fpc/compiler/ptype.pas
2024-01-07 17:32:50 +01:00

2099 lines
88 KiB
ObjectPascal

{
Copyright (c) 1998-2002 by Florian Klaempfl
Does parsing types for Free Pascal
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
****************************************************************************
}
unit ptype;
{$i fpcdefs.inc}
interface
uses
globtype,cclasses,
symtype,symdef,symbase;
type
TSingleTypeOption=(
stoIsForwardDef, { foward declaration }
stoAllowTypeDef, { allow type definitions }
stoAllowSpecialization, { allow type specialization }
stoParseClassParent { parse of parent class type }
);
TSingleTypeOptions=set of TSingleTypeOption;
procedure resolve_forward_types;
{ reads a string, file type or a type identifier }
procedure single_type(out def:tdef;options:TSingleTypeOptions);
{ ... but rejects types that cannot be returned from functions }
function result_type(options:TSingleTypeOptions):tdef;
{ reads any type declaration, where the resulting type will get name as type identifier }
procedure read_named_type(var def:tdef;const newsym:tsym;genericdef:tstoreddef;genericlist:tfphashobjectlist;parseprocvardir:boolean;var hadtypetoken:boolean);
{ reads any type declaration }
procedure read_anon_type(var def : tdef;parseprocvardir:boolean);
{ parse nested type declaration of the def (typedef) }
procedure parse_nested_types(var def: tdef; isforwarddef,allowspecialization: boolean; currentstructstack: tfpobjectlist);
{ add a definition for a method to a record/objectdef that will contain
all code for initialising typed constants (only for targets in
systems.systems_typed_constants_node_init) }
procedure add_typedconst_init_routine(def: tabstractrecorddef);
{ parse hint directives (platform, deprecated, ...) for a procdef }
procedure maybe_parse_hint_directives(pd:tprocdef);
implementation
uses
{ common }
cutils,
{ global }
globals,tokens,verbose,constexp,
systems,
{ symtable }
symconst,symsym,symtable,symcreat,
defutil,defcmp,
{$ifdef jvm}
jvmdef,
{$endif}
{ modules }
fmodule,
{ pass 1 }
node,
nset,ncnv,ncon,nld,
{ parser }
scanner,
pbase,pexpr,pdecsub,pdecvar,pdecobj,pdecl,pgenutil,pparautl,procdefutil
{$ifdef jvm}
,pjvm
{$endif}
;
procedure maybe_parse_hint_directives(pd:tprocdef);
var
dummysymoptions : tsymoptions;
deprecatedmsg : pshortstring;
begin
if assigned(pd) then
begin
dummysymoptions:=pd.symoptions;
deprecatedmsg:=pd.deprecatedmsg;
end
else
begin
dummysymoptions:=[];
deprecatedmsg:=nil;
end;
while try_consume_hintdirective(dummysymoptions,deprecatedmsg) do
consume(_SEMICOLON);
if assigned(pd) then
begin
pd.symoptions:=pd.symoptions+dummysymoptions;
if sp_has_deprecated_msg in dummysymoptions then
pd.deprecatedmsg:=deprecatedmsg;
end
else
stringdispose(deprecatedmsg);
end;
procedure resolve_forward_types;
var
i: longint;
tmp,
hpd,
def : tdef;
srsym : tsym;
srsymtable : TSymtable;
hs : string;
fileinfo : tfileposinfo;
begin
for i:=0 to current_module.checkforwarddefs.Count-1 do
begin
def:=tdef(current_module.checkforwarddefs[i]);
case def.typ of
pointerdef,
classrefdef :
begin
{ classrefdef inherits from pointerdef }
hpd:=tabstractpointerdef(def).pointeddef;
{ still a forward def ? }
if hpd.typ=forwarddef then
begin
{ try to resolve the forward }
if not assigned(tforwarddef(hpd).tosymname) then
internalerror(200211201);
hs:=tforwarddef(hpd).tosymname^;
searchsym(upper(hs),srsym,srsymtable);
{ we don't need the forwarddef anymore, dispose it }
hpd.free;
tabstractpointerdef(def).pointeddef:=nil; { if error occurs }
{ was a type sym found ? }
if assigned(srsym) and
(srsym.typ=typesym) then
begin
if (sp_generic_dummy in srsym.symoptions) and
not (ttypesym(srsym).typedef.typ=undefineddef) and
assigned(def.owner.defowner) then
begin
{ is the forward def part of a specialization? }
tmp:=tdef(def.owner.defowner);
while not tstoreddef(tmp).is_specialization and assigned(tmp.owner.defowner) do
tmp:=tdef(tmp.owner.defowner);
{ if the genericdef of the specialization is the same as the
def the dummy points to, then update the found symbol }
if tstoreddef(tmp).is_specialization and
(tstoreddef(tmp).genericdef=ttypesym(srsym).typedef) then
srsym:=tstoreddef(tmp).typesym;
end;
tabstractpointerdef(def).pointeddef:=ttypesym(srsym).typedef;
{ correctly set the generic/specialization flags and the genericdef }
if df_generic in tstoreddef(tabstractpointerdef(def).pointeddef).defoptions then
include(tstoreddef(def).defoptions,df_generic);
if df_specialization in tstoreddef(tabstractpointerdef(def).pointeddef).defoptions then
begin
include(tstoreddef(def).defoptions,df_specialization);
case def.typ of
pointerdef:
tstoreddef(def).genericdef:=cpointerdef.getreusable(tstoreddef(tabstractpointerdef(def).pointeddef).genericdef);
classrefdef:
tstoreddef(def).genericdef:=cclassrefdef.create(tstoreddef(tabstractpointerdef(def).pointeddef).genericdef);
else
internalerror(2016120901);
end;
end;
{ avoid wrong unused warnings web bug 801 PM }
inc(ttypesym(srsym).refs);
{ we need a class type for classrefdef }
if (def.typ=classrefdef) and
not(is_class(ttypesym(srsym).typedef)) and
not(is_objcclass(ttypesym(srsym).typedef)) and
not(is_javaclass(ttypesym(srsym).typedef)) then
MessagePos1(def.typesym.fileinfo,type_e_class_type_expected,ttypesym(srsym).typedef.typename);
{ this could also be a generic dummy that was not
overridden with a specific type }
if (sp_generic_dummy in srsym.symoptions) and
(
(ttypesym(srsym).typedef.typ=undefineddef) or
(
{ or an unspecialized generic symbol, which is
the case for generics defined in non-Delphi
modes }
tstoreddef(ttypesym(srsym).typedef).is_generic and
not defs_belong_to_same_generic(def,ttypesym(srsym).typedef)
)
) then
begin
if assigned(def.typesym) then
fileinfo:=def.typesym.fileinfo
else
{ this is the case for inline pointer declarations }
fileinfo:=srsym.fileinfo;
MessagePos(fileinfo,parser_e_no_generics_as_types);
end;
end
else
begin
Message1(sym_e_forward_type_not_resolved,hs);
{ try to recover }
tabstractpointerdef(def).pointeddef:=generrordef;
end;
end;
end;
objectdef :
begin
{ give an error as the implementation may follow in an
other type block which is allowed by FPC modes }
if not(m_fpc in current_settings.modeswitches) and
(oo_is_forward in tobjectdef(def).objectoptions) then
MessagePos1(def.typesym.fileinfo,type_e_type_is_not_completly_defined,def.typename);
{ generate specializations for generic forwarddefs }
if not (oo_is_forward in tobjectdef(def).objectoptions) and
tstoreddef(def).is_generic then
generate_specializations_for_forwarddef(def);
end;
else
internalerror(200811071);
end;
end;
current_module.checkforwarddefs.clear;
end;
procedure id_type(var def : tdef;isforwarddef,checkcurrentrecdef,allowgenericsyms,allowunitsym:boolean;out srsym:tsym;out srsymtable:tsymtable;out is_specialize,is_unit_specific:boolean); forward;
{ def is the outermost type in which other types have to be searched
isforward indicates whether the current definition can be a forward definition
if assigned, currentstructstack is a list of tabstractrecorddefs that, from
last to first, are child types of def that are not yet visible via the
normal symtable searching routines because they are types that are currently
being parsed (so using id_type on them after pushing def on the
symtablestack would result in errors because they'd come back as errordef)
}
procedure parse_nested_types(var def: tdef; isforwarddef,allowspecialization: boolean; currentstructstack: tfpobjectlist);
var
t2: tdef;
structstackindex: longint;
srsym: tsym;
srsymtable: tsymtable;
oldsymtablestack: TSymtablestack;
isspecialize,
isunitspecific : boolean;
begin
if assigned(currentstructstack) then
structstackindex:=currentstructstack.count-1
else
structstackindex:=-1;
{ handle types inside classes, e.g. TNode.TLongint }
while (token=_POINT) do
begin
if is_class_or_object(def) or is_record(def) or is_java_class_or_interface(def) then
begin
if (def.typ=objectdef) then
def:=find_real_class_definition(tobjectdef(def),false);
consume(_POINT);
if (structstackindex>=0) and
(tabstractrecorddef(currentstructstack[structstackindex]).objname^=pattern) then
begin
def:=tdef(currentstructstack[structstackindex]);
dec(structstackindex);
consume(_ID);
end
else
begin
structstackindex:=-1;
oldsymtablestack:=symtablestack;
symtablestack:=TSymtablestack.create;
symtablestack.push(tabstractrecorddef(def).symtable);
t2:=generrordef;
id_type(t2,isforwarddef,false,false,false,srsym,srsymtable,isspecialize,isunitspecific);
symtablestack.pop(tabstractrecorddef(def).symtable);
symtablestack.free;
symtablestack:=oldsymtablestack;
if isspecialize then
begin
if not allowspecialization then
Message(parser_e_no_local_para_def);
generate_specialization(t2,isunitspecific,false,'');
end;
def:=t2;
end;
end
else
break;
end;
end;
function try_parse_structdef_nested_type(out def: tdef; basedef: tabstractrecorddef; isfowarddef: boolean): boolean;
var
structdef : tdef;
structdefstack : tfpobjectlist;
begin
def:=nil;
{ use of current parsed object:
classes, objects, records can be used also in themself }
structdef:=basedef;
structdefstack:=nil;
while assigned(structdef) and (structdef.typ in [objectdef,recorddef]) do
begin
if (tabstractrecorddef(structdef).objname^=pattern) then
begin
consume(_ID);
def:=structdef;
{ we found the top-most match, now check how far down we can
follow }
structdefstack:=tfpobjectlist.create(false);
structdef:=basedef;
while (structdef<>def) do
begin
structdefstack.add(structdef);
structdef:=tabstractrecorddef(structdef.owner.defowner);
end;
parse_nested_types(def,isfowarddef,false,structdefstack);
structdefstack.free;
result:=true;
exit;
end;
structdef:=tdef(tabstractrecorddef(structdef).owner.defowner);
end;
result:=false;
end;
procedure id_type(var def : tdef;isforwarddef,checkcurrentrecdef,allowgenericsyms,allowunitsym:boolean;out srsym:tsym;out srsymtable:tsymtable;out is_specialize,is_unit_specific:boolean);
{ reads a type definition }
{ to a appropriating tdef, s gets the name of }
{ the type to allow name mangling }
var
not_a_type : boolean;
pos : tfileposinfo;
s,sorg : TIDString;
t : ttoken;
begin
srsym:=nil;
srsymtable:=nil;
is_specialize:=false;
is_unit_specific:=false;
s:=pattern;
sorg:=orgpattern;
pos:=current_tokenpos;
{ use of current parsed object:
classes, objects, records can be used also in themself }
if checkcurrentrecdef and
try_parse_structdef_nested_type(def,current_structdef,isforwarddef) then
exit;
if not allowunitsym and not (m_delphi in current_settings.modeswitches) and (idtoken=_SPECIALIZE) then
begin
consume(_ID);
is_specialize:=true;
s:=pattern;
sorg:=orgpattern;
pos:=current_tokenpos;
end;
{ Use the special searchsym_type that search only types }
if not searchsym_type(s,srsym,srsymtable) then
{ for a good error message we need to know whether the symbol really did not exist or
whether we found a non-type one }
not_a_type:=searchsym(s,srsym,srsymtable)
else
not_a_type:=false;
{ handle unit specification like System.Writeln }
if allowunitsym then
is_unit_specific:=try_consume_unitsym(srsym,srsymtable,t,[cuf_consume_id,cuf_allow_specialize],is_specialize,s)
else
begin
t:=_ID;
is_unit_specific:=false;
end;
consume(t);
if not_a_type then
begin
{ reset the symbol and symtable to not leak any unexpected values }
srsym:=nil;
srsymtable:=nil;
end;
{ Types are first defined with an error def before assigning
the real type so check if it's an errordef. if so then
give an error. Only check for typesyms in the current symbol
table as forwarddef are not resolved directly }
if assigned(srsym) and
(srsym.typ=typesym) and
((ttypesym(srsym).typedef.typ=errordef) or
(not allowgenericsyms and
(ttypesym(srsym).typedef.typ=undefineddef) and
not (sp_generic_para in srsym.symoptions) and
not (sp_explicitrename in srsym.symoptions) and
not assigned(srsym.owner.defowner) and
{ use df_generic instead of is_generic to allow aliases in nested types as well }
not (df_generic in tstoreddef(srsym.owner.defowner).defoptions))) then
begin
Message1(type_e_type_is_not_completly_defined,ttypesym(srsym).realname);
def:=generrordef;
exit;
end;
{ are we parsing a possible forward def ? }
if isforwarddef and
not(is_unit_specific) then
begin
def:=cforwarddef.create(sorg,pos);
exit;
end;
{ unknown sym ? }
if not assigned(srsym) and not not_a_type then
begin
Message1(sym_e_id_not_found,sorg);
def:=generrordef;
exit;
end;
{ type sym ? }
if not_a_type or (srsym.typ<>typesym) then
begin
Message(type_e_type_id_expected);
def:=generrordef;
exit;
end;
{ Give an error when referring to an errordef }
if (ttypesym(srsym).typedef.typ=errordef) then
begin
Message(sym_e_error_in_type_def);
def:=generrordef;
exit;
end;
{ In non-Delphi modes the class/record name of a generic might be used
in the declaration of sub types without type parameters; in that case
we need to check by name as the link from the dummy symbol to the
current type is not yet established }
if (sp_generic_dummy in srsym.symoptions) and
assigned(current_structdef) and
(df_generic in current_structdef.defoptions) and
(ttypesym(srsym).typedef.typ=undefineddef) and
not (m_delphi in current_settings.modeswitches) then
begin
def:=get_generic_in_hierarchy_by_name(srsym,current_structdef);
if assigned(def) then
exit;
end;
def:=ttypesym(srsym).typedef;
end;
procedure single_type(out def:tdef;options:TSingleTypeOptions);
function handle_dummysym(sym:tsym):tdef;
begin
sym:=resolve_generic_dummysym(sym.name);
if assigned(sym) and
not (sp_generic_dummy in sym.symoptions) and
(sym.typ=typesym) then
result:=ttypesym(sym).typedef
else
begin
Message(parser_e_no_generics_as_types);
result:=generrordef;
end;
end;
var
t2 : tdef;
isunitspecific,
isspecialize,
dospecialize,
again : boolean;
srsym : tsym;
srsymtable : tsymtable;
begin
dospecialize:=false;
isunitspecific:=false;
srsym:=nil;
repeat
again:=false;
case token of
_STRING:
string_dec(def,stoAllowTypeDef in options);
_FILE:
begin
consume(_FILE);
if (token=_OF) then
begin
if not(stoAllowTypeDef in options) then
Message(parser_e_no_local_para_def);
consume(_OF);
single_type(t2,[stoAllowTypeDef]);
if is_managed_type(t2) then
Message(parser_e_no_refcounted_typed_file);
def:=cfiledef.createtyped(t2);
end
else
def:=cfiletype;
end;
_ID:
begin
if not (m_delphi in current_settings.modeswitches) and try_to_consume(_SPECIALIZE) then
begin
if ([stoAllowSpecialization,stoAllowTypeDef] * options = []) then
begin
Message(parser_e_no_local_para_def);
{ try to recover }
while token<>_SEMICOLON do
consume(token);
def:=generrordef;
end
else
begin
dospecialize:=true;
again:=true;
end;
end
else
begin
id_type(def,stoIsForwardDef in options,true,true,not dospecialize or ([stoAllowSpecialization,stoAllowTypeDef]*options=[]),srsym,srsymtable,isspecialize,isunitspecific);
if isspecialize and dospecialize then
internalerror(2015021301);
if isspecialize then
dospecialize:=true;
parse_nested_types(def,stoIsForwardDef in options,[stoAllowSpecialization,stoAllowTypeDef]*options<>[],nil);
end;
end;
else
begin
message(type_e_type_id_expected);
def:=generrordef;
end;
end;
until not again;
if ([stoAllowSpecialization,stoAllowTypeDef] * options <> []) and
(m_delphi in current_settings.modeswitches) then
dospecialize:=token in [_LSHARPBRACKET,_LT];
if dospecialize and
(def.typ=forwarddef) then
begin
if not assigned(srsym) or not (srsym.typ=typesym) then
begin
Message1(type_e_type_is_not_completly_defined,def.typename);
def:=generrordef;
dospecialize:=false;
end;
end;
{ recover from error? }
if def.typ=errordef then
begin
while (token<>_SEMICOLON) and (token<>_RKLAMMER) do
consume(token);
end
else if dospecialize then
begin
if def.typ=forwarddef then
def:=ttypesym(srsym).typedef;
generate_specialization(def,isunitspecific,stoParseClassParent in options,'');
parse_nested_types(def,stoIsForwardDef in options,[stoAllowSpecialization,stoAllowTypeDef]*options<>[],nil);
end
else
begin
if assigned(current_specializedef) and (def=current_specializedef.genericdef) then
begin
def:=current_specializedef
end
else if (def=current_genericdef) then
begin
def:=current_genericdef
end
{ when parsing a nested specialization in non-Delphi mode it might
use the name of the topmost generic without type paramaters, thus
def will contain the generic definition, but we need a reference
to the specialization of that generic }
{ TODO : only in non-Delphi modes? }
else if assigned(current_structdef) and
(df_specialization in current_structdef.defoptions) and
return_specialization_of_generic(current_structdef,def,t2) then
begin
def:=t2
end
else if tstoreddef(def).is_generic and
not
(
parse_generic and
(
{ if this is a generic parameter than it has already been checked that this is
a valid usage of a generic }
(sp_generic_para in srsym.symoptions) or
(
(current_genericdef.typ in [recorddef,objectdef]) and
(
{ if both defs belong to the same generic (e.g. both are
subtypes) then we must allow the usage }
defs_belong_to_same_generic(def,current_genericdef) or
{ this is needed to correctly resolve "type Foo=SomeGeneric<T>"
declarations inside a generic }
sym_is_owned_by(srsym,tabstractrecorddef(current_genericdef).symtable)
)
)
)
)
then
begin
def:=handle_dummysym(srsym);
end
else if (def.typ=undefineddef) and
(sp_generic_dummy in srsym.symoptions) then
begin
if parse_generic and
(current_genericdef.typ in [recorddef,objectdef]) and
(Pos(upper(srsym.realname),tabstractrecorddef(current_genericdef).objname^)=1) then
begin
if m_delphi in current_settings.modeswitches then
begin
def:=handle_dummysym(srsym);
end
else
def:=current_genericdef;
end
else
begin
def:=handle_dummysym(srsym);
end;
end
else if is_classhelper(def) and
not (stoParseClassParent in options) then
begin
Message(parser_e_no_category_as_types);
def:=generrordef
end
end;
end;
function result_type(options:TSingleTypeOptions):tdef;
begin
single_type(result,options);
{ file types cannot be function results }
if result.typ=filedef then
message(parser_e_illegal_function_result);
end;
procedure parse_record_members(recsym:tsym);
function IsAnonOrLocal: Boolean;
begin
result:=(current_structdef.objname^='') or
not(symtablestack.stack^.next^.symtable.symtabletype in [globalsymtable,staticsymtable,objectsymtable,recordsymtable]);
end;
var
olddef : tdef;
procedure set_typesym;
begin
if not assigned(recsym) then
exit;
if ttypesym(recsym).typedef=current_structdef then
exit;
ttypesym(recsym).typedef:=current_structdef;
current_structdef.typesym:=recsym;
end;
procedure reset_typesym;
begin
if not assigned(recsym) then
exit;
if ttypesym(recsym).typedef<>current_structdef then
exit;
ttypesym(recsym).typedef:=olddef;
current_structdef.typesym:=nil;
end;
var
pd : tprocdef;
oldparse_only: boolean;
member_blocktype : tblock_type;
hadgeneric,
fields_allowed, is_classdef, classfields, threadvarfields: boolean;
vdoptions: tvar_dec_options;
rtti_attrs_def: trtti_attribute_list;
begin
{ empty record declaration ? }
if (token=_SEMICOLON) then
Exit;
{ the correct typesym<->def relationship is needed for example when
parsing parameters that are specializations of the record or when
using nested constants and such }
if assigned(recsym) then
olddef:=ttypesym(recsym).typedef
else
olddef:=nil;
set_typesym;
current_structdef.symtable.currentvisibility:=vis_public;
fields_allowed:=true;
is_classdef:=false;
hadgeneric:=false;
classfields:=false;
threadvarfields:=false;
member_blocktype:=bt_general;
rtti_attrs_def := nil;
repeat
case token of
_TYPE :
begin
consume(_TYPE);
member_blocktype:=bt_type;
{ local and anonymous records can not have inner types. skip top record symtable }
if IsAnonOrLocal then
Message(parser_e_no_types_in_local_anonymous_records);
end;
_VAR :
begin
consume(_VAR);
fields_allowed:=true;
member_blocktype:=bt_general;
classfields:=is_classdef;
threadvarfields:=false;
is_classdef:=false;
end;
_THREADVAR :
begin
if not is_classdef then
begin
message(parser_e_threadvar_must_be_class);
{ for error recovery we enforce class fields }
is_classdef:=true;
end;
consume(_THREADVAR);
fields_allowed:=true;
member_blocktype:=bt_general;
classfields:=is_classdef;
threadvarfields:=true;
is_classdef:=false;
end;
_CONST:
begin
consume(_CONST);
member_blocktype:=bt_const;
{ local and anonymous records can not have constants. skip top record symtable }
if IsAnonOrLocal then
Message(parser_e_no_consts_in_local_anonymous_records);
end;
_ID, _CASE, _OPERATOR :
begin
case idtoken of
_PRIVATE :
begin
consume(_PRIVATE);
current_structdef.symtable.currentvisibility:=vis_private;
include(current_structdef.objectoptions,oo_has_private);
fields_allowed:=true;
is_classdef:=false;
classfields:=false;
threadvarfields:=false;
member_blocktype:=bt_general;
end;
_PROTECTED :
begin
Message1(parser_e_not_allowed_in_record,tokeninfo^[_PROTECTED].str);
consume(_PROTECTED);
current_structdef.symtable.currentvisibility:=vis_protected;
include(current_structdef.objectoptions,oo_has_protected);
fields_allowed:=true;
is_classdef:=false;
classfields:=false;
threadvarfields:=false;
member_blocktype:=bt_general;
end;
_PUBLIC :
begin
consume(_PUBLIC);
current_structdef.symtable.currentvisibility:=vis_public;
fields_allowed:=true;
is_classdef:=false;
classfields:=false;
threadvarfields:=false;
member_blocktype:=bt_general;
end;
_PUBLISHED :
begin
Message(parser_e_no_record_published);
consume(_PUBLISHED);
current_structdef.symtable.currentvisibility:=vis_published;
fields_allowed:=true;
is_classdef:=false;
classfields:=false;
threadvarfields:=false;
member_blocktype:=bt_general;
end;
_STRICT :
begin
consume(_STRICT);
if token=_ID then
begin
case idtoken of
_PRIVATE:
begin
consume(_PRIVATE);
current_structdef.symtable.currentvisibility:=vis_strictprivate;
include(current_structdef.objectoptions,oo_has_strictprivate);
end;
_PROTECTED:
begin
{ "strict protected" is not allowed for records }
Message1(parser_e_not_allowed_in_record,tokeninfo^[_STRICT].str+' '+tokeninfo^[_PROTECTED].str);
consume(_PROTECTED);
current_structdef.symtable.currentvisibility:=vis_strictprotected;
include(current_structdef.objectoptions,oo_has_strictprotected);
end;
else
message(parser_e_protected_or_private_expected);
end;
end
else
message(parser_e_protected_or_private_expected);
fields_allowed:=true;
is_classdef:=false;
classfields:=false;
threadvarfields:=false;
member_blocktype:=bt_general;
end
else
if is_classdef and (idtoken=_OPERATOR) then
begin
pd:=parse_record_method_dec(current_structdef,is_classdef,false);
fields_allowed:=false;
is_classdef:=false;
end
else
begin
if member_blocktype=bt_general then
begin
if (idtoken=_GENERIC) and
not (m_delphi in current_settings.modeswitches) and
not fields_allowed then
begin
if hadgeneric then
Message(parser_e_procedure_or_function_expected);
consume(_ID);
hadgeneric:=true;
if not (token in [_PROCEDURE,_FUNCTION,_CLASS]) then
Message(parser_e_procedure_or_function_expected);
end
else
begin
if (not fields_allowed)and(idtoken<>_CASE) then
Message(parser_e_field_not_allowed_here);
vdoptions:=[vd_record];
if classfields then
include(vdoptions,vd_class);
if not (m_delphi in current_settings.modeswitches) then
include(vdoptions,vd_check_generic);
if threadvarfields then
include(vdoptions,vd_threadvar);
read_record_fields(vdoptions,nil,nil,hadgeneric);
end;
end
else if member_blocktype=bt_type then
types_dec(true,hadgeneric, rtti_attrs_def)
else if member_blocktype=bt_const then
consts_dec(true,true,hadgeneric)
else
internalerror(201001110);
end;
end;
end;
_PROPERTY :
begin
if IsAnonOrLocal then
Message(parser_e_no_properties_in_local_anonymous_records);
struct_property_dec(is_classdef, rtti_attrs_def);
fields_allowed:=false;
is_classdef:=false;
end;
_CLASS:
begin
is_classdef:=false;
{ read class method/field/property }
consume(_CLASS);
{ class modifier is only allowed for procedures, functions, }
{ constructors, destructors, fields and properties }
if (hadgeneric and not (token in [_FUNCTION,_PROCEDURE])) or
(not hadgeneric and (not ((token in [_FUNCTION,_PROCEDURE,_PROPERTY,_VAR,_DESTRUCTOR,_OPERATOR,_THREADVAR]) or (token=_CONSTRUCTOR)) and
not((token=_ID) and (idtoken=_OPERATOR)))) then
Message(parser_e_procedure_or_function_expected);
if IsAnonOrLocal then
Message(parser_e_no_class_in_local_anonymous_records);
is_classdef:=true;
end;
_PROCEDURE,
_FUNCTION:
begin
if IsAnonOrLocal then
Message(parser_e_no_methods_in_local_anonymous_records);
pd:=parse_record_method_dec(current_structdef,is_classdef,hadgeneric);
hadgeneric:=false;
fields_allowed:=false;
is_classdef:=false;
end;
_CONSTRUCTOR :
begin
if IsAnonOrLocal then
Message(parser_e_no_methods_in_local_anonymous_records);
if not is_classdef and (current_structdef.symtable.currentvisibility <> vis_public) then
Message(parser_w_constructor_should_be_public);
{ only 1 class constructor is allowed }
if is_classdef and (oo_has_class_constructor in current_structdef.objectoptions) then
Message1(parser_e_only_one_class_constructor_allowed, current_structdef.objrealname^);
oldparse_only:=parse_only;
parse_only:=true;
if is_classdef then
pd:=class_constructor_head(current_structdef)
else
begin
pd:=constructor_head;
if pd.minparacount = 0 then
MessagePos(pd.procsym.fileinfo,parser_e_no_parameterless_constructor_in_records);
end;
parse_only:=oldparse_only;
fields_allowed:=false;
is_classdef:=false;
end;
_DESTRUCTOR :
begin
if IsAnonOrLocal then
Message(parser_e_no_methods_in_local_anonymous_records);
if not is_classdef then
Message(parser_e_no_destructor_in_records);
{ only 1 class destructor is allowed }
if is_classdef and (oo_has_class_destructor in current_structdef.objectoptions) then
Message1(parser_e_only_one_class_destructor_allowed, current_structdef.objrealname^);
oldparse_only:=parse_only;
parse_only:=true;
if is_classdef then
pd:=class_destructor_head(current_structdef)
else
pd:=destructor_head;
parse_only:=oldparse_only;
fields_allowed:=false;
is_classdef:=false;
end;
_END :
begin
{$ifdef jvm}
add_java_default_record_methods_intf(trecorddef(current_structdef));
{$endif}
if target_info.system in systems_typed_constants_node_init then
add_typedconst_init_routine(current_structdef);
consume(_END);
break;
end;
else
consume(_ID); { Give a ident expected message, like tp7 }
end;
until false;
reset_typesym;
end;
{ reads a record declaration }
function record_dec(const n:tidstring;recsym:tsym;genericdef:tstoreddef;genericlist:tfphashobjectlist):tdef;
var
old_current_structdef: tabstractrecorddef;
old_current_genericdef,
old_current_specializedef: tstoreddef;
old_parse_generic: boolean;
recst: trecordsymtable;
hadgendummy : boolean;
alignment: Integer;
begin
old_current_structdef:=current_structdef;
old_current_genericdef:=current_genericdef;
old_current_specializedef:=current_specializedef;
old_parse_generic:=parse_generic;
current_genericdef:=nil;
current_specializedef:=nil;
{ create recdef }
if (n<>'') or
not(target_info.system in systems_jvm) then
begin
recst:=trecordsymtable.create(n,current_settings.packrecords,current_settings.alignment.recordalignmin);
{ can't use recst.realname^ instead of n, because recst.realname is
nil in case of an empty name }
current_structdef:=crecorddef.create(n,recst);
end
else
begin
{ for the JVM target records always need a name, because they are
represented by a class }
recst:=trecordsymtable.create(current_module.realmodulename^+'__fpc_intern_recname_'+tostr(current_module.deflist.count),
current_settings.packrecords,current_settings.alignment.recordalignmin);
current_structdef:=crecorddef.create(recst.name^,recst);
end;
result:=current_structdef;
{ insert in symtablestack }
symtablestack.push(recst);
{ usage of specialized type inside its generic template }
if assigned(genericdef) then
current_specializedef:=current_structdef
{ reject declaration of generic class inside generic class }
else if assigned(genericlist) then
current_genericdef:=current_structdef;
{ nested types of specializations are specializations as well }
if assigned(old_current_structdef) and
(df_specialization in old_current_structdef.defoptions) then
include(current_structdef.defoptions,df_specialization);
if assigned(old_current_structdef) and
(df_generic in old_current_structdef.defoptions) then
include(current_structdef.defoptions,df_generic);
insert_generic_parameter_types(current_structdef,genericdef,genericlist,false);
{ when we are parsing a generic already then this is a generic as
well }
if old_parse_generic then
include(current_structdef.defoptions, df_generic);
parse_generic:=(df_generic in current_structdef.defoptions);
if parse_generic and not assigned(current_genericdef) then
current_genericdef:=current_structdef;
{ in non-Delphi modes we need a strict private symbol without type
count and type parameters in the name to simply resolving }
maybe_insert_generic_rename_symbol(n,genericlist);
{ apply $RTTI directive to current object }
current_structdef.apply_rtti_directive(current_module.rtti_directive);
if m_advanced_records in current_settings.modeswitches then
begin
parse_record_members(recsym);
end
else
begin
read_record_fields([vd_record],nil,nil,hadgendummy);
{$ifdef jvm}
{ we need a constructor to create temps, a deep copy helper, ... }
add_java_default_record_methods_intf(trecorddef(current_structdef));
{$endif}
if target_info.system in systems_typed_constants_node_init then
add_typedconst_init_routine(current_structdef);
consume(_END);
end;
if (token=_ID) and (pattern='ALIGN') then
begin
consume(_ID);
alignment:=get_intconst.svalue;
{ "(alignment and not $7F) = 0" means it's between 0 and 127, and
PopCnt = 1 for powers of 2 }
if ((alignment and not $7F) <> 0) or (PopCnt(Byte(alignment))<>1) then
message(scanner_e_illegal_alignment_directive)
else
recst.recordalignment:=shortint(alignment);
end;
{ make the record size aligned (has to be done before inserting the
parameters, because that may depend on the record's size) }
recst.addalignmentpadding;
{ don't keep track of procdefs in a separate list, because the
compiler may add additional procdefs (e.g. property wrappers for
the jvm backend) }
insert_struct_hidden_paras(trecorddef(current_structdef));
{ restore symtable stack }
symtablestack.pop(recst);
if trecorddef(current_structdef).is_packed and is_managed_type(current_structdef) then
Message(type_e_no_packed_inittable);
{ restore old state }
parse_generic:=old_parse_generic;
current_structdef:=old_current_structdef;
current_genericdef:=old_current_genericdef;
current_specializedef:=old_current_specializedef;
end;
{ reads a type definition and returns a pointer to it }
procedure read_named_type(var def:tdef;const newsym:tsym;genericdef:tstoreddef;genericlist:tfphashobjectlist;parseprocvardir:boolean;var hadtypetoken:boolean);
const
SingleTypeOptionsInTypeBlock:array[Boolean] of TSingleTypeOptions = ([],[stoIsForwardDef]);
var
pt : tnode;
tt2 : tdef;
aktenumdef : tenumdef;
s : TIDString;
l,v : TConstExprInt;
oldpackrecords : longint;
defpos,storepos : tfileposinfo;
name: TIDString;
procedure expr_type;
var
pt1,pt2 : tnode;
lv,hv : TConstExprInt;
old_block_type : tblock_type;
dospecialize : boolean;
newdef : tdef;
sym : tsym;
genstr : string;
gencount : longint;
begin
old_block_type:=block_type;
dospecialize:=false;
{ use of current parsed object:
classes, objects, records can be used also in themself }
if (token=_ID) then
if try_parse_structdef_nested_type(def,current_structdef,false) then
exit;
{ we can't accept a equal in type }
pt1:=comp_expr([ef_type_only]);
if try_to_consume(_POINTPOINT) then
begin
{ get high value of range }
pt2:=comp_expr([]);
{ make both the same type or give an error. This is not
done when both are integer values, because typecasting
between -3200..3200 will result in a signed-unsigned
conflict and give a range check error (PFV) }
if not(is_integer(pt1.resultdef) and is_integer(pt2.resultdef)) then
inserttypeconv(pt1,pt2.resultdef);
{ both must be evaluated to constants now }
if (pt1.nodetype=ordconstn) and
(pt2.nodetype=ordconstn) then
begin
lv:=tordconstnode(pt1).value;
hv:=tordconstnode(pt2).value;
{ Check bounds }
if hv<lv then
message(parser_e_upper_lower_than_lower)
else if (lv.signed and (lv.svalue<0)) and (not hv.signed and (hv.uvalue>qword(high(int64)))) then
message(type_e_cant_eval_constant_expr)
else
begin
{ All checks passed, create the new def }
case pt1.resultdef.typ of
enumdef :
def:=cenumdef.create_subrange(tenumdef(pt1.resultdef),lv.svalue,hv.svalue);
orddef :
begin
if is_char(pt1.resultdef) then
def:=corddef.create(uchar,lv,hv,true)
else
if is_boolean(pt1.resultdef) then
def:=corddef.create(pasbool1,lv,hv,true)
else if is_signed(pt1.resultdef) then
def:=corddef.create(range_to_basetype(lv,hv),lv,hv,true)
else
def:=corddef.create(range_to_basetype(lv,hv),lv,hv,true);
end;
else
internalerror(2019050527);
end;
end;
end
else
Message(sym_e_error_in_type_def);
pt2.free;
end
else
begin
{ a simple type renaming or generic specialization }
if (pt1.nodetype=typen) then
begin
def:=ttypenode(pt1).resultdef;
{ Delphi mode specialization? }
if (m_delphi in current_settings.modeswitches) then
dospecialize:=token=_LSHARPBRACKET
else
begin
dospecialize:=false;
{ in non-Delphi modes we might get a inline specialization
without "specialize" or "<T>" of the same type we're
currently parsing, so we need to handle that special }
newdef:=nil;
end;
if not dospecialize and
assigned(ttypenode(pt1).typesym) and
(ttypenode(pt1).typesym.typ=typesym) and
(sp_generic_dummy in ttypenode(pt1).typesym.symoptions) and
assigned(current_structdef) and
(
(
not (m_delphi in current_settings.modeswitches) and
(ttypesym(ttypenode(pt1).typesym).typedef.typ=undefineddef) and
(df_generic in current_structdef.defoptions) and
(ttypesym(ttypenode(pt1).typesym).typedef.owner=current_structdef.owner) and
(upper(ttypenode(pt1).typesym.realname)=copy(current_structdef.objname^,1,pos('$',current_structdef.objname^)-1))
) or (
{ this could be a nested specialization which uses
the type name of a surrounding generic to
reference the specialization of said surrounding
class }
(df_specialization in current_structdef.defoptions) and
return_specialization_of_generic(current_structdef,ttypesym(ttypenode(pt1).typesym).typedef,newdef)
)
)
then
begin
if assigned(newdef) then
def:=newdef
else
def:=current_structdef;
if assigned(def) then
{ handle nested types }
post_comp_expr_gendef(def)
else
def:=generrordef;
end;
if dospecialize then
begin
generate_specialization(def,false,false,name);
{ handle nested types }
if assigned(def) then
post_comp_expr_gendef(def);
end
else
begin
if assigned(current_specializedef) and (def=current_specializedef.genericdef) then
begin
def:=current_specializedef
end
else if (def=current_genericdef) then
begin
def:=current_genericdef
end
else if tstoreddef(def).is_generic and
{ TODO : check once nested generics are allowed }
not
(
parse_generic and
(current_genericdef.typ in [recorddef,objectdef]) and
(def.typ in [recorddef,objectdef]) and
(
{ if both defs belong to the same generic (e.g. both are
subtypes) then we must allow the usage }
defs_belong_to_same_generic(def,current_genericdef) or
{ this is needed to correctly resolve "type Foo=SomeGeneric<T>"
declarations inside a generic }
(
(ttypenode(pt1).typesym<>nil) and
sym_is_owned_by(ttypenode(pt1).typesym,tabstractrecorddef(current_genericdef).symtable)
)
)
)
then
begin
if assigned(def.typesym) then
begin
if ttypesym(def.typesym).typedef.typ<>undefineddef then
{ non-Delphi modes... }
split_generic_name(def.typesym.name,genstr,gencount)
else
genstr:=def.typesym.name;
sym:=resolve_generic_dummysym(genstr);
end
else
sym:=nil;
if assigned(sym) and
not (sp_generic_dummy in sym.symoptions) and
(sym.typ=typesym) then
def:=ttypesym(sym).typedef
else
begin
Message(parser_e_no_generics_as_types);
def:=generrordef;
end;
end
else if is_classhelper(def) then
begin
Message(parser_e_no_category_as_types);
def:=generrordef
end
end;
end
else
Message(sym_e_error_in_type_def);
end;
pt1.free;
block_type:=old_block_type;
end;
procedure set_dec;
begin
consume(_SET);
consume(_OF);
read_anon_type(tt2,true);
if assigned(tt2) then
begin
case tt2.typ of
{ don't forget that min can be negativ PM }
enumdef :
if (tenumdef(tt2).min>=0) and
(tenumdef(tt2).max<=255) then
// !! def:=csetdef.create(tt2,tenumdef(tt2.def).min,tenumdef(tt2.def).max),true)
def:=csetdef.create(tt2,tenumdef(tt2).min,tenumdef(tt2).max,true)
else
Message(sym_e_ill_type_decl_set);
orddef :
begin
if (torddef(tt2).ordtype=uwidechar) then
begin
if (m_default_unicodestring in current_settings.modeswitches) then
begin
Message(parser_w_widechar_set_reduced);
def:=csetdef.create(cansichartype,torddef(cansichartype).low.svalue,torddef(cansichartype).high.svalue,true);
end
else
Message(sym_e_ill_type_decl_set);
end
else if (torddef(tt2).ordtype<>uvoid) and
(torddef(tt2).low>=0) then
// !! def:=csetdef.create(tt2,torddef(tt2.def).low,torddef(tt2.def).high),true)
if Torddef(tt2).high>int64(high(byte)) then
message(sym_e_ill_type_decl_set)
else
def:=csetdef.create(tt2,torddef(tt2).low.svalue,torddef(tt2).high.svalue,true)
else
Message(sym_e_ill_type_decl_set);
end;
{ generic parameter? }
undefineddef:
;
else
Message(sym_e_ill_type_decl_set);
end;
end
else
def:=generrordef;
end;
procedure pointer_dec;
var
sym: tsym;
begin
consume(_CARET);
single_type(tt2,
SingleTypeOptionsInTypeBlock[block_type=bt_type]+[stoAllowSpecialization]
);
{ in case of e.g. var or const sections we need to especially
check that we don't use a generic dummy symbol }
if (block_type<>bt_type) and
(tt2.typ=undefineddef) and
assigned(tt2.typesym) and
(sp_generic_dummy in tt2.typesym.symoptions) then
begin
sym:=resolve_generic_dummysym(tt2.typesym.name);
if assigned(sym) and
not (sp_generic_dummy in sym.symoptions) and
(sym.typ=typesym) then
tt2:=ttypesym(sym).typedef
else
Message(parser_e_no_generics_as_types);
end;
{ don't use cpointerdef.getreusable() here, since this is a type
declaration (-> must create new typedef) }
def:=cpointerdef.create(tt2);
if tt2.typ=forwarddef then
current_module.checkforwarddefs.add(def);
end;
procedure array_dec(is_packed:boolean;genericdef:tstoreddef;genericlist:tfphashobjectlist);
var
isgeneric : boolean;
lowval,
highval : TConstExprInt;
indexdef : tdef;
hdef : tdef;
arrdef : tarraydef;
procedure setdefdecl(def:tdef);
begin
case def.typ of
enumdef :
begin
lowval:=tenumdef(def).min;
highval:=tenumdef(def).max;
if (m_fpc in current_settings.modeswitches) and
(tenumdef(def).has_jumps) then
Message(type_e_array_index_enums_with_assign_not_possible);
indexdef:=def;
end;
orddef :
begin
if torddef(def).ordtype in [uchar,
u8bit,
s8bit,s16bit,
{$if defined(cpu32bitaddr) or defined(cpu64bitaddr)}
u16bit,s32bit,
{$endif defined(cpu32bitaddr) or defined(cpu64bitaddr)}
{$ifdef cpu64bitaddr}
u32bit,s64bit,
{$endif cpu64bitaddr}
pasbool1,pasbool8,pasbool16,pasbool32,pasbool64,
bool8bit,bool16bit,bool32bit,bool64bit,
uwidechar] then
begin
lowval:=torddef(def).low;
highval:=torddef(def).high;
indexdef:=def;
end
else
Message1(parser_e_type_cant_be_used_in_array_index,def.typename);
end;
{ generic parameter? }
undefineddef:
begin
lowval:=0;
highval:=1;
indexdef:=def;
isgeneric:=true;
end;
else
Message(sym_e_error_in_type_def);
end;
end;
var
old_current_genericdef,
old_current_specializedef: tstoreddef;
first,
old_parse_generic: boolean;
begin
old_current_genericdef:=current_genericdef;
old_current_specializedef:=current_specializedef;
old_parse_generic:=parse_generic;
current_genericdef:=nil;
current_specializedef:=nil;
first:=true;
arrdef:=carraydef.create(0,0,s32inttype);
consume(_ARRAY);
{ usage of specialized type inside its generic template }
if assigned(genericdef) then
current_specializedef:=arrdef
{ reject declaration of generic class inside generic class }
else if assigned(genericlist) then
current_genericdef:=arrdef;
symtablestack.push(arrdef.symtable);
insert_generic_parameter_types(arrdef,genericdef,genericlist,false);
{ there are two possibilties for the following to be true:
* the array declaration itself is generic
* the array is declared inside a generic
in both cases we need "parse_generic" and "current_genericdef"
so that e.g. specializations of another generic inside the
current generic can be used (either inline ones or "type" ones) }
if old_parse_generic then
include(arrdef.defoptions,df_generic);
parse_generic:=(df_generic in arrdef.defoptions);
if parse_generic and not assigned(current_genericdef) then
current_genericdef:=old_current_genericdef;
{ open array? }
if try_to_consume(_LECKKLAMMER) then
begin
{ defaults }
indexdef:=generrordef;
isgeneric:=false;
{ use defaults which don't overflow the compiler }
lowval:=0;
highval:=0;
repeat
{ read the expression and check it, check apart if the
declaration is an enum declaration because that needs to
be parsed by readtype (PFV) }
if token=_LKLAMMER then
begin
read_anon_type(hdef,true);
setdefdecl(hdef);
end
else
begin
pt:=expr(true);
isgeneric:=false;
if pt.nodetype=typen then
setdefdecl(pt.resultdef)
else
begin
if pt.nodetype=rangen then
begin
if nf_generic_para in pt.flags then
isgeneric:=true;
{ pure ordconstn expressions can be checked for
generics as well, but don't give an error in case
of parsing a generic if that isn't yet the case }
if (trangenode(pt).left.nodetype=ordconstn) and
(trangenode(pt).right.nodetype=ordconstn) then
begin
{ make both the same type or give an error. This is not
done when both are integer values, because typecasting
between -3200..3200 will result in a signed-unsigned
conflict and give a range check error (PFV) }
if not(is_integer(trangenode(pt).left.resultdef) and is_integer(trangenode(pt).left.resultdef)) then
inserttypeconv(trangenode(pt).left,trangenode(pt).right.resultdef);
lowval:=tordconstnode(trangenode(pt).left).value;
highval:=tordconstnode(trangenode(pt).right).value;
if highval<lowval then
begin
{ ignore error if node is generic param }
if not (nf_generic_para in pt.flags) then
Message(parser_e_array_lower_less_than_upper_bound);
highval:=lowval;
end
else if (lowval<int64(low(asizeint))) or
(highval>high(asizeint)) then
begin
Message(parser_e_array_range_out_of_bounds);
lowval :=0;
highval:=0;
end;
if is_integer(trangenode(pt).left.resultdef) then
range_to_type(lowval,highval,indexdef)
else
indexdef:=trangenode(pt).left.resultdef;
end
else
if not parse_generic then
Message(type_e_cant_eval_constant_expr)
else
{ we need a valid range for debug information }
range_to_type(lowval,highval,indexdef);
end
else
Message(sym_e_error_in_type_def)
end;
pt.free;
end;
{ if we are not at the first dimension, add the new arrray
as element of the existing array, otherwise modify the existing array }
if not(first) then
begin
arrdef.elementdef:=carraydef.create(lowval.svalue,highval.svalue,indexdef);
{ push new symtable }
symtablestack.pop(arrdef.symtable);
arrdef:=tarraydef(arrdef.elementdef);
symtablestack.push(arrdef.symtable);
end
else
begin
arrdef.lowrange:=lowval.svalue;
arrdef.highrange:=highval.svalue;
arrdef.rangedef:=indexdef;
def:=arrdef;
first:=false;
end;
if is_packed then
include(arrdef.arrayoptions,ado_IsBitPacked);
if isgeneric then
include(arrdef.arrayoptions,ado_IsGeneric);
if token=_COMMA then
consume(_COMMA)
else
break;
until false;
consume(_RECKKLAMMER);
end
else
begin
if is_packed then
Message(parser_e_packed_dynamic_open_array);
arrdef.lowrange:=0;
arrdef.highrange:=-1;
arrdef.rangedef:=sizesinttype;
include(arrdef.arrayoptions,ado_IsDynamicArray);
def:=arrdef;
end;
consume(_OF);
read_anon_type(tt2,true);
{ set element type of the last array definition }
if assigned(arrdef) then
begin
symtablestack.pop(arrdef.symtable);
arrdef.elementdef:=tt2;
if is_packed and
is_managed_type(tt2) then
Message(type_e_no_packed_inittable);
end;
{ restore old state }
parse_generic:=old_parse_generic;
current_genericdef:=old_current_genericdef;
current_specializedef:=old_current_specializedef;
end;
function procvar_dec(genericdef:tstoreddef;genericlist:tfphashobjectlist;sym:tsym;doregister:boolean):tdef;
var
is_func:boolean;
pd:tprocvardef;
old_current_genericdef,
old_current_specializedef: tstoreddef;
old_parse_generic: boolean;
olddef : tdef;
begin
old_current_genericdef:=current_genericdef;
old_current_specializedef:=current_specializedef;
old_parse_generic:=parse_generic;
current_genericdef:=nil;
current_specializedef:=nil;
olddef:=nil;
is_func:=(token=_FUNCTION);
if token in [_FUNCTION,_PROCEDURE] then
consume(token)
else
consume(_FUNCTION);
pd:=cprocvardef.create(normal_function_level,doregister);
if assigned(sym) then
begin
pd.typesym:=sym;
olddef:=ttypesym(sym).typedef;
ttypesym(sym).typedef:=pd;
end;
{ usage of specialized type inside its generic template }
if assigned(genericdef) then
current_specializedef:=pd
{ reject declaration of generic class inside generic class }
else if assigned(genericlist) then
current_genericdef:=pd;
symtablestack.push(pd.parast);
insert_generic_parameter_types(pd,genericdef,genericlist,false);
{ there are two possibilties for the following to be true:
* the procvar declaration itself is generic
* the procvar is declared inside a generic
in both cases we need "parse_generic" and "current_genericdef"
so that e.g. specializations of another generic inside the
current generic can be used (either inline ones or "type" ones) }
if old_parse_generic then
include(pd.defoptions,df_generic);
parse_generic:=(df_generic in pd.defoptions);
if parse_generic and not assigned(current_genericdef) then
current_genericdef:=old_current_genericdef;
if token=_LKLAMMER then
parse_parameter_dec(pd);
if is_func then
begin
consume(_COLON);
pd.proctypeoption:=potype_function;
pd.returndef:=result_type([stoAllowSpecialization]);
end
else
pd.proctypeoption:=potype_procedure;
if try_to_consume(_OF) then
begin
consume(_OBJECT);
include(pd.procoptions,po_methodpointer);
end
else if (m_nested_procvars in current_settings.modeswitches) and
try_to_consume(_IS) then
begin
consume(_NESTED);
pd.parast.symtablelevel:=normal_function_level+1;
pd.check_mark_as_nested;
end;
symtablestack.pop(pd.parast);
{ possible proc directives }
if parseprocvardir then
begin
if check_proc_directive(true) then
parse_proctype_directives(pd);
{ Add implicit hidden parameters and function result }
handle_calling_convention(pd,hcc_default_actions_intf);
end;
{ restore old state }
parse_generic:=old_parse_generic;
current_genericdef:=old_current_genericdef;
current_specializedef:=old_current_specializedef;
if assigned(sym) then
begin
pd.typesym:=nil;
ttypesym(sym).typedef:=olddef;
end;
result:=pd;
end;
var
p : tnode;
hdef : tdef;
enumdupmsg, first, is_specialize : boolean;
oldlocalswitches : tlocalswitches;
bitpacking: boolean;
stitem: psymtablestackitem;
sym: tsym;
st: tsymtable;
begin
def:=nil;
v:=0;
l:=0;
if assigned(newsym) then
name:=newsym.RealName
else
name:='';
case token of
_STRING,_FILE:
begin
single_type(def,[stoAllowTypeDef]);
end;
_LKLAMMER:
begin
consume(_LKLAMMER);
first:=true;
{ allow negativ value_str }
l:=int64(-1);
enumdupmsg:=false;
{ check that we are not adding an enum from specialization
we can't just use current_specializedef because of inner types
like specialize array of record }
is_specialize:=false;
stitem:=symtablestack.stack;
while assigned(stitem) do
begin
{ check records, classes and arrays because they can be specialized }
if stitem^.symtable.symtabletype in [recordsymtable,ObjectSymtable,arraysymtable] then
begin
is_specialize:=is_specialize or (df_specialization in tstoreddef(stitem^.symtable.defowner).defoptions);
stitem:=stitem^.next;
end
else
break;
end;
if not is_specialize then
aktenumdef:=cenumdef.create
else
aktenumdef:=nil;
repeat
{ if it is a specialization then search the first enum member
and get the member owner instead of just created enumdef }
if not assigned(aktenumdef) then
begin
searchsym(pattern,sym,st);
if sym.typ=enumsym then
aktenumdef:=tenumsym(sym).definition
else
internalerror(201101021);
end;
s:=orgpattern;
defpos:=current_tokenpos;
consume(_ID);
{ only allow assigning of specific numbers under fpc mode }
if not(m_tp7 in current_settings.modeswitches) and
(
{ in fpc mode also allow := to be compatible
with previous 1.0.x versions }
((m_fpc in current_settings.modeswitches) and
try_to_consume(_ASSIGNMENT)) or
try_to_consume(_EQ)
) then
begin
oldlocalswitches:=current_settings.localswitches;
include(current_settings.localswitches,cs_allow_enum_calc);
p:=comp_expr([ef_accept_equal]);
current_settings.localswitches:=oldlocalswitches;
if (p.nodetype=ordconstn) then
begin
{ we expect an integer or an enum of the
same type }
if is_integer(p.resultdef) or
is_char(p.resultdef) or
equal_defs(p.resultdef,aktenumdef) then
v:=tordconstnode(p).value
else
IncompatibleTypes(p.resultdef,s32inttype);
end
else
Message(parser_e_illegal_expression);
p.free;
{ please leave that a note, allows type save }
{ declarations in the win32 units ! }
if (not first) and (v<=l) and (not enumdupmsg) then
begin
Message(parser_n_duplicate_enum);
enumdupmsg:=true;
end;
l:=v;
end
else
inc(l.svalue);
first:=false;
{ don't generate enum members if this is a specialization because aktenumdef is copied from the generic type }
if not is_specialize then
begin
storepos:=current_tokenpos;
current_tokenpos:=defpos;
if (l.svalue<low(longint)) or (l.svalue>high(longint)) then
if m_delphi in current_settings.modeswitches then
Message(parser_w_enumeration_out_of_range)
else
Message(parser_e_enumeration_out_of_range);
tenumsymtable(aktenumdef.symtable).insertsym(cenumsym.create(s,aktenumdef,longint(l.svalue)));
if not (cs_scopedenums in current_settings.localswitches) or
{ also provide the global symbol for anonymous enums }
not assigned(newsym) then
tstoredsymtable(aktenumdef.owner).insertsym(cenumsym.create(s,aktenumdef,longint(l.svalue)));
current_tokenpos:=storepos;
end;
until not try_to_consume(_COMMA);
def:=aktenumdef;
consume(_RKLAMMER);
{$ifdef jvm}
jvm_maybe_create_enum_class(name,def);
{$endif}
end;
_ARRAY:
array_dec(false,genericdef,genericlist);
_SET:
set_dec;
_CARET:
pointer_dec;
_RECORD:
begin
consume(token);
if (idtoken=_HELPER) and (m_advanced_records in current_settings.modeswitches) then
begin
consume(_HELPER);
def:=object_dec(odt_helper,name,newsym,genericdef,genericlist,nil,ht_record);
end
else
def:=record_dec(name,newsym,genericdef,genericlist);
end;
_PACKED,
_BITPACKED:
begin
bitpacking :=
(cs_bitpacking in current_settings.localswitches) or
(token = _BITPACKED);
consume(token);
if token=_ARRAY then
array_dec(bitpacking,genericdef,genericlist)
else if token=_SET then
set_dec
else if token=_FILE then
single_type(def,[stoAllowTypeDef])
else
begin
oldpackrecords:=current_settings.packrecords;
if (not bitpacking) or
(token in [_CLASS,_OBJECT]) then
current_settings.packrecords:=1
else
current_settings.packrecords:=bit_alignment;
case token of
_CLASS :
begin
consume(_CLASS);
def:=object_dec(odt_class,name,newsym,genericdef,genericlist,nil,ht_none);
end;
_OBJECT :
begin
consume(_OBJECT);
def:=object_dec(odt_object,name,newsym,genericdef,genericlist,nil,ht_none);
end;
else begin
consume(_RECORD);
def:=record_dec(name,newsym,genericdef,genericlist);
end;
end;
current_settings.packrecords:=oldpackrecords;
end;
end;
_DISPINTERFACE :
begin
{ need extra check here since interface is a keyword
in all pascal modes }
if not(m_class in current_settings.modeswitches) then
Message(parser_f_need_objfpc_or_delphi_mode);
consume(token);
def:=object_dec(odt_dispinterface,name,newsym,genericdef,genericlist,nil,ht_none);
end;
_CLASS :
begin
consume(token);
{ Delphi only allows class of in type blocks }
if (token=_OF) and
(
not(m_delphi in current_settings.modeswitches) or
(block_type=bt_type)
) then
begin
consume(_OF);
single_type(hdef,SingleTypeOptionsInTypeBlock[block_type=bt_type]);
if is_class(hdef) or
is_objcclass(hdef) or
is_javaclass(hdef) then
def:=cclassrefdef.create(hdef)
else
if hdef.typ=forwarddef then
begin
def:=cclassrefdef.create(hdef);
current_module.checkforwarddefs.add(def);
end
else
Message1(type_e_class_or_objcclass_type_expected,hdef.typename);
end
else
if (idtoken=_HELPER) then
begin
consume(_HELPER);
def:=object_dec(odt_helper,name,newsym,genericdef,genericlist,nil,ht_class);
end
else
def:=object_dec(default_class_type,name,newsym,genericdef,genericlist,nil,ht_none);
end;
_CPPCLASS :
begin
consume(token);
def:=object_dec(odt_cppclass,name,newsym,genericdef,genericlist,nil,ht_none);
end;
_OBJCCLASS :
begin
if not(m_objectivec1 in current_settings.modeswitches) then
Message(parser_f_need_objc);
consume(token);
def:=object_dec(odt_objcclass,name,newsym,genericdef,genericlist,nil,ht_none);
end;
_INTERFACE :
begin
{ need extra check here since interface is a keyword
in all pascal modes }
if not(m_class in current_settings.modeswitches) then
Message(parser_f_need_objfpc_or_delphi_mode);
consume(token);
case current_settings.interfacetype of
it_interfacecom:
def:=object_dec(odt_interfacecom,name,newsym,genericdef,genericlist,nil,ht_none);
it_interfacecorba:
def:=object_dec(odt_interfacecorba,name,newsym,genericdef,genericlist,nil,ht_none);
it_interfacejava:
def:=object_dec(odt_interfacejava,name,newsym,genericdef,genericlist,nil,ht_none);
end;
end;
_OBJCPROTOCOL :
begin
if not(m_objectivec1 in current_settings.modeswitches) then
Message(parser_f_need_objc);
consume(token);
def:=object_dec(odt_objcprotocol,name,newsym,genericdef,genericlist,nil,ht_none);
end;
_OBJCCATEGORY :
begin
if not(m_objectivec1 in current_settings.modeswitches) then
Message(parser_f_need_objc);
consume(token);
def:=object_dec(odt_objccategory,name,newsym,genericdef,genericlist,nil,ht_none);
end;
_OBJECT :
begin
consume(token);
def:=object_dec(odt_object,name,newsym,genericdef,genericlist,nil,ht_none);
end;
_PROCEDURE,
_FUNCTION:
begin
def:=procvar_dec(genericdef,genericlist,nil,true);
{$ifdef jvm}
jvm_create_procvar_class(name,def);
{$endif}
end;
_ID:
begin
case idtoken of
_HELPER:
begin
if hadtypetoken and
(m_type_helpers in current_settings.modeswitches) then
begin
{ reset hadtypetoken, so that calling code knows that it should not be handled
as a "unique" type }
hadtypetoken:=false;
consume(_HELPER);
def:=object_dec(odt_helper,name,newsym,genericdef,genericlist,nil,ht_type);
end
else
expr_type
end;
_REFERENCE:
begin
if current_settings.modeswitches*[m_blocks,m_function_references]<>[] then
begin
consume(_REFERENCE);
consume(_TO);
{ don't register the def as a non-cblock function
reference will be converted to an interface }
def:=procvar_dec(genericdef,genericlist,newsym,false);
{ could be errordef in case of a syntax error }
if assigned(def) and
(def.typ=procvardef) then
begin
include(tprocvardef(def).procoptions,po_is_function_ref);
end;
end
else
expr_type;
end;
else
expr_type;
end;
end
else
if (token=_KLAMMERAFFE) and (([m_iso,m_extpas]*current_settings.modeswitches)<>[]) then
begin
consume(_KLAMMERAFFE);
single_type(tt2,SingleTypeOptionsInTypeBlock[block_type=bt_type]);
def:=cpointerdef.create(tt2);
if tt2.typ=forwarddef then
current_module.checkforwarddefs.add(def);
end
else
expr_type;
end;
if def=nil then
def:=generrordef;
end;
procedure read_anon_type(var def : tdef;parseprocvardir:boolean);
var
hadtypetoken : boolean;
begin
hadtypetoken:=false;
read_named_type(def,nil,nil,nil,parseprocvardir,hadtypetoken);
end;
procedure add_typedconst_init_routine(def: tabstractrecorddef);
var
sstate: tscannerstate;
pd: tprocdef;
begin
replace_scanner('tcinit_routine',sstate);
{ the typed constant initialization code is called from the class
constructor by tnodeutils.wrap_proc_body; at this point, we don't
know yet whether that will be necessary, because there may be
typed constants inside method bodies -> always force the addition
of a class constructor.
We cannot directly add the typed constant initialisations to the
class constructor, because when it's parsed not all method bodies
are necessarily already parsed }
pd:=def.find_procdef_bytype(potype_class_constructor);
{ the class constructor }
if not assigned(pd) then
begin
if str_parse_method_dec('constructor fpc_init_typed_consts_class_constructor;',potype_class_constructor,true,def,pd) then
pd.synthetickind:=tsk_empty
else
internalerror(2011040206);
end;
{ the initialisation helper }
if str_parse_method_dec('procedure fpc_init_typed_consts_helper; static;',potype_procedure,true,def,pd) then
pd.synthetickind:=tsk_tcinit
else
internalerror(2011040207);
restore_scanner(sstate);
end;
end.