mirror of
https://gitlab.com/freepascal.org/fpc/source.git
synced 2025-04-16 19:19:33 +02:00
2004 lines
71 KiB
ObjectPascal
2004 lines
71 KiB
ObjectPascal
{
|
|
$Id$
|
|
Copyright (C) 1998-2000 by Florian Klaempfl
|
|
|
|
This unit provides some help routines for type handling
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
|
|
****************************************************************************
|
|
}
|
|
unit types;
|
|
|
|
{$i defines.inc}
|
|
|
|
interface
|
|
|
|
uses
|
|
cclasses,
|
|
cpuinfo,
|
|
node,
|
|
symbase,symtype,symdef,symsym;
|
|
|
|
type
|
|
tmmxtype = (mmxno,mmxu8bit,mmxs8bit,mmxu16bit,mmxs16bit,
|
|
mmxu32bit,mmxs32bit,mmxfixed16,mmxsingle);
|
|
|
|
const
|
|
{ true if we must never copy this parameter }
|
|
never_copy_const_param : boolean = false;
|
|
|
|
{*****************************************************************************
|
|
Basic type functions
|
|
*****************************************************************************}
|
|
|
|
{ returns true, if def defines an ordinal type }
|
|
function is_ordinal(def : tdef) : boolean;
|
|
|
|
{ returns the min. value of the type }
|
|
function get_min_value(def : tdef) : longint;
|
|
|
|
{ returns true, if def defines an ordinal type }
|
|
function is_integer(def : tdef) : boolean;
|
|
|
|
{ true if p is a boolean }
|
|
function is_boolean(def : tdef) : boolean;
|
|
|
|
{ true if p is a char }
|
|
function is_char(def : tdef) : boolean;
|
|
|
|
{ true if p is a widechar }
|
|
function is_widechar(def : tdef) : boolean;
|
|
|
|
{ true if p is a void}
|
|
function is_void(def : tdef) : boolean;
|
|
|
|
{ true if p is a smallset def }
|
|
function is_smallset(p : tdef) : boolean;
|
|
|
|
{ returns true, if def defines a signed data type (only for ordinal types) }
|
|
function is_signed(def : tdef) : boolean;
|
|
|
|
{*****************************************************************************
|
|
Array helper functions
|
|
*****************************************************************************}
|
|
|
|
{ true, if p points to a zero based (non special like open or
|
|
dynamic array def, mainly this is used to see if the array
|
|
is convertable to a pointer }
|
|
function is_zero_based_array(p : tdef) : boolean;
|
|
|
|
{ true if p points to an open array def }
|
|
function is_open_array(p : tdef) : boolean;
|
|
|
|
{ true if p points to a dynamic array def }
|
|
function is_dynamic_array(p : tdef) : boolean;
|
|
|
|
{ true, if p points to an array of const def }
|
|
function is_array_constructor(p : tdef) : boolean;
|
|
|
|
{ true, if p points to a variant array }
|
|
function is_variant_array(p : tdef) : boolean;
|
|
|
|
{ true, if p points to an array of const }
|
|
function is_array_of_const(p : tdef) : boolean;
|
|
|
|
{ true, if p points any kind of special array }
|
|
function is_special_array(p : tdef) : boolean;
|
|
|
|
{ true if p is a char array def }
|
|
function is_chararray(p : tdef) : boolean;
|
|
|
|
{ true if p is a wide char array def }
|
|
function is_widechararray(p : tdef) : boolean;
|
|
|
|
{*****************************************************************************
|
|
String helper functions
|
|
*****************************************************************************}
|
|
|
|
{ true if p points to an open string def }
|
|
function is_open_string(p : tdef) : boolean;
|
|
|
|
{ true if p is an ansi string def }
|
|
function is_ansistring(p : tdef) : boolean;
|
|
|
|
{ true if p is a long string def }
|
|
function is_longstring(p : tdef) : boolean;
|
|
|
|
{ true if p is a wide string def }
|
|
function is_widestring(p : tdef) : boolean;
|
|
|
|
{ true if p is a short string def }
|
|
function is_shortstring(p : tdef) : boolean;
|
|
|
|
{ true if p is a pchar def }
|
|
function is_pchar(p : tdef) : boolean;
|
|
|
|
{ true if p is a pwidechar def }
|
|
function is_pwidechar(p : tdef) : boolean;
|
|
|
|
{ true if p is a voidpointer def }
|
|
function is_voidpointer(p : tdef) : boolean;
|
|
|
|
{ returns true, if def uses FPU }
|
|
function is_fpu(def : tdef) : boolean;
|
|
|
|
{ true if the return value is in EAX }
|
|
function ret_in_acc(def : tdef) : boolean;
|
|
|
|
{ true if uses a parameter as return value }
|
|
function ret_in_param(def : tdef) : boolean;
|
|
|
|
{ true, if def is a 64 bit int type }
|
|
function is_64bitint(def : tdef) : boolean;
|
|
|
|
function push_high_param(def : tdef) : boolean;
|
|
|
|
{ true if a parameter is too large to copy and only the address is pushed }
|
|
function push_addr_param(def : tdef) : boolean;
|
|
|
|
{ true, if def1 and def2 are semantical the same }
|
|
function is_equal(def1,def2 : tdef) : boolean;
|
|
|
|
{ checks for type compatibility (subgroups of type) }
|
|
{ used for case statements... probably missing stuff }
|
|
{ to use on other types }
|
|
function is_subequal(def1, def2: tdef): boolean;
|
|
|
|
type
|
|
tconverttype = (
|
|
tc_equal,
|
|
tc_not_possible,
|
|
tc_string_2_string,
|
|
tc_char_2_string,
|
|
tc_pchar_2_string,
|
|
tc_cchar_2_pchar,
|
|
tc_cstring_2_pchar,
|
|
tc_ansistring_2_pchar,
|
|
tc_string_2_chararray,
|
|
tc_chararray_2_string,
|
|
tc_array_2_pointer,
|
|
tc_pointer_2_array,
|
|
tc_int_2_int,
|
|
tc_int_2_bool,
|
|
tc_bool_2_bool,
|
|
tc_bool_2_int,
|
|
tc_real_2_real,
|
|
tc_int_2_real,
|
|
tc_proc_2_procvar,
|
|
tc_arrayconstructor_2_set,
|
|
tc_load_smallset,
|
|
tc_cord_2_pointer,
|
|
tc_intf_2_string,
|
|
tc_intf_2_guid,
|
|
tc_class_2_intf,
|
|
tc_char_2_char,
|
|
tc_normal_2_smallset
|
|
);
|
|
|
|
function assignment_overloaded(from_def,to_def : tdef) : tprocdef;
|
|
|
|
{ Returns:
|
|
0 - Not convertable
|
|
1 - Convertable
|
|
2 - Convertable, but not first choice }
|
|
function isconvertable(def_from,def_to : tdef;
|
|
var doconv : tconverttype;
|
|
fromtreetype : tnodetype;
|
|
explicit : boolean) : byte;
|
|
|
|
{ same as is_equal, but with error message if failed }
|
|
function CheckTypes(def1,def2 : tdef) : boolean;
|
|
|
|
function equal_constsym(sym1,sym2:tconstsym):boolean;
|
|
|
|
{ true, if two parameter lists are equal }
|
|
{ if acp is cp_none, all have to match exactly }
|
|
{ if acp is cp_value_equal_const call by value }
|
|
{ and call by const parameter are assumed as }
|
|
{ equal }
|
|
{ if acp is cp_all the var const or nothing are considered equal }
|
|
type
|
|
compare_type = ( cp_none, cp_value_equal_const, cp_all);
|
|
|
|
function equal_paras(paralist1,paralist2 : tlinkedlist; acp : compare_type) : boolean;
|
|
|
|
|
|
{ true if a type can be allowed for another one
|
|
in a func var }
|
|
function convertable_paras(paralist1,paralist2 : tlinkedlist; acp : compare_type) : boolean;
|
|
|
|
{ true if a function can be assigned to a procvar }
|
|
function proc_to_procvar_equal(def1:tprocdef;def2:tprocvardef) : boolean;
|
|
|
|
{ if l isn't in the range of def a range check error (if not explicit) is generated and
|
|
the value is placed within the range }
|
|
procedure testrange(def : tdef;var l : tconstexprint;explicit:boolean);
|
|
|
|
{ returns the range of def }
|
|
procedure getrange(def : tdef;var l : longint;var h : longint);
|
|
|
|
{ some type helper routines for MMX support }
|
|
function is_mmx_able_array(p : tdef) : boolean;
|
|
|
|
{ returns the mmx type }
|
|
function mmx_type(p : tdef) : tmmxtype;
|
|
|
|
{ returns true, if sym needs an entry in the proplist of a class rtti }
|
|
function needs_prop_entry(sym : tsym) : boolean;
|
|
|
|
|
|
implementation
|
|
|
|
uses
|
|
globtype,globals,systems,tokens,verbose,
|
|
symconst,symtable,nld;
|
|
|
|
|
|
function needs_prop_entry(sym : tsym) : boolean;
|
|
|
|
begin
|
|
needs_prop_entry:=(sp_published in tsym(sym).symoptions) and
|
|
(sym.typ in [propertysym,varsym]);
|
|
end;
|
|
|
|
|
|
function equal_constsym(sym1,sym2:tconstsym):boolean;
|
|
var
|
|
p1,p2,pend : pchar;
|
|
begin
|
|
equal_constsym:=false;
|
|
if sym1.consttyp<>sym2.consttyp then
|
|
exit;
|
|
case sym1.consttyp of
|
|
constint,
|
|
constbool,
|
|
constchar,
|
|
constord :
|
|
equal_constsym:=(sym1.valueord=sym2.valueord);
|
|
constpointer :
|
|
equal_constsym:=(sym1.valueordptr=sym2.valueordptr);
|
|
conststring,constresourcestring :
|
|
begin
|
|
if sym1.len=sym2.len then
|
|
begin
|
|
p1:=pchar(sym1.valueptr);
|
|
p2:=pchar(sym2.valueptr);
|
|
pend:=p1+sym1.len;
|
|
while (p1<pend) do
|
|
begin
|
|
if p1^<>p2^ then
|
|
break;
|
|
inc(p1);
|
|
inc(p2);
|
|
end;
|
|
if (p1=pend) then
|
|
equal_constsym:=true;
|
|
end;
|
|
end;
|
|
constreal :
|
|
equal_constsym:=(pbestreal(sym1.valueptr)^=pbestreal(sym2.valueptr)^);
|
|
constset :
|
|
equal_constsym:=(pnormalset(sym1.valueptr)^=pnormalset(sym2.valueptr)^);
|
|
constnil :
|
|
equal_constsym:=true;
|
|
end;
|
|
end;
|
|
|
|
|
|
{ compare_type = ( cp_none, cp_value_equal_const, cp_all); }
|
|
|
|
function equal_paras(paralist1,paralist2 : TLinkedList; acp : compare_type) : boolean;
|
|
var
|
|
def1,def2 : TParaItem;
|
|
begin
|
|
def1:=TParaItem(paralist1.first);
|
|
def2:=TParaItem(paralist2.first);
|
|
while (assigned(def1)) and (assigned(def2)) do
|
|
begin
|
|
case acp of
|
|
cp_value_equal_const :
|
|
begin
|
|
if not(is_equal(def1.paratype.def,def2.paratype.def)) or
|
|
((def1.paratyp<>def2.paratyp) and
|
|
((def1.paratyp in [vs_var,vs_out]) or
|
|
(def2.paratyp in [vs_var,vs_out])
|
|
)
|
|
) then
|
|
begin
|
|
equal_paras:=false;
|
|
exit;
|
|
end;
|
|
end;
|
|
cp_all :
|
|
begin
|
|
if not(is_equal(def1.paratype.def,def2.paratype.def)) or
|
|
(def1.paratyp<>def2.paratyp) then
|
|
begin
|
|
equal_paras:=false;
|
|
exit;
|
|
end;
|
|
end;
|
|
cp_none :
|
|
begin
|
|
if not(is_equal(def1.paratype.def,def2.paratype.def)) then
|
|
begin
|
|
equal_paras:=false;
|
|
exit;
|
|
end;
|
|
{ also check default value if both have it declared }
|
|
if assigned(def1.defaultvalue) and
|
|
assigned(def2.defaultvalue) then
|
|
begin
|
|
if not equal_constsym(tconstsym(def1.defaultvalue),tconstsym(def2.defaultvalue)) then
|
|
begin
|
|
equal_paras:=false;
|
|
exit;
|
|
end;
|
|
end;
|
|
end;
|
|
end;
|
|
def1:=TParaItem(def1.next);
|
|
def2:=TParaItem(def2.next);
|
|
end;
|
|
if (def1=nil) and (def2=nil) then
|
|
equal_paras:=true
|
|
else
|
|
equal_paras:=false;
|
|
end;
|
|
|
|
function convertable_paras(paralist1,paralist2 : TLinkedList;acp : compare_type) : boolean;
|
|
var
|
|
def1,def2 : TParaItem;
|
|
doconv : tconverttype;
|
|
begin
|
|
def1:=TParaItem(paralist1.first);
|
|
def2:=TParaItem(paralist2.first);
|
|
while (assigned(def1)) and (assigned(def2)) do
|
|
begin
|
|
case acp of
|
|
cp_value_equal_const :
|
|
begin
|
|
if (isconvertable(def1.paratype.def,def2.paratype.def,doconv,callparan,false)=0) or
|
|
((def1.paratyp<>def2.paratyp) and
|
|
((def1.paratyp in [vs_out,vs_var]) or
|
|
(def2.paratyp in [vs_out,vs_var])
|
|
)
|
|
) then
|
|
begin
|
|
convertable_paras:=false;
|
|
exit;
|
|
end;
|
|
end;
|
|
cp_all :
|
|
begin
|
|
if (isconvertable(def1.paratype.def,def2.paratype.def,doconv,callparan,false)=0) or
|
|
(def1.paratyp<>def2.paratyp) then
|
|
begin
|
|
convertable_paras:=false;
|
|
exit;
|
|
end;
|
|
end;
|
|
cp_none :
|
|
begin
|
|
if (isconvertable(def1.paratype.def,def2.paratype.def,doconv,callparan,false)=0) then
|
|
begin
|
|
convertable_paras:=false;
|
|
exit;
|
|
end;
|
|
end;
|
|
end;
|
|
def1:=TParaItem(def1.next);
|
|
def2:=TParaItem(def2.next);
|
|
end;
|
|
if (def1=nil) and (def2=nil) then
|
|
convertable_paras:=true
|
|
else
|
|
convertable_paras:=false;
|
|
end;
|
|
|
|
|
|
{ true if a function can be assigned to a procvar }
|
|
function proc_to_procvar_equal(def1:tprocdef;def2:tprocvardef) : boolean;
|
|
const
|
|
po_comp = po_compatibility_options-[po_methodpointer,po_classmethod];
|
|
var
|
|
ismethod : boolean;
|
|
begin
|
|
proc_to_procvar_equal:=false;
|
|
if not(assigned(def1)) or not(assigned(def2)) then
|
|
exit;
|
|
{ check for method pointer }
|
|
ismethod:=assigned(def1.owner) and
|
|
(def1.owner.symtabletype=objectsymtable);
|
|
{ I think methods of objects are also not compatible }
|
|
{ with procedure variables! (FK)
|
|
and
|
|
assigned(def1.owner.defowner) and
|
|
(tobjectdef(def1.owner.defowner)^.is_class); }
|
|
if (ismethod and not (po_methodpointer in def2.procoptions)) or
|
|
(not(ismethod) and (po_methodpointer in def2.procoptions)) then
|
|
begin
|
|
Message(type_e_no_method_and_procedure_not_compatible);
|
|
exit;
|
|
end;
|
|
{ check return value and para's and options, methodpointer is already checked
|
|
parameters may also be convertable }
|
|
if is_equal(def1.rettype.def,def2.rettype.def) and
|
|
(equal_paras(def1.para,def2.para,cp_all) or
|
|
convertable_paras(def1.para,def2.para,cp_all)) and
|
|
((po_comp * def1.procoptions)= (po_comp * def2.procoptions)) then
|
|
proc_to_procvar_equal:=true
|
|
else
|
|
proc_to_procvar_equal:=false;
|
|
end;
|
|
|
|
|
|
{ returns true, if def uses FPU }
|
|
function is_fpu(def : tdef) : boolean;
|
|
begin
|
|
is_fpu:=(def.deftype=floatdef);
|
|
end;
|
|
|
|
|
|
{ true if p is an ordinal }
|
|
function is_ordinal(def : tdef) : boolean;
|
|
var
|
|
dt : tbasetype;
|
|
begin
|
|
case def.deftype of
|
|
orddef :
|
|
begin
|
|
dt:=torddef(def).typ;
|
|
is_ordinal:=dt in [uchar,uwidechar,
|
|
u8bit,u16bit,u32bit,u64bit,
|
|
s8bit,s16bit,s32bit,s64bit,
|
|
bool8bit,bool16bit,bool32bit];
|
|
end;
|
|
enumdef :
|
|
is_ordinal:=true;
|
|
else
|
|
is_ordinal:=false;
|
|
end;
|
|
end;
|
|
|
|
|
|
{ returns the min. value of the type }
|
|
function get_min_value(def : tdef) : longint;
|
|
begin
|
|
case def.deftype of
|
|
orddef:
|
|
get_min_value:=torddef(def).low;
|
|
enumdef:
|
|
get_min_value:=tenumdef(def).min;
|
|
else
|
|
get_min_value:=0;
|
|
end;
|
|
end;
|
|
|
|
|
|
{ true if p is an integer }
|
|
function is_integer(def : tdef) : boolean;
|
|
begin
|
|
is_integer:=(def.deftype=orddef) and
|
|
(torddef(def).typ in [uauto,u8bit,u16bit,u32bit,u64bit,
|
|
s8bit,s16bit,s32bit,s64bit]);
|
|
end;
|
|
|
|
|
|
{ true if p is a boolean }
|
|
function is_boolean(def : tdef) : boolean;
|
|
begin
|
|
is_boolean:=(def.deftype=orddef) and
|
|
(torddef(def).typ in [bool8bit,bool16bit,bool32bit]);
|
|
end;
|
|
|
|
|
|
{ true if p is a void }
|
|
function is_void(def : tdef) : boolean;
|
|
begin
|
|
is_void:=(def.deftype=orddef) and
|
|
(torddef(def).typ=uvoid);
|
|
end;
|
|
|
|
|
|
{ true if p is a char }
|
|
function is_char(def : tdef) : boolean;
|
|
begin
|
|
is_char:=(def.deftype=orddef) and
|
|
(torddef(def).typ=uchar);
|
|
end;
|
|
|
|
|
|
{ true if p is a wchar }
|
|
function is_widechar(def : tdef) : boolean;
|
|
begin
|
|
is_widechar:=(def.deftype=orddef) and
|
|
(torddef(def).typ=uwidechar);
|
|
end;
|
|
|
|
|
|
{ true if p is signed (integer) }
|
|
function is_signed(def : tdef) : boolean;
|
|
var
|
|
dt : tbasetype;
|
|
begin
|
|
case def.deftype of
|
|
orddef :
|
|
begin
|
|
dt:=torddef(def).typ;
|
|
is_signed:=(dt in [s8bit,s16bit,s32bit,s64bit]);
|
|
end;
|
|
enumdef :
|
|
is_signed:=tenumdef(def).min < 0;
|
|
arraydef :
|
|
is_signed:=is_signed(tarraydef(def).rangetype.def);
|
|
else
|
|
is_signed:=false;
|
|
end;
|
|
end;
|
|
|
|
|
|
{ true, if p points to an open array def }
|
|
function is_open_string(p : tdef) : boolean;
|
|
begin
|
|
is_open_string:=(p.deftype=stringdef) and
|
|
(tstringdef(p).string_typ=st_shortstring) and
|
|
(tstringdef(p).len=0);
|
|
end;
|
|
|
|
|
|
{ true, if p points to a zero based array def }
|
|
function is_zero_based_array(p : tdef) : boolean;
|
|
begin
|
|
is_zero_based_array:=(p.deftype=arraydef) and
|
|
(tarraydef(p).lowrange=0) and
|
|
not(is_special_array(p));
|
|
end;
|
|
|
|
{ true if p points to a dynamic array def }
|
|
function is_dynamic_array(p : tdef) : boolean;
|
|
begin
|
|
is_dynamic_array:=(p.deftype=arraydef) and
|
|
tarraydef(p).IsDynamicArray;
|
|
end;
|
|
|
|
|
|
{ true, if p points to an open array def }
|
|
function is_open_array(p : tdef) : boolean;
|
|
begin
|
|
{ check for s32bittype is needed, because for u32bit the high
|
|
range is also -1 ! (PFV) }
|
|
is_open_array:=(p.deftype=arraydef) and
|
|
(tarraydef(p).rangetype.def=s32bittype.def) and
|
|
(tarraydef(p).lowrange=0) and
|
|
(tarraydef(p).highrange=-1) and
|
|
not(tarraydef(p).IsConstructor) and
|
|
not(tarraydef(p).IsVariant) and
|
|
not(tarraydef(p).IsArrayOfConst) and
|
|
not(tarraydef(p).IsDynamicArray);
|
|
|
|
end;
|
|
|
|
{ true, if p points to an array of const def }
|
|
function is_array_constructor(p : tdef) : boolean;
|
|
begin
|
|
is_array_constructor:=(p.deftype=arraydef) and
|
|
(tarraydef(p).IsConstructor);
|
|
end;
|
|
|
|
{ true, if p points to a variant array }
|
|
function is_variant_array(p : tdef) : boolean;
|
|
begin
|
|
is_variant_array:=(p.deftype=arraydef) and
|
|
(tarraydef(p).IsVariant);
|
|
end;
|
|
|
|
{ true, if p points to an array of const }
|
|
function is_array_of_const(p : tdef) : boolean;
|
|
begin
|
|
is_array_of_const:=(p.deftype=arraydef) and
|
|
(tarraydef(p).IsArrayOfConst);
|
|
end;
|
|
|
|
{ true, if p points to a special array }
|
|
function is_special_array(p : tdef) : boolean;
|
|
begin
|
|
is_special_array:=(p.deftype=arraydef) and
|
|
((tarraydef(p).IsVariant) or
|
|
(tarraydef(p).IsArrayOfConst) or
|
|
(tarraydef(p).IsConstructor) or
|
|
is_open_array(p)
|
|
);
|
|
end;
|
|
|
|
{ true if p is an ansi string def }
|
|
function is_ansistring(p : tdef) : boolean;
|
|
begin
|
|
is_ansistring:=(p.deftype=stringdef) and
|
|
(tstringdef(p).string_typ=st_ansistring);
|
|
end;
|
|
|
|
|
|
{ true if p is an long string def }
|
|
function is_longstring(p : tdef) : boolean;
|
|
begin
|
|
is_longstring:=(p.deftype=stringdef) and
|
|
(tstringdef(p).string_typ=st_longstring);
|
|
end;
|
|
|
|
|
|
{ true if p is an wide string def }
|
|
function is_widestring(p : tdef) : boolean;
|
|
begin
|
|
is_widestring:=(p.deftype=stringdef) and
|
|
(tstringdef(p).string_typ=st_widestring);
|
|
end;
|
|
|
|
|
|
{ true if p is an short string def }
|
|
function is_shortstring(p : tdef) : boolean;
|
|
begin
|
|
is_shortstring:=(p.deftype=stringdef) and
|
|
(tstringdef(p).string_typ=st_shortstring);
|
|
end;
|
|
|
|
{ true if p is a char array def }
|
|
function is_chararray(p : tdef) : boolean;
|
|
begin
|
|
is_chararray:=(p.deftype=arraydef) and
|
|
is_equal(tarraydef(p).elementtype.def,cchartype.def) and
|
|
not(is_special_array(p));
|
|
end;
|
|
|
|
{ true if p is a widechar array def }
|
|
function is_widechararray(p : tdef) : boolean;
|
|
begin
|
|
is_widechararray:=(p.deftype=arraydef) and
|
|
is_equal(tarraydef(p).elementtype.def,cwidechartype.def) and
|
|
not(is_special_array(p));
|
|
end;
|
|
|
|
|
|
{ true if p is a pchar def }
|
|
function is_pchar(p : tdef) : boolean;
|
|
begin
|
|
is_pchar:=(p.deftype=pointerdef) and
|
|
(is_equal(tpointerdef(p).pointertype.def,cchartype.def) or
|
|
(is_zero_based_array(tpointerdef(p).pointertype.def) and
|
|
is_chararray(tpointerdef(p).pointertype.def)));
|
|
end;
|
|
|
|
{ true if p is a pchar def }
|
|
function is_pwidechar(p : tdef) : boolean;
|
|
begin
|
|
is_pwidechar:=(p.deftype=pointerdef) and
|
|
(is_equal(tpointerdef(p).pointertype.def,cwidechartype.def) or
|
|
(is_zero_based_array(tpointerdef(p).pointertype.def) and
|
|
is_widechararray(tpointerdef(p).pointertype.def)));
|
|
end;
|
|
|
|
|
|
{ true if p is a voidpointer def }
|
|
function is_voidpointer(p : tdef) : boolean;
|
|
begin
|
|
is_voidpointer:=(p.deftype=pointerdef) and
|
|
(tpointerdef(p).pointertype.def.deftype=orddef) and
|
|
(torddef(tpointerdef(p).pointertype.def).typ=uvoid);
|
|
end;
|
|
|
|
|
|
{ true if p is a smallset def }
|
|
function is_smallset(p : tdef) : boolean;
|
|
begin
|
|
is_smallset:=(p.deftype=setdef) and
|
|
(tsetdef(p).settype=smallset);
|
|
end;
|
|
|
|
|
|
{ true if the return value is in accumulator (EAX for i386), D0 for 68k }
|
|
function ret_in_acc(def : tdef) : boolean;
|
|
begin
|
|
ret_in_acc:=(def.deftype in [orddef,pointerdef,enumdef,classrefdef]) or
|
|
((def.deftype=stringdef) and (tstringdef(def).string_typ in [st_ansistring,st_widestring])) or
|
|
((def.deftype=procvardef) and not(po_methodpointer in tprocvardef(def).procoptions)) or
|
|
((def.deftype=objectdef) and not is_object(def)) or
|
|
((def.deftype=setdef) and (tsetdef(def).settype=smallset));
|
|
end;
|
|
|
|
|
|
{ true, if def is a 64 bit int type }
|
|
function is_64bitint(def : tdef) : boolean;
|
|
begin
|
|
is_64bitint:=(def.deftype=orddef) and (torddef(def).typ in [u64bit,s64bit])
|
|
end;
|
|
|
|
|
|
{ true if uses a parameter as return value }
|
|
function ret_in_param(def : tdef) : boolean;
|
|
begin
|
|
ret_in_param:=(def.deftype in [arraydef,recorddef]) or
|
|
((def.deftype=stringdef) and (tstringdef(def).string_typ in [st_shortstring,st_longstring])) or
|
|
((def.deftype=procvardef) and (po_methodpointer in tprocvardef(def).procoptions)) or
|
|
((def.deftype=objectdef) and is_object(def)) or
|
|
((def.deftype=setdef) and (tsetdef(def).settype<>smallset));
|
|
end;
|
|
|
|
|
|
function push_high_param(def : tdef) : boolean;
|
|
begin
|
|
push_high_param:=is_open_array(def) or
|
|
is_open_string(def) or
|
|
is_array_of_const(def);
|
|
end;
|
|
|
|
|
|
{ true if a parameter is too large to copy and only the address is pushed }
|
|
function push_addr_param(def : tdef) : boolean;
|
|
begin
|
|
push_addr_param:=false;
|
|
if never_copy_const_param then
|
|
push_addr_param:=true
|
|
else
|
|
begin
|
|
case def.deftype of
|
|
variantdef,
|
|
formaldef :
|
|
push_addr_param:=true;
|
|
recorddef :
|
|
push_addr_param:=(def.size>target_info.size_of_pointer);
|
|
arraydef :
|
|
push_addr_param:=((tarraydef(def).highrange>=tarraydef(def).lowrange) and (def.size>target_info.size_of_pointer)) or
|
|
is_open_array(def) or
|
|
is_array_of_const(def) or
|
|
is_array_constructor(def);
|
|
objectdef :
|
|
push_addr_param:=is_object(def);
|
|
stringdef :
|
|
push_addr_param:=tstringdef(def).string_typ in [st_shortstring,st_longstring];
|
|
procvardef :
|
|
push_addr_param:=(po_methodpointer in tprocvardef(def).procoptions);
|
|
setdef :
|
|
push_addr_param:=(tsetdef(def).settype<>smallset);
|
|
end;
|
|
end;
|
|
end;
|
|
|
|
{ if l isn't in the range of def a range check error (if not explicit) is generated and
|
|
the value is placed within the range }
|
|
procedure testrange(def : tdef;var l : tconstexprint;explicit:boolean);
|
|
var
|
|
lv,hv: longint;
|
|
error: boolean;
|
|
begin
|
|
error := false;
|
|
{ for 64 bit types we need only to check if it is less than }
|
|
{ zero, if def is a qword node }
|
|
if is_64bitint(def) then
|
|
begin
|
|
if (l<0) and (torddef(def).typ=u64bit) then
|
|
begin
|
|
{ don't zero the result, because it may come from hex notation
|
|
like $ffffffffffffffff! (JM)
|
|
l:=0; }
|
|
if not explicit then
|
|
begin
|
|
if (cs_check_range in aktlocalswitches) then
|
|
Message(parser_e_range_check_error)
|
|
else
|
|
Message(parser_w_range_check_error);
|
|
end;
|
|
error := true;
|
|
end;
|
|
end
|
|
else
|
|
begin
|
|
getrange(def,lv,hv);
|
|
if (def.deftype=orddef) and
|
|
(torddef(def).typ=u32bit) then
|
|
begin
|
|
if (l < cardinal(lv)) or
|
|
(l > cardinal(hv)) then
|
|
begin
|
|
if not explicit then
|
|
begin
|
|
if (cs_check_range in aktlocalswitches) then
|
|
Message(parser_e_range_check_error)
|
|
else
|
|
Message(parser_w_range_check_error);
|
|
end;
|
|
error := true;
|
|
end;
|
|
end
|
|
else if (l<lv) or (l>hv) then
|
|
begin
|
|
if not explicit then
|
|
begin
|
|
if ((def.deftype=enumdef) and
|
|
{ delphi allows range check errors in
|
|
enumeration type casts FK }
|
|
not(m_delphi in aktmodeswitches)) or
|
|
(cs_check_range in aktlocalswitches) then
|
|
Message(parser_e_range_check_error)
|
|
else
|
|
Message(parser_w_range_check_error);
|
|
end;
|
|
error := true;
|
|
end;
|
|
end;
|
|
if error then
|
|
begin
|
|
{ Fix the value to fit in the allocated space for this type of variable }
|
|
case def.size of
|
|
1: l := l and $ff;
|
|
2: l := l and $ffff;
|
|
{ work around sign extension bug (to be fixed) (JM) }
|
|
4: l := l and (int64($fffffff) shl 4 + $f);
|
|
end;
|
|
{ do sign extension if necessary (JM) }
|
|
if is_signed(def) then
|
|
begin
|
|
case def.size of
|
|
1: l := shortint(l);
|
|
2: l := smallint(l);
|
|
4: l := longint(l);
|
|
end;
|
|
end;
|
|
end;
|
|
end;
|
|
|
|
|
|
{ return the range from def in l and h }
|
|
procedure getrange(def : tdef;var l : longint;var h : longint);
|
|
begin
|
|
case def.deftype of
|
|
orddef :
|
|
begin
|
|
l:=torddef(def).low;
|
|
h:=torddef(def).high;
|
|
end;
|
|
enumdef :
|
|
begin
|
|
l:=tenumdef(def).min;
|
|
h:=tenumdef(def).max;
|
|
end;
|
|
arraydef :
|
|
begin
|
|
l:=tarraydef(def).lowrange;
|
|
h:=tarraydef(def).highrange;
|
|
end;
|
|
else
|
|
internalerror(987);
|
|
end;
|
|
end;
|
|
|
|
|
|
function mmx_type(p : tdef) : tmmxtype;
|
|
begin
|
|
mmx_type:=mmxno;
|
|
if is_mmx_able_array(p) then
|
|
begin
|
|
if tarraydef(p).elementtype.def.deftype=floatdef then
|
|
case tfloatdef(tarraydef(p).elementtype.def).typ of
|
|
s32real:
|
|
mmx_type:=mmxsingle;
|
|
end
|
|
else
|
|
case torddef(tarraydef(p).elementtype.def).typ of
|
|
u8bit:
|
|
mmx_type:=mmxu8bit;
|
|
s8bit:
|
|
mmx_type:=mmxs8bit;
|
|
u16bit:
|
|
mmx_type:=mmxu16bit;
|
|
s16bit:
|
|
mmx_type:=mmxs16bit;
|
|
u32bit:
|
|
mmx_type:=mmxu32bit;
|
|
s32bit:
|
|
mmx_type:=mmxs32bit;
|
|
end;
|
|
end;
|
|
end;
|
|
|
|
|
|
function is_mmx_able_array(p : tdef) : boolean;
|
|
begin
|
|
{$ifdef SUPPORT_MMX}
|
|
if (cs_mmx_saturation in aktlocalswitches) then
|
|
begin
|
|
is_mmx_able_array:=(p.deftype=arraydef) and
|
|
not(is_special_array(p)) and
|
|
(
|
|
(
|
|
(tarraydef(p).elementtype.def.deftype=orddef) and
|
|
(
|
|
(
|
|
(tarraydef(p).lowrange=0) and
|
|
(tarraydef(p).highrange=1) and
|
|
(torddef(tarraydef(p).elementtype.def).typ in [u32bit,s32bit])
|
|
)
|
|
or
|
|
(
|
|
(tarraydef(p).lowrange=0) and
|
|
(tarraydef(p).highrange=3) and
|
|
(torddef(tarraydef(p).elementtype.def).typ in [u16bit,s16bit])
|
|
)
|
|
)
|
|
)
|
|
or
|
|
(
|
|
(
|
|
(tarraydef(p).elementtype.def.deftype=floatdef) and
|
|
(
|
|
(tarraydef(p).lowrange=0) and
|
|
(tarraydef(p).highrange=1) and
|
|
(tfloatdef(tarraydef(p).elementtype.def).typ=s32real)
|
|
)
|
|
)
|
|
)
|
|
);
|
|
end
|
|
else
|
|
begin
|
|
is_mmx_able_array:=(p.deftype=arraydef) and
|
|
(
|
|
(
|
|
(tarraydef(p).elementtype.def.deftype=orddef) and
|
|
(
|
|
(
|
|
(tarraydef(p).lowrange=0) and
|
|
(tarraydef(p).highrange=1) and
|
|
(torddef(tarraydef(p).elementtype.def).typ in [u32bit,s32bit])
|
|
)
|
|
or
|
|
(
|
|
(tarraydef(p).lowrange=0) and
|
|
(tarraydef(p).highrange=3) and
|
|
(torddef(tarraydef(p).elementtype.def).typ in [u16bit,s16bit])
|
|
)
|
|
or
|
|
(
|
|
(tarraydef(p).lowrange=0) and
|
|
(tarraydef(p).highrange=7) and
|
|
(torddef(tarraydef(p).elementtype.def).typ in [u8bit,s8bit])
|
|
)
|
|
)
|
|
)
|
|
or
|
|
(
|
|
(tarraydef(p).elementtype.def.deftype=floatdef) and
|
|
(
|
|
(tarraydef(p).lowrange=0) and
|
|
(tarraydef(p).highrange=1) and
|
|
(tfloatdef(tarraydef(p).elementtype.def).typ=s32real)
|
|
)
|
|
)
|
|
);
|
|
end;
|
|
{$else SUPPORT_MMX}
|
|
is_mmx_able_array:=false;
|
|
{$endif SUPPORT_MMX}
|
|
end;
|
|
|
|
|
|
function is_equal(def1,def2 : tdef) : boolean;
|
|
var
|
|
b : boolean;
|
|
hd : tdef;
|
|
begin
|
|
{ both types must exists }
|
|
if not (assigned(def1) and assigned(def2)) then
|
|
begin
|
|
is_equal:=false;
|
|
exit;
|
|
end;
|
|
|
|
{ be sure, that if there is a stringdef, that this is def1 }
|
|
if def2.deftype=stringdef then
|
|
begin
|
|
hd:=def1;
|
|
def1:=def2;
|
|
def2:=hd;
|
|
end;
|
|
b:=false;
|
|
|
|
{ both point to the same definition ? }
|
|
if def1=def2 then
|
|
b:=true
|
|
else
|
|
{ pointer with an equal definition are equal }
|
|
if (def1.deftype=pointerdef) and (def2.deftype=pointerdef) then
|
|
begin
|
|
{ check if both are farpointer }
|
|
if (tpointerdef(def1).is_far=tpointerdef(def2).is_far) then
|
|
begin
|
|
{ here a problem detected in tabsolutesym }
|
|
{ the types can be forward type !! }
|
|
if assigned(def1.typesym) and (tpointerdef(def1).pointertype.def.deftype=forwarddef) then
|
|
b:=(def1.typesym=def2.typesym)
|
|
else
|
|
b:=tpointerdef(def1).pointertype.def=tpointerdef(def2).pointertype.def;
|
|
end
|
|
else
|
|
b:=false;
|
|
end
|
|
else
|
|
{ ordinals are equal only when the ordinal type is equal }
|
|
if (def1.deftype=orddef) and (def2.deftype=orddef) then
|
|
begin
|
|
case torddef(def1).typ of
|
|
u8bit,u16bit,u32bit,
|
|
s8bit,s16bit,s32bit:
|
|
b:=((torddef(def1).typ=torddef(def2).typ) and
|
|
(torddef(def1).low=torddef(def2).low) and
|
|
(torddef(def1).high=torddef(def2).high));
|
|
uvoid,uchar,uwidechar,
|
|
bool8bit,bool16bit,bool32bit:
|
|
b:=(torddef(def1).typ=torddef(def2).typ);
|
|
end;
|
|
end
|
|
else
|
|
if (def1.deftype=floatdef) and (def2.deftype=floatdef) then
|
|
b:=tfloatdef(def1).typ=tfloatdef(def2).typ
|
|
else
|
|
{ strings with the same length are equal }
|
|
if (def1.deftype=stringdef) and (def2.deftype=stringdef) and
|
|
(tstringdef(def1).string_typ=tstringdef(def2).string_typ) then
|
|
begin
|
|
b:=not(is_shortstring(def1)) or
|
|
(tstringdef(def1).len=tstringdef(def2).len);
|
|
end
|
|
else
|
|
if (def1.deftype=formaldef) and (def2.deftype=formaldef) then
|
|
b:=true
|
|
{ file types with the same file element type are equal }
|
|
{ this is a problem for assign !! }
|
|
{ changed to allow if one is untyped }
|
|
{ all typed files are equal to the special }
|
|
{ typed file that has voiddef as elemnt type }
|
|
{ but must NOT match for text file !!! }
|
|
else
|
|
if (def1.deftype=filedef) and (def2.deftype=filedef) then
|
|
b:=(tfiledef(def1).filetyp=tfiledef(def2).filetyp) and
|
|
((
|
|
((tfiledef(def1).typedfiletype.def=nil) and
|
|
(tfiledef(def2).typedfiletype.def=nil)) or
|
|
(
|
|
(tfiledef(def1).typedfiletype.def<>nil) and
|
|
(tfiledef(def2).typedfiletype.def<>nil) and
|
|
is_equal(tfiledef(def1).typedfiletype.def,tfiledef(def2).typedfiletype.def)
|
|
) or
|
|
( (tfiledef(def1).typedfiletype.def=tdef(voidtype.def)) or
|
|
(tfiledef(def2).typedfiletype.def=tdef(voidtype.def))
|
|
)))
|
|
{ sets with the same element base type are equal }
|
|
else
|
|
if (def1.deftype=setdef) and (def2.deftype=setdef) then
|
|
begin
|
|
if assigned(tsetdef(def1).elementtype.def) and
|
|
assigned(tsetdef(def2).elementtype.def) then
|
|
b:=is_subequal(tsetdef(def1).elementtype.def,tsetdef(def2).elementtype.def)
|
|
else
|
|
{ empty set is compatible with everything }
|
|
b:=true;
|
|
end
|
|
else
|
|
if (def1.deftype=procvardef) and (def2.deftype=procvardef) then
|
|
begin
|
|
{ poassembler isn't important for compatibility }
|
|
{ if a method is assigned to a methodpointer }
|
|
{ is checked before }
|
|
b:=(tprocvardef(def1).proctypeoption=tprocvardef(def2).proctypeoption) and
|
|
(tprocvardef(def1).proccalloption=tprocvardef(def2).proccalloption) and
|
|
((tprocvardef(def1).procoptions * po_compatibility_options)=
|
|
(tprocvardef(def2).procoptions * po_compatibility_options)) and
|
|
is_equal(tprocvardef(def1).rettype.def,tprocvardef(def2).rettype.def) and
|
|
equal_paras(tprocvardef(def1).para,tprocvardef(def2).para,cp_all);
|
|
end
|
|
else
|
|
if (def1.deftype=arraydef) and (def2.deftype=arraydef) then
|
|
begin
|
|
if is_dynamic_array(def1) and is_dynamic_array(def2) then
|
|
b:=is_equal(tarraydef(def1).elementtype.def,tarraydef(def2).elementtype.def)
|
|
else
|
|
if is_array_of_const(def1) or is_array_of_const(def2) then
|
|
begin
|
|
b:=(is_array_of_const(def1) and is_array_of_const(def2)) or
|
|
(is_array_of_const(def1) and is_array_constructor(def2)) or
|
|
(is_array_of_const(def2) and is_array_constructor(def1));
|
|
end
|
|
else
|
|
if is_open_array(def1) or is_open_array(def2) then
|
|
begin
|
|
b:=is_equal(tarraydef(def1).elementtype.def,tarraydef(def2).elementtype.def);
|
|
end
|
|
else
|
|
begin
|
|
b:=not(m_tp in aktmodeswitches) and
|
|
not(m_delphi in aktmodeswitches) and
|
|
(tarraydef(def1).lowrange=tarraydef(def2).lowrange) and
|
|
(tarraydef(def1).highrange=tarraydef(def2).highrange) and
|
|
is_equal(tarraydef(def1).elementtype.def,tarraydef(def2).elementtype.def) and
|
|
is_equal(tarraydef(def1).rangetype.def,tarraydef(def2).rangetype.def);
|
|
end;
|
|
end
|
|
else
|
|
if (def1.deftype=classrefdef) and (def2.deftype=classrefdef) then
|
|
begin
|
|
{ similar to pointerdef: }
|
|
if assigned(def1.typesym) and (tclassrefdef(def1).pointertype.def.deftype=forwarddef) then
|
|
b:=(def1.typesym=def2.typesym)
|
|
else
|
|
b:=is_equal(tclassrefdef(def1).pointertype.def,tclassrefdef(def2).pointertype.def);
|
|
end;
|
|
is_equal:=b;
|
|
end;
|
|
|
|
|
|
function is_subequal(def1, def2: tdef): boolean;
|
|
|
|
var
|
|
basedef1,basedef2 : tenumdef;
|
|
|
|
Begin
|
|
is_subequal := false;
|
|
if assigned(def1) and assigned(def2) then
|
|
Begin
|
|
if (def1.deftype = orddef) and (def2.deftype = orddef) then
|
|
Begin
|
|
{ see p.47 of Turbo Pascal 7.01 manual for the separation of types }
|
|
{ range checking for case statements is done with testrange }
|
|
case torddef(def1).typ of
|
|
u8bit,u16bit,u32bit,
|
|
s8bit,s16bit,s32bit,s64bit,u64bit :
|
|
is_subequal:=(torddef(def2).typ in [s64bit,u64bit,s32bit,u32bit,u8bit,s8bit,s16bit,u16bit]);
|
|
bool8bit,bool16bit,bool32bit :
|
|
is_subequal:=(torddef(def2).typ in [bool8bit,bool16bit,bool32bit]);
|
|
uchar :
|
|
is_subequal:=(torddef(def2).typ=uchar);
|
|
uwidechar :
|
|
is_subequal:=(torddef(def2).typ=uwidechar);
|
|
end;
|
|
end
|
|
else
|
|
Begin
|
|
{ I assume that both enumerations are equal when the first }
|
|
{ pointers are equal. }
|
|
|
|
{ I changed this to assume that the enums are equal }
|
|
{ if the basedefs are equal (FK) }
|
|
if (def1.deftype=enumdef) and (def2.deftype=enumdef) then
|
|
Begin
|
|
{ get both basedefs }
|
|
basedef1:=tenumdef(def1);
|
|
while assigned(basedef1.basedef) do
|
|
basedef1:=basedef1.basedef;
|
|
basedef2:=tenumdef(def2);
|
|
while assigned(basedef2.basedef) do
|
|
basedef2:=basedef2.basedef;
|
|
is_subequal:=basedef1=basedef2;
|
|
{
|
|
if tenumdef(def1).firstenum = tenumdef(def2).firstenum then
|
|
is_subequal := TRUE;
|
|
}
|
|
end;
|
|
end;
|
|
end; { endif assigned ... }
|
|
end;
|
|
|
|
function assignment_overloaded(from_def,to_def : tdef) : tprocdef;
|
|
var
|
|
passproc : tprocdef;
|
|
convtyp : tconverttype;
|
|
begin
|
|
assignment_overloaded:=nil;
|
|
if assigned(overloaded_operators[_ASSIGNMENT]) then
|
|
passproc:=overloaded_operators[_ASSIGNMENT].definition
|
|
else
|
|
exit;
|
|
|
|
{ look for an exact match first }
|
|
while passproc<>nil do
|
|
begin
|
|
if is_equal(passproc.rettype.def,to_def) and
|
|
(TParaItem(passproc.Para.first).paratype.def=from_def) then
|
|
begin
|
|
assignment_overloaded:=passproc;
|
|
exit;
|
|
end;
|
|
passproc:=passproc.nextoverloaded;
|
|
end;
|
|
|
|
passproc:=overloaded_operators[_ASSIGNMENT].definition;
|
|
{ .... then look for an equal match }
|
|
while passproc<>nil do
|
|
begin
|
|
if is_equal(passproc.rettype.def,to_def) and
|
|
is_equal(TParaItem(passproc.Para.first).paratype.def,from_def) then
|
|
begin
|
|
assignment_overloaded:=passproc;
|
|
exit;
|
|
end;
|
|
passproc:=passproc.nextoverloaded;
|
|
end;
|
|
|
|
passproc:=overloaded_operators[_ASSIGNMENT].definition;
|
|
{ .... then for convert level 1 }
|
|
while passproc<>nil do
|
|
begin
|
|
if is_equal(passproc.rettype.def,to_def) and
|
|
(isconvertable(from_def,TParaItem(passproc.Para.first).paratype.def,convtyp,ordconstn,false)=1) then
|
|
begin
|
|
assignment_overloaded:=passproc;
|
|
exit;
|
|
end;
|
|
passproc:=passproc.nextoverloaded;
|
|
end;
|
|
end;
|
|
|
|
|
|
{ Returns:
|
|
0 - Not convertable
|
|
1 - Convertable
|
|
2 - Convertable, but not first choice }
|
|
function isconvertable(def_from,def_to : tdef;
|
|
var doconv : tconverttype;
|
|
fromtreetype : tnodetype;
|
|
explicit : boolean) : byte;
|
|
|
|
{ Tbasetype: uauto,uvoid,uchar,
|
|
u8bit,u16bit,u32bit,
|
|
s8bit,s16bit,s32,
|
|
bool8bit,bool16bit,bool32bit,
|
|
u64bit,s64bitint,uwidechar }
|
|
type
|
|
tbasedef=(bvoid,bchar,bint,bbool);
|
|
const
|
|
basedeftbl:array[tbasetype] of tbasedef =
|
|
(bvoid,bvoid,bchar,
|
|
bint,bint,bint,
|
|
bint,bint,bint,
|
|
bbool,bbool,bbool,bint,bint,bchar);
|
|
|
|
basedefconverts : array[tbasedef,tbasedef] of tconverttype =
|
|
((tc_not_possible,tc_not_possible,tc_not_possible,tc_not_possible),
|
|
(tc_not_possible,tc_char_2_char,tc_not_possible,tc_not_possible),
|
|
(tc_not_possible,tc_not_possible,tc_int_2_int,tc_int_2_bool),
|
|
(tc_not_possible,tc_not_possible,tc_bool_2_int,tc_bool_2_bool));
|
|
|
|
var
|
|
b : byte;
|
|
hd1,hd2 : tdef;
|
|
hct : tconverttype;
|
|
begin
|
|
{ safety check }
|
|
if not(assigned(def_from) and assigned(def_to)) then
|
|
begin
|
|
isconvertable:=0;
|
|
exit;
|
|
end;
|
|
|
|
{ tp7 procvar def support, in tp7 a procvar is always called, if the
|
|
procvar is passed explicit a addrn would be there }
|
|
if (m_tp_procvar in aktmodeswitches) and
|
|
(def_from.deftype=procvardef) and
|
|
(fromtreetype=loadn) then
|
|
begin
|
|
def_from:=tprocvardef(def_from).rettype.def;
|
|
end;
|
|
|
|
{ we walk the wanted (def_to) types and check then the def_from
|
|
types if there is a conversion possible }
|
|
b:=0;
|
|
case def_to.deftype of
|
|
orddef :
|
|
begin
|
|
case def_from.deftype of
|
|
orddef :
|
|
begin
|
|
doconv:=basedefconverts[basedeftbl[torddef(def_from).typ],basedeftbl[torddef(def_to).typ]];
|
|
b:=1;
|
|
if (doconv=tc_not_possible) or
|
|
((doconv=tc_int_2_bool) and
|
|
(not explicit) and
|
|
(not is_boolean(def_from))) or
|
|
((doconv=tc_bool_2_int) and
|
|
(not explicit) and
|
|
(not is_boolean(def_to))) then
|
|
b:=0;
|
|
end;
|
|
enumdef :
|
|
begin
|
|
{ needed for char(enum) }
|
|
if explicit then
|
|
begin
|
|
doconv:=tc_int_2_int;
|
|
b:=1;
|
|
end;
|
|
end;
|
|
end;
|
|
end;
|
|
|
|
stringdef :
|
|
begin
|
|
case def_from.deftype of
|
|
stringdef :
|
|
begin
|
|
doconv:=tc_string_2_string;
|
|
b:=1;
|
|
end;
|
|
orddef :
|
|
begin
|
|
{ char to string}
|
|
if is_char(def_from) or
|
|
is_widechar(def_from) then
|
|
begin
|
|
doconv:=tc_char_2_string;
|
|
b:=1;
|
|
end;
|
|
end;
|
|
arraydef :
|
|
begin
|
|
{ array of char to string, the length check is done by the firstpass of this node }
|
|
if is_chararray(def_from) or
|
|
(is_equal(tarraydef(def_from).elementtype.def,cchartype.def) and
|
|
is_open_array(def_from)) then
|
|
begin
|
|
doconv:=tc_chararray_2_string;
|
|
if is_open_array(def_from) or
|
|
(is_shortstring(def_to) and
|
|
(def_from.size <= 255)) or
|
|
(is_ansistring(def_to) and
|
|
(def_from.size > 255)) then
|
|
b:=1
|
|
else
|
|
b:=2;
|
|
end;
|
|
end;
|
|
pointerdef :
|
|
begin
|
|
{ pchar can be assigned to short/ansistrings,
|
|
but not in tp7 compatible mode }
|
|
if is_pchar(def_from) and not(m_tp7 in aktmodeswitches) then
|
|
begin
|
|
doconv:=tc_pchar_2_string;
|
|
{ trefer ansistrings because pchars can overflow shortstrings, }
|
|
{ but only if ansistrings are the default (JM) }
|
|
if (is_shortstring(def_to) and
|
|
not(cs_ansistrings in aktlocalswitches)) or
|
|
(is_ansistring(def_to) and
|
|
(cs_ansistrings in aktlocalswitches)) then
|
|
b:=1
|
|
else
|
|
b:=2;
|
|
end;
|
|
end;
|
|
end;
|
|
end;
|
|
|
|
floatdef :
|
|
begin
|
|
case def_from.deftype of
|
|
orddef :
|
|
begin { ordinal to real }
|
|
if is_integer(def_from) then
|
|
begin
|
|
doconv:=tc_int_2_real;
|
|
b:=1;
|
|
end;
|
|
end;
|
|
floatdef :
|
|
begin { 2 float types ? }
|
|
if tfloatdef(def_from).typ=tfloatdef(def_to).typ then
|
|
doconv:=tc_equal
|
|
else
|
|
doconv:=tc_real_2_real;
|
|
b:=1;
|
|
end;
|
|
end;
|
|
end;
|
|
|
|
enumdef :
|
|
begin
|
|
if (def_from.deftype=enumdef) then
|
|
begin
|
|
if explicit then
|
|
begin
|
|
b:=1;
|
|
doconv:=tc_int_2_int;
|
|
end
|
|
else
|
|
begin
|
|
hd1:=def_from;
|
|
while assigned(tenumdef(hd1).basedef) do
|
|
hd1:=tenumdef(hd1).basedef;
|
|
hd2:=def_to;
|
|
while assigned(tenumdef(hd2).basedef) do
|
|
hd2:=tenumdef(hd2).basedef;
|
|
if (hd1=hd2) then
|
|
begin
|
|
b:=1;
|
|
{ because of packenum they can have different sizes! (JM) }
|
|
doconv:=tc_int_2_int;
|
|
end;
|
|
end;
|
|
end;
|
|
end;
|
|
|
|
arraydef :
|
|
begin
|
|
{ open array is also compatible with a single element of its base type }
|
|
if is_open_array(def_to) and
|
|
is_equal(tarraydef(def_to).elementtype.def,def_from) then
|
|
begin
|
|
doconv:=tc_equal;
|
|
b:=1;
|
|
end
|
|
else
|
|
begin
|
|
case def_from.deftype of
|
|
arraydef :
|
|
begin
|
|
{ array constructor -> open array }
|
|
if is_open_array(def_to) and
|
|
is_array_constructor(def_from) then
|
|
begin
|
|
if is_void(tarraydef(def_from).elementtype.def) or
|
|
is_equal(tarraydef(def_to).elementtype.def,tarraydef(def_from).elementtype.def) then
|
|
begin
|
|
doconv:=tc_equal;
|
|
b:=1;
|
|
end
|
|
else
|
|
if isconvertable(tarraydef(def_from).elementtype.def,
|
|
tarraydef(def_to).elementtype.def,hct,arrayconstructorn,false)<>0 then
|
|
begin
|
|
doconv:=hct;
|
|
b:=2;
|
|
end;
|
|
end
|
|
else
|
|
{ array of tvarrec -> array of const }
|
|
if is_array_of_const(def_to) and
|
|
is_equal(tarraydef(def_to).elementtype.def,tarraydef(def_from).elementtype.def) then
|
|
begin
|
|
doconv:=tc_equal;
|
|
b:=1;
|
|
end;
|
|
end;
|
|
pointerdef :
|
|
begin
|
|
if is_zero_based_array(def_to) and
|
|
is_equal(tpointerdef(def_from).pointertype.def,tarraydef(def_to).elementtype.def) then
|
|
begin
|
|
doconv:=tc_pointer_2_array;
|
|
b:=1;
|
|
end;
|
|
end;
|
|
stringdef :
|
|
begin
|
|
{ string to char array }
|
|
if (not is_special_array(def_to)) and
|
|
is_char(tarraydef(def_to).elementtype.def) then
|
|
begin
|
|
doconv:=tc_string_2_chararray;
|
|
b:=1;
|
|
end;
|
|
end;
|
|
recorddef :
|
|
begin
|
|
{ tvarrec -> array of constconst }
|
|
if is_array_of_const(def_to) and
|
|
is_equal(def_from,tarraydef(def_to).elementtype.def) then
|
|
begin
|
|
doconv:=tc_equal;
|
|
b:=1;
|
|
end;
|
|
end;
|
|
end;
|
|
end;
|
|
end;
|
|
|
|
pointerdef :
|
|
begin
|
|
case def_from.deftype of
|
|
stringdef :
|
|
begin
|
|
{ string constant (which can be part of array constructor)
|
|
to zero terminated string constant }
|
|
if (fromtreetype in [arrayconstructorn,stringconstn]) and
|
|
is_pchar(def_to) or is_pwidechar(def_to) then
|
|
begin
|
|
doconv:=tc_cstring_2_pchar;
|
|
b:=1;
|
|
end;
|
|
end;
|
|
orddef :
|
|
begin
|
|
{ char constant to zero terminated string constant }
|
|
if (fromtreetype=ordconstn) then
|
|
begin
|
|
if is_equal(def_from,cchartype.def) and
|
|
is_pchar(def_to) then
|
|
begin
|
|
doconv:=tc_cchar_2_pchar;
|
|
b:=1;
|
|
end
|
|
else
|
|
if is_integer(def_from) then
|
|
begin
|
|
doconv:=tc_cord_2_pointer;
|
|
b:=1;
|
|
end;
|
|
end;
|
|
end;
|
|
arraydef :
|
|
begin
|
|
{ chararray to pointer }
|
|
if is_zero_based_array(def_from) and
|
|
is_equal(tarraydef(def_from).elementtype.def,tpointerdef(def_to).pointertype.def) then
|
|
begin
|
|
doconv:=tc_array_2_pointer;
|
|
b:=1;
|
|
end;
|
|
end;
|
|
pointerdef :
|
|
begin
|
|
{ child class pointer can be assigned to anchestor pointers }
|
|
if (
|
|
(tpointerdef(def_from).pointertype.def.deftype=objectdef) and
|
|
(tpointerdef(def_to).pointertype.def.deftype=objectdef) and
|
|
tobjectdef(tpointerdef(def_from).pointertype.def).is_related(
|
|
tobjectdef(tpointerdef(def_to).pointertype.def))
|
|
) or
|
|
{ all pointers can be assigned to void-pointer }
|
|
is_equal(tpointerdef(def_to).pointertype.def,voidtype.def) or
|
|
{ in my opnion, is this not clean pascal }
|
|
{ well, but it's handy to use, it isn't ? (FK) }
|
|
is_equal(tpointerdef(def_from).pointertype.def,voidtype.def) then
|
|
begin
|
|
{ but don't allow conversion between farpointer-pointer }
|
|
if (tpointerdef(def_to).is_far=tpointerdef(def_from).is_far) then
|
|
begin
|
|
doconv:=tc_equal;
|
|
b:=1;
|
|
end;
|
|
end;
|
|
end;
|
|
procvardef :
|
|
begin
|
|
{ procedure variable can be assigned to an void pointer }
|
|
{ Not anymore. Use the @ operator now.}
|
|
if not(m_tp_procvar in aktmodeswitches) and
|
|
(tpointerdef(def_to).pointertype.def.deftype=orddef) and
|
|
(torddef(tpointerdef(def_to).pointertype.def).typ=uvoid) then
|
|
begin
|
|
doconv:=tc_equal;
|
|
b:=1;
|
|
end;
|
|
end;
|
|
classrefdef,
|
|
objectdef :
|
|
begin
|
|
{ class types and class reference type
|
|
can be assigned to void pointers }
|
|
if (
|
|
is_class_or_interface(def_from) or
|
|
(def_from.deftype=classrefdef)
|
|
) and
|
|
(tpointerdef(def_to).pointertype.def.deftype=orddef) and
|
|
(torddef(tpointerdef(def_to).pointertype.def).typ=uvoid) then
|
|
begin
|
|
doconv:=tc_equal;
|
|
b:=1;
|
|
end;
|
|
end;
|
|
end;
|
|
end;
|
|
|
|
setdef :
|
|
begin
|
|
{ automatic arrayconstructor -> set conversion }
|
|
if is_array_constructor(def_from) then
|
|
begin
|
|
doconv:=tc_arrayconstructor_2_set;
|
|
b:=1;
|
|
end;
|
|
end;
|
|
|
|
procvardef :
|
|
begin
|
|
{ proc -> procvar }
|
|
if (def_from.deftype=procdef) and
|
|
(m_tp_procvar in aktmodeswitches) then
|
|
begin
|
|
doconv:=tc_proc_2_procvar;
|
|
if proc_to_procvar_equal(tprocdef(def_from),tprocvardef(def_to)) then
|
|
b:=1;
|
|
end
|
|
else
|
|
{ for example delphi allows the assignement from pointers }
|
|
{ to procedure variables }
|
|
if (m_pointer_2_procedure in aktmodeswitches) and
|
|
(def_from.deftype=pointerdef) and
|
|
(tpointerdef(def_from).pointertype.def.deftype=orddef) and
|
|
(torddef(tpointerdef(def_from).pointertype.def).typ=uvoid) then
|
|
begin
|
|
doconv:=tc_equal;
|
|
b:=1;
|
|
end
|
|
else
|
|
{ nil is compatible with procvars }
|
|
if (fromtreetype=niln) then
|
|
begin
|
|
doconv:=tc_equal;
|
|
b:=1;
|
|
end;
|
|
end;
|
|
|
|
objectdef :
|
|
begin
|
|
{ object pascal objects }
|
|
if (def_from.deftype=objectdef) and
|
|
tobjectdef(def_from).is_related(tobjectdef(def_to)) then
|
|
begin
|
|
doconv:=tc_equal;
|
|
b:=1;
|
|
end
|
|
else
|
|
{ Class/interface specific }
|
|
if is_class_or_interface(def_to) then
|
|
begin
|
|
{ void pointer also for delphi mode }
|
|
if (m_delphi in aktmodeswitches) and
|
|
is_voidpointer(def_from) then
|
|
begin
|
|
doconv:=tc_equal;
|
|
b:=1;
|
|
end
|
|
else
|
|
{ nil is compatible with class instances and interfaces }
|
|
if (fromtreetype=niln) then
|
|
begin
|
|
doconv:=tc_equal;
|
|
b:=1;
|
|
end
|
|
{ classes can be assigned to interfaces }
|
|
else if is_interface(def_to) and
|
|
is_class(def_from) and
|
|
assigned(tobjectdef(def_from).implementedinterfaces) and
|
|
(tobjectdef(def_from).implementedinterfaces.searchintf(def_to)<>-1) then
|
|
begin
|
|
doconv:=tc_class_2_intf;
|
|
b:=1;
|
|
end
|
|
{ Interface 2 GUID handling }
|
|
else if (def_to=tdef(rec_tguid)) and
|
|
(fromtreetype=typen) and
|
|
is_interface(def_from) and
|
|
tobjectdef(def_from).isiidguidvalid then
|
|
begin
|
|
b:=1;
|
|
doconv:=tc_equal;
|
|
end;
|
|
end;
|
|
end;
|
|
|
|
classrefdef :
|
|
begin
|
|
{ class reference types }
|
|
if (def_from.deftype=classrefdef) then
|
|
begin
|
|
doconv:=tc_equal;
|
|
if tobjectdef(tclassrefdef(def_from).pointertype.def).is_related(
|
|
tobjectdef(tclassrefdef(def_to).pointertype.def)) then
|
|
b:=1;
|
|
end
|
|
else
|
|
{ nil is compatible with class references }
|
|
if (fromtreetype=niln) then
|
|
begin
|
|
doconv:=tc_equal;
|
|
b:=1;
|
|
end;
|
|
end;
|
|
|
|
filedef :
|
|
begin
|
|
{ typed files are all equal to the abstract file type
|
|
name TYPEDFILE in system.pp in is_equal in types.pas
|
|
the problem is that it sholud be also compatible to FILE
|
|
but this would leed to a problem for ASSIGN RESET and REWRITE
|
|
when trying to find the good overloaded function !!
|
|
so all file function are doubled in system.pp
|
|
this is not very beautiful !!}
|
|
if (def_from.deftype=filedef) and
|
|
(
|
|
(
|
|
(tfiledef(def_from).filetyp = ft_typed) and
|
|
(tfiledef(def_to).filetyp = ft_typed) and
|
|
(
|
|
(tfiledef(def_from).typedfiletype.def = tdef(voidtype.def)) or
|
|
(tfiledef(def_to).typedfiletype.def = tdef(voidtype.def))
|
|
)
|
|
) or
|
|
(
|
|
(
|
|
(tfiledef(def_from).filetyp = ft_untyped) and
|
|
(tfiledef(def_to).filetyp = ft_typed)
|
|
) or
|
|
(
|
|
(tfiledef(def_from).filetyp = ft_typed) and
|
|
(tfiledef(def_to).filetyp = ft_untyped)
|
|
)
|
|
)
|
|
) then
|
|
begin
|
|
doconv:=tc_equal;
|
|
b:=1;
|
|
end
|
|
end;
|
|
|
|
recorddef :
|
|
begin
|
|
{ interface -> guid }
|
|
if is_interface(def_from) and
|
|
(def_to=rec_tguid) then
|
|
begin
|
|
doconv:=tc_intf_2_guid;
|
|
b:=1;
|
|
end
|
|
else
|
|
begin
|
|
{ assignment overwritten ?? }
|
|
if assignment_overloaded(def_from,def_to)<>nil then
|
|
b:=2;
|
|
end;
|
|
end;
|
|
else
|
|
begin
|
|
{ assignment overwritten ?? }
|
|
if assignment_overloaded(def_from,def_to)<>nil then
|
|
b:=2;
|
|
end;
|
|
end;
|
|
isconvertable:=b;
|
|
end;
|
|
|
|
|
|
function CheckTypes(def1,def2 : tdef) : boolean;
|
|
|
|
var
|
|
s1,s2 : string;
|
|
|
|
begin
|
|
if not is_equal(def1,def2) then
|
|
begin
|
|
{ Crash prevention }
|
|
if (not assigned(def1)) or (not assigned(def2)) then
|
|
Message(type_e_mismatch)
|
|
else
|
|
begin
|
|
s1:=def1.typename;
|
|
s2:=def2.typename;
|
|
if (s1<>'<unknown type>') and (s2<>'<unknown type>') then
|
|
Message2(type_e_not_equal_types,def1.typename,def2.typename)
|
|
else
|
|
Message(type_e_mismatch);
|
|
end;
|
|
CheckTypes:=false;
|
|
end
|
|
else
|
|
CheckTypes:=true;
|
|
end;
|
|
|
|
end.
|
|
{
|
|
$Log$
|
|
Revision 1.53 2001-10-25 21:22:40 peter
|
|
* calling convention rewrite
|
|
|
|
Revision 1.52 2001/10/22 21:21:09 peter
|
|
* allow enum(enum)
|
|
|
|
Revision 1.51 2001/10/22 15:13:49 jonas
|
|
* allow typeconversion of open array-of-char to string
|
|
|
|
Revision 1.50 2001/10/20 19:28:39 peter
|
|
* interface 2 guid support
|
|
* guid constants support
|
|
|
|
Revision 1.49 2001/10/17 22:41:05 florian
|
|
* several widechar fixes, case works now
|
|
|
|
Revision 1.48 2001/10/16 17:15:44 jonas
|
|
* auto-converting from int64 to real is again allowed for all modes
|
|
(it's allowed in Delphi too)
|
|
|
|
Revision 1.47 2001/09/03 13:27:41 jonas
|
|
* compilerproc implementation of set addition/substraction/...
|
|
* changed the declaration of some set helpers somewhat to accomodate the
|
|
above change
|
|
* i386 still uses the old code for comparisons of sets, because its
|
|
helpers return the results in the flags
|
|
* dummy tc_normal_2_small_set type conversion because I need the original
|
|
resulttype of the set add nodes
|
|
NOTE: you have to start a cycle with 1.0.5!
|
|
|
|
Revision 1.46 2001/09/02 21:15:34 peter
|
|
* don't allow int64->real for delphi mode
|
|
|
|
Revision 1.45 2001/08/19 21:11:21 florian
|
|
* some bugs fix:
|
|
- overload; with external procedures fixed
|
|
- better selection of routine to do an overloaded
|
|
type case
|
|
- ... some more
|
|
|
|
Revision 1.44 2001/07/08 21:00:16 peter
|
|
* various widestring updates, it works now mostly without charset
|
|
mapping supported
|
|
|
|
Revision 1.43 2001/06/29 14:16:57 jonas
|
|
* fixed inconsistent handling of procvars in FPC mode (sometimes @ was
|
|
required to assign the address of a procedure to a procvar, sometimes
|
|
not. Now it is always required) (merged)
|
|
|
|
Revision 1.42 2001/05/08 21:06:33 florian
|
|
* some more support for widechars commited especially
|
|
regarding type casting and constants
|
|
|
|
Revision 1.41 2001/04/22 22:46:49 florian
|
|
* more variant support
|
|
|
|
Revision 1.40 2001/04/18 22:02:00 peter
|
|
* registration of targets and assemblers
|
|
|
|
Revision 1.39 2001/04/13 01:22:17 peter
|
|
* symtable change to classes
|
|
* range check generation and errors fixed, make cycle DEBUG=1 works
|
|
* memory leaks fixed
|
|
|
|
Revision 1.38 2001/04/04 21:30:47 florian
|
|
* applied several fixes to get the DD8 Delphi Unit compiled
|
|
e.g. "forward"-interfaces are working now
|
|
|
|
Revision 1.37 2001/04/02 21:20:35 peter
|
|
* resulttype rewrite
|
|
|
|
Revision 1.36 2001/03/23 00:16:07 florian
|
|
+ some stuff to compile FreeCLX added
|
|
|
|
Revision 1.35 2001/03/03 12:38:33 jonas
|
|
+ support for arraydefs in is_signed (for their rangetype, used in rangechecks)
|
|
|
|
Revision 1.34 2001/02/26 19:44:55 peter
|
|
* merged generic m68k updates from fixes branch
|
|
|
|
Revision 1.33 2001/02/26 12:47:46 jonas
|
|
* fixed bug in type checking for compatibility of set elements (merged)
|
|
* released fix in options.pas from Carl also for FPC (merged)
|
|
|
|
Revision 1.32 2001/02/20 21:44:25 peter
|
|
* tvarrec -> array of const fixed
|
|
|
|
Revision 1.31 2001/01/22 11:20:15 jonas
|
|
* fixed web bug 1363 (merged)
|
|
|
|
Revision 1.30 2001/01/08 21:43:38 peter
|
|
* string isn't compatible with array of char
|
|
|
|
Revision 1.29 2000/12/25 00:07:30 peter
|
|
+ new tlinkedlist class (merge of old tstringqueue,tcontainer and
|
|
tlinkedlist objects)
|
|
|
|
Revision 1.28 2000/12/22 22:38:12 peter
|
|
* fixed bug #1286
|
|
|
|
Revision 1.27 2000/12/20 15:59:40 jonas
|
|
- removed obsolete special case for range checking of cardinal constants
|
|
at compile time
|
|
|
|
Revision 1.26 2000/12/11 19:13:54 jonas
|
|
* fixed range checking of cardinal constants
|
|
* fixed range checking of "qword constants" (they don't really exist,
|
|
but values > high(int64) were set to zero if assigned to qword)
|
|
|
|
Revision 1.25 2000/12/08 14:06:11 jonas
|
|
* fix for web bug 1245: arrays of char with size >255 are now passed to
|
|
overloaded procedures which expect ansistrings instead of shortstrings
|
|
if possible
|
|
* pointer to array of chars (when using $t+) are now also considered
|
|
pchars
|
|
|
|
Revision 1.24 2000/11/20 15:52:47 jonas
|
|
* testrange now always cuts a constant to the size of the destination
|
|
if a rangeerror occurred
|
|
* changed an "and $ffffffff" to "and (int64($fffffff) shl 4 + $f" to
|
|
work around the constant evaluation problem we currently have
|
|
|
|
Revision 1.23 2000/11/13 14:42:41 jonas
|
|
* fix in testrange so that 64bit constants are properly truncated when
|
|
assigned to 32bit vars
|
|
|
|
Revision 1.22 2000/11/13 11:30:55 florian
|
|
* some bugs with interfaces and NIL fixed
|
|
|
|
Revision 1.21 2000/11/12 23:24:12 florian
|
|
* interfaces are basically running
|
|
|
|
Revision 1.20 2000/11/11 16:13:31 peter
|
|
* farpointer and normal pointer aren't compatible
|
|
|
|
Revision 1.19 2000/11/06 22:30:30 peter
|
|
* more fixes
|
|
|
|
Revision 1.18 2000/11/04 14:25:22 florian
|
|
+ merged Attila's changes for interfaces, not tested yet
|
|
|
|
Revision 1.17 2000/10/31 22:30:13 peter
|
|
* merged asm result patch part 2
|
|
|
|
Revision 1.16 2000/10/31 22:02:55 peter
|
|
* symtable splitted, no real code changes
|
|
|
|
Revision 1.15 2000/10/21 18:16:12 florian
|
|
* a lot of changes:
|
|
- basic dyn. array support
|
|
- basic C++ support
|
|
- some work for interfaces done
|
|
....
|
|
|
|
Revision 1.14 2000/10/14 10:14:56 peter
|
|
* moehrendorf oct 2000 rewrite
|
|
|
|
Revision 1.13 2000/10/01 19:48:26 peter
|
|
* lot of compile updates for cg11
|
|
|
|
Revision 1.12 2000/09/30 16:08:46 peter
|
|
* more cg11 updates
|
|
|
|
Revision 1.11 2000/09/24 15:06:32 peter
|
|
* use defines.inc
|
|
|
|
Revision 1.10 2000/09/18 12:31:15 jonas
|
|
* fixed bug in push_addr_param for arrays (merged from fixes branch)
|
|
|
|
Revision 1.9 2000/09/10 20:16:21 peter
|
|
* array of const isn't equal with array of <type> (merged)
|
|
|
|
Revision 1.8 2000/08/19 19:51:03 peter
|
|
* fixed bug with comparing constsym strings
|
|
|
|
Revision 1.7 2000/08/16 13:06:07 florian
|
|
+ support of 64 bit integer constants
|
|
|
|
Revision 1.6 2000/08/13 13:07:18 peter
|
|
* equal_paras now also checks default parameter value
|
|
|
|
Revision 1.5 2000/08/12 06:49:22 florian
|
|
+ case statement for int64/qword implemented
|
|
|
|
Revision 1.4 2000/08/08 19:26:41 peter
|
|
* equal_constsym() needed for default para
|
|
|
|
Revision 1.3 2000/07/13 12:08:28 michael
|
|
+ patched to 1.1.0 with former 1.09patch from peter
|
|
|
|
Revision 1.2 2000/07/13 11:32:53 michael
|
|
+ removed logs
|
|
}
|