledef(def2)^.typed_as<>nil) and
is_equal(pfiledef(def1)^.typed_as,pfiledef(def2)^.typed_as)
) or
( (pfiledef(def1)^.typed_as=pdef(voiddef)) or
(pfiledef(def2)^.typed_as=pdef(voiddef))
)))
{ sets with the same element type are equal }
else
if (def1^.deftype=setdef) and (def2^.deftype=setdef) then
begin
if assigned(psetdef(def1)^.setof) and
assigned(psetdef(def2)^.setof) then
b:=is_equal(psetdef(def1)^.setof,psetdef(def2)^.setof)
else b:=true;
end
else
if (def1^.deftype=procvardef) and (def2^.deftype=procvardef) then
begin
{ poassembler isn't important for compatibility }
b:=((pprocvardef(def1)^.options and not(poassembler))=
(pprocvardef(def2)^.options and not(poassembler))
) and
is_equal(pprocvardef(def1)^.retdef,pprocvardef(def2)^.retdef);
{ now evalute the parameters }
if b then
begin
hp1:=pprocvardef(def1)^.para1;
hp2:=pprocvardef(def1)^.para1;
while assigned(hp1) and assigned(hp2) do
begin
if not(is_equal(hp1^.data,hp2^.data)) or
not(hp1^.paratyp=hp2^.paratyp) then
begin
b:=false;
break;
end;
hp1:=hp1^.next;
hp2:=hp2^.next;
end;
b:=(hp1=nil) and (hp2=nil);
end;
end
else
if (def1^.deftype=arraydef) and (def2^.deftype=arraydef) and
(is_open_array(def1) or is_open_array(def2)) then
begin
b:=is_equal(parraydef(def1)^.definition,parraydef(def2)^.definition);
end
else
if (def1^.deftype=classrefdef) and (def2^.deftype=classrefdef) then
begin
{ similar to pointerdef: }
if assigned(def1^.sym) and ((def1^.sym^.properties and sp_forwarddef)<>0) then
b:=(def1^.sym=def2^.sym)
else
b:=is_equal(pclassrefdef(def1)^.definition,pclassrefdef(def2)^.definition);
end;
is_equal:=b;
end;
function is_subequal(def1, def2: pdef): boolean;
Begin
if assigned(def1) and assigned(def2) then
Begin
is_subequal := FALSE;
if (def1^.deftype = orddef) and (def2^.deftype = orddef) then
Begin
{ see p.47 of Turbo Pascal 7.01 manual for the separation of types }
{ range checking for case statements is done with testrange }
case porddef(def1)^.typ of
u8bit,u16bit,u32bit,
s8bit,s16bit,s32bit : is_subequal:=(porddef(def2)^.typ in [s32bit,u32bit,u8bit,s8bit,s16bit,u16bit]);
bool8bit,bool16bit,bool32bit : is_subequal:=(porddef(def2)^.typ in [bool8bit,bool16bit,bool32bit]);
uchar : is_subequal:=(porddef(def2)^.typ=uchar);
end;
end
else
Begin
{ I assume that both enumerations are equal when the first }
{ pointers are equal. }
if (def1^.deftype = enumdef) and (def2^.deftype =enumdef) then
Begin
if penumdef(def1)^.first = penumdef(def2)^.first then
is_subequal := TRUE;
end;
end;
end; { endif assigned ... }
end;
type
pprocdefcoll = ^tprocdefcoll;
tprocdefcoll = record
next : pprocdefcoll;
data : pprocdef;
end;
psymcoll = ^tsymcoll;
tsymcoll = record
next : psymcoll;
name : pstring;
data : pprocdefcoll;
end;
var
wurzel : psymcoll;
nextvirtnumber : longint;
_c : pobjectdef;
has_constructor,has_virtual_method : boolean;
procedure eachsym(sym : psym);{$ifndef FPC}far;{$endif}
var
procdefcoll : pprocdefcoll;
hp : pprocdef;
symcoll : psymcoll;
_name : string;
stored : boolean;
{ creates a new entry in the procsym list }
procedure newentry;
begin
{ if not, generate a new symbol item }
new(symcoll);
symcoll^.name:=stringdup(sym^.name);
symcoll^.next:=wurzel;
symcoll^.data:=nil;
wurzel:=symcoll;
hp:=pprocsym(sym)^.definition;
{ inserts all definitions }
while assigned(hp) do
begin
new(procdefcoll);
procdefcoll^.data:=hp;
procdefcoll^.next:=symcoll^.data;
symcoll^.data:=procdefcoll;
{ if it's a virtual method }
if (hp^.options and povirtualmethod)<>0 then
begin
{ then it gets a number ... }
hp^.extnumber:=nextvirtnumber;
{ and we inc the number }
inc(nextvirtnumber);
has_virtual_method:=true;
end;
if (hp^.options and poconstructor)<>0 then
has_constructor:=true;
{ check, if a method should be overridden }
if (hp^.options and pooverridingmethod)<>0 then
Message1(parser_e_nothing_to_be_overridden,_c^.name^+'.'+_name);
{ next overloaded method }
hp:=hp^.nextoverloaded;
end;
end;
begin
{ put only sub routines into the VMT }
if sym^.typ=procsym then
begin
_name:=sym^.name;
symcoll:=wurzel;
while assigned(symcoll) do
begin
{ does the symbol already exist in the list ? }
if _name=symcoll^.name^ then
begin
{ walk through all defs of the symbol }
hp:=pprocsym(sym)^.definition;
while assigned(hp) do
begin
{ compare with all stored definitions }
procdefcoll:=symcoll^.data;
stored:=false;
while assigned(procdefcoll) do
begin
{ compare parameters }
if equal_paras(procdefcoll^.data^.para1,hp^.para1,false) and
(
((procdefcoll^.data^.options and povirtualmethod)<>0) or
((hp^.options and povirtualmethod)<>0)
) then
begin
{ wenn sie gleich sind }
{ und eine davon virtual deklariert ist }
{ Fehler falls nur eine VIRTUAL }
if (procdefcoll^.data^.options and povirtualmethod)<>
(hp^.options and povirtualmethod) then
begin
{ in classes, we hide the old method }
if _c^.isclass then
begin
{ warn only if it is the first time,
we hide the method }
if _c=hp^._class then
Message1(parser_w_should_use_override,_c^.name^+'.'+_name);
newentry;
exit;
end
else
begin
Message1(parser_e_overloaded_are_not_both_virtual,_c^.name^+'.'+_name);
end;
end;
{ check, if the overridden directive is set }
{ (povirtualmethod is set! }
{ class ? }
if _c^.isclass and
((hp^.options and pooverridingmethod)=0) then
begin
{ warn only if it is the first time,
we hide the method }
if _c=hp^._class then
Message1(parser_w_should_use_override,_c^.name^+'.'+_name);
newentry;
exit;
end;
{ error, if the return types aren't equal }
if not(is_equal(procdefcoll^.data^.retdef,hp^.retdef)) then
Message1(parser_e_overloaded_methodes_not_same_ret,_c^.name^+'.'+_name);
{ the flags have to match }
{ except abstract and override }
if (procdefcoll^.data^.options and not(poabstractmethod or pooverridingmethod))<>
(hp^.options and not(poabstractmethod or pooverridingmethod)) then
Message1(parser_e_header_dont_match_forward,_c^.name^+'.'+_name);
{ now set the number }
hp^.extnumber:=procdefcoll^.data^.extnumber;
{ and exchange }
procdefcoll^.data:=hp;
stored:=true;
end;
procdefcoll:=procdefcoll^.next;
end;
{ if it isn't saved in the list }
{ we create a new entry }
if not(stored) then
begin
new(procdefcoll);
procdefcoll^.data:=hp;
procdefcoll^.next:=symcoll^.data;
symcoll^.data:=procdefcoll;
{ if the method is virtual ... }
if (hp^.options and povirtualmethod)<>0 then
begin
{ ... it will get a number }
hp^.extnumber:=nextvirtnumber;
inc(nextvirtnumber);
end;
{ check, if a method should be overridden }
if (hp^.options and pooverridingmethod)<>0 then
Message1(parser_e_nothing_to_be_overridden,_c^.name^+'.'+_name);
end;
hp:=hp^.nextoverloaded;
end;
exit;
end;
symcoll:=symcoll^.next;
end;
newentry;
end;
end;
procedure genvmt(_class : pobjectdef);
procedure do_genvmt(p : pobjectdef);
begin
{ start with the base class }
if assigned(p^.childof) then
do_genvmt(p^.childof);
{ walk through all public syms }
_c:=_class;
{$ifdef tp}
p^.publicsyms^.foreach(eachsym);
{$else}
p^.publicsyms^.foreach(@eachsym);
{$endif}
end;
var
symcoll : psymcoll;
procdefcoll : pprocdefcoll;
i : longint;
begin
wurzel:=nil;
nextvirtnumber:=0;
has_constructor:=false;
has_virtual_method:=false;
{ generates a tree of all used methods }
do_genvmt(_class);
if has_virtual_method and not(has_constructor) then
Message1(parser_w_virtual_without_constructor,_class^.name^);
{ generates the VMT }
{ walk trough all numbers for virtual methods and search }
{ the method }
for i:=0 to nextvirtnumber-1 do
begin
symcoll:=wurzel;
{ walk trough all symbols }
while assigned(symcoll) do
begin
{ walk trough all methods }
procdefcoll:=symcoll^.data;
while assigned(procdefcoll) do
begin
{ writes the addresses to the VMT }
{ but only this which are declared as virtual }
if procdefcoll^.data^.extnumber=i then
begin
if (procdefcoll^.data^.options and povirtualmethod)<>0 then
begin
{ if a method is abstract, then is also the }
{ class abstract and it's not allow to }
{ generates an instance }
if (procdefcoll^.data^.options and poabstractmethod)<>0 then
begin
_class^.options:=_class^.options or oois_abstract;
datasegment^.concat(new(pai_const,init_symbol('ABSTRACTERROR')));
end
else
begin
datasegment^.concat(new(pai_const,init_symbol(
strpnew(procdefcoll^.data^.mangledname))));
maybe_concat_external(procdefcoll^.data^.owner,
procdefcoll^.data^.mangledname);
end;
end;
end;
procdefcoll:=procdefcoll^.next;
end;
symcoll:=symcoll^.next;
end;
end;
{ disposes the above generated tree }
symcoll:=wurzel;
while assigned(symcoll) do
begin
wurzel:=symcoll^.next;
stringdispose(symcoll^.name);
procdefcoll:=symcoll^.data;
while assigned(procdefcoll) do
begin
symcoll^.data:=procdefcoll^.next;
dispose(procdefcoll);
procdefcoll:=symcoll^.data;
end;
dispose(symcoll);
symcoll:=wurzel;
end;
end;
end.
{
$Log$
Revision 1.16 1998-07-20 23:35:50 michael
Const ansistrings are not copied.
Revision 1.15 1998/07/18 22:54:32 florian
* some ansi/wide/longstring support fixed:
o parameter passing
o returning as result from functions
Revision 1.14 1998/06/12 14:50:50 peter
* removed the tree dependency to types.pas
* long_fil.pas support (not fully tested yet)
Revision 1.13 1998/06/03 22:49:07 peter
+ wordbool,longbool
* rename bis,von -> high,low
* moved some systemunit loading/creating to psystem.pas
Revision 1.12 1998/05/12 10:47:00 peter
* moved printstatus to verb_def
+ V_Normal which is between V_Error and V_Warning and doesn't have a
prefix like error: warning: and is included in V_Default
* fixed some messages
* first time parameter scan is only for -v and -T
- removed old style messages
Revision 1.11 1998/05/01 16:38:46 florian
* handling of private and protected fixed
+ change_keywords_to_tp implemented to remove
keywords which aren't supported by tp
* break and continue are now symbols of the system unit
+ widestring, longstring and ansistring type released
Revision 1.10 1998/04/29 10:34:08 pierre
+ added some code for ansistring (not complete nor working yet)
* corrected operator overloading
* corrected nasm output
+ started inline procedures
+ added starstarn : use ** for exponentiation (^ gave problems)
+ started UseTokenInfo cond to get accurate positions
Revision 1.9 1998/04/21 10:16:49 peter
* patches from strasbourg
* objects is not used anymore in the fpc compiled version
Revision 1.8 1998/04/12 22:39:44 florian
* problem with read access to properties solved
* correct handling of hidding methods via virtual (COM)
* correct result type of constructor calls (COM), the resulttype
depends now on the type of the class reference
Revision 1.7 1998/04/10 21:36:56 florian
+ some stuff to support method pointers (procedure of object) added
(declaration, parameter handling)
Revision 1.6 1998/04/10 15:39:49 florian
* more fixes to get classes.pas compiled
Revision 1.5 1998/04/09 23:02:16 florian
* small problems solved to get remake3 work
Revision 1.4 1998/04/08 16:58:09 pierre
* several bugfixes
ADD ADC and AND are also sign extended
nasm output OK (program still crashes at end
and creates wrong assembler files !!)
procsym types sym in tdef removed !!
Revision 1.3 1998/04/08 11:34:22 peter
* nasm works (linux only tested)
}