fpc/compiler/types.pas
2001-10-25 21:22:32 +00:00

2004 lines
71 KiB
ObjectPascal

{
$Id$
Copyright (C) 1998-2000 by Florian Klaempfl
This unit provides some help routines for type handling
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
****************************************************************************
}
unit types;
{$i defines.inc}
interface
uses
cclasses,
cpuinfo,
node,
symbase,symtype,symdef,symsym;
type
tmmxtype = (mmxno,mmxu8bit,mmxs8bit,mmxu16bit,mmxs16bit,
mmxu32bit,mmxs32bit,mmxfixed16,mmxsingle);
const
{ true if we must never copy this parameter }
never_copy_const_param : boolean = false;
{*****************************************************************************
Basic type functions
*****************************************************************************}
{ returns true, if def defines an ordinal type }
function is_ordinal(def : tdef) : boolean;
{ returns the min. value of the type }
function get_min_value(def : tdef) : longint;
{ returns true, if def defines an ordinal type }
function is_integer(def : tdef) : boolean;
{ true if p is a boolean }
function is_boolean(def : tdef) : boolean;
{ true if p is a char }
function is_char(def : tdef) : boolean;
{ true if p is a widechar }
function is_widechar(def : tdef) : boolean;
{ true if p is a void}
function is_void(def : tdef) : boolean;
{ true if p is a smallset def }
function is_smallset(p : tdef) : boolean;
{ returns true, if def defines a signed data type (only for ordinal types) }
function is_signed(def : tdef) : boolean;
{*****************************************************************************
Array helper functions
*****************************************************************************}
{ true, if p points to a zero based (non special like open or
dynamic array def, mainly this is used to see if the array
is convertable to a pointer }
function is_zero_based_array(p : tdef) : boolean;
{ true if p points to an open array def }
function is_open_array(p : tdef) : boolean;
{ true if p points to a dynamic array def }
function is_dynamic_array(p : tdef) : boolean;
{ true, if p points to an array of const def }
function is_array_constructor(p : tdef) : boolean;
{ true, if p points to a variant array }
function is_variant_array(p : tdef) : boolean;
{ true, if p points to an array of const }
function is_array_of_const(p : tdef) : boolean;
{ true, if p points any kind of special array }
function is_special_array(p : tdef) : boolean;
{ true if p is a char array def }
function is_chararray(p : tdef) : boolean;
{ true if p is a wide char array def }
function is_widechararray(p : tdef) : boolean;
{*****************************************************************************
String helper functions
*****************************************************************************}
{ true if p points to an open string def }
function is_open_string(p : tdef) : boolean;
{ true if p is an ansi string def }
function is_ansistring(p : tdef) : boolean;
{ true if p is a long string def }
function is_longstring(p : tdef) : boolean;
{ true if p is a wide string def }
function is_widestring(p : tdef) : boolean;
{ true if p is a short string def }
function is_shortstring(p : tdef) : boolean;
{ true if p is a pchar def }
function is_pchar(p : tdef) : boolean;
{ true if p is a pwidechar def }
function is_pwidechar(p : tdef) : boolean;
{ true if p is a voidpointer def }
function is_voidpointer(p : tdef) : boolean;
{ returns true, if def uses FPU }
function is_fpu(def : tdef) : boolean;
{ true if the return value is in EAX }
function ret_in_acc(def : tdef) : boolean;
{ true if uses a parameter as return value }
function ret_in_param(def : tdef) : boolean;
{ true, if def is a 64 bit int type }
function is_64bitint(def : tdef) : boolean;
function push_high_param(def : tdef) : boolean;
{ true if a parameter is too large to copy and only the address is pushed }
function push_addr_param(def : tdef) : boolean;
{ true, if def1 and def2 are semantical the same }
function is_equal(def1,def2 : tdef) : boolean;
{ checks for type compatibility (subgroups of type) }
{ used for case statements... probably missing stuff }
{ to use on other types }
function is_subequal(def1, def2: tdef): boolean;
type
tconverttype = (
tc_equal,
tc_not_possible,
tc_string_2_string,
tc_char_2_string,
tc_pchar_2_string,
tc_cchar_2_pchar,
tc_cstring_2_pchar,
tc_ansistring_2_pchar,
tc_string_2_chararray,
tc_chararray_2_string,
tc_array_2_pointer,
tc_pointer_2_array,
tc_int_2_int,
tc_int_2_bool,
tc_bool_2_bool,
tc_bool_2_int,
tc_real_2_real,
tc_int_2_real,
tc_proc_2_procvar,
tc_arrayconstructor_2_set,
tc_load_smallset,
tc_cord_2_pointer,
tc_intf_2_string,
tc_intf_2_guid,
tc_class_2_intf,
tc_char_2_char,
tc_normal_2_smallset
);
function assignment_overloaded(from_def,to_def : tdef) : tprocdef;
{ Returns:
0 - Not convertable
1 - Convertable
2 - Convertable, but not first choice }
function isconvertable(def_from,def_to : tdef;
var doconv : tconverttype;
fromtreetype : tnodetype;
explicit : boolean) : byte;
{ same as is_equal, but with error message if failed }
function CheckTypes(def1,def2 : tdef) : boolean;
function equal_constsym(sym1,sym2:tconstsym):boolean;
{ true, if two parameter lists are equal }
{ if acp is cp_none, all have to match exactly }
{ if acp is cp_value_equal_const call by value }
{ and call by const parameter are assumed as }
{ equal }
{ if acp is cp_all the var const or nothing are considered equal }
type
compare_type = ( cp_none, cp_value_equal_const, cp_all);
function equal_paras(paralist1,paralist2 : tlinkedlist; acp : compare_type) : boolean;
{ true if a type can be allowed for another one
in a func var }
function convertable_paras(paralist1,paralist2 : tlinkedlist; acp : compare_type) : boolean;
{ true if a function can be assigned to a procvar }
function proc_to_procvar_equal(def1:tprocdef;def2:tprocvardef) : boolean;
{ if l isn't in the range of def a range check error (if not explicit) is generated and
the value is placed within the range }
procedure testrange(def : tdef;var l : tconstexprint;explicit:boolean);
{ returns the range of def }
procedure getrange(def : tdef;var l : longint;var h : longint);
{ some type helper routines for MMX support }
function is_mmx_able_array(p : tdef) : boolean;
{ returns the mmx type }
function mmx_type(p : tdef) : tmmxtype;
{ returns true, if sym needs an entry in the proplist of a class rtti }
function needs_prop_entry(sym : tsym) : boolean;
implementation
uses
globtype,globals,systems,tokens,verbose,
symconst,symtable,nld;
function needs_prop_entry(sym : tsym) : boolean;
begin
needs_prop_entry:=(sp_published in tsym(sym).symoptions) and
(sym.typ in [propertysym,varsym]);
end;
function equal_constsym(sym1,sym2:tconstsym):boolean;
var
p1,p2,pend : pchar;
begin
equal_constsym:=false;
if sym1.consttyp<>sym2.consttyp then
exit;
case sym1.consttyp of
constint,
constbool,
constchar,
constord :
equal_constsym:=(sym1.valueord=sym2.valueord);
constpointer :
equal_constsym:=(sym1.valueordptr=sym2.valueordptr);
conststring,constresourcestring :
begin
if sym1.len=sym2.len then
begin
p1:=pchar(sym1.valueptr);
p2:=pchar(sym2.valueptr);
pend:=p1+sym1.len;
while (p1<pend) do
begin
if p1^<>p2^ then
break;
inc(p1);
inc(p2);
end;
if (p1=pend) then
equal_constsym:=true;
end;
end;
constreal :
equal_constsym:=(pbestreal(sym1.valueptr)^=pbestreal(sym2.valueptr)^);
constset :
equal_constsym:=(pnormalset(sym1.valueptr)^=pnormalset(sym2.valueptr)^);
constnil :
equal_constsym:=true;
end;
end;
{ compare_type = ( cp_none, cp_value_equal_const, cp_all); }
function equal_paras(paralist1,paralist2 : TLinkedList; acp : compare_type) : boolean;
var
def1,def2 : TParaItem;
begin
def1:=TParaItem(paralist1.first);
def2:=TParaItem(paralist2.first);
while (assigned(def1)) and (assigned(def2)) do
begin
case acp of
cp_value_equal_const :
begin
if not(is_equal(def1.paratype.def,def2.paratype.def)) or
((def1.paratyp<>def2.paratyp) and
((def1.paratyp in [vs_var,vs_out]) or
(def2.paratyp in [vs_var,vs_out])
)
) then
begin
equal_paras:=false;
exit;
end;
end;
cp_all :
begin
if not(is_equal(def1.paratype.def,def2.paratype.def)) or
(def1.paratyp<>def2.paratyp) then
begin
equal_paras:=false;
exit;
end;
end;
cp_none :
begin
if not(is_equal(def1.paratype.def,def2.paratype.def)) then
begin
equal_paras:=false;
exit;
end;
{ also check default value if both have it declared }
if assigned(def1.defaultvalue) and
assigned(def2.defaultvalue) then
begin
if not equal_constsym(tconstsym(def1.defaultvalue),tconstsym(def2.defaultvalue)) then
begin
equal_paras:=false;
exit;
end;
end;
end;
end;
def1:=TParaItem(def1.next);
def2:=TParaItem(def2.next);
end;
if (def1=nil) and (def2=nil) then
equal_paras:=true
else
equal_paras:=false;
end;
function convertable_paras(paralist1,paralist2 : TLinkedList;acp : compare_type) : boolean;
var
def1,def2 : TParaItem;
doconv : tconverttype;
begin
def1:=TParaItem(paralist1.first);
def2:=TParaItem(paralist2.first);
while (assigned(def1)) and (assigned(def2)) do
begin
case acp of
cp_value_equal_const :
begin
if (isconvertable(def1.paratype.def,def2.paratype.def,doconv,callparan,false)=0) or
((def1.paratyp<>def2.paratyp) and
((def1.paratyp in [vs_out,vs_var]) or
(def2.paratyp in [vs_out,vs_var])
)
) then
begin
convertable_paras:=false;
exit;
end;
end;
cp_all :
begin
if (isconvertable(def1.paratype.def,def2.paratype.def,doconv,callparan,false)=0) or
(def1.paratyp<>def2.paratyp) then
begin
convertable_paras:=false;
exit;
end;
end;
cp_none :
begin
if (isconvertable(def1.paratype.def,def2.paratype.def,doconv,callparan,false)=0) then
begin
convertable_paras:=false;
exit;
end;
end;
end;
def1:=TParaItem(def1.next);
def2:=TParaItem(def2.next);
end;
if (def1=nil) and (def2=nil) then
convertable_paras:=true
else
convertable_paras:=false;
end;
{ true if a function can be assigned to a procvar }
function proc_to_procvar_equal(def1:tprocdef;def2:tprocvardef) : boolean;
const
po_comp = po_compatibility_options-[po_methodpointer,po_classmethod];
var
ismethod : boolean;
begin
proc_to_procvar_equal:=false;
if not(assigned(def1)) or not(assigned(def2)) then
exit;
{ check for method pointer }
ismethod:=assigned(def1.owner) and
(def1.owner.symtabletype=objectsymtable);
{ I think methods of objects are also not compatible }
{ with procedure variables! (FK)
and
assigned(def1.owner.defowner) and
(tobjectdef(def1.owner.defowner)^.is_class); }
if (ismethod and not (po_methodpointer in def2.procoptions)) or
(not(ismethod) and (po_methodpointer in def2.procoptions)) then
begin
Message(type_e_no_method_and_procedure_not_compatible);
exit;
end;
{ check return value and para's and options, methodpointer is already checked
parameters may also be convertable }
if is_equal(def1.rettype.def,def2.rettype.def) and
(equal_paras(def1.para,def2.para,cp_all) or
convertable_paras(def1.para,def2.para,cp_all)) and
((po_comp * def1.procoptions)= (po_comp * def2.procoptions)) then
proc_to_procvar_equal:=true
else
proc_to_procvar_equal:=false;
end;
{ returns true, if def uses FPU }
function is_fpu(def : tdef) : boolean;
begin
is_fpu:=(def.deftype=floatdef);
end;
{ true if p is an ordinal }
function is_ordinal(def : tdef) : boolean;
var
dt : tbasetype;
begin
case def.deftype of
orddef :
begin
dt:=torddef(def).typ;
is_ordinal:=dt in [uchar,uwidechar,
u8bit,u16bit,u32bit,u64bit,
s8bit,s16bit,s32bit,s64bit,
bool8bit,bool16bit,bool32bit];
end;
enumdef :
is_ordinal:=true;
else
is_ordinal:=false;
end;
end;
{ returns the min. value of the type }
function get_min_value(def : tdef) : longint;
begin
case def.deftype of
orddef:
get_min_value:=torddef(def).low;
enumdef:
get_min_value:=tenumdef(def).min;
else
get_min_value:=0;
end;
end;
{ true if p is an integer }
function is_integer(def : tdef) : boolean;
begin
is_integer:=(def.deftype=orddef) and
(torddef(def).typ in [uauto,u8bit,u16bit,u32bit,u64bit,
s8bit,s16bit,s32bit,s64bit]);
end;
{ true if p is a boolean }
function is_boolean(def : tdef) : boolean;
begin
is_boolean:=(def.deftype=orddef) and
(torddef(def).typ in [bool8bit,bool16bit,bool32bit]);
end;
{ true if p is a void }
function is_void(def : tdef) : boolean;
begin
is_void:=(def.deftype=orddef) and
(torddef(def).typ=uvoid);
end;
{ true if p is a char }
function is_char(def : tdef) : boolean;
begin
is_char:=(def.deftype=orddef) and
(torddef(def).typ=uchar);
end;
{ true if p is a wchar }
function is_widechar(def : tdef) : boolean;
begin
is_widechar:=(def.deftype=orddef) and
(torddef(def).typ=uwidechar);
end;
{ true if p is signed (integer) }
function is_signed(def : tdef) : boolean;
var
dt : tbasetype;
begin
case def.deftype of
orddef :
begin
dt:=torddef(def).typ;
is_signed:=(dt in [s8bit,s16bit,s32bit,s64bit]);
end;
enumdef :
is_signed:=tenumdef(def).min < 0;
arraydef :
is_signed:=is_signed(tarraydef(def).rangetype.def);
else
is_signed:=false;
end;
end;
{ true, if p points to an open array def }
function is_open_string(p : tdef) : boolean;
begin
is_open_string:=(p.deftype=stringdef) and
(tstringdef(p).string_typ=st_shortstring) and
(tstringdef(p).len=0);
end;
{ true, if p points to a zero based array def }
function is_zero_based_array(p : tdef) : boolean;
begin
is_zero_based_array:=(p.deftype=arraydef) and
(tarraydef(p).lowrange=0) and
not(is_special_array(p));
end;
{ true if p points to a dynamic array def }
function is_dynamic_array(p : tdef) : boolean;
begin
is_dynamic_array:=(p.deftype=arraydef) and
tarraydef(p).IsDynamicArray;
end;
{ true, if p points to an open array def }
function is_open_array(p : tdef) : boolean;
begin
{ check for s32bittype is needed, because for u32bit the high
range is also -1 ! (PFV) }
is_open_array:=(p.deftype=arraydef) and
(tarraydef(p).rangetype.def=s32bittype.def) and
(tarraydef(p).lowrange=0) and
(tarraydef(p).highrange=-1) and
not(tarraydef(p).IsConstructor) and
not(tarraydef(p).IsVariant) and
not(tarraydef(p).IsArrayOfConst) and
not(tarraydef(p).IsDynamicArray);
end;
{ true, if p points to an array of const def }
function is_array_constructor(p : tdef) : boolean;
begin
is_array_constructor:=(p.deftype=arraydef) and
(tarraydef(p).IsConstructor);
end;
{ true, if p points to a variant array }
function is_variant_array(p : tdef) : boolean;
begin
is_variant_array:=(p.deftype=arraydef) and
(tarraydef(p).IsVariant);
end;
{ true, if p points to an array of const }
function is_array_of_const(p : tdef) : boolean;
begin
is_array_of_const:=(p.deftype=arraydef) and
(tarraydef(p).IsArrayOfConst);
end;
{ true, if p points to a special array }
function is_special_array(p : tdef) : boolean;
begin
is_special_array:=(p.deftype=arraydef) and
((tarraydef(p).IsVariant) or
(tarraydef(p).IsArrayOfConst) or
(tarraydef(p).IsConstructor) or
is_open_array(p)
);
end;
{ true if p is an ansi string def }
function is_ansistring(p : tdef) : boolean;
begin
is_ansistring:=(p.deftype=stringdef) and
(tstringdef(p).string_typ=st_ansistring);
end;
{ true if p is an long string def }
function is_longstring(p : tdef) : boolean;
begin
is_longstring:=(p.deftype=stringdef) and
(tstringdef(p).string_typ=st_longstring);
end;
{ true if p is an wide string def }
function is_widestring(p : tdef) : boolean;
begin
is_widestring:=(p.deftype=stringdef) and
(tstringdef(p).string_typ=st_widestring);
end;
{ true if p is an short string def }
function is_shortstring(p : tdef) : boolean;
begin
is_shortstring:=(p.deftype=stringdef) and
(tstringdef(p).string_typ=st_shortstring);
end;
{ true if p is a char array def }
function is_chararray(p : tdef) : boolean;
begin
is_chararray:=(p.deftype=arraydef) and
is_equal(tarraydef(p).elementtype.def,cchartype.def) and
not(is_special_array(p));
end;
{ true if p is a widechar array def }
function is_widechararray(p : tdef) : boolean;
begin
is_widechararray:=(p.deftype=arraydef) and
is_equal(tarraydef(p).elementtype.def,cwidechartype.def) and
not(is_special_array(p));
end;
{ true if p is a pchar def }
function is_pchar(p : tdef) : boolean;
begin
is_pchar:=(p.deftype=pointerdef) and
(is_equal(tpointerdef(p).pointertype.def,cchartype.def) or
(is_zero_based_array(tpointerdef(p).pointertype.def) and
is_chararray(tpointerdef(p).pointertype.def)));
end;
{ true if p is a pchar def }
function is_pwidechar(p : tdef) : boolean;
begin
is_pwidechar:=(p.deftype=pointerdef) and
(is_equal(tpointerdef(p).pointertype.def,cwidechartype.def) or
(is_zero_based_array(tpointerdef(p).pointertype.def) and
is_widechararray(tpointerdef(p).pointertype.def)));
end;
{ true if p is a voidpointer def }
function is_voidpointer(p : tdef) : boolean;
begin
is_voidpointer:=(p.deftype=pointerdef) and
(tpointerdef(p).pointertype.def.deftype=orddef) and
(torddef(tpointerdef(p).pointertype.def).typ=uvoid);
end;
{ true if p is a smallset def }
function is_smallset(p : tdef) : boolean;
begin
is_smallset:=(p.deftype=setdef) and
(tsetdef(p).settype=smallset);
end;
{ true if the return value is in accumulator (EAX for i386), D0 for 68k }
function ret_in_acc(def : tdef) : boolean;
begin
ret_in_acc:=(def.deftype in [orddef,pointerdef,enumdef,classrefdef]) or
((def.deftype=stringdef) and (tstringdef(def).string_typ in [st_ansistring,st_widestring])) or
((def.deftype=procvardef) and not(po_methodpointer in tprocvardef(def).procoptions)) or
((def.deftype=objectdef) and not is_object(def)) or
((def.deftype=setdef) and (tsetdef(def).settype=smallset));
end;
{ true, if def is a 64 bit int type }
function is_64bitint(def : tdef) : boolean;
begin
is_64bitint:=(def.deftype=orddef) and (torddef(def).typ in [u64bit,s64bit])
end;
{ true if uses a parameter as return value }
function ret_in_param(def : tdef) : boolean;
begin
ret_in_param:=(def.deftype in [arraydef,recorddef]) or
((def.deftype=stringdef) and (tstringdef(def).string_typ in [st_shortstring,st_longstring])) or
((def.deftype=procvardef) and (po_methodpointer in tprocvardef(def).procoptions)) or
((def.deftype=objectdef) and is_object(def)) or
((def.deftype=setdef) and (tsetdef(def).settype<>smallset));
end;
function push_high_param(def : tdef) : boolean;
begin
push_high_param:=is_open_array(def) or
is_open_string(def) or
is_array_of_const(def);
end;
{ true if a parameter is too large to copy and only the address is pushed }
function push_addr_param(def : tdef) : boolean;
begin
push_addr_param:=false;
if never_copy_const_param then
push_addr_param:=true
else
begin
case def.deftype of
variantdef,
formaldef :
push_addr_param:=true;
recorddef :
push_addr_param:=(def.size>target_info.size_of_pointer);
arraydef :
push_addr_param:=((tarraydef(def).highrange>=tarraydef(def).lowrange) and (def.size>target_info.size_of_pointer)) or
is_open_array(def) or
is_array_of_const(def) or
is_array_constructor(def);
objectdef :
push_addr_param:=is_object(def);
stringdef :
push_addr_param:=tstringdef(def).string_typ in [st_shortstring,st_longstring];
procvardef :
push_addr_param:=(po_methodpointer in tprocvardef(def).procoptions);
setdef :
push_addr_param:=(tsetdef(def).settype<>smallset);
end;
end;
end;
{ if l isn't in the range of def a range check error (if not explicit) is generated and
the value is placed within the range }
procedure testrange(def : tdef;var l : tconstexprint;explicit:boolean);
var
lv,hv: longint;
error: boolean;
begin
error := false;
{ for 64 bit types we need only to check if it is less than }
{ zero, if def is a qword node }
if is_64bitint(def) then
begin
if (l<0) and (torddef(def).typ=u64bit) then
begin
{ don't zero the result, because it may come from hex notation
like $ffffffffffffffff! (JM)
l:=0; }
if not explicit then
begin
if (cs_check_range in aktlocalswitches) then
Message(parser_e_range_check_error)
else
Message(parser_w_range_check_error);
end;
error := true;
end;
end
else
begin
getrange(def,lv,hv);
if (def.deftype=orddef) and
(torddef(def).typ=u32bit) then
begin
if (l < cardinal(lv)) or
(l > cardinal(hv)) then
begin
if not explicit then
begin
if (cs_check_range in aktlocalswitches) then
Message(parser_e_range_check_error)
else
Message(parser_w_range_check_error);
end;
error := true;
end;
end
else if (l<lv) or (l>hv) then
begin
if not explicit then
begin
if ((def.deftype=enumdef) and
{ delphi allows range check errors in
enumeration type casts FK }
not(m_delphi in aktmodeswitches)) or
(cs_check_range in aktlocalswitches) then
Message(parser_e_range_check_error)
else
Message(parser_w_range_check_error);
end;
error := true;
end;
end;
if error then
begin
{ Fix the value to fit in the allocated space for this type of variable }
case def.size of
1: l := l and $ff;
2: l := l and $ffff;
{ work around sign extension bug (to be fixed) (JM) }
4: l := l and (int64($fffffff) shl 4 + $f);
end;
{ do sign extension if necessary (JM) }
if is_signed(def) then
begin
case def.size of
1: l := shortint(l);
2: l := smallint(l);
4: l := longint(l);
end;
end;
end;
end;
{ return the range from def in l and h }
procedure getrange(def : tdef;var l : longint;var h : longint);
begin
case def.deftype of
orddef :
begin
l:=torddef(def).low;
h:=torddef(def).high;
end;
enumdef :
begin
l:=tenumdef(def).min;
h:=tenumdef(def).max;
end;
arraydef :
begin
l:=tarraydef(def).lowrange;
h:=tarraydef(def).highrange;
end;
else
internalerror(987);
end;
end;
function mmx_type(p : tdef) : tmmxtype;
begin
mmx_type:=mmxno;
if is_mmx_able_array(p) then
begin
if tarraydef(p).elementtype.def.deftype=floatdef then
case tfloatdef(tarraydef(p).elementtype.def).typ of
s32real:
mmx_type:=mmxsingle;
end
else
case torddef(tarraydef(p).elementtype.def).typ of
u8bit:
mmx_type:=mmxu8bit;
s8bit:
mmx_type:=mmxs8bit;
u16bit:
mmx_type:=mmxu16bit;
s16bit:
mmx_type:=mmxs16bit;
u32bit:
mmx_type:=mmxu32bit;
s32bit:
mmx_type:=mmxs32bit;
end;
end;
end;
function is_mmx_able_array(p : tdef) : boolean;
begin
{$ifdef SUPPORT_MMX}
if (cs_mmx_saturation in aktlocalswitches) then
begin
is_mmx_able_array:=(p.deftype=arraydef) and
not(is_special_array(p)) and
(
(
(tarraydef(p).elementtype.def.deftype=orddef) and
(
(
(tarraydef(p).lowrange=0) and
(tarraydef(p).highrange=1) and
(torddef(tarraydef(p).elementtype.def).typ in [u32bit,s32bit])
)
or
(
(tarraydef(p).lowrange=0) and
(tarraydef(p).highrange=3) and
(torddef(tarraydef(p).elementtype.def).typ in [u16bit,s16bit])
)
)
)
or
(
(
(tarraydef(p).elementtype.def.deftype=floatdef) and
(
(tarraydef(p).lowrange=0) and
(tarraydef(p).highrange=1) and
(tfloatdef(tarraydef(p).elementtype.def).typ=s32real)
)
)
)
);
end
else
begin
is_mmx_able_array:=(p.deftype=arraydef) and
(
(
(tarraydef(p).elementtype.def.deftype=orddef) and
(
(
(tarraydef(p).lowrange=0) and
(tarraydef(p).highrange=1) and
(torddef(tarraydef(p).elementtype.def).typ in [u32bit,s32bit])
)
or
(
(tarraydef(p).lowrange=0) and
(tarraydef(p).highrange=3) and
(torddef(tarraydef(p).elementtype.def).typ in [u16bit,s16bit])
)
or
(
(tarraydef(p).lowrange=0) and
(tarraydef(p).highrange=7) and
(torddef(tarraydef(p).elementtype.def).typ in [u8bit,s8bit])
)
)
)
or
(
(tarraydef(p).elementtype.def.deftype=floatdef) and
(
(tarraydef(p).lowrange=0) and
(tarraydef(p).highrange=1) and
(tfloatdef(tarraydef(p).elementtype.def).typ=s32real)
)
)
);
end;
{$else SUPPORT_MMX}
is_mmx_able_array:=false;
{$endif SUPPORT_MMX}
end;
function is_equal(def1,def2 : tdef) : boolean;
var
b : boolean;
hd : tdef;
begin
{ both types must exists }
if not (assigned(def1) and assigned(def2)) then
begin
is_equal:=false;
exit;
end;
{ be sure, that if there is a stringdef, that this is def1 }
if def2.deftype=stringdef then
begin
hd:=def1;
def1:=def2;
def2:=hd;
end;
b:=false;
{ both point to the same definition ? }
if def1=def2 then
b:=true
else
{ pointer with an equal definition are equal }
if (def1.deftype=pointerdef) and (def2.deftype=pointerdef) then
begin
{ check if both are farpointer }
if (tpointerdef(def1).is_far=tpointerdef(def2).is_far) then
begin
{ here a problem detected in tabsolutesym }
{ the types can be forward type !! }
if assigned(def1.typesym) and (tpointerdef(def1).pointertype.def.deftype=forwarddef) then
b:=(def1.typesym=def2.typesym)
else
b:=tpointerdef(def1).pointertype.def=tpointerdef(def2).pointertype.def;
end
else
b:=false;
end
else
{ ordinals are equal only when the ordinal type is equal }
if (def1.deftype=orddef) and (def2.deftype=orddef) then
begin
case torddef(def1).typ of
u8bit,u16bit,u32bit,
s8bit,s16bit,s32bit:
b:=((torddef(def1).typ=torddef(def2).typ) and
(torddef(def1).low=torddef(def2).low) and
(torddef(def1).high=torddef(def2).high));
uvoid,uchar,uwidechar,
bool8bit,bool16bit,bool32bit:
b:=(torddef(def1).typ=torddef(def2).typ);
end;
end
else
if (def1.deftype=floatdef) and (def2.deftype=floatdef) then
b:=tfloatdef(def1).typ=tfloatdef(def2).typ
else
{ strings with the same length are equal }
if (def1.deftype=stringdef) and (def2.deftype=stringdef) and
(tstringdef(def1).string_typ=tstringdef(def2).string_typ) then
begin
b:=not(is_shortstring(def1)) or
(tstringdef(def1).len=tstringdef(def2).len);
end
else
if (def1.deftype=formaldef) and (def2.deftype=formaldef) then
b:=true
{ file types with the same file element type are equal }
{ this is a problem for assign !! }
{ changed to allow if one is untyped }
{ all typed files are equal to the special }
{ typed file that has voiddef as elemnt type }
{ but must NOT match for text file !!! }
else
if (def1.deftype=filedef) and (def2.deftype=filedef) then
b:=(tfiledef(def1).filetyp=tfiledef(def2).filetyp) and
((
((tfiledef(def1).typedfiletype.def=nil) and
(tfiledef(def2).typedfiletype.def=nil)) or
(
(tfiledef(def1).typedfiletype.def<>nil) and
(tfiledef(def2).typedfiletype.def<>nil) and
is_equal(tfiledef(def1).typedfiletype.def,tfiledef(def2).typedfiletype.def)
) or
( (tfiledef(def1).typedfiletype.def=tdef(voidtype.def)) or
(tfiledef(def2).typedfiletype.def=tdef(voidtype.def))
)))
{ sets with the same element base type are equal }
else
if (def1.deftype=setdef) and (def2.deftype=setdef) then
begin
if assigned(tsetdef(def1).elementtype.def) and
assigned(tsetdef(def2).elementtype.def) then
b:=is_subequal(tsetdef(def1).elementtype.def,tsetdef(def2).elementtype.def)
else
{ empty set is compatible with everything }
b:=true;
end
else
if (def1.deftype=procvardef) and (def2.deftype=procvardef) then
begin
{ poassembler isn't important for compatibility }
{ if a method is assigned to a methodpointer }
{ is checked before }
b:=(tprocvardef(def1).proctypeoption=tprocvardef(def2).proctypeoption) and
(tprocvardef(def1).proccalloption=tprocvardef(def2).proccalloption) and
((tprocvardef(def1).procoptions * po_compatibility_options)=
(tprocvardef(def2).procoptions * po_compatibility_options)) and
is_equal(tprocvardef(def1).rettype.def,tprocvardef(def2).rettype.def) and
equal_paras(tprocvardef(def1).para,tprocvardef(def2).para,cp_all);
end
else
if (def1.deftype=arraydef) and (def2.deftype=arraydef) then
begin
if is_dynamic_array(def1) and is_dynamic_array(def2) then
b:=is_equal(tarraydef(def1).elementtype.def,tarraydef(def2).elementtype.def)
else
if is_array_of_const(def1) or is_array_of_const(def2) then
begin
b:=(is_array_of_const(def1) and is_array_of_const(def2)) or
(is_array_of_const(def1) and is_array_constructor(def2)) or
(is_array_of_const(def2) and is_array_constructor(def1));
end
else
if is_open_array(def1) or is_open_array(def2) then
begin
b:=is_equal(tarraydef(def1).elementtype.def,tarraydef(def2).elementtype.def);
end
else
begin
b:=not(m_tp in aktmodeswitches) and
not(m_delphi in aktmodeswitches) and
(tarraydef(def1).lowrange=tarraydef(def2).lowrange) and
(tarraydef(def1).highrange=tarraydef(def2).highrange) and
is_equal(tarraydef(def1).elementtype.def,tarraydef(def2).elementtype.def) and
is_equal(tarraydef(def1).rangetype.def,tarraydef(def2).rangetype.def);
end;
end
else
if (def1.deftype=classrefdef) and (def2.deftype=classrefdef) then
begin
{ similar to pointerdef: }
if assigned(def1.typesym) and (tclassrefdef(def1).pointertype.def.deftype=forwarddef) then
b:=(def1.typesym=def2.typesym)
else
b:=is_equal(tclassrefdef(def1).pointertype.def,tclassrefdef(def2).pointertype.def);
end;
is_equal:=b;
end;
function is_subequal(def1, def2: tdef): boolean;
var
basedef1,basedef2 : tenumdef;
Begin
is_subequal := false;
if assigned(def1) and assigned(def2) then
Begin
if (def1.deftype = orddef) and (def2.deftype = orddef) then
Begin
{ see p.47 of Turbo Pascal 7.01 manual for the separation of types }
{ range checking for case statements is done with testrange }
case torddef(def1).typ of
u8bit,u16bit,u32bit,
s8bit,s16bit,s32bit,s64bit,u64bit :
is_subequal:=(torddef(def2).typ in [s64bit,u64bit,s32bit,u32bit,u8bit,s8bit,s16bit,u16bit]);
bool8bit,bool16bit,bool32bit :
is_subequal:=(torddef(def2).typ in [bool8bit,bool16bit,bool32bit]);
uchar :
is_subequal:=(torddef(def2).typ=uchar);
uwidechar :
is_subequal:=(torddef(def2).typ=uwidechar);
end;
end
else
Begin
{ I assume that both enumerations are equal when the first }
{ pointers are equal. }
{ I changed this to assume that the enums are equal }
{ if the basedefs are equal (FK) }
if (def1.deftype=enumdef) and (def2.deftype=enumdef) then
Begin
{ get both basedefs }
basedef1:=tenumdef(def1);
while assigned(basedef1.basedef) do
basedef1:=basedef1.basedef;
basedef2:=tenumdef(def2);
while assigned(basedef2.basedef) do
basedef2:=basedef2.basedef;
is_subequal:=basedef1=basedef2;
{
if tenumdef(def1).firstenum = tenumdef(def2).firstenum then
is_subequal := TRUE;
}
end;
end;
end; { endif assigned ... }
end;
function assignment_overloaded(from_def,to_def : tdef) : tprocdef;
var
passproc : tprocdef;
convtyp : tconverttype;
begin
assignment_overloaded:=nil;
if assigned(overloaded_operators[_ASSIGNMENT]) then
passproc:=overloaded_operators[_ASSIGNMENT].definition
else
exit;
{ look for an exact match first }
while passproc<>nil do
begin
if is_equal(passproc.rettype.def,to_def) and
(TParaItem(passproc.Para.first).paratype.def=from_def) then
begin
assignment_overloaded:=passproc;
exit;
end;
passproc:=passproc.nextoverloaded;
end;
passproc:=overloaded_operators[_ASSIGNMENT].definition;
{ .... then look for an equal match }
while passproc<>nil do
begin
if is_equal(passproc.rettype.def,to_def) and
is_equal(TParaItem(passproc.Para.first).paratype.def,from_def) then
begin
assignment_overloaded:=passproc;
exit;
end;
passproc:=passproc.nextoverloaded;
end;
passproc:=overloaded_operators[_ASSIGNMENT].definition;
{ .... then for convert level 1 }
while passproc<>nil do
begin
if is_equal(passproc.rettype.def,to_def) and
(isconvertable(from_def,TParaItem(passproc.Para.first).paratype.def,convtyp,ordconstn,false)=1) then
begin
assignment_overloaded:=passproc;
exit;
end;
passproc:=passproc.nextoverloaded;
end;
end;
{ Returns:
0 - Not convertable
1 - Convertable
2 - Convertable, but not first choice }
function isconvertable(def_from,def_to : tdef;
var doconv : tconverttype;
fromtreetype : tnodetype;
explicit : boolean) : byte;
{ Tbasetype: uauto,uvoid,uchar,
u8bit,u16bit,u32bit,
s8bit,s16bit,s32,
bool8bit,bool16bit,bool32bit,
u64bit,s64bitint,uwidechar }
type
tbasedef=(bvoid,bchar,bint,bbool);
const
basedeftbl:array[tbasetype] of tbasedef =
(bvoid,bvoid,bchar,
bint,bint,bint,
bint,bint,bint,
bbool,bbool,bbool,bint,bint,bchar);
basedefconverts : array[tbasedef,tbasedef] of tconverttype =
((tc_not_possible,tc_not_possible,tc_not_possible,tc_not_possible),
(tc_not_possible,tc_char_2_char,tc_not_possible,tc_not_possible),
(tc_not_possible,tc_not_possible,tc_int_2_int,tc_int_2_bool),
(tc_not_possible,tc_not_possible,tc_bool_2_int,tc_bool_2_bool));
var
b : byte;
hd1,hd2 : tdef;
hct : tconverttype;
begin
{ safety check }
if not(assigned(def_from) and assigned(def_to)) then
begin
isconvertable:=0;
exit;
end;
{ tp7 procvar def support, in tp7 a procvar is always called, if the
procvar is passed explicit a addrn would be there }
if (m_tp_procvar in aktmodeswitches) and
(def_from.deftype=procvardef) and
(fromtreetype=loadn) then
begin
def_from:=tprocvardef(def_from).rettype.def;
end;
{ we walk the wanted (def_to) types and check then the def_from
types if there is a conversion possible }
b:=0;
case def_to.deftype of
orddef :
begin
case def_from.deftype of
orddef :
begin
doconv:=basedefconverts[basedeftbl[torddef(def_from).typ],basedeftbl[torddef(def_to).typ]];
b:=1;
if (doconv=tc_not_possible) or
((doconv=tc_int_2_bool) and
(not explicit) and
(not is_boolean(def_from))) or
((doconv=tc_bool_2_int) and
(not explicit) and
(not is_boolean(def_to))) then
b:=0;
end;
enumdef :
begin
{ needed for char(enum) }
if explicit then
begin
doconv:=tc_int_2_int;
b:=1;
end;
end;
end;
end;
stringdef :
begin
case def_from.deftype of
stringdef :
begin
doconv:=tc_string_2_string;
b:=1;
end;
orddef :
begin
{ char to string}
if is_char(def_from) or
is_widechar(def_from) then
begin
doconv:=tc_char_2_string;
b:=1;
end;
end;
arraydef :
begin
{ array of char to string, the length check is done by the firstpass of this node }
if is_chararray(def_from) or
(is_equal(tarraydef(def_from).elementtype.def,cchartype.def) and
is_open_array(def_from)) then
begin
doconv:=tc_chararray_2_string;
if is_open_array(def_from) or
(is_shortstring(def_to) and
(def_from.size <= 255)) or
(is_ansistring(def_to) and
(def_from.size > 255)) then
b:=1
else
b:=2;
end;
end;
pointerdef :
begin
{ pchar can be assigned to short/ansistrings,
but not in tp7 compatible mode }
if is_pchar(def_from) and not(m_tp7 in aktmodeswitches) then
begin
doconv:=tc_pchar_2_string;
{ trefer ansistrings because pchars can overflow shortstrings, }
{ but only if ansistrings are the default (JM) }
if (is_shortstring(def_to) and
not(cs_ansistrings in aktlocalswitches)) or
(is_ansistring(def_to) and
(cs_ansistrings in aktlocalswitches)) then
b:=1
else
b:=2;
end;
end;
end;
end;
floatdef :
begin
case def_from.deftype of
orddef :
begin { ordinal to real }
if is_integer(def_from) then
begin
doconv:=tc_int_2_real;
b:=1;
end;
end;
floatdef :
begin { 2 float types ? }
if tfloatdef(def_from).typ=tfloatdef(def_to).typ then
doconv:=tc_equal
else
doconv:=tc_real_2_real;
b:=1;
end;
end;
end;
enumdef :
begin
if (def_from.deftype=enumdef) then
begin
if explicit then
begin
b:=1;
doconv:=tc_int_2_int;
end
else
begin
hd1:=def_from;
while assigned(tenumdef(hd1).basedef) do
hd1:=tenumdef(hd1).basedef;
hd2:=def_to;
while assigned(tenumdef(hd2).basedef) do
hd2:=tenumdef(hd2).basedef;
if (hd1=hd2) then
begin
b:=1;
{ because of packenum they can have different sizes! (JM) }
doconv:=tc_int_2_int;
end;
end;
end;
end;
arraydef :
begin
{ open array is also compatible with a single element of its base type }
if is_open_array(def_to) and
is_equal(tarraydef(def_to).elementtype.def,def_from) then
begin
doconv:=tc_equal;
b:=1;
end
else
begin
case def_from.deftype of
arraydef :
begin
{ array constructor -> open array }
if is_open_array(def_to) and
is_array_constructor(def_from) then
begin
if is_void(tarraydef(def_from).elementtype.def) or
is_equal(tarraydef(def_to).elementtype.def,tarraydef(def_from).elementtype.def) then
begin
doconv:=tc_equal;
b:=1;
end
else
if isconvertable(tarraydef(def_from).elementtype.def,
tarraydef(def_to).elementtype.def,hct,arrayconstructorn,false)<>0 then
begin
doconv:=hct;
b:=2;
end;
end
else
{ array of tvarrec -> array of const }
if is_array_of_const(def_to) and
is_equal(tarraydef(def_to).elementtype.def,tarraydef(def_from).elementtype.def) then
begin
doconv:=tc_equal;
b:=1;
end;
end;
pointerdef :
begin
if is_zero_based_array(def_to) and
is_equal(tpointerdef(def_from).pointertype.def,tarraydef(def_to).elementtype.def) then
begin
doconv:=tc_pointer_2_array;
b:=1;
end;
end;
stringdef :
begin
{ string to char array }
if (not is_special_array(def_to)) and
is_char(tarraydef(def_to).elementtype.def) then
begin
doconv:=tc_string_2_chararray;
b:=1;
end;
end;
recorddef :
begin
{ tvarrec -> array of constconst }
if is_array_of_const(def_to) and
is_equal(def_from,tarraydef(def_to).elementtype.def) then
begin
doconv:=tc_equal;
b:=1;
end;
end;
end;
end;
end;
pointerdef :
begin
case def_from.deftype of
stringdef :
begin
{ string constant (which can be part of array constructor)
to zero terminated string constant }
if (fromtreetype in [arrayconstructorn,stringconstn]) and
is_pchar(def_to) or is_pwidechar(def_to) then
begin
doconv:=tc_cstring_2_pchar;
b:=1;
end;
end;
orddef :
begin
{ char constant to zero terminated string constant }
if (fromtreetype=ordconstn) then
begin
if is_equal(def_from,cchartype.def) and
is_pchar(def_to) then
begin
doconv:=tc_cchar_2_pchar;
b:=1;
end
else
if is_integer(def_from) then
begin
doconv:=tc_cord_2_pointer;
b:=1;
end;
end;
end;
arraydef :
begin
{ chararray to pointer }
if is_zero_based_array(def_from) and
is_equal(tarraydef(def_from).elementtype.def,tpointerdef(def_to).pointertype.def) then
begin
doconv:=tc_array_2_pointer;
b:=1;
end;
end;
pointerdef :
begin
{ child class pointer can be assigned to anchestor pointers }
if (
(tpointerdef(def_from).pointertype.def.deftype=objectdef) and
(tpointerdef(def_to).pointertype.def.deftype=objectdef) and
tobjectdef(tpointerdef(def_from).pointertype.def).is_related(
tobjectdef(tpointerdef(def_to).pointertype.def))
) or
{ all pointers can be assigned to void-pointer }
is_equal(tpointerdef(def_to).pointertype.def,voidtype.def) or
{ in my opnion, is this not clean pascal }
{ well, but it's handy to use, it isn't ? (FK) }
is_equal(tpointerdef(def_from).pointertype.def,voidtype.def) then
begin
{ but don't allow conversion between farpointer-pointer }
if (tpointerdef(def_to).is_far=tpointerdef(def_from).is_far) then
begin
doconv:=tc_equal;
b:=1;
end;
end;
end;
procvardef :
begin
{ procedure variable can be assigned to an void pointer }
{ Not anymore. Use the @ operator now.}
if not(m_tp_procvar in aktmodeswitches) and
(tpointerdef(def_to).pointertype.def.deftype=orddef) and
(torddef(tpointerdef(def_to).pointertype.def).typ=uvoid) then
begin
doconv:=tc_equal;
b:=1;
end;
end;
classrefdef,
objectdef :
begin
{ class types and class reference type
can be assigned to void pointers }
if (
is_class_or_interface(def_from) or
(def_from.deftype=classrefdef)
) and
(tpointerdef(def_to).pointertype.def.deftype=orddef) and
(torddef(tpointerdef(def_to).pointertype.def).typ=uvoid) then
begin
doconv:=tc_equal;
b:=1;
end;
end;
end;
end;
setdef :
begin
{ automatic arrayconstructor -> set conversion }
if is_array_constructor(def_from) then
begin
doconv:=tc_arrayconstructor_2_set;
b:=1;
end;
end;
procvardef :
begin
{ proc -> procvar }
if (def_from.deftype=procdef) and
(m_tp_procvar in aktmodeswitches) then
begin
doconv:=tc_proc_2_procvar;
if proc_to_procvar_equal(tprocdef(def_from),tprocvardef(def_to)) then
b:=1;
end
else
{ for example delphi allows the assignement from pointers }
{ to procedure variables }
if (m_pointer_2_procedure in aktmodeswitches) and
(def_from.deftype=pointerdef) and
(tpointerdef(def_from).pointertype.def.deftype=orddef) and
(torddef(tpointerdef(def_from).pointertype.def).typ=uvoid) then
begin
doconv:=tc_equal;
b:=1;
end
else
{ nil is compatible with procvars }
if (fromtreetype=niln) then
begin
doconv:=tc_equal;
b:=1;
end;
end;
objectdef :
begin
{ object pascal objects }
if (def_from.deftype=objectdef) and
tobjectdef(def_from).is_related(tobjectdef(def_to)) then
begin
doconv:=tc_equal;
b:=1;
end
else
{ Class/interface specific }
if is_class_or_interface(def_to) then
begin
{ void pointer also for delphi mode }
if (m_delphi in aktmodeswitches) and
is_voidpointer(def_from) then
begin
doconv:=tc_equal;
b:=1;
end
else
{ nil is compatible with class instances and interfaces }
if (fromtreetype=niln) then
begin
doconv:=tc_equal;
b:=1;
end
{ classes can be assigned to interfaces }
else if is_interface(def_to) and
is_class(def_from) and
assigned(tobjectdef(def_from).implementedinterfaces) and
(tobjectdef(def_from).implementedinterfaces.searchintf(def_to)<>-1) then
begin
doconv:=tc_class_2_intf;
b:=1;
end
{ Interface 2 GUID handling }
else if (def_to=tdef(rec_tguid)) and
(fromtreetype=typen) and
is_interface(def_from) and
tobjectdef(def_from).isiidguidvalid then
begin
b:=1;
doconv:=tc_equal;
end;
end;
end;
classrefdef :
begin
{ class reference types }
if (def_from.deftype=classrefdef) then
begin
doconv:=tc_equal;
if tobjectdef(tclassrefdef(def_from).pointertype.def).is_related(
tobjectdef(tclassrefdef(def_to).pointertype.def)) then
b:=1;
end
else
{ nil is compatible with class references }
if (fromtreetype=niln) then
begin
doconv:=tc_equal;
b:=1;
end;
end;
filedef :
begin
{ typed files are all equal to the abstract file type
name TYPEDFILE in system.pp in is_equal in types.pas
the problem is that it sholud be also compatible to FILE
but this would leed to a problem for ASSIGN RESET and REWRITE
when trying to find the good overloaded function !!
so all file function are doubled in system.pp
this is not very beautiful !!}
if (def_from.deftype=filedef) and
(
(
(tfiledef(def_from).filetyp = ft_typed) and
(tfiledef(def_to).filetyp = ft_typed) and
(
(tfiledef(def_from).typedfiletype.def = tdef(voidtype.def)) or
(tfiledef(def_to).typedfiletype.def = tdef(voidtype.def))
)
) or
(
(
(tfiledef(def_from).filetyp = ft_untyped) and
(tfiledef(def_to).filetyp = ft_typed)
) or
(
(tfiledef(def_from).filetyp = ft_typed) and
(tfiledef(def_to).filetyp = ft_untyped)
)
)
) then
begin
doconv:=tc_equal;
b:=1;
end
end;
recorddef :
begin
{ interface -> guid }
if is_interface(def_from) and
(def_to=rec_tguid) then
begin
doconv:=tc_intf_2_guid;
b:=1;
end
else
begin
{ assignment overwritten ?? }
if assignment_overloaded(def_from,def_to)<>nil then
b:=2;
end;
end;
else
begin
{ assignment overwritten ?? }
if assignment_overloaded(def_from,def_to)<>nil then
b:=2;
end;
end;
isconvertable:=b;
end;
function CheckTypes(def1,def2 : tdef) : boolean;
var
s1,s2 : string;
begin
if not is_equal(def1,def2) then
begin
{ Crash prevention }
if (not assigned(def1)) or (not assigned(def2)) then
Message(type_e_mismatch)
else
begin
s1:=def1.typename;
s2:=def2.typename;
if (s1<>'<unknown type>') and (s2<>'<unknown type>') then
Message2(type_e_not_equal_types,def1.typename,def2.typename)
else
Message(type_e_mismatch);
end;
CheckTypes:=false;
end
else
CheckTypes:=true;
end;
end.
{
$Log$
Revision 1.53 2001-10-25 21:22:40 peter
* calling convention rewrite
Revision 1.52 2001/10/22 21:21:09 peter
* allow enum(enum)
Revision 1.51 2001/10/22 15:13:49 jonas
* allow typeconversion of open array-of-char to string
Revision 1.50 2001/10/20 19:28:39 peter
* interface 2 guid support
* guid constants support
Revision 1.49 2001/10/17 22:41:05 florian
* several widechar fixes, case works now
Revision 1.48 2001/10/16 17:15:44 jonas
* auto-converting from int64 to real is again allowed for all modes
(it's allowed in Delphi too)
Revision 1.47 2001/09/03 13:27:41 jonas
* compilerproc implementation of set addition/substraction/...
* changed the declaration of some set helpers somewhat to accomodate the
above change
* i386 still uses the old code for comparisons of sets, because its
helpers return the results in the flags
* dummy tc_normal_2_small_set type conversion because I need the original
resulttype of the set add nodes
NOTE: you have to start a cycle with 1.0.5!
Revision 1.46 2001/09/02 21:15:34 peter
* don't allow int64->real for delphi mode
Revision 1.45 2001/08/19 21:11:21 florian
* some bugs fix:
- overload; with external procedures fixed
- better selection of routine to do an overloaded
type case
- ... some more
Revision 1.44 2001/07/08 21:00:16 peter
* various widestring updates, it works now mostly without charset
mapping supported
Revision 1.43 2001/06/29 14:16:57 jonas
* fixed inconsistent handling of procvars in FPC mode (sometimes @ was
required to assign the address of a procedure to a procvar, sometimes
not. Now it is always required) (merged)
Revision 1.42 2001/05/08 21:06:33 florian
* some more support for widechars commited especially
regarding type casting and constants
Revision 1.41 2001/04/22 22:46:49 florian
* more variant support
Revision 1.40 2001/04/18 22:02:00 peter
* registration of targets and assemblers
Revision 1.39 2001/04/13 01:22:17 peter
* symtable change to classes
* range check generation and errors fixed, make cycle DEBUG=1 works
* memory leaks fixed
Revision 1.38 2001/04/04 21:30:47 florian
* applied several fixes to get the DD8 Delphi Unit compiled
e.g. "forward"-interfaces are working now
Revision 1.37 2001/04/02 21:20:35 peter
* resulttype rewrite
Revision 1.36 2001/03/23 00:16:07 florian
+ some stuff to compile FreeCLX added
Revision 1.35 2001/03/03 12:38:33 jonas
+ support for arraydefs in is_signed (for their rangetype, used in rangechecks)
Revision 1.34 2001/02/26 19:44:55 peter
* merged generic m68k updates from fixes branch
Revision 1.33 2001/02/26 12:47:46 jonas
* fixed bug in type checking for compatibility of set elements (merged)
* released fix in options.pas from Carl also for FPC (merged)
Revision 1.32 2001/02/20 21:44:25 peter
* tvarrec -> array of const fixed
Revision 1.31 2001/01/22 11:20:15 jonas
* fixed web bug 1363 (merged)
Revision 1.30 2001/01/08 21:43:38 peter
* string isn't compatible with array of char
Revision 1.29 2000/12/25 00:07:30 peter
+ new tlinkedlist class (merge of old tstringqueue,tcontainer and
tlinkedlist objects)
Revision 1.28 2000/12/22 22:38:12 peter
* fixed bug #1286
Revision 1.27 2000/12/20 15:59:40 jonas
- removed obsolete special case for range checking of cardinal constants
at compile time
Revision 1.26 2000/12/11 19:13:54 jonas
* fixed range checking of cardinal constants
* fixed range checking of "qword constants" (they don't really exist,
but values > high(int64) were set to zero if assigned to qword)
Revision 1.25 2000/12/08 14:06:11 jonas
* fix for web bug 1245: arrays of char with size >255 are now passed to
overloaded procedures which expect ansistrings instead of shortstrings
if possible
* pointer to array of chars (when using $t+) are now also considered
pchars
Revision 1.24 2000/11/20 15:52:47 jonas
* testrange now always cuts a constant to the size of the destination
if a rangeerror occurred
* changed an "and $ffffffff" to "and (int64($fffffff) shl 4 + $f" to
work around the constant evaluation problem we currently have
Revision 1.23 2000/11/13 14:42:41 jonas
* fix in testrange so that 64bit constants are properly truncated when
assigned to 32bit vars
Revision 1.22 2000/11/13 11:30:55 florian
* some bugs with interfaces and NIL fixed
Revision 1.21 2000/11/12 23:24:12 florian
* interfaces are basically running
Revision 1.20 2000/11/11 16:13:31 peter
* farpointer and normal pointer aren't compatible
Revision 1.19 2000/11/06 22:30:30 peter
* more fixes
Revision 1.18 2000/11/04 14:25:22 florian
+ merged Attila's changes for interfaces, not tested yet
Revision 1.17 2000/10/31 22:30:13 peter
* merged asm result patch part 2
Revision 1.16 2000/10/31 22:02:55 peter
* symtable splitted, no real code changes
Revision 1.15 2000/10/21 18:16:12 florian
* a lot of changes:
- basic dyn. array support
- basic C++ support
- some work for interfaces done
....
Revision 1.14 2000/10/14 10:14:56 peter
* moehrendorf oct 2000 rewrite
Revision 1.13 2000/10/01 19:48:26 peter
* lot of compile updates for cg11
Revision 1.12 2000/09/30 16:08:46 peter
* more cg11 updates
Revision 1.11 2000/09/24 15:06:32 peter
* use defines.inc
Revision 1.10 2000/09/18 12:31:15 jonas
* fixed bug in push_addr_param for arrays (merged from fixes branch)
Revision 1.9 2000/09/10 20:16:21 peter
* array of const isn't equal with array of <type> (merged)
Revision 1.8 2000/08/19 19:51:03 peter
* fixed bug with comparing constsym strings
Revision 1.7 2000/08/16 13:06:07 florian
+ support of 64 bit integer constants
Revision 1.6 2000/08/13 13:07:18 peter
* equal_paras now also checks default parameter value
Revision 1.5 2000/08/12 06:49:22 florian
+ case statement for int64/qword implemented
Revision 1.4 2000/08/08 19:26:41 peter
* equal_constsym() needed for default para
Revision 1.3 2000/07/13 12:08:28 michael
+ patched to 1.1.0 with former 1.09patch from peter
Revision 1.2 2000/07/13 11:32:53 michael
+ removed logs
}