fpc/compiler/cgbase.pas

996 lines
31 KiB
ObjectPascal
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{
Copyright (c) 1998-2002 by Florian Klaempfl
Some basic types and constants for the code generation
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
****************************************************************************
}
{# This unit exports some types which are used across the code generator }
unit cgbase;
{$i fpcdefs.inc}
interface
uses
globtype,
symconst;
type
{ Location types where value can be stored }
TCGLoc=(
LOC_INVALID, { added for tracking problems}
LOC_VOID, { no value is available }
LOC_CONSTANT, { constant value }
LOC_JUMP, { boolean results only, jump to false or true label }
LOC_FLAGS, { boolean results only, flags are set }
LOC_REGISTER, { in a processor register }
LOC_CREGISTER, { Constant register which shouldn't be modified }
LOC_FPUREGISTER, { FPU stack }
LOC_CFPUREGISTER, { if it is a FPU register variable on the fpu stack }
LOC_MMXREGISTER, { MMX register }
{ MMX register variable }
LOC_CMMXREGISTER,
{ multimedia register }
LOC_MMREGISTER,
{ Constant multimedia reg which shouldn't be modified }
LOC_CMMREGISTER,
{ contiguous subset of bits of an integer register }
LOC_SUBSETREG,
LOC_CSUBSETREG,
{ contiguous subset of bits in memory }
LOC_SUBSETREF,
LOC_CSUBSETREF,
{ keep these last for range checking purposes }
LOC_CREFERENCE, { in memory constant value reference (cannot change) }
LOC_REFERENCE { in memory value }
);
TCGNonRefLoc=low(TCGLoc)..pred(LOC_CREFERENCE);
TCGRefLoc=LOC_CREFERENCE..LOC_REFERENCE;
trefaddr = (
addr_no,
addr_full,
addr_pic,
addr_pic_no_got
{$IF defined(POWERPC) or defined(POWERPC64) or defined(SPARC) or defined(MIPS) or defined(SPARC64)}
,
{ since we have only 16bit offsets, we need to be able to specify the high
and lower 16 bits of the address of a symbol of up to 64 bit }
addr_low, // bits 48-63
addr_high, // bits 32-47
{$IF defined(POWERPC64)}
addr_higher, // bits 16-31
addr_highest, // bits 00-15
{$ENDIF}
addr_higha // bits 16-31, adjusted
{$IF defined(POWERPC64)}
,
addr_highera, // bits 32-47, adjusted
addr_highesta // bits 48-63, adjusted
{$ENDIF}
{$ENDIF POWERPC or POWERPC64 or SPARC or MIPS or SPARC64}
{$IFDEF MIPS}
,
addr_pic_call16, // like addr_pic, but generates call16 reloc instead of got16
addr_low_pic, // for large GOT model, generate got_hi16 and got_lo16 relocs
addr_high_pic,
addr_low_call, // counterpart of two above, generate call_hi16 and call_lo16 relocs
addr_high_call
{$ENDIF}
{$if defined(RISCV32) or defined(RISCV64)}
,
addr_hi20,
addr_lo12,
addr_pcrel_hi20,
addr_pcrel_lo12,
addr_pcrel,
addr_got_pcrel_hi,
addr_plt
{$endif RISCV}
{$if defined(LOONGARCH64)}
,
addr_b16, { %b16(sym) }
addr_b21, { %b21(sym) }
addr_b26, { %b26(sym) }
addr_pcrel, { Some times we only use sym like 'bxx rd,rj,sym'. And la.pcrel..sym }
addr_plt, { %plt(sym) }
addr_abs_hi20, { %abs_hi20(sym) }
addr_abs_lo12, { %abs_lo12(sym) }
addr_abs64_lo20, { %abs_lo20(sym) }
addr_abs64_hi12, { %abs_hi12(sym) }
addr_pc_hi20, { %pc_hi20(sym) }
addr_got_pc_hi20, { %got_pc_hi20(sym) }
addr_got_pc_lo12, { %got_pc_lo12(sym) }
addr_pc_lo12, { %pc_lo12(sym) }
addr_got, { la.got..sym }
addr_abs, { la.abs..sym }
addr_reg_reg, { use by [ld/st]x }
addr_reg_12i, { use by [ld/st] }
addr_reg_14i, { use by [ldptr/stptr] }
addr_reg { use by jr.. }
{$endif LOONGARCH64}
{$IFDEF AVR}
,addr_lo8
,addr_lo8_gs
,addr_hi8
,addr_hi8_gs
{$ENDIF}
{$IFDEF Z80}
,addr_lo8
,addr_hi8
{$ENDIF}
{$IFDEF i8086}
,addr_dgroup // the data segment group
,addr_fardataseg // the far data segment of the current pascal module (unit or program)
,addr_seg // used for getting the segment of an object, e.g. 'mov ax, SEG symbol'
{$ENDIF}
{$IFDEF AARCH64}
,addr_page
,addr_pageoffset
,addr_gotpage
,addr_gotpageoffset
{$ENDIF AARCH64}
{$ifdef SPARC64}
,addr_gdop_hix22
,addr_gdop_lox22
{$endif SPARC64}
{$IFDEF ARM}
,addr_gottpoff
,addr_tpoff
,addr_tlsgd
,addr_tlsdesc
,addr_tlscall
{$ENDIF}
{$IFDEF i386}
,addr_ntpoff
,addr_tlsgd
{$ENDIF}
{$ifdef x86_64}
,addr_tpoff
,addr_tlsgd
{$endif x86_64}
{$ifdef wasm32}
,addr_got_tls
{$endif wasm32}
);
{# Generic opcodes, which must be supported by all processors
}
topcg =
(
OP_NONE,
OP_MOVE, { replaced operation with direct load }
OP_ADD, { simple addition }
OP_AND, { simple logical and }
OP_DIV, { simple unsigned division }
OP_IDIV, { simple signed division }
OP_IMUL, { simple signed multiply }
OP_MUL, { simple unsigned multiply }
OP_NEG, { simple negate }
OP_NOT, { simple logical not }
OP_OR, { simple logical or }
OP_SAR, { arithmetic shift-right }
OP_SHL, { logical shift left }
OP_SHR, { logical shift right }
OP_SUB, { simple subtraction }
OP_XOR, { simple exclusive or }
OP_ROL, { rotate left }
OP_ROR { rotate right }
);
{# Generic flag values - used for jump locations }
TOpCmp =
(
OC_NONE,
OC_EQ, { equality comparison }
OC_GT, { greater than (signed) }
OC_LT, { less than (signed) }
OC_GTE, { greater or equal than (signed) }
OC_LTE, { less or equal than (signed) }
OC_NE, { not equal }
OC_BE, { less or equal than (unsigned) }
OC_B, { less than (unsigned) }
OC_AE, { greater or equal than (unsigned) }
OC_A { greater than (unsigned) }
);
{ indirect symbol flags }
tindsymflag = (is_data,is_weak);
tindsymflags = set of tindsymflag;
{ OS_NO is also used memory references with large data that can
not be loaded in a register directly }
TCgSize = (OS_NO,
OS_8, OS_16, OS_32, OS_64, OS_128,
OS_S8, OS_S16, OS_S32, OS_S64, OS_S128,
{ single, double, extended, comp, float128 }
OS_F32, OS_F64, OS_F80, OS_C64, OS_F128,
{ multi-media sizes, describes only the register size but not how it is split,
this information must be passed separately }
OS_M8, OS_M16, OS_M32, OS_M64, OS_M128, OS_M256, OS_M512);
{ Register types }
TRegisterType = (
R_INVALIDREGISTER, { = 0 }
R_INTREGISTER, { = 1 }
R_FPUREGISTER, { = 2 }
{ used by Intel only }
R_MMXREGISTER, { = 3 }
R_MMREGISTER, { = 4 }
R_SPECIALREGISTER, { = 5 }
R_ADDRESSREGISTER, { = 6 }
{ used on llvm, every temp gets its own "base register" }
R_TEMPREGISTER, { = 7 }
{ used on llvm for tracking metadata (every unique metadata has its own base register) }
R_METADATAREGISTER,{ = 8 }
{ optional MAC16 (16 bit multiply-accumulate) registers on Xtensa }
R_MAC16REGISTER, { = 9 }
{ WebAssembly externref }
R_EXTERNREFREGISTER, { = 10 }
{ WebAssembly funcref }
R_FUNCREFREGISTER { = 11 }
{ do not add more than 16 elements (ifdef by cpu type if needed)
so we can store this in one nibble and pack TRegister
if the supreg width should be extended }
);
{ Sub registers }
TSubRegister = (
R_SUBNONE, { = 0; no sub register possible }
R_SUBL, { = 1; 8 bits, Like AL }
R_SUBH, { = 2; 8 bits, Like AH }
R_SUBW, { = 3; 16 bits, Like AX }
R_SUBD, { = 4; 32 bits, Like EAX }
R_SUBQ, { = 5; 64 bits, Like RAX }
{ For Sparc floats that use F0:F1 to store doubles }
R_SUBFS, { = 6; Float that allocates 1 FPU register }
R_SUBFD, { = 7; Float that allocates 2 FPU registers }
R_SUBFQ, { = 8; Float that allocates 4 FPU registers }
R_SUBMMS, { = 9; single scalar in multi media register }
R_SUBMMD, { = 10; double scalar in multi media register }
R_SUBMMWHOLE, { = 11; complete MM register, size depends on CPU }
{ For Intel X86 AVX-Register }
R_SUBMMX, { = 12; 128 BITS }
R_SUBMMY, { = 13; 256 BITS }
R_SUBMMZ, { = 14; 512 BITS }
{$ifdef Z80}
{ Subregisters for the flags register (Z80) }
R_SUBFLAGCARRY, { = 15; Carry flag }
R_SUBFLAGADDSUBTRACT, { = 16; Add/Subtract flag }
R_SUBFLAGPARITYOVERFLOW, { = 17; Parity/Overflow flag }
R_SUBFLAGUNUSEDBIT3, { = 18; Unused flag (bit 3) }
R_SUBFLAGHALFCARRY, { = 19; Half Carry flag }
R_SUBFLAGUNUSEDBIT5, { = 20; Unused flag (bit 5) }
R_SUBFLAGZERO, { = 21; Zero flag }
R_SUBFLAGSIGN, { = 22; Sign flag }
{$else Z80}
{ Subregisters for the flags register (x86) }
R_SUBFLAGCARRY, { = 15; Carry flag }
R_SUBFLAGPARITY, { = 16; Parity flag }
R_SUBFLAGAUXILIARY, { = 17; Auxiliary flag }
R_SUBFLAGZERO, { = 18; Zero flag }
R_SUBFLAGSIGN, { = 19; Sign flag }
R_SUBFLAGOVERFLOW, { = 20; Overflow flag }
R_SUBFLAGINTERRUPT, { = 21; Interrupt enable flag }
R_SUBFLAGDIRECTION, { = 22; Direction flag }
{$endif Z80}
{ subregisters for the metadata register (llvm) }
R_SUBMETASTRING { = 23 }
{$ifdef aarch64}
, R_SUBMM8B { = 24; for arrangement of v regs on aarch64 }
, R_SUBMM16B { = 25; for arrangement of v regs on aarch64 }
, R_SUBMM4H { = 26; for arrangement of v regs on aarch64 }
, R_SUBMM8H { = 27; for arrangement of v regs on aarch64 }
, R_SUBMM2S { = 28; for arrangement of v regs on aarch64 }
, R_SUBMM4S { = 29; for arrangement of v regs on aarch64 }
, R_SUBMM1D { = 30; for arrangement of v regs on aarch64 }
, R_SUBMM2D { = 31; for arrangement of v regs on aarch64 }
, R_SUBMMB1 { = 32; for arrangement of v regs on aarch64; for use with ldN/stN }
, R_SUBMMH1 { = 33; for arrangement of v regs on aarch64; for use with ldN/stN }
, R_SUBMMS1 { = 34; for arrangement of v regs on aarch64; for use with ldN/stN }
, R_SUBMMD1 { = 35; for arrangement of v regs on aarch64; for use with ldN/stN }
{$endif aarch64}
);
TSubRegisterSet = set of TSubRegister;
TSuperRegister = type word;
{
The new register coding:
SuperRegister (bits 0..15)
Subregister (bits 16..23)
Register type (bits 24..31)
TRegister is defined as an enum to make it incompatible
with TSuperRegister to avoid mixing them
}
TRegister = (
TRegisterLowEnum := Low(longint),
TRegisterHighEnum := High(longint)
);
TRegisterRec=packed record
{$ifdef FPC_BIG_ENDIAN}
regtype : Tregistertype;
subreg : Tsubregister;
supreg : Tsuperregister;
{$else FPC_BIG_ENDIAN}
supreg : Tsuperregister;
subreg : Tsubregister;
regtype : Tregistertype;
{$endif FPC_BIG_ENDIAN}
end;
{ A type to store register locations for 64 Bit values. }
{$ifdef cpu64bitalu}
tregister64 = tregister;
tregister128 = record
reglo,reghi : tregister;
end;
{$else cpu64bitalu}
tregister64 = record
reglo,reghi : tregister;
end;
{$endif cpu64bitalu}
{ Set type definition for registers }
tsuperregisterset = array[byte] of set of byte;
pmmshuffle = ^tmmshuffle;
{ this record describes shuffle operations for mm operations; if a pointer a shuffle record
passed to an mm operation is nil, it means that the whole location is moved }
tmmshuffle = record
{ describes how many shuffles are actually described, if len=0 then
moving the scalar with index 0 to the scalar with index 0 is meant,
if len=-1, then a variable/unknown length is assumed }
len : Shortint;
{ lower byte of each entry of this array describes index of the source data index while
the upper byte describes the destination index }
shuffles : array[1..1] of word;
end;
Tsuperregisterarray=array of Tsuperregister;
Tsuperregisterworklist=object
buflength,
buflengthinc,
length:word;
buf:tsuperregisterarray;
constructor init;
constructor copyfrom(const x:Tsuperregisterworklist);
destructor done;
procedure clear;
procedure add(s:tsuperregister);
function addnodup(s:tsuperregister): boolean;
{ returns the last element and removes it from the list }
function get:tsuperregister;
function readidx(i:word):tsuperregister;
procedure deleteidx(i:word);
function delete(s:tsuperregister):boolean;
end;
psuperregisterworklist=^tsuperregisterworklist;
const
{ alias for easier understanding }
R_SSEREGISTER = R_MMREGISTER;
{ Invalid register number }
RS_INVALID = high(tsuperregister);
NR_INVALID = tregister($ffffffff);
tcgsize2size : Array[tcgsize] of integer =
(0,
{ integer values }
1, 2, 4, 8, 16,
1, 2, 4, 8, 16,
{ floating point values }
4, 8, 10, 8, 16,
{ multimedia values }
1, 2, 4, 8, 16, 32, 64);
tfloat2tcgsize: array[tfloattype] of tcgsize =
(OS_F32,OS_F64,OS_F80,OS_F80,OS_C64,OS_C64,OS_F128);
tcgsize2tfloat: array[OS_F32..OS_C64] of tfloattype =
(s32real,s64real,s80real,s64comp);
tvarregable2tcgloc : array[tvarregable] of tcgloc = (LOC_VOID,
LOC_CREGISTER,LOC_CFPUREGISTER,LOC_CMMREGISTER,LOC_CREGISTER);
{$if defined(cpu64bitalu)}
{ operand size describing an unsigned value in a pair of int registers }
OS_PAIR = OS_128;
{ operand size describing an signed value in a pair of int registers }
OS_SPAIR = OS_S128;
{$elseif defined(cpu32bitalu)}
{ operand size describing an unsigned value in a pair of int registers }
OS_PAIR = OS_64;
{ operand size describing an signed value in a pair of int registers }
OS_SPAIR = OS_S64;
{$elseif defined(cpu16bitalu)}
{ operand size describing an unsigned value in a pair of int registers }
OS_PAIR = OS_32;
{ operand size describing an signed value in a pair of int registers }
OS_SPAIR = OS_S32;
{$elseif defined(cpu8bitalu)}
{ operand size describing an unsigned value in a pair of int registers }
OS_PAIR = OS_16;
{ operand size describing an signed value in a pair of int registers }
OS_SPAIR = OS_S16;
{$endif}
{ Table to convert tcgsize variables to the correspondending
unsigned types }
tcgsize2unsigned : array[tcgsize] of tcgsize = (OS_NO,
OS_8, OS_16, OS_32, OS_64, OS_128,
OS_8, OS_16, OS_32, OS_64, OS_128,
OS_F32, OS_F64, OS_F80, OS_C64, OS_F128,
OS_M8, OS_M16, OS_M32, OS_M64, OS_M128, OS_M256, OS_M512);
tcgsize2signed : array[tcgsize] of tcgsize = (OS_NO,
OS_S8, OS_S16, OS_S32, OS_S64, OS_S128,
OS_S8, OS_S16, OS_S32, OS_S64, OS_S128,
OS_F32, OS_F64, OS_F80, OS_C64, OS_F128,
OS_M8, OS_M16, OS_M32, OS_M64, OS_M128, OS_M256,OS_M512);
tcgloc2str : array[TCGLoc] of string[12] = (
'LOC_INVALID',
'LOC_VOID',
'LOC_CONST',
'LOC_JUMP',
'LOC_FLAGS',
'LOC_REG',
'LOC_CREG',
'LOC_FPUREG',
'LOC_CFPUREG',
'LOC_MMXREG',
'LOC_CMMXREG',
'LOC_MMREG',
'LOC_CMMREG',
'LOC_SSETREG',
'LOC_CSSETREG',
'LOC_SSETREF',
'LOC_CSSETREF',
'LOC_CREF',
'LOC_REF'
);
var
mms_movescalar,
mms_variable,
mms_2,
mms_4,
mms_8,
mms_16,
mms_32 : pmmshuffle;
procedure supregset_reset(out regs:tsuperregisterset;setall:boolean;
maxreg:Tsuperregister);{$ifdef USEINLINE}inline;{$endif}
procedure supregset_include(var regs:tsuperregisterset;s:tsuperregister);{$ifdef USEINLINE}inline;{$endif}
procedure supregset_exclude(var regs:tsuperregisterset;s:tsuperregister);{$ifdef USEINLINE}inline;{$endif}
function supregset_in(const regs:tsuperregisterset;s:tsuperregister):boolean;{$ifdef USEINLINE}inline;{$endif}
function newreg(rt:tregistertype;sr:tsuperregister;sb:tsubregister):tregister;{$ifdef USEINLINE}inline;{$endif}
function getsubreg(r:tregister):tsubregister;{$ifdef USEINLINE}inline;{$endif}
function getsupreg(r:tregister):tsuperregister;{$ifdef USEINLINE}inline;{$endif}
function getregtype(r:tregister):tregistertype;{$ifdef USEINLINE}inline;{$endif}
procedure setsubreg(var r:tregister;sr:tsubregister);{$ifdef USEINLINE}inline;{$endif}
procedure setsupreg(var r:tregister;sr:tsuperregister);{$ifdef USEINLINE}inline;{$endif}
function generic_regname(r:tregister):string;
{# From a constant numeric value, return the abstract code generator
size.
}
function int_cgsize(const a: tcgint): tcgsize;{$ifdef USEINLINE}inline;{$endif}
function int_float_cgsize(const a: tcgint): tcgsize;
function float_array_cgsize(const a: tcgint): tcgsize;{$ifdef USEINLINE}inline;{$endif}
function double_array_cgsize(const a: tcgint): tcgsize;{$ifdef USEINLINE}inline;{$endif}
function tcgsize2str(cgsize: tcgsize):string;
function topcg2str(opcg: topcg):string;
function topcmp2str(opcmp: topcmp):string;
{ return the inverse condition of opcmp }
function inverse_opcmp(opcmp: topcmp): topcmp;{$ifdef USEINLINE}inline;{$endif}
{ return the opcmp needed when swapping the operands }
function swap_opcmp(opcmp: topcmp): topcmp;{$ifdef USEINLINE}inline;{$endif}
{ return whether op is commutative }
function commutativeop(op: topcg): boolean;{$ifdef USEINLINE}inline;{$endif}
{ returns true, if shuffle describes a real shuffle operation and not only a move }
function realshuffle(shuffle : pmmshuffle) : boolean;
{ returns true, if the shuffle describes only a move of the scalar at index 0 }
function shufflescalar(shuffle : pmmshuffle) : boolean;
{ removes shuffling from shuffle, this means that the destenation index of each shuffle is copied to
the source }
procedure removeshuffles(var shuffle : tmmshuffle);
function is_float_cgsize(size: tcgsize): boolean;{$ifdef USEINLINE}inline;{$endif}
implementation
uses
verbose,
cutils;
{******************************************************************************
tsuperregisterworklist
******************************************************************************}
constructor tsuperregisterworklist.init;
begin
length:=0;
buflength:=0;
buflengthinc:=16;
buf:=nil;
end;
constructor Tsuperregisterworklist.copyfrom(const x:Tsuperregisterworklist);
begin
// self.x cannot be used, we'd copy over the dyn array
buflength:=x.buflength;
buflengthinc:=x.buflengthinc;
length:=x.length;
if x.buf<>nil then
begin
setlength(buf,buflength);
move(x.buf[0],buf[0],length*sizeof(Tsuperregister));
end;
end;
destructor tsuperregisterworklist.done;
begin
buf:=nil;
end;
procedure tsuperregisterworklist.add(s:tsuperregister);
begin
inc(length);
{ Need to increase buffer length? }
if length>=buflength then
begin
inc(buflength,buflengthinc);
buflengthinc:=buflengthinc*2;
if buflengthinc>256 then
buflengthinc:=256;
setlength(buf,buflength);
end;
buf[length-1]:=s;
end;
function tsuperregisterworklist.addnodup(s:tsuperregister): boolean;
begin
addnodup := false;
if (length=0) or (indexword(buf[0],length,s) = -1) then
begin
add(s);
addnodup := true;
end;
end;
procedure tsuperregisterworklist.clear;
begin
length:=0;
end;
procedure tsuperregisterworklist.deleteidx(i:word);
begin
if i>=length then
internalerror(200310144);
buf[i]:=buf[length-1];
dec(length);
end;
function tsuperregisterworklist.readidx(i:word):tsuperregister;
begin
if (i >= length) then
internalerror(2005010601);
result := buf[i];
end;
function tsuperregisterworklist.get:tsuperregister;
begin
if length=0 then
internalerror(200310142);
dec(length);
get:=buf[length];
end;
function tsuperregisterworklist.delete(s:tsuperregister):boolean;
var
i:longint;
begin
delete:=false;
if (system.length(buf)=0) then
exit;
{ indexword in 1.0.x and 1.9.4 is broken }
i:=indexword(buf[0],length,s);
if i<>-1 then
begin
deleteidx(i);
delete := true;
end;
end;
procedure supregset_reset(out regs:tsuperregisterset;setall:boolean;
maxreg:Tsuperregister);{$ifdef USEINLINE}inline;{$endif}
begin
fillchar(regs,(maxreg+7) shr 3,-byte(setall));
end;
procedure supregset_include(var regs:tsuperregisterset;s:tsuperregister);{$ifdef USEINLINE}inline;{$endif}
begin
include(regs[s shr 8],(s and $ff));
end;
procedure supregset_exclude(var regs:tsuperregisterset;s:tsuperregister);{$ifdef USEINLINE}inline;{$endif}
begin
exclude(regs[s shr 8],(s and $ff));
end;
function supregset_in(const regs:tsuperregisterset;s:tsuperregister):boolean;{$ifdef USEINLINE}inline;{$endif}
begin
result:=(s and $ff) in regs[s shr 8];
end;
function newreg(rt:tregistertype;sr:tsuperregister;sb:tsubregister):tregister;{$ifdef USEINLINE}inline;{$endif}
begin
tregisterrec(result).regtype:=rt;
tregisterrec(result).supreg:=sr;
tregisterrec(result).subreg:=sb;
end;
function getsubreg(r:tregister):tsubregister;{$ifdef USEINLINE}inline;{$endif}
begin
result:=tregisterrec(r).subreg;
end;
function getsupreg(r:tregister):tsuperregister;{$ifdef USEINLINE}inline;{$endif}
begin
result:=tregisterrec(r).supreg;
end;
function getregtype(r:tregister):tregistertype;{$ifdef USEINLINE}inline;{$endif}
begin
result:=tregisterrec(r).regtype;
end;
procedure setsubreg(var r:tregister;sr:tsubregister);{$ifdef USEINLINE}inline;{$endif}
begin
tregisterrec(r).subreg:=sr;
end;
procedure setsupreg(var r:tregister;sr:tsuperregister);{$ifdef USEINLINE}inline;{$endif}
begin
tregisterrec(r).supreg:=sr;
end;
function generic_regname(r:tregister):string;
var
nr : string[12];
begin
str(getsupreg(r),nr);
case getregtype(r) of
R_INTREGISTER:
result:='ireg'+nr;
R_FPUREGISTER:
result:='freg'+nr;
R_MMREGISTER:
result:='mreg'+nr;
R_MMXREGISTER:
result:='xreg'+nr;
R_ADDRESSREGISTER:
result:='areg'+nr;
R_SPECIALREGISTER:
result:='sreg'+nr;
else
begin
result:='INVALID';
exit;
end;
end;
case getsubreg(r) of
R_SUBNONE:
;
R_SUBL:
result:=result+'l';
R_SUBH:
result:=result+'h';
R_SUBW:
result:=result+'w';
R_SUBD:
result:=result+'d';
R_SUBQ:
result:=result+'q';
R_SUBFS:
result:=result+'fs';
R_SUBFD:
result:=result+'fd';
R_SUBMMD:
result:=result+'md';
R_SUBMMS:
result:=result+'ms';
R_SUBMMWHOLE:
result:=result+'ma';
R_SUBMMX:
result:=result+'mx';
R_SUBMMY:
result:=result+'my';
R_SUBMMZ:
result:=result+'mz';
{$ifdef aarch64}
R_SUBMM8B:
result:=result+'m8b';
R_SUBMM16B:
result:=result+'m16b';
R_SUBMM4H:
result:=result+'m4h';
R_SUBMM8H:
result:=result+'m8h';
R_SUBMM2S:
result:=result+'m2s';
R_SUBMM4S:
result:=result+'m4s';
R_SUBMM2D:
result:=result+'m2d';
R_SUBMMB1:
result:=result+'mb1';
R_SUBMMH1:
result:=result+'mh1';
R_SUBMMS1:
result:=result+'ms1';
R_SUBMMD1:
result:=result+'md1';
{$endif}
else
internalerror(200308252);
end;
end;
function int_cgsize(const a: tcgint): tcgsize;{$ifdef USEINLINE}inline;{$endif}
const
size2cgsize : array[0..8] of tcgsize = (
OS_NO,OS_8,OS_16,OS_NO,OS_32,OS_NO,OS_NO,OS_NO,OS_64
);
begin
{$ifdef cpu64bitalu}
if a=16 then
result:=OS_128
else
{$endif cpu64bitalu}
if a>8 then
result:=OS_NO
else
result:=size2cgsize[a];
end;
function int_float_cgsize(const a: tcgint): tcgsize;
begin
case a of
4 :
result:=OS_F32;
8 :
result:=OS_F64;
10 :
result:=OS_F80;
16 :
result:=OS_F128;
else
internalerror(200603211);
end;
end;
function float_array_cgsize(const a: tcgint): tcgsize;{$ifdef USEINLINE}inline;{$endif}
begin
case a of
4:
result := OS_M32;
16:
result := OS_M128;
32:
result := OS_M256;
64:
result := OS_M512;
else
result := int_cgsize(a);
end;
end;
function double_array_cgsize(const a: tcgint): tcgsize;{$ifdef USEINLINE}inline;{$endif}
begin
case a of
8:
result := OS_M64;
16:
result := OS_M128;
32:
result := OS_M256;
64:
result := OS_M512;
else
result := int_cgsize(a);
end;
end;
function tcgsize2str(cgsize: tcgsize):string;
begin
Str(cgsize, Result);
end;
function topcg2str(opcg: topcg):string;
begin
Str(opcg, Result);
end;
function topcmp2str(opcmp: topcmp):string;
begin
Str(opcmp, Result);
end;
function inverse_opcmp(opcmp: topcmp): topcmp;{$ifdef USEINLINE}inline;{$endif}
const
list: array[TOpCmp] of TOpCmp =
(OC_NONE,OC_NE,OC_LTE,OC_GTE,OC_LT,OC_GT,OC_EQ,OC_A,OC_AE,
OC_B,OC_BE);
begin
inverse_opcmp := list[opcmp];
end;
function swap_opcmp(opcmp: topcmp): topcmp;{$ifdef USEINLINE}inline;{$endif}
const
list: array[TOpCmp] of TOpCmp =
(OC_NONE,OC_EQ,OC_LT,OC_GT,OC_LTE,OC_GTE,OC_NE,OC_AE,OC_A,
OC_BE,OC_B);
begin
swap_opcmp := list[opcmp];
end;
function commutativeop(op: topcg): boolean;{$ifdef USEINLINE}inline;{$endif}
const
list: array[topcg] of boolean =
(true,false,true,true,false,false,true,true,false,false,
true,false,false,false,false,true,false,false);
begin
commutativeop := list[op];
end;
function realshuffle(shuffle : pmmshuffle) : boolean;
var
i : longint;
begin
realshuffle:=true;
if (shuffle=nil) or (shuffle^.len<1) then
realshuffle:=false
else
begin
for i:=1 to shuffle^.len do
begin
if (shuffle^.shuffles[i] and $ff)<>((shuffle^.shuffles[i] and $ff00) shr 8) then
exit;
end;
realshuffle:=false;
end;
end;
function shufflescalar(shuffle : pmmshuffle) : boolean;
begin
result:=shuffle^.len=0;
end;
procedure removeshuffles(var shuffle : tmmshuffle);
var
i : longint;
begin
if shuffle.len=0 then
exit;
for i:=1 to shuffle.len do
shuffle.shuffles[i]:=(shuffle.shuffles[i] and $f) or ((shuffle.shuffles[i] and $f0) shr 4);
end;
function is_float_cgsize(size: tcgsize): boolean;{$ifdef USEINLINE}inline;{$endif}
begin
result:=size in [OS_F32..OS_F128];
end;
procedure Initmms(var p : pmmshuffle;len : ShortInt);
var
i : Integer;
begin
Getmem(p,sizeof(tmmshuffle)+(max(len,0)-1)*2);
p^.len:=len;
for i:=1 to len do
{$push}
{$R-}
p^.shuffles[i]:=i;
{$pop}
end;
initialization
Initmms(mms_movescalar,0);
Initmms(mms_variable,-1);
Initmms(mms_2,2);
Initmms(mms_4,4);
Initmms(mms_8,8);
Initmms(mms_16,16);
Initmms(mms_32,32);
finalization
Freemem(mms_movescalar);
Freemem(mms_variable);
Freemem(mms_2);
Freemem(mms_4);
Freemem(mms_8);
Freemem(mms_16);
Freemem(mms_32);
end.