fpc/compiler/ncnv.pas
carl e212fa90d5 + generic int_to_real type conversion
+ generic unaryminus node
2002-08-14 19:26:55 +00:00

2047 lines
71 KiB
ObjectPascal

{
$Id$
Copyright (c) 2000-2002 by Florian Klaempfl
Type checking and register allocation for type converting nodes
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
****************************************************************************
}
unit ncnv;
{$i fpcdefs.inc}
interface
uses
node,
symtype,defbase,
nld;
type
ttypeconvnode = class(tunarynode)
totype : ttype;
convtype : tconverttype;
constructor create(node : tnode;const t : ttype);virtual;
constructor create_explicit(node : tnode;const t : ttype);
function getcopy : tnode;override;
function pass_1 : tnode;override;
function det_resulttype:tnode;override;
function docompare(p: tnode) : boolean; override;
private
function resulttype_cord_to_pointer : tnode;
function resulttype_chararray_to_string : tnode;
function resulttype_string_to_chararray : tnode;
function resulttype_string_to_string : tnode;
function resulttype_char_to_string : tnode;
function resulttype_char_to_chararray : tnode;
function resulttype_int_to_real : tnode;
function resulttype_real_to_real : tnode;
function resulttype_cchar_to_pchar : tnode;
function resulttype_cstring_to_pchar : tnode;
function resulttype_char_to_char : tnode;
function resulttype_arrayconstructor_to_set : tnode;
function resulttype_pchar_to_string : tnode;
function resulttype_interface_to_guid : tnode;
function resulttype_dynarray_to_openarray : tnode;
function resulttype_call_helper(c : tconverttype) : tnode;
protected
function first_int_to_int : tnode;virtual;
function first_cstring_to_pchar : tnode;virtual;
function first_string_to_chararray : tnode;virtual;
function first_char_to_string : tnode;virtual;
function first_nothing : tnode;virtual;
function first_array_to_pointer : tnode;virtual;
function first_int_to_real : tnode;virtual;
function first_real_to_real : tnode;virtual;
function first_pointer_to_array : tnode;virtual;
function first_cchar_to_pchar : tnode;virtual;
function first_bool_to_int : tnode;virtual;
function first_int_to_bool : tnode;virtual;
function first_bool_to_bool : tnode;virtual;
function first_proc_to_procvar : tnode;virtual;
function first_load_smallset : tnode;virtual;
function first_cord_to_pointer : tnode;virtual;
function first_ansistring_to_pchar : tnode;virtual;
function first_arrayconstructor_to_set : tnode;virtual;
function first_class_to_intf : tnode;virtual;
function first_char_to_char : tnode;virtual;
function first_call_helper(c : tconverttype) : tnode;
{ these wrapper are necessary, because the first_* stuff is called }
{ through a table. Without the wrappers override wouldn't have }
{ any effect }
function _first_int_to_int : tnode;
function _first_cstring_to_pchar : tnode;
function _first_string_to_chararray : tnode;
function _first_char_to_string : tnode;
function _first_nothing : tnode;
function _first_array_to_pointer : tnode;
function _first_int_to_real : tnode;
function _first_real_to_real : tnode;
function _first_pointer_to_array : tnode;
function _first_cchar_to_pchar : tnode;
function _first_bool_to_int : tnode;
function _first_int_to_bool : tnode;
function _first_bool_to_bool : tnode;
function _first_proc_to_procvar : tnode;
function _first_load_smallset : tnode;
function _first_cord_to_pointer : tnode;
function _first_ansistring_to_pchar : tnode;
function _first_arrayconstructor_to_set : tnode;
function _first_class_to_intf : tnode;
function _first_char_to_char : tnode;
procedure second_int_to_int;virtual;abstract;
procedure second_string_to_string;virtual;abstract;
procedure second_cstring_to_pchar;virtual;abstract;
procedure second_string_to_chararray;virtual;abstract;
procedure second_array_to_pointer;virtual;abstract;
procedure second_pointer_to_array;virtual;abstract;
procedure second_chararray_to_string;virtual;abstract;
procedure second_char_to_string;virtual;abstract;
procedure second_int_to_real;virtual;abstract;
procedure second_real_to_real;virtual;abstract;
procedure second_cord_to_pointer;virtual;abstract;
procedure second_proc_to_procvar;virtual;abstract;
procedure second_bool_to_int;virtual;abstract;
procedure second_int_to_bool;virtual;abstract;
procedure second_bool_to_bool;virtual;abstract;
procedure second_load_smallset;virtual;abstract;
procedure second_ansistring_to_pchar;virtual;abstract;
procedure second_pchar_to_string;virtual;abstract;
procedure second_class_to_intf;virtual;abstract;
procedure second_char_to_char;virtual;abstract;
procedure second_nothing; virtual;abstract;
end;
ttypeconvnodeclass = class of ttypeconvnode;
tasnode = class(tbinarynode)
constructor create(l,r : tnode);virtual;
function pass_1 : tnode;override;
function det_resulttype:tnode;override;
end;
tasnodeclass = class of tasnode;
tisnode = class(tbinarynode)
constructor create(l,r : tnode);virtual;
function pass_1 : tnode;override;
function det_resulttype:tnode;override;
procedure pass_2;override;
end;
tisnodeclass = class of tisnode;
var
ctypeconvnode : ttypeconvnodeclass;
casnode : tasnodeclass;
cisnode : tisnodeclass;
procedure inserttypeconv(var p:tnode;const t:ttype);
procedure inserttypeconv_explicit(var p:tnode;const t:ttype);
procedure arrayconstructor_to_set(var p : tnode);
implementation
uses
globtype,systems,tokens,
cutils,verbose,globals,widestr,
symconst,symdef,symsym,symtable,
ncon,ncal,nset,nadd,ninl,nmem,nmat,
cgbase,
htypechk,pass_1,cpubase,cpuinfo;
{*****************************************************************************
Helpers
*****************************************************************************}
procedure inserttypeconv(var p:tnode;const t:ttype);
begin
if not assigned(p.resulttype.def) then
begin
resulttypepass(p);
if codegenerror then
exit;
end;
{ don't insert obsolete type conversions }
if is_equal(p.resulttype.def,t.def) and
not ((p.resulttype.def.deftype=setdef) and
(tsetdef(p.resulttype.def).settype <>
tsetdef(t.def).settype)) then
begin
p.resulttype:=t;
end
else
begin
p:=ctypeconvnode.create(p,t);
resulttypepass(p);
end;
end;
procedure inserttypeconv_explicit(var p:tnode;const t:ttype);
begin
if not assigned(p.resulttype.def) then
begin
resulttypepass(p);
if codegenerror then
exit;
end;
{ don't insert obsolete type conversions }
if is_equal(p.resulttype.def,t.def) and
not ((p.resulttype.def.deftype=setdef) and
(tsetdef(p.resulttype.def).settype <>
tsetdef(t.def).settype)) then
begin
p.resulttype:=t;
end
else
begin
p:=ctypeconvnode.create_explicit(p,t);
resulttypepass(p);
end;
end;
{*****************************************************************************
Array constructor to Set Conversion
*****************************************************************************}
procedure arrayconstructor_to_set(var p : tnode);
var
constp : tsetconstnode;
buildp,
p2,p3,p4 : tnode;
htype : ttype;
constset : Pconstset;
constsetlo,
constsethi : longint;
procedure update_constsethi(t:ttype);
begin
if ((t.def.deftype=orddef) and
(torddef(t.def).high>=constsethi)) then
begin
constsethi:=torddef(t.def).high;
if htype.def=nil then
begin
if (constsethi>255) or
(torddef(t.def).low<0) then
htype:=u8bittype
else
htype:=t;
end;
if constsethi>255 then
constsethi:=255;
end
else if ((t.def.deftype=enumdef) and
(tenumdef(t.def).max>=constsethi)) then
begin
if htype.def=nil then
htype:=t;
constsethi:=tenumdef(t.def).max;
end;
end;
procedure do_set(pos : longint);
{$ifdef oldset}
var
mask,l : longint;
{$endif}
begin
if (pos and not $ff)<>0 then
Message(parser_e_illegal_set_expr);
if pos>constsethi then
constsethi:=pos;
if pos<constsetlo then
constsetlo:=pos;
{$ifdef oldset}
{ to do this correctly we use the 32bit array }
l:=pos shr 5;
mask:=1 shl (pos mod 32);
{ do we allow the same twice }
if (pconst32bitset(constset)^[l] and mask)<>0 then
Message(parser_e_illegal_set_expr);
pconst32bitset(constset)^[l]:=pconst32bitset(constset)^[l] or mask;
{$else}
include(constset^,pos);
{$endif}
end;
var
l : Longint;
lr,hr : TConstExprInt;
hp : tarrayconstructornode;
begin
if p.nodetype<>arrayconstructorn then
internalerror(200205105);
new(constset);
{$ifdef oldset}
FillChar(constset^,sizeof(constset^),0);
{$else}
constset^:=[];
{$endif}
htype.reset;
constsetlo:=0;
constsethi:=0;
constp:=csetconstnode.create(nil,htype);
constp.value_set:=constset;
buildp:=constp;
hp:=tarrayconstructornode(p);
if assigned(hp.left) then
begin
while assigned(hp) do
begin
p4:=nil; { will contain the tree to create the set }
{split a range into p2 and p3 }
if hp.left.nodetype=arrayconstructorrangen then
begin
p2:=tarrayconstructorrangenode(hp.left).left;
p3:=tarrayconstructorrangenode(hp.left).right;
tarrayconstructorrangenode(hp.left).left:=nil;
tarrayconstructorrangenode(hp.left).right:=nil;
end
else
begin
p2:=hp.left;
hp.left:=nil;
p3:=nil;
end;
resulttypepass(p2);
if assigned(p3) then
resulttypepass(p3);
if codegenerror then
break;
case p2.resulttype.def.deftype of
enumdef,
orddef:
begin
getrange(p2.resulttype.def,lr,hr);
if assigned(p3) then
begin
{ this isn't good, you'll get problems with
type t010 = 0..10;
ts = set of t010;
var s : ts;b : t010
begin s:=[1,2,b]; end.
if is_integer(p3^.resulttype.def) then
begin
inserttypeconv(p3,u8bitdef);
end;
}
if assigned(htype.def) and not(is_equal(htype.def,p3.resulttype.def)) then
begin
aktfilepos:=p3.fileinfo;
CGMessage(type_e_typeconflict_in_set);
end
else
begin
if (p2.nodetype=ordconstn) and (p3.nodetype=ordconstn) then
begin
if not(is_integer(p3.resulttype.def)) then
htype:=p3.resulttype
else
begin
inserttypeconv(p3,u8bittype);
inserttypeconv(p2,u8bittype);
end;
for l:=tordconstnode(p2).value to tordconstnode(p3).value do
do_set(l);
p2.free;
p3.free;
end
else
begin
update_constsethi(p2.resulttype);
inserttypeconv(p2,htype);
update_constsethi(p3.resulttype);
inserttypeconv(p3,htype);
if assigned(htype.def) then
inserttypeconv(p3,htype)
else
inserttypeconv(p3,u8bittype);
p4:=csetelementnode.create(p2,p3);
end;
end;
end
else
begin
{ Single value }
if p2.nodetype=ordconstn then
begin
if not(is_integer(p2.resulttype.def)) then
update_constsethi(p2.resulttype)
else
inserttypeconv(p2,u8bittype);
do_set(tordconstnode(p2).value);
p2.free;
end
else
begin
update_constsethi(p2.resulttype);
if assigned(htype.def) then
inserttypeconv(p2,htype)
else
inserttypeconv(p2,u8bittype);
p4:=csetelementnode.create(p2,nil);
end;
end;
end;
stringdef :
begin
{ if we've already set elements which are constants }
{ throw an error }
if ((htype.def=nil) and assigned(buildp)) or
not(is_char(htype.def)) then
CGMessage(type_e_typeconflict_in_set)
else
for l:=1 to length(pstring(tstringconstnode(p2).value_str)^) do
do_set(ord(pstring(tstringconstnode(p2).value_str)^[l]));
if htype.def=nil then
htype:=cchartype;
p2.free;
end;
else
CGMessage(type_e_ordinal_expr_expected);
end;
{ insert the set creation tree }
if assigned(p4) then
buildp:=caddnode.create(addn,buildp,p4);
{ load next and dispose current node }
p2:=hp;
hp:=tarrayconstructornode(tarrayconstructornode(p2).right);
tarrayconstructornode(p2).right:=nil;
p2.free;
end;
if (htype.def=nil) then
htype:=u8bittype;
end
else
begin
{ empty set [], only remove node }
p.free;
end;
{ set the initial set type }
constp.resulttype.setdef(tsetdef.create(htype,constsethi));
{ determine the resulttype for the tree }
resulttypepass(buildp);
{ set the new tree }
p:=buildp;
end;
{*****************************************************************************
TTYPECONVNODE
*****************************************************************************}
constructor ttypeconvnode.create(node : tnode;const t:ttype);
begin
inherited create(typeconvn,node);
convtype:=tc_not_possible;
totype:=t;
if t.def=nil then
internalerror(200103281);
set_file_line(node);
end;
constructor ttypeconvnode.create_explicit(node : tnode;const t:ttype);
begin
self.create(node,t);
toggleflag(nf_explizit);
end;
function ttypeconvnode.getcopy : tnode;
var
n : ttypeconvnode;
begin
n:=ttypeconvnode(inherited getcopy);
n.convtype:=convtype;
getcopy:=n;
end;
function ttypeconvnode.resulttype_cord_to_pointer : tnode;
var
t : tnode;
begin
result:=nil;
if left.nodetype=ordconstn then
begin
{ check if we have a valid pointer constant (JM) }
if (sizeof(pointer) > sizeof(TConstPtrUInt)) then
if (sizeof(TConstPtrUInt) = 4) then
begin
if (tordconstnode(left).value < low(longint)) or
(tordconstnode(left).value > high(cardinal)) then
CGMessage(parser_e_range_check_error);
end
else if (sizeof(TConstPtrUInt) = 8) then
begin
if (tordconstnode(left).value < low(int64)) or
(tordconstnode(left).value > high(qword)) then
CGMessage(parser_e_range_check_error);
end
else
internalerror(2001020801);
t:=cpointerconstnode.create(TConstPtrUInt(tordconstnode(left).value),resulttype);
result:=t;
end
else
internalerror(200104023);
end;
function ttypeconvnode.resulttype_chararray_to_string : tnode;
begin
result := ccallnode.createinternres(
'fpc_chararray_to_'+tstringdef(resulttype.def).stringtypname,
ccallparanode.create(left,nil),resulttype);
left := nil;
end;
function ttypeconvnode.resulttype_string_to_chararray : tnode;
var
arrsize: longint;
begin
with tarraydef(resulttype.def) do
begin
if highrange<lowrange then
internalerror(75432653);
arrsize := highrange-lowrange+1;
end;
if (left.nodetype = stringconstn) and
{ left.length+1 since there's always a terminating #0 character (JM) }
(tstringconstnode(left).len+1 >= arrsize) and
(tstringdef(left.resulttype.def).string_typ=st_shortstring) then
begin
{ handled separately }
result := nil;
exit;
end;
result := ccallnode.createinternres(
'fpc_'+tstringdef(left.resulttype.def).stringtypname+
'_to_chararray',ccallparanode.create(left,ccallparanode.create(
cordconstnode.create(arrsize,s32bittype),nil)),resulttype);
left := nil;
end;
function ttypeconvnode.resulttype_string_to_string : tnode;
var
procname: string[31];
stringpara : tcallparanode;
pw : pcompilerwidestring;
pc : pchar;
begin
result:=nil;
if left.nodetype=stringconstn then
begin
{ convert ascii 2 unicode }
if (tstringdef(resulttype.def).string_typ=st_widestring) and
(tstringconstnode(left).st_type in [st_ansistring,st_shortstring,st_longstring]) then
begin
initwidestring(pw);
ascii2unicode(tstringconstnode(left).value_str,tstringconstnode(left).len,pw);
ansistringdispose(tstringconstnode(left).value_str,tstringconstnode(left).len);
pcompilerwidestring(tstringconstnode(left).value_str):=pw;
end
else
{ convert unicode 2 ascii }
if (tstringconstnode(left).st_type=st_widestring) and
(tstringdef(resulttype.def).string_typ in [st_ansistring,st_shortstring,st_longstring]) then
begin
pw:=pcompilerwidestring(tstringconstnode(left).value_str);
getmem(pc,getlengthwidestring(pw)+1);
unicode2ascii(pw,pc);
donewidestring(pw);
tstringconstnode(left).value_str:=pc;
end;
tstringconstnode(left).st_type:=tstringdef(resulttype.def).string_typ;
tstringconstnode(left).resulttype:=resulttype;
result:=left;
left:=nil;
end
else
begin
{ get the correct procedure name }
procname := 'fpc_'+tstringdef(left.resulttype.def).stringtypname+
'_to_'+tstringdef(resulttype.def).stringtypname;
{ create parameter (and remove left node from typeconvnode }
{ since it's reused as parameter) }
stringpara := ccallparanode.create(left,nil);
left := nil;
{ when converting to shortstrings, we have to pass high(destination) too }
if (tstringdef(resulttype.def).string_typ = st_shortstring) then
stringpara.right := ccallparanode.create(cinlinenode.create(
in_high_x,false,self.getcopy),nil);
{ and create the callnode }
result := ccallnode.createinternres(procname,stringpara,resulttype);
end;
end;
function ttypeconvnode.resulttype_char_to_string : tnode;
var
procname: string[31];
para : tcallparanode;
hp : tstringconstnode;
ws : pcompilerwidestring;
begin
result:=nil;
if left.nodetype=ordconstn then
begin
if tstringdef(resulttype.def).string_typ=st_widestring then
begin
initwidestring(ws);
concatwidestringchar(ws,tcompilerwidechar(chr(tordconstnode(left).value)));
hp:=cstringconstnode.createwstr(ws);
donewidestring(ws);
end
else
hp:=cstringconstnode.createstr(chr(tordconstnode(left).value),tstringdef(resulttype.def).string_typ);
result:=hp;
end
else
{ shortstrings are handled 'inline' }
if tstringdef(resulttype.def).string_typ <> st_shortstring then
begin
{ create the parameter }
para := ccallparanode.create(left,nil);
left := nil;
{ and the procname }
procname := 'fpc_char_to_' +tstringdef(resulttype.def).stringtypname;
{ and finally the call }
result := ccallnode.createinternres(procname,para,resulttype);
end
else
begin
{ create word(byte(char) shl 8 or 1) for litte endian machines }
{ and word(byte(char) or 256) for big endian machines }
left := ctypeconvnode.create(left,u8bittype);
left.toggleflag(nf_explizit);
if (target_info.endian = endian_little) then
left := caddnode.create(orn,
cshlshrnode.create(shln,left,cordconstnode.create(8,s32bittype)),
cordconstnode.create(1,s32bittype))
else
left := caddnode.create(orn,left,
cordconstnode.create(1 shl 8,s32bittype));
left := ctypeconvnode.create(left,u16bittype);
left.toggleflag(nf_explizit);
resulttypepass(left);
end;
end;
function ttypeconvnode.resulttype_char_to_chararray : tnode;
begin
if resulttype.def.size <> 1 then
begin
{ convert first to string, then to chararray }
inserttypeconv(left,cshortstringtype);
inserttypeconv(left,resulttype);
result:=left;
left := nil;
exit;
end;
result := nil;
end;
function ttypeconvnode.resulttype_char_to_char : tnode;
var
hp : tordconstnode;
begin
result:=nil;
if left.nodetype=ordconstn then
begin
if (torddef(resulttype.def).typ=uchar) and
(torddef(left.resulttype.def).typ=uwidechar) then
begin
hp:=cordconstnode.create(
ord(unicode2asciichar(tcompilerwidechar(tordconstnode(left).value))),cchartype);
result:=hp;
end
else if (torddef(resulttype.def).typ=uwidechar) and
(torddef(left.resulttype.def).typ=uchar) then
begin
hp:=cordconstnode.create(
asciichar2unicode(chr(tordconstnode(left).value)),cwidechartype);
result:=hp;
end
else
internalerror(200105131);
exit;
end;
end;
function ttypeconvnode.resulttype_int_to_real : tnode;
var
t : trealconstnode;
begin
result:=nil;
if left.nodetype=ordconstn then
begin
t:=crealconstnode.create(tordconstnode(left).value,resulttype);
result:=t;
end;
end;
function ttypeconvnode.resulttype_real_to_real : tnode;
var
t : tnode;
begin
result:=nil;
if is_currency(left.resulttype.def) and not(is_currency(resulttype.def)) then
begin
end
else
if is_currency(resulttype.def) then
begin
end;
if left.nodetype=realconstn then
begin
t:=crealconstnode.create(trealconstnode(left).value_real,resulttype);
result:=t;
end;
end;
function ttypeconvnode.resulttype_cchar_to_pchar : tnode;
begin
result:=nil;
if is_pwidechar(resulttype.def) then
inserttypeconv(left,cwidestringtype)
else
inserttypeconv(left,cshortstringtype);
{ evaluate again, reset resulttype so the convert_typ
will be calculated again and cstring_to_pchar will
be used for futher conversion }
result:=det_resulttype;
end;
function ttypeconvnode.resulttype_cstring_to_pchar : tnode;
begin
result:=nil;
if is_pwidechar(resulttype.def) then
inserttypeconv(left,cwidestringtype);
end;
function ttypeconvnode.resulttype_arrayconstructor_to_set : tnode;
var
hp : tnode;
begin
result:=nil;
if left.nodetype<>arrayconstructorn then
internalerror(5546);
{ remove typeconv node }
hp:=left;
left:=nil;
{ create a set constructor tree }
arrayconstructor_to_set(hp);
result:=hp;
end;
function ttypeconvnode.resulttype_pchar_to_string : tnode;
begin
result := ccallnode.createinternres(
'fpc_pchar_to_'+tstringdef(resulttype.def).stringtypname,
ccallparanode.create(left,nil),resulttype);
left := nil;
end;
function ttypeconvnode.resulttype_interface_to_guid : tnode;
begin
if tobjectdef(left.resulttype.def).isiidguidvalid then
result:=cguidconstnode.create(tobjectdef(left.resulttype.def).iidguid);
end;
function ttypeconvnode.resulttype_dynarray_to_openarray : tnode;
begin
{ a dynamic array is a pointer to an array, so to convert it to }
{ an open array, we have to dereference it (JM) }
result := ctypeconvnode.create(left,voidpointertype);
{ left is reused }
left := nil;
result.toggleflag(nf_explizit);
result := cderefnode.create(result);
result.resulttype := resulttype;
end;
function ttypeconvnode.resulttype_call_helper(c : tconverttype) : tnode;
const
resulttypeconvert : array[tconverttype] of pointer = (
{equal} nil,
{not_possible} nil,
{ string_2_string } @ttypeconvnode.resulttype_string_to_string,
{ char_2_string } @ttypeconvnode.resulttype_char_to_string,
{ char_2_chararray } @ttypeconvnode.resulttype_char_to_chararray,
{ pchar_2_string } @ttypeconvnode.resulttype_pchar_to_string,
{ cchar_2_pchar } @ttypeconvnode.resulttype_cchar_to_pchar,
{ cstring_2_pchar } @ttypeconvnode.resulttype_cstring_to_pchar,
{ ansistring_2_pchar } nil,
{ string_2_chararray } @ttypeconvnode.resulttype_string_to_chararray,
{ chararray_2_string } @ttypeconvnode.resulttype_chararray_to_string,
{ array_2_pointer } nil,
{ pointer_2_array } nil,
{ int_2_int } nil,
{ int_2_bool } nil,
{ bool_2_bool } nil,
{ bool_2_int } nil,
{ real_2_real } @ttypeconvnode.resulttype_real_to_real,
{ int_2_real } @ttypeconvnode.resulttype_int_to_real,
{ proc_2_procvar } nil,
{ arrayconstructor_2_set } @ttypeconvnode.resulttype_arrayconstructor_to_set,
{ load_smallset } nil,
{ cord_2_pointer } @ttypeconvnode.resulttype_cord_to_pointer,
{ intf_2_string } nil,
{ intf_2_guid } @ttypeconvnode.resulttype_interface_to_guid,
{ class_2_intf } nil,
{ char_2_char } @ttypeconvnode.resulttype_char_to_char,
{ normal_2_smallset} nil,
{ dynarray_2_openarray} @resulttype_dynarray_to_openarray
);
type
tprocedureofobject = function : tnode of object;
var
r : packed record
proc : pointer;
obj : pointer;
end;
begin
result:=nil;
{ this is a little bit dirty but it works }
{ and should be quite portable too }
r.proc:=resulttypeconvert[c];
r.obj:=self;
if assigned(r.proc) then
result:=tprocedureofobject(r){$ifdef FPC}();{$endif FPC}
end;
function ttypeconvnode.det_resulttype:tnode;
var
hp : tnode;
currprocdef,
aprocdef : tprocdef;
begin
result:=nil;
resulttype:=totype;
resulttypepass(left);
if codegenerror then
exit;
{ remove obsolete type conversions }
if is_equal(left.resulttype.def,resulttype.def) then
begin
{ becuase is_equal only checks the basetype for sets we need to
check here if we are loading a smallset into a normalset }
if (resulttype.def.deftype=setdef) and
(left.resulttype.def.deftype=setdef) and
((tsetdef(resulttype.def).settype = smallset) xor
(tsetdef(left.resulttype.def).settype = smallset)) then
begin
{ constant sets can be converted by changing the type only }
if (left.nodetype=setconstn) then
begin
tsetdef(left.resulttype.def).changesettype(tsetdef(resulttype.def).settype);
result:=left;
left:=nil;
exit;
end;
if (tsetdef(resulttype.def).settype <> smallset) then
convtype:=tc_load_smallset
else
convtype := tc_normal_2_smallset;
exit;
end
else
begin
left.resulttype:=resulttype;
result:=left;
left:=nil;
exit;
end;
end;
aprocdef:=assignment_overloaded(left.resulttype.def,resulttype.def);
if assigned(aprocdef) then
begin
procinfo^.flags:=procinfo^.flags or pi_do_call;
hp:=ccallnode.create(ccallparanode.create(left,nil),
overloaded_operators[_assignment],nil,nil);
{ tell explicitly which def we must use !! (PM) }
tcallnode(hp).procdefinition:=aprocdef;
left:=nil;
result:=hp;
exit;
end;
if isconvertable(left.resulttype.def,resulttype.def,convtype,left.nodetype,nf_explizit in flags)=0 then
begin
{Procedures have a resulttype.def of voiddef and functions of their
own resulttype.def. They will therefore always be incompatible with
a procvar. Because isconvertable cannot check for procedures we
use an extra check for them.}
if (m_tp_procvar in aktmodeswitches) then
begin
if (resulttype.def.deftype=procvardef) and
(is_procsym_load(left) or is_procsym_call(left)) then
begin
if is_procsym_call(left) then
begin
currprocdef:=Tprocsym(Tcallnode(left).symtableprocentry).search_procdef_byprocvardef(Tprocvardef(resulttype.def));
hp:=cloadnode.create_procvar(tprocsym(tcallnode(left).symtableprocentry),
currprocdef,tcallnode(left).symtableproc);
if (tcallnode(left).symtableprocentry.owner.symtabletype=objectsymtable) and
assigned(tcallnode(left).methodpointer) then
tloadnode(hp).set_mp(tcallnode(left).methodpointer.getcopy);
resulttypepass(hp);
left.free;
left:=hp;
aprocdef:=tprocdef(left.resulttype.def);
end
else
begin
if (left.nodetype<>addrn) then
aprocdef:=tprocsym(tloadnode(left).symtableentry).first_procdef;
end;
convtype:=tc_proc_2_procvar;
{ Now check if the procedure we are going to assign to
the procvar, is compatible with the procvar's type }
if assigned(aprocdef) then
begin
if not proc_to_procvar_equal(aprocdef,tprocvardef(resulttype.def),false) then
CGMessage2(type_e_incompatible_types,aprocdef.typename,resulttype.def.typename);
end
else
CGMessage2(type_e_incompatible_types,left.resulttype.def.typename,resulttype.def.typename);
exit;
end;
end;
if nf_explizit in flags then
begin
{ check if the result could be in a register }
if not(tstoreddef(resulttype.def).is_intregable) and
not(tstoreddef(resulttype.def).is_fpuregable) then
make_not_regable(left);
{ boolean to byte are special because the
location can be different }
if is_integer(resulttype.def) and
is_boolean(left.resulttype.def) then
begin
convtype:=tc_bool_2_int;
exit;
end;
if is_char(resulttype.def) and
is_boolean(left.resulttype.def) then
begin
convtype:=tc_bool_2_int;
exit;
end;
{ ansistring to pchar }
if is_pchar(resulttype.def) and
is_ansistring(left.resulttype.def) then
begin
convtype:=tc_ansistring_2_pchar;
exit;
end;
{ do common tc_equal cast }
convtype:=tc_equal;
{ enum to ordinal will always be s32bit }
if (left.resulttype.def.deftype=enumdef) and
is_ordinal(resulttype.def) then
begin
if left.nodetype=ordconstn then
begin
hp:=cordconstnode.create(tordconstnode(left).value,resulttype);
result:=hp;
exit;
end
else
begin
if isconvertable(s32bittype.def,resulttype.def,convtype,ordconstn,false)=0 then
CGMessage2(type_e_incompatible_types,left.resulttype.def.typename,resulttype.def.typename);
end;
end
{ ordinal to enumeration }
else
if (resulttype.def.deftype=enumdef) and
is_ordinal(left.resulttype.def) then
begin
if left.nodetype=ordconstn then
begin
hp:=cordconstnode.create(tordconstnode(left).value,resulttype);
result:=hp;
exit;
end
else
begin
if IsConvertable(left.resulttype.def,s32bittype.def,convtype,ordconstn,false)=0 then
CGMessage2(type_e_incompatible_types,left.resulttype.def.typename,resulttype.def.typename);
end;
end
{ nil to ordinal node }
else if (left.nodetype=niln) and is_ordinal(resulttype.def) then
begin
hp:=cordconstnode.create(0,resulttype);
result:=hp;
exit;
end
{ constant pointer to ordinal }
else if is_ordinal(resulttype.def) and
(left.nodetype=pointerconstn) then
begin
hp:=cordconstnode.create(tpointerconstnode(left).value,resulttype);
result:=hp;
exit;
end
{ class to class or object to object, with checkobject support }
else if (resulttype.def.deftype=objectdef) and
(left.resulttype.def.deftype=objectdef) then
begin
if (cs_check_object in aktlocalswitches) then
begin
if is_class_or_interface(resulttype.def) then
begin
{ we can translate the typeconvnode to 'as' when
typecasting to a class or interface }
hp:=casnode.create(left,cloadvmtnode.create(ctypenode.create(resulttype)));
left:=nil;
result:=hp;
exit;
end;
end
else
begin
{ check if the types are related }
if (not(tobjectdef(left.resulttype.def).is_related(tobjectdef(resulttype.def)))) and
(not(tobjectdef(resulttype.def).is_related(tobjectdef(left.resulttype.def)))) then
CGMessage2(type_w_classes_not_related,left.resulttype.def.typename,resulttype.def.typename);
end;
end
{Are we typecasting an ordconst to a char?}
else
if is_char(resulttype.def) and
is_ordinal(left.resulttype.def) then
begin
if left.nodetype=ordconstn then
begin
hp:=cordconstnode.create(tordconstnode(left).value,resulttype);
result:=hp;
exit;
end
else
begin
if IsConvertable(left.resulttype.def,u8bittype.def,convtype,ordconstn,false)=0 then
CGMessage2(type_e_incompatible_types,left.resulttype.def.typename,resulttype.def.typename);
end;
end
{Are we typecasting an ordconst to a wchar?}
else
if is_widechar(resulttype.def) and
is_ordinal(left.resulttype.def) then
begin
if left.nodetype=ordconstn then
begin
hp:=cordconstnode.create(tordconstnode(left).value,resulttype);
result:=hp;
exit;
end
else
begin
if IsConvertable(left.resulttype.def,u16bittype.def,convtype,ordconstn,false)=0 then
CGMessage2(type_e_incompatible_types,left.resulttype.def.typename,resulttype.def.typename);
end;
end
{ char to ordinal }
else
if is_char(left.resulttype.def) and
is_ordinal(resulttype.def) then
begin
if left.nodetype=ordconstn then
begin
hp:=cordconstnode.create(tordconstnode(left).value,resulttype);
result:=hp;
exit;
end
else
begin
if IsConvertable(u8bittype.def,resulttype.def,convtype,ordconstn,false)=0 then
CGMessage2(type_e_incompatible_types,left.resulttype.def.typename,resulttype.def.typename);
end;
end
{ widechar to ordinal }
else
if is_widechar(left.resulttype.def) and
is_ordinal(resulttype.def) then
begin
if left.nodetype=ordconstn then
begin
hp:=cordconstnode.create(tordconstnode(left).value,resulttype);
result:=hp;
exit;
end
else
begin
if IsConvertable(u16bittype.def,resulttype.def,convtype,ordconstn,false)=0 then
CGMessage2(type_e_incompatible_types,left.resulttype.def.typename,resulttype.def.typename);
end;
end
{ ordinal to pointer }
else
if (m_delphi in aktmodeswitches) and
is_ordinal(left.resulttype.def) and
(resulttype.def.deftype=pointerdef) then
begin
if left.nodetype=pointerconstn then
begin
hp:=cordconstnode.create(tpointerconstnode(left).value,resulttype);
result:=hp;
exit;
end
else
begin
if IsConvertable(left.resulttype.def,ordpointertype.def,convtype,ordconstn,false)=0 then
CGMessage2(type_e_incompatible_types,left.resulttype.def.typename,resulttype.def.typename);
end;
end
{ only if the same size or formal def }
{ why do we allow typecasting of voiddef ?? (PM) }
else
begin
if not(
(left.resulttype.def.deftype=formaldef) or
(left.resulttype.def.size=resulttype.def.size) or
(is_void(left.resulttype.def) and
(left.nodetype=derefn))
) then
CGMessage(cg_e_illegal_type_conversion);
if ((left.resulttype.def.deftype=orddef) and
(resulttype.def.deftype=pointerdef)) or
((resulttype.def.deftype=orddef) and
(left.resulttype.def.deftype=pointerdef)) then
CGMessage(cg_d_pointer_to_longint_conv_not_portable);
end;
{ the conversion into a strutured type is only }
{ possible, if the source is not a register }
if ((resulttype.def.deftype in [recorddef,stringdef,arraydef]) or
((resulttype.def.deftype=objectdef) and not(is_class(resulttype.def)))
) and (left.location.loc in [LOC_REGISTER,LOC_CREGISTER]) { and
it also works if the assignment is overloaded
YES but this code is not executed if assignment is overloaded (PM)
not assigned(assignment_overloaded(left.resulttype.def,resulttype.def))} then
CGMessage(cg_e_illegal_type_conversion);
end
else
CGMessage2(type_e_incompatible_types,left.resulttype.def.typename,resulttype.def.typename);
end;
{ tp7 procvar support, when right is not a procvardef and we got a
loadn of a procvar then convert to a calln, the check for the
result is already done in is_convertible, also no conflict with
@procvar is here because that has an extra addrn }
if (m_tp_procvar in aktmodeswitches) and
(resulttype.def.deftype<>procvardef) and
(left.resulttype.def.deftype=procvardef) and
(left.nodetype=loadn) then
begin
hp:=ccallnode.create(nil,nil,nil,nil);
tcallnode(hp).set_procvar(left);
resulttypepass(hp);
left:=hp;
end;
{ remove typeconv after niln, but not when the result is a
methodpointer. The typeconv of the methodpointer will then
take care of updateing size of niln to OS_64 }
if (left.nodetype=niln) and
not((resulttype.def.deftype=procvardef) and
(po_methodpointer in tprocvardef(resulttype.def).procoptions)) then
begin
left.resulttype:=resulttype;
result:=left;
left:=nil;
exit;
end;
{ ordinal contants can be directly converted }
if (left.nodetype=ordconstn) and is_ordinal(resulttype.def) and
{ but not char to char because it is a widechar to char or via versa }
{ which needs extra code to do the code page transistion }
not(convtype=tc_char_2_char) then
begin
{ replace the resulttype and recheck the range }
left.resulttype:=resulttype;
testrange(left.resulttype.def,tordconstnode(left).value,(nf_explizit in flags));
result:=left;
left:=nil;
exit;
end;
{ fold nil to any pointer type }
if (left.nodetype=niln) and (resulttype.def.deftype=pointerdef) then
begin
hp:=cnilnode.create;
hp.resulttype:=resulttype;
result:=hp;
exit;
end;
{ further, pointerconstn to any pointer is folded too }
if (left.nodetype=pointerconstn) and (resulttype.def.deftype=pointerdef) then
begin
left.resulttype:=resulttype;
result:=left;
left:=nil;
exit;
end;
{ now call the resulttype helper to do constant folding }
result:=resulttype_call_helper(convtype);
end;
function ttypeconvnode.first_cord_to_pointer : tnode;
begin
result:=nil;
internalerror(200104043);
end;
function ttypeconvnode.first_int_to_int : tnode;
begin
first_int_to_int:=nil;
if (left.location.loc<>LOC_REGISTER) and
(resulttype.def.size>left.resulttype.def.size) then
location.loc:=LOC_REGISTER;
if is_64bitint(resulttype.def) then
registers32:=max(registers32,2)
else
registers32:=max(registers32,1);
end;
function ttypeconvnode.first_cstring_to_pchar : tnode;
begin
first_cstring_to_pchar:=nil;
registers32:=1;
location.loc:=LOC_REGISTER;
end;
function ttypeconvnode.first_string_to_chararray : tnode;
begin
first_string_to_chararray:=nil;
registers32:=1;
location.loc:=LOC_REGISTER;
end;
function ttypeconvnode.first_char_to_string : tnode;
begin
first_char_to_string:=nil;
location.loc:=LOC_CREFERENCE;
end;
function ttypeconvnode.first_nothing : tnode;
begin
first_nothing:=nil;
end;
function ttypeconvnode.first_array_to_pointer : tnode;
begin
first_array_to_pointer:=nil;
if registers32<1 then
registers32:=1;
location.loc:=LOC_REGISTER;
end;
function ttypeconvnode.first_int_to_real: tnode;
var
fname: string[19];
typname : string[12];
begin
{ Get the type name }
{ Normally the typename should be one of the following:
single, double - carl
}
typname := lower(pbestrealtype^.def.gettypename);
{ converting a 64bit integer to a float requires a helper }
if is_64bitint(left.resulttype.def) then
begin
if is_signed(left.resulttype.def) then
fname := 'fpc_int64_to_'+typname
else
fname := 'fpc_qword_to_'+typname;
result := ccallnode.createintern(fname,ccallparanode.create(
left,nil));
left:=nil;
firstpass(result);
exit;
end
else
{ other integers are supposed to be 32 bit }
begin
if is_signed(left.resulttype.def) then
fname := 'fpc_longint_to_'+typname
else
fname := 'fpc_cardinal_to_'+typname;
result := ccallnode.createintern(fname,ccallparanode.create(
left,nil));
left:=nil;
firstpass(result);
exit;
end;
end;
function ttypeconvnode.first_real_to_real : tnode;
begin
first_real_to_real:=nil;
{ comp isn't a floating type }
{$ifdef i386}
if (tfloatdef(resulttype.def).typ=s64comp) and
(tfloatdef(left.resulttype.def).typ<>s64comp) and
not (nf_explizit in flags) then
CGMessage(type_w_convert_real_2_comp);
{$endif}
if registersfpu<1 then
registersfpu:=1;
location.loc:=LOC_FPUREGISTER;
end;
function ttypeconvnode.first_pointer_to_array : tnode;
begin
first_pointer_to_array:=nil;
if registers32<1 then
registers32:=1;
location.loc:=LOC_REFERENCE;
end;
function ttypeconvnode.first_cchar_to_pchar : tnode;
begin
first_cchar_to_pchar:=nil;
internalerror(200104021);
end;
function ttypeconvnode.first_bool_to_int : tnode;
begin
first_bool_to_int:=nil;
{ byte(boolean) or word(wordbool) or longint(longbool) must
be accepted for var parameters }
if (nf_explizit in flags) and
(left.resulttype.def.size=resulttype.def.size) and
(left.location.loc in [LOC_REFERENCE,LOC_CREFERENCE,LOC_CREGISTER]) then
exit;
{ when converting to 64bit, first convert to a 32bit int and then }
{ convert to a 64bit int (only necessary for 32bit processors) (JM) }
if resulttype.def.size > sizeof(aword) then
begin
result := ctypeconvnode.create(left,u32bittype);
result.toggleflag(nf_explizit);
result := ctypeconvnode.create(result,resulttype);
left := nil;
firstpass(result);
exit;
end;
location.loc:=LOC_REGISTER;
if registers32<1 then
registers32:=1;
end;
function ttypeconvnode.first_int_to_bool : tnode;
begin
first_int_to_bool:=nil;
{ byte(boolean) or word(wordbool) or longint(longbool) must
be accepted for var parameters }
if (nf_explizit in flags) and
(left.resulttype.def.size=resulttype.def.size) and
(left.location.loc in [LOC_REFERENCE,LOC_CREFERENCE,LOC_CREGISTER]) then
exit;
location.loc:=LOC_REGISTER;
{ need if bool to bool !!
not very nice !!
insertypeconv(left,s32bittype);
left.explizit:=true;
firstpass(left); }
if registers32<1 then
registers32:=1;
end;
function ttypeconvnode.first_bool_to_bool : tnode;
begin
first_bool_to_bool:=nil;
location.loc:=LOC_REGISTER;
if registers32<1 then
registers32:=1;
end;
function ttypeconvnode.first_char_to_char : tnode;
begin
first_char_to_char:=nil;
location.loc:=LOC_REGISTER;
if registers32<1 then
registers32:=1;
end;
function ttypeconvnode.first_proc_to_procvar : tnode;
begin
first_proc_to_procvar:=nil;
if (left.location.loc<>LOC_REFERENCE) then
CGMessage(cg_e_illegal_expression);
registers32:=left.registers32;
if registers32<1 then
registers32:=1;
location.loc:=LOC_REGISTER;
end;
function ttypeconvnode.first_load_smallset : tnode;
var
srsym: ttypesym;
p: tcallparanode;
begin
if not searchsystype('FPC_SMALL_SET',srsym) then
internalerror(200108313);
p := ccallparanode.create(left,nil);
{ reused }
left := nil;
{ convert parameter explicitely to fpc_small_set }
p.left := ctypeconvnode.create(p.left,srsym.restype);
p.left.toggleflag(nf_explizit);
{ create call, adjust resulttype }
result :=
ccallnode.createinternres('fpc_set_load_small',p,resulttype);
firstpass(result);
end;
function ttypeconvnode.first_ansistring_to_pchar : tnode;
begin
first_ansistring_to_pchar:=nil;
location.loc:=LOC_REGISTER;
if registers32<1 then
registers32:=1;
end;
function ttypeconvnode.first_arrayconstructor_to_set : tnode;
begin
first_arrayconstructor_to_set:=nil;
internalerror(200104022);
end;
function ttypeconvnode.first_class_to_intf : tnode;
begin
first_class_to_intf:=nil;
location.loc:=LOC_REFERENCE;
if registers32<1 then
registers32:=1;
end;
function ttypeconvnode._first_int_to_int : tnode;
begin
result:=first_int_to_int;
end;
function ttypeconvnode._first_cstring_to_pchar : tnode;
begin
result:=first_cstring_to_pchar;
end;
function ttypeconvnode._first_string_to_chararray : tnode;
begin
result:=first_string_to_chararray;
end;
function ttypeconvnode._first_char_to_string : tnode;
begin
result:=first_char_to_string;
end;
function ttypeconvnode._first_nothing : tnode;
begin
result:=first_nothing;
end;
function ttypeconvnode._first_array_to_pointer : tnode;
begin
result:=first_array_to_pointer;
end;
function ttypeconvnode._first_int_to_real : tnode;
begin
result:=first_int_to_real;
end;
function ttypeconvnode._first_real_to_real : tnode;
begin
result:=first_real_to_real;
end;
function ttypeconvnode._first_pointer_to_array : tnode;
begin
result:=first_pointer_to_array;
end;
function ttypeconvnode._first_cchar_to_pchar : tnode;
begin
result:=first_cchar_to_pchar;
end;
function ttypeconvnode._first_bool_to_int : tnode;
begin
result:=first_bool_to_int;
end;
function ttypeconvnode._first_int_to_bool : tnode;
begin
result:=first_int_to_bool;
end;
function ttypeconvnode._first_bool_to_bool : tnode;
begin
result:=first_bool_to_bool;
end;
function ttypeconvnode._first_proc_to_procvar : tnode;
begin
result:=first_proc_to_procvar;
end;
function ttypeconvnode._first_load_smallset : tnode;
begin
result:=first_load_smallset;
end;
function ttypeconvnode._first_cord_to_pointer : tnode;
begin
result:=first_cord_to_pointer;
end;
function ttypeconvnode._first_ansistring_to_pchar : tnode;
begin
result:=first_ansistring_to_pchar;
end;
function ttypeconvnode._first_arrayconstructor_to_set : tnode;
begin
result:=first_arrayconstructor_to_set;
end;
function ttypeconvnode._first_class_to_intf : tnode;
begin
result:=first_class_to_intf;
end;
function ttypeconvnode._first_char_to_char : tnode;
begin
result:=first_char_to_char;
end;
function ttypeconvnode.first_call_helper(c : tconverttype) : tnode;
const
firstconvert : array[tconverttype] of pointer = (
@ttypeconvnode._first_nothing, {equal}
@ttypeconvnode._first_nothing, {not_possible}
nil, { removed in resulttype_string_to_string }
@ttypeconvnode._first_char_to_string,
@ttypeconvnode._first_nothing, { char_2_chararray, needs nothing extra }
nil, { removed in resulttype_chararray_to_string }
@ttypeconvnode._first_cchar_to_pchar,
@ttypeconvnode._first_cstring_to_pchar,
@ttypeconvnode._first_ansistring_to_pchar,
@ttypeconvnode._first_string_to_chararray,
nil, { removed in resulttype_chararray_to_string }
@ttypeconvnode._first_array_to_pointer,
@ttypeconvnode._first_pointer_to_array,
@ttypeconvnode._first_int_to_int,
@ttypeconvnode._first_int_to_bool,
@ttypeconvnode._first_bool_to_bool,
@ttypeconvnode._first_bool_to_int,
@ttypeconvnode._first_real_to_real,
@ttypeconvnode._first_int_to_real,
@ttypeconvnode._first_proc_to_procvar,
@ttypeconvnode._first_arrayconstructor_to_set,
@ttypeconvnode._first_load_smallset,
@ttypeconvnode._first_cord_to_pointer,
@ttypeconvnode._first_nothing,
@ttypeconvnode._first_nothing,
@ttypeconvnode._first_class_to_intf,
@ttypeconvnode._first_char_to_char,
@ttypeconvnode._first_nothing,
@ttypeconvnode._first_nothing
);
type
tprocedureofobject = function : tnode of object;
var
r : packed record
proc : pointer;
obj : pointer;
end;
begin
{ this is a little bit dirty but it works }
{ and should be quite portable too }
r.proc:=firstconvert[c];
r.obj:=self;
first_call_helper:=tprocedureofobject(r){$ifdef FPC}();{$endif FPC}
end;
function ttypeconvnode.pass_1 : tnode;
begin
result:=nil;
firstpass(left);
if codegenerror then
exit;
{ load the value_str from the left part }
registers32:=left.registers32;
registersfpu:=left.registersfpu;
{$ifdef SUPPORT_MMX}
registersmmx:=left.registersmmx;
{$endif}
location.loc:=left.location.loc;
if nf_explizit in flags then
begin
{ check if the result could be in a register }
if not(tstoreddef(resulttype.def).is_intregable) and
not(tstoreddef(resulttype.def).is_fpuregable) then
make_not_regable(left);
end;
result:=first_call_helper(convtype);
end;
function ttypeconvnode.docompare(p: tnode) : boolean;
begin
docompare :=
inherited docompare(p) and
(convtype = ttypeconvnode(p).convtype);
end;
{*****************************************************************************
TISNODE
*****************************************************************************}
constructor tisnode.create(l,r : tnode);
begin
inherited create(isn,l,r);
end;
function tisnode.det_resulttype:tnode;
var
paras: tcallparanode;
begin
result:=nil;
resulttypepass(left);
resulttypepass(right);
set_varstate(left,true);
set_varstate(right,true);
if codegenerror then
exit;
if (right.resulttype.def.deftype=classrefdef) then
begin
{ left must be a class }
if is_class(left.resulttype.def) then
begin
{ the operands must be related }
if (not(tobjectdef(left.resulttype.def).is_related(
tobjectdef(tclassrefdef(right.resulttype.def).pointertype.def)))) and
(not(tobjectdef(tclassrefdef(right.resulttype.def).pointertype.def).is_related(
tobjectdef(left.resulttype.def)))) then
CGMessage2(type_e_classes_not_related,left.resulttype.def.typename,
tclassrefdef(right.resulttype.def).pointertype.def.typename);
end
else
CGMessage1(type_e_class_type_expected,left.resulttype.def.typename);
{ call fpc_do_is helper }
paras := ccallparanode.create(
left,
ccallparanode.create(
right,nil));
result := ccallnode.createintern('fpc_do_is',paras);
left := nil;
right := nil;
end
else if is_interface(right.resulttype.def) then
begin
{ left is a class }
if is_class(left.resulttype.def) then
begin
{ the operands must be related }
if not(assigned(tobjectdef(left.resulttype.def).implementedinterfaces) and
(tobjectdef(left.resulttype.def).implementedinterfaces.searchintf(right.resulttype.def)<>-1)) then
CGMessage2(type_e_classes_not_related,left.resulttype.def.typename,right.resulttype.def.typename);
end
{ left is an interface }
else if is_interface(left.resulttype.def) then
begin
{ the operands must be related }
if (not(tobjectdef(left.resulttype.def).is_related(tobjectdef(right.resulttype.def)))) and
(not(tobjectdef(right.resulttype.def).is_related(tobjectdef(left.resulttype.def)))) then
CGMessage(type_e_mismatch);
end
else
CGMessage1(type_e_class_type_expected,left.resulttype.def.typename);
{ call fpc_do_is helper }
paras := ccallparanode.create(
left,
ccallparanode.create(
right,nil));
result := ccallnode.createintern('fpc_do_is',paras);
left := nil;
right := nil;
end
else
CGMessage1(type_e_class_or_interface_type_expected,right.resulttype.def.typename);
resulttype:=booltype;
end;
function tisnode.pass_1 : tnode;
begin
internalerror(200204254);
result:=nil;
end;
{ dummy pass_2, it will never be called, but we need one since }
{ you can't instantiate an abstract class }
procedure tisnode.pass_2;
begin
end;
{*****************************************************************************
TASNODE
*****************************************************************************}
constructor tasnode.create(l,r : tnode);
begin
inherited create(asn,l,r);
end;
function tasnode.det_resulttype:tnode;
begin
result:=nil;
resulttypepass(right);
resulttypepass(left);
set_varstate(right,true);
set_varstate(left,true);
if codegenerror then
exit;
if (right.resulttype.def.deftype=classrefdef) then
begin
{ left must be a class }
if is_class(left.resulttype.def) then
begin
{ the operands must be related }
if (not(tobjectdef(left.resulttype.def).is_related(
tobjectdef(tclassrefdef(right.resulttype.def).pointertype.def)))) and
(not(tobjectdef(tclassrefdef(right.resulttype.def).pointertype.def).is_related(
tobjectdef(left.resulttype.def)))) then
CGMessage2(type_e_classes_not_related,left.resulttype.def.typename,
tclassrefdef(right.resulttype.def).pointertype.def.typename);
end
else
CGMessage1(type_e_class_type_expected,left.resulttype.def.typename);
resulttype:=tclassrefdef(right.resulttype.def).pointertype;
end
else if is_interface(right.resulttype.def) then
begin
{ left is a class }
if is_class(left.resulttype.def) then
begin
{ the operands must be related }
if not(assigned(tobjectdef(left.resulttype.def).implementedinterfaces) and
(tobjectdef(left.resulttype.def).implementedinterfaces.searchintf(right.resulttype.def)<>-1)) then
CGMessage2(type_e_classes_not_related,left.resulttype.def.typename,right.resulttype.def.typename);
end
{ left is an interface }
else if is_interface(left.resulttype.def) then
begin
{ the operands must be related }
if (not(tobjectdef(left.resulttype.def).is_related(tobjectdef(right.resulttype.def)))) and
(not(tobjectdef(right.resulttype.def).is_related(tobjectdef(left.resulttype.def)))) then
CGMessage2(type_e_classes_not_related,left.resulttype.def.typename,right.resulttype.def.typename);
end
else
CGMessage1(type_e_class_type_expected,left.resulttype.def.typename);
resulttype:=right.resulttype;
{ load the GUID of the interface }
if (right.nodetype=typen) then
begin
if tobjectdef(left.resulttype.def).isiidguidvalid then
right:=cguidconstnode.create(tobjectdef(left.resulttype.def).iidguid)
else
internalerror(200206282);
resulttypepass(right);
end;
end
else
CGMessage1(type_e_class_or_interface_type_expected,right.resulttype.def.typename);
end;
function tasnode.pass_1 : tnode;
begin
firstpass(left);
firstpass(right);
if codegenerror then
exit;
left_right_max;
location.loc:=left.location.loc;
result:=nil;
end;
begin
ctypeconvnode:=ttypeconvnode;
casnode:=tasnode;
cisnode:=tisnode;
end.
{
$Log$
Revision 1.69 2002-08-14 19:26:55 carl
+ generic int_to_real type conversion
+ generic unaryminus node
Revision 1.68 2002/08/11 16:08:55 florian
+ support of explicit type case boolean->char
Revision 1.67 2002/08/11 15:28:00 florian
+ support of explicit type case <any ordinal type>->pointer
(delphi mode only)
Revision 1.66 2002/08/09 07:33:01 florian
* a couple of interface related fixes
Revision 1.65 2002/07/29 21:23:42 florian
* more fixes for the ppc
+ wrappers for the tcnvnode.first_* stuff introduced
Revision 1.64 2002/07/23 12:34:30 daniel
* Readded old set code. To use it define 'oldset'. Activated by default
for ppc.
Revision 1.63 2002/07/23 09:51:22 daniel
* Tried to make Tprocsym.defs protected. I didn't succeed but the cleanups
are worth comitting.
Revision 1.62 2002/07/22 11:48:04 daniel
* Sets are now internally sets.
Revision 1.61 2002/07/20 17:16:02 florian
+ source code page support
Revision 1.60 2002/07/20 11:57:54 florian
* types.pas renamed to defbase.pas because D6 contains a types
unit so this would conflicts if D6 programms are compiled
+ Willamette/SSE2 instructions to assembler added
Revision 1.59 2002/07/01 16:23:53 peter
* cg64 patch
* basics for currency
* asnode updates for class and interface (not finished)
Revision 1.58 2002/05/18 13:34:09 peter
* readded missing revisions
Revision 1.57 2002/05/16 19:46:37 carl
+ defines.inc -> fpcdefs.inc to avoid conflicts if compiling by hand
+ try to fix temp allocation (still in ifdef)
+ generic constructor calls
+ start of tassembler / tmodulebase class cleanup
Revision 1.55 2002/05/12 16:53:07 peter
* moved entry and exitcode to ncgutil and cgobj
* foreach gets extra argument for passing local data to the
iterator function
* -CR checks also class typecasts at runtime by changing them
into as
* fixed compiler to cycle with the -CR option
* fixed stabs with elf writer, finally the global variables can
be watched
* removed a lot of routines from cga unit and replaced them by
calls to cgobj
* u32bit-s32bit updates for and,or,xor nodes. When one element is
u32bit then the other is typecasted also to u32bit without giving
a rangecheck warning/error.
* fixed pascal calling method with reversing also the high tree in
the parast, detected by tcalcst3 test
Revision 1.54 2002/04/25 20:16:38 peter
* moved more routines from cga/n386util
Revision 1.53 2002/04/23 19:16:34 peter
* add pinline unit that inserts compiler supported functions using
one or more statements
* moved finalize and setlength from ninl to pinline
Revision 1.52 2002/04/21 19:02:03 peter
* removed newn and disposen nodes, the code is now directly
inlined from pexpr
* -an option that will write the secondpass nodes to the .s file, this
requires EXTDEBUG define to actually write the info
* fixed various internal errors and crashes due recent code changes
Revision 1.51 2002/04/06 18:10:42 jonas
* several powerpc-related additions and fixes
Revision 1.50 2002/04/04 19:05:58 peter
* removed unused units
* use tlocation.size in cg.a_*loc*() routines
Revision 1.49 2002/04/02 17:11:28 peter
* tlocation,treference update
* LOC_CONSTANT added for better constant handling
* secondadd splitted in multiple routines
* location_force_reg added for loading a location to a register
of a specified size
* secondassignment parses now first the right and then the left node
(this is compatible with Kylix). This saves a lot of push/pop especially
with string operations
* adapted some routines to use the new cg methods
Revision 1.48 2002/02/03 09:30:03 peter
* more fixes for protected handling
}