fpc/rtl/objpas/math.pp
2000-07-08 06:45:07 +00:00

900 lines
20 KiB
ObjectPascal

{
$Id$
This file is part of the Free Pascal run time library.
Copyright (c) 1999-2000 by Florian Klaempfl
member of the Free Pascal development team
See the file COPYING.FPC, included in this distribution,
for details about the copyright.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
**********************************************************************}
{
This unit is an equivalent to the Delphi math unit
(with some improvements)
About assembler usage:
----------------------
I used as few as possible assembler to allow an easy port
to other processors. Today, I think it's wasted time to write
assembler because different versions of a family of processors
need different implementations.
To improve performance, I changed all integer arguments and
functions results to longint, because 16 bit instructions are
lethal for a modern intel processor.
(FK)
What's to do:
o a lot of function :), search for !!!!
o some statistical functions
o all financial functions
o optimizations
}
unit math;
interface
{$MODE objfpc}
uses
sysutils;
type
{ the original delphi functions use extended as argument, }
{ but I would prefer double, because 8 bytes is a very }
{ natural size for the processor }
{ WARNING : changing float type will }
{ break all assembler code PM }
float = extended;
PFloat = ^Float;
PInteger = ^Integer;
tpaymenttime = (ptendofperiod,ptstartofperiod);
einvalidargument = class(ematherror);
{ Min/max determination }
function MinIntValue(const Data: array of Integer): Integer;
function MaxIntValue(const Data: array of Integer): Integer;
{ Extra, not present in Delphi, but used frequently }
function Min(Int1,Int2:Integer):Integer;
function Min(Int1,Int2:Cardinal):Cardinal;
function Max(Int1,Int2:Integer):Integer;
function Max(Int1,Int2:Cardinal):Cardinal;
{ angle conversion }
function degtorad(deg : float) : float;
function radtodeg(rad : float) : float;
function gradtorad(grad : float) : float;
function radtograd(rad : float) : float;
function degtograd(deg : float) : float;
function gradtodeg(grad : float) : float;
{ one cycle are 2*Pi rad }
function cycletorad(cycle : float) : float;
function radtocycle(rad : float) : float;
{ trigoniometric functions }
function tan(x : float) : float;
function cotan(x : float) : float;
procedure sincos(theta : float;var sinus,cosinus : float);
{ inverse functions }
function arccos(x : float) : float;
function arcsin(x : float) : float;
{ calculates arctan(x/y) and returns an angle in the correct quadrant }
function arctan2(x,y : float) : float;
{ hyperbolic functions }
function cosh(x : float) : float;
function sinh(x : float) : float;
function tanh(x : float) : float;
{ area functions }
{ delphi names: }
function arccosh(x : float) : float;
function arcsinh(x : float) : float;
function arctanh(x : float) : float;
{ IMHO the function should be called as follows (FK) }
function arcosh(x : float) : float;
function arsinh(x : float) : float;
function artanh(x : float) : float;
{ triangle functions }
{ returns the length of the hypotenuse of a right triangle }
{ if x and y are the other sides }
function hypot(x,y : float) : float;
{ logarithm functions }
function log10(x : float) : float;
function log2(x : float) : float;
function logn(n,x : float) : float;
{ returns natural logarithm of x+1 }
function lnxp1(x : float) : float;
{ exponential functions }
function power(base,exponent : float) : float;
{ base^exponent }
function intpower(base : float;exponent : longint) : float;
{ number converting }
{ rounds x towards positive infinity }
function ceil(x : float) : longint;
{ rounds x towards negative infinity }
function floor(x : float) : longint;
{ misc. functions }
{ splits x into mantissa and exponent (to base 2) }
procedure frexp(x : float;var mantissa,exponent : float);
{ returns x*(2^p) }
function ldexp(x : float;p : longint) : float;
{ statistical functions }
function mean(const data : array of float) : float;
function sum(const data : array of float) : float;
function mean(const data : PFloat; Const N : longint) : float;
function sum(const data : PFloat; Const N : Longint) : float;
function sumofsquares(const data : array of float) : float;
function sumofsquares(const data : PFloat; Const N : Integer) : float;
{ calculates the sum and the sum of squares of data }
procedure sumsandsquares(const data : array of float;
var sum,sumofsquares : float);
procedure sumsandsquares(const data : PFloat; Const N : Integer;
var sum,sumofsquares : float);
function minvalue(const data : array of float) : float;
function minvalue(const data : array of integer) : Integer;
function minvalue(const data : PFloat; Const N : Integer) : float;
function MinValue(const Data : PInteger; Const N : Integer): Integer;
function maxvalue(const data : array of float) : float;
function maxvalue(const data : array of integer) : Integer;
function maxvalue(const data : PFloat; Const N : Integer) : float;
function maxvalue(const data : PInteger; Const N : Integer) : Integer;
{ calculates the standard deviation }
function stddev(const data : array of float) : float;
{ calculates the mean and stddev }
procedure meanandstddev(const data : array of float;
var mean,stddev : float);
procedure meanandstddev(const data : PFloat;
Const N : Longint;var mean,stddev : float);
function variance(const data : array of float) : float;
function totalvariance(const data : array of float) : float;
function variance(const data : PFloat; Const N : Integer) : float;
function totalvariance(const data : PFloat; Const N : Integer) : float;
{ returns random values with gaussian distribution }
function randg(mean,stddev : float) : float;
{ I don't know what the following functions do: }
function popnstddev(const data : array of float) : float;
function popnstddev(const data : PFloat; Const N : Integer) : float;
function popnvariance(const data : PFloat; Const N : Integer) : float;
function popnvariance(const data : array of float) : float;
procedure momentskewkurtosis(const data : array of float;
var m1,m2,m3,m4,skew,kurtosis : float);
procedure momentskewkurtosis(const data : PFloat; Const N : Integer;
var m1,m2,m3,m4,skew,kurtosis : float);
{ geometrical function }
{ returns the euclidean L2 norm }
function norm(const data : array of float) : float;
function norm(const data : PFloat; Const N : Integer) : float;
implementation
ResourceString
SMathError = 'Math Error : %s';
SInvalidArgument = 'Invalid argument';
Procedure DoMathError(Const S : String);
begin
Raise EMathError.CreateFmt(SMathError,[S]);
end;
Procedure InvalidArgument;
begin
Raise EInvalidArgument.Create(SInvalidArgument);
end;
function degtorad(deg : float) : float;
begin
degtorad:=deg*(pi/180.0);
end;
function radtodeg(rad : float) : float;
begin
radtodeg:=rad*(180.0/pi);
end;
function gradtorad(grad : float) : float;
begin
gradtorad:=grad*(pi/200.0);
end;
function radtograd(rad : float) : float;
begin
radtograd:=rad*(200.0/pi);
end;
function degtograd(deg : float) : float;
begin
degtograd:=deg*(200.0/180.0);
end;
function gradtodeg(grad : float) : float;
begin
gradtodeg:=grad*(180.0/200.0);
end;
function cycletorad(cycle : float) : float;
begin
cycletorad:=(2*pi)*cycle;
end;
function radtocycle(rad : float) : float;
begin
{ avoid division }
radtocycle:=rad*(1/(2*pi));
end;
function tan(x : float) : float;
begin
Tan:=Sin(x)/Cos(x)
end;
function cotan(x : float) : float;
begin
cotan:=Cos(X)/Sin(X);
end;
procedure sincos(theta : float;var sinus,cosinus : float);
begin
{$ifndef i386}
sinus:=sin(theta);
cosinus:=cos(theta);
{$else}
asm
fldl theta
fsincos
fwait
movl cosinus,%eax
fstpl (%eax)
movl sinus,%eax
fstpl (%eax)
end;
{$endif}
end;
{ Sign, ArcSin and ArcCos from Arjan van Dijk (arjan.vanDijk@User.METAIR.WAU.NL) }
function sign(x : float) : float;
begin
if x > 0 then sign := 1.0
else if x < 0 then sign := -1.0
else sign := 0.0;
end;
function arcsin(x : float) : float;
begin
if abs(x) > 1 then InvalidArgument
else if abs(x) < 0.5 then
arcsin := arctan(x/sqrt(1-sqr(x)))
else
arcsin := sign(x) * (pi*0.5 - arctan(sqrt(1 / sqr(x) - 1)));
end;
function Arccos(x : Float) : Float;
begin
arccos := pi*0.5 - arcsin(x);
end;
function arctan2( x,y : float) : float;
{$ifndef i386}
begin
ArcTan2:=ArcTan(x/y);
{$else}
{ without the assembler keyword, you have to store the result to }
{ __result at the end of the assembler block (JM) }
assembler;
asm
fldt X
fldt Y
fpatan
//leave
// ret $20 This is wrong for 4 byte aligned OS !!
{$endif}
end;
function cosh(x : float) : float;
var
temp : float;
begin
temp:=exp(x);
cosh:=0.5*(temp+1.0/temp);
end;
function sinh(x : float) : float;
var
temp : float;
begin
temp:=exp(x);
sinh:=0.5*(temp-1.0/temp);
end;
Const MaxTanh=5000; { rather arbitrary, but more or less correct }
function tanh(x : float) : float;
var Temp : float;
begin
if x>MaxTanh then exit(1.0)
else if x<-MaxTanh then exit (-1.0);
temp:=exp(-2*x);
tanh:=(1-temp)/(1+temp)
end;
function arccosh(x : float) : float;
begin
arccosh:=arcosh(x);
end;
function arcsinh(x : float) : float;
begin
arcsinh:=arsinh(x);
end;
function arctanh(x : float) : float;
begin
if x>1 then InvalidArgument;
arctanh:=artanh(x);
end;
function arcosh(x : float) : float;
begin
if x<1 then InvalidArgument;
arcosh:=Ln(x+Sqrt(x*x-1));
end;
function arsinh(x : float) : float;
begin
arsinh:=Ln(x+Sqrt(1+x*x));
end;
function artanh(x : float) : float;
begin
If abs(x)>1 then InvalidArgument;
artanh:=(Ln((1+x)/(1-x)))*0.5;
end;
function hypot(x,y : float) : float;
begin
hypot:=Sqrt(x*x+y*y)
end;
function log10(x : float) : float;
begin
log10:=ln(x)/ln(10);
end;
function log2(x : float) : float;
begin
log2:=ln(x)/ln(2)
end;
function logn(n,x : float) : float;
begin
if n<0 then InvalidArgument;
logn:=ln(x)/ln(n);
end;
function lnxp1(x : float) : float;
begin
if x<-1 then
InvalidArgument;
lnxp1:=ln(1+x);
end;
function power(base,exponent : float) : float;
begin
If Exponent=0.0 then
Result:=1.0
else
If base>0.0 then
Power:=exp(exponent * ln (base))
else if base=0.0 then
Result:=0.0
else
InvalidArgument
end;
function intpower(base : float;exponent : longint) : float;
var
i : longint;
begin
i:=abs(exponent);
intpower:=1.0;
while i>0 do
begin
while (i and 1)=0 do
begin
i:=i shr 1;
base:=sqr(base);
end;
i:=i-1;
intpower:=intpower*base;
end;
if exponent<0 then
intpower:=1.0/intpower;
end;
function ceil(x : float) : longint;
begin
Ceil:=Trunc(x);
If Frac(x)>0 then
Ceil:=Ceil+1;
end;
function floor(x : float) : longint;
begin
Floor:=Trunc(x);
If Frac(x)<0 then
Floor := Floor-1;
end;
procedure frexp(x : float;var mantissa,exponent : float);
begin
end;
function ldexp(x : float;p : longint) : float;
begin
ldexp:=x*intpower(2.0,p);
end;
function mean(const data : array of float) : float;
begin
Result:=Mean(@data[0],High(Data)+1);
end;
function mean(const data : PFloat; Const N : longint) : float;
begin
mean:=sum(Data,N);
mean:=mean/N;
end;
function sum(const data : array of float) : float;
begin
Result:=Sum(@Data[0],High(Data)+1);
end;
function sum(const data : PFloat;Const N : longint) : float;
var
i : longint;
begin
sum:=0.0;
for i:=0 to N-1 do
sum:=sum+data[i];
end;
function sumofsquares(const data : array of float) : float;
begin
Result:=sumofsquares(@data[0],High(Data)+1);
end;
function sumofsquares(const data : PFloat; Const N : Integer) : float;
var
i : longint;
begin
sumofsquares:=0.0;
for i:=0 to N-1 do
sumofsquares:=sumofsquares+sqr(data[i]);
end;
procedure sumsandsquares(const data : array of float;
var sum,sumofsquares : float);
begin
sumsandsquares (@Data[0],High(Data)+1,Sum,sumofsquares);
end;
procedure sumsandsquares(const data : PFloat; Const N : Integer;
var sum,sumofsquares : float);
var
i : Integer;
temp : float;
begin
sumofsquares:=0.0;
sum:=0.0;
for i:=0 to N-1 do
begin
temp:=data[i];
sumofsquares:=sumofsquares+sqr(temp);
sum:=sum+temp;
end;
end;
function stddev(const data : array of float) : float;
begin
StdDev:=Sqrt(Variance(Data));
end;
procedure meanandstddev(const data : array of float;
var mean,stddev : float);
begin
Meanandstddev(@Data[0],High(Data)+1,Mean,stddev);
end;
procedure meanandstddev(const data : PFloat;
Const N : Longint;var mean,stddev : float);
Var I : longint;
begin
Mean:=0;
StdDev:=0;
For I:=0 to N-1 do
begin
Mean:=Mean+Data[i];
StdDev:=StdDev+Sqr(Data[i]);
end;
Mean:=Mean/N;
StdDev:=StdDev/sqr(N)-Sqr(Mean);
{ // the following depends on the definition of standard deviation...
If N>1 then
StdDev:=Sqrt(Stddev/(N-1))
else
StdDev:=0;
}
end;
function variance(const data : array of float) : float;
begin
Variance:=Variance(@Data[0],High(Data)+1);
end;
function variance(const data : PFloat; Const N : Integer) : float;
begin
If N=1 then
Result:=0
else
Result:=TotalVariance(Data,N)/(N-1);
end;
function totalvariance(const data : array of float) : float;
begin
Result:=TotalVariance(@Data[0],High(Data)+1);
end;
function totalvariance(const data : Pfloat;Const N : Integer) : float;
var S,SS : Float;
begin
If N=1 then
Result:=0
else
begin
SumsAndSquares(Data,N,S,SS);
Result := SS-Sqr(S)/(N-1);
end;
end;
function randg(mean,stddev : float) : float;
Var U1,S2 : Float;
begin
repeat
u1:= 2*random-1;
S2:=Sqr(U1)+sqr(2*random-1);
until s2<1;
randg:=Sqrt(-2*ln(S2)/S2)*u1*stddev+Mean;
end;
function popnstddev(const data : array of float) : float;
begin
PopnStdDev:=Sqrt(PopnVariance(@Data[0],High(Data)+1));
end;
function popnstddev(const data : PFloat; Const N : Integer) : float;
begin
PopnStdDev:=Sqrt(PopnVariance(Data,N));
end;
function popnvariance(const data : array of float) : float;
begin
popnvariance:=popnvariance(@data[0],high(Data)+1);
end;
function popnvariance(const data : PFloat; Const N : Integer) : float;
begin
PopnVariance:=TotalVariance(Data,N)/N;
end;
procedure momentskewkurtosis(const data : array of float;
var m1,m2,m3,m4,skew,kurtosis : float);
begin
momentskewkurtosis(@Data[0],High(Data)+1,m1,m2,m3,m4,skew,kurtosis);
end;
procedure momentskewkurtosis(const data : PFloat; Const N : Integer;
var m1,m2,m3,m4,skew,kurtosis : float);
Var S,SS,SC,SQ,invN,Acc,M1S,S2N,S3N,temp : Float;
I : Longint;
begin
invN:=1.0/N;
s:=0;
ss:=0;
sq:=0;
sc:=0;
for i:=0 to N-1 do
begin
temp:=Data[i]; { faster }
S:=S+temp;
acc:=temp*temp;
ss:=ss+acc;
Acc:=acc*temp;
Sc:=sc+acc;
acc:=acc*temp;
sq:=sq+acc;
end;
M1:=s*invN;
M1S:=M1*M1;
S2N:=SS*invN;
S3N:=SC*invN;
M2:=S2N-M1S;
M3:=S3N-(M1*3*S2N) + 2*M1S*M1;
M4:=SQ*invN - (M1 * 4 * S3N) + (M1S*6*S2N-3*Sqr(M1S));
Skew:=M3*power(M2,-3/2);
Kurtosis:=M4 / Sqr(M2);
end;
function norm(const data : array of float) : float;
begin
norm:=Norm(@data[0],High(Data)+1);
end;
function norm(const data : PFloat; Const N : Integer) : float;
begin
norm:=sqrt(sumofsquares(data,N));
end;
function MinIntValue(const Data: array of Integer): Integer;
var
I: Integer;
begin
Result := Data[Low(Data)];
For I := Succ(Low(Data)) To High(Data) Do
If Data[I] < Result Then Result := Data[I];
end;
function MinValue(const Data: array of Integer): Integer;
begin
Result:=MinValue(Pinteger(@Data[0]),High(Data)+1)
end;
function MinValue(const Data: PInteger; Const N : Integer): Integer;
var
I: Integer;
begin
Result := Data[0];
For I := 0 To N-1 do
If Data[I] < Result Then Result := Data[I];
end;
function minvalue(const data : array of float) : float;
begin
Result:=minvalue(PFloat(@data[0]),High(Data)+1);
end;
function minvalue(const data : PFloat; Const N : Integer) : float;
var
i : longint;
begin
{ get an initial value }
minvalue:=data[0];
for i:=0 to N-1 do
if data[i]<minvalue then
minvalue:=data[i];
end;
function MaxIntValue(const Data: array of Integer): Integer;
var
I: Integer;
begin
Result := Data[Low(Data)];
For I := Succ(Low(Data)) To High(Data) Do
If Data[I] > Result Then Result := Data[I];
end;
function maxvalue(const data : array of float) : float;
begin
Result:=maxvalue(PFloat(@data[0]),High(Data)+1);
end;
function maxvalue(const data : PFloat; Const N : Integer) : float;
var
i : longint;
begin
{ get an initial value }
maxvalue:=data[0];
for i:=0 to N-1 do
if data[i]>maxvalue then
maxvalue:=data[i];
end;
function MaxValue(const Data: array of Integer): Integer;
begin
Result:=MaxValue(PInteger(@Data[0]),High(Data)+1)
end;
function maxvalue(const data : PInteger; Const N : Integer) : Integer;
var
i : longint;
begin
{ get an initial value }
maxvalue:=data[0];
for i:=0 to N-1 do
if data[i]>maxvalue then
maxvalue:=data[i];
end;
function Min(Int1,Int2:Integer):Integer;
begin
If Int1 < Int2 Then Result := Int1
Else Result := Int2;
end;
function Min(Int1,Int2:Cardinal):Cardinal;
begin
If Int1 < Int2 Then Result := Int1
Else Result := Int2;
end;
function Max(Int1,Int2:Integer):Integer;
begin
If Int1 > Int2 Then Result := Int1
Else Result := Int2;
end;
function Max(Int1,Int2:Cardinal):Cardinal;
begin
If Int1 > Int2 Then Result := Int1
Else Result := Int2;
end;
end.
{
$Log$
Revision 1.23 2000-07-08 06:45:07 michael
+ Added some functions
Revision 1.22 2000/07/06 21:59:25 michael
+ Added many overloaded functions with as argument pointer to
array and count
+ Implemented meanandstddev
+ Improved power
Revision 1.21 2000/07/06 12:13:59 michael
+ SOme changes in error reporting
Revision 1.20 2000/07/05 13:19:59 michael
+ Corrected arsinh function
Revision 1.19 2000/07/04 20:53:22 michael
+ Exceptions now used for errors
Revision 1.18 2000/04/29 10:10:51 jonas
* fixed arctan2 (tbug788 now works correctly)
Revision 1.17 2000/04/20 13:12:40 pierre
* fix bug visible in new tests/webtbs/tbug788 file
Revision 1.16 2000/04/20 08:14:27 jonas
* better arcsin/arccos from Arjan van Dijk
Revision 1.15 2000/02/09 16:59:32 peter
* truncated log
Revision 1.14 2000/01/11 21:07:33 marco
* Changed some (%ebp) to real parameters
Revision 1.13 2000/01/07 16:41:43 daniel
* copyright 2000
Revision 1.12 1999/09/21 20:47:05 florian
* ceil and floor still had bugs :), hopefully it's the final fix now
}