fpc/compiler/ncnv.pas

5203 lines
202 KiB
ObjectPascal

{
Copyright (c) 2000-2002 by Florian Klaempfl
Type checking and register allocation for type converting nodes
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
****************************************************************************
}
unit ncnv;
{$i fpcdefs.inc}
interface
uses
node,
symtype,
defutil,defcmp,
nld
;
type
ttypeconvnodeflag = (
{ the typeconvnode is a proc_2_procvar, generated internally by an
address operator, such as @proc, Addr(proc), Ofs(proc) or Seg(proc),
which is then going to be converted to a void pointer. Why does it
matter? Because, on i8086 far code memory models you're allowed to
take the address of a _near_ procedure as a void pointer (which the
@ operator does in TP mode), but not as a procvar (in that case the
procedure must be far). }
tcnf_proc_2_procvar_2_voidpointer,
{ proc_2_procvar, generated internally by Ofs() }
tcnf_proc_2_procvar_get_offset_only
);
ttypeconvnodeflags = set of ttypeconvnodeflag;
ttypeconvnode = class(tunarynode)
totypedef : tdef;
totypedefderef : tderef;
convtype : tconverttype;
convnodeflags : ttypeconvnodeflags;
warn_pointer_to_signed,
assignment_side: boolean;
constructor create(node : tnode;def:tdef);virtual;
constructor create_explicit(node : tnode;def:tdef);
constructor create_internal(node : tnode;def:tdef);
constructor create_proc_to_procvar(node : tnode);
constructor ppuload(t:tnodetype;ppufile:tcompilerppufile);override;
procedure ppuwrite(ppufile:tcompilerppufile);override;
procedure buildderefimpl;override;
procedure derefimpl;override;
function dogetcopy : tnode;override;
procedure printnodeinfo(var t : text);override;
{$ifdef DEBUG_NODE_XML}
procedure XMLPrintNodeInfo(var T: Text); override;
{$endif DEBUG_NODE_XML}
function pass_1 : tnode;override;
function pass_typecheck:tnode;override;
function simplify(forinline : boolean):tnode; override;
procedure mark_write;override;
function docompare(p: tnode) : boolean; override;
function retains_value_location:boolean;
function assign_allowed:boolean;
procedure second_call_helper(c : tconverttype);
{ always called before any other type conversion checks. If it
returns true, the type conversion is ok and no further checks/
handling are required. }
function target_specific_general_typeconv: boolean;virtual;
{ called in case of a valid explicit type conversion. Can be used to
replace this explicit type conversion with a different node, or to
reject it after all }
function target_specific_explicit_typeconv: boolean;virtual;
{ called when inserttypeconv is used to convert to a def that is equal
according to compare_defs() }
class function target_specific_need_equal_typeconv(fromdef, todef: tdef): boolean; virtual;
protected
function typecheck_int_to_int : tnode; virtual;
function typecheck_cord_to_pointer : tnode; virtual;
function typecheck_chararray_to_string : tnode; virtual;
function typecheck_string_to_chararray : tnode; virtual;
function typecheck_string_to_string : tnode; virtual;
function typecheck_char_to_string : tnode; virtual;
function typecheck_char_to_chararray : tnode; virtual;
function typecheck_int_to_real : tnode; virtual;
function typecheck_real_to_real : tnode; virtual;
function typecheck_real_to_currency : tnode; virtual;
function typecheck_cchar_to_pchar : tnode; virtual;
function typecheck_cstring_to_pchar : tnode; virtual;
function typecheck_cstring_to_int : tnode; virtual;
function typecheck_char_to_char : tnode; virtual;
function typecheck_arrayconstructor_to_set : tnode; virtual;
function typecheck_set_to_set : tnode; virtual;
function typecheck_pchar_to_string : tnode; virtual;
function typecheck_interface_to_string : tnode; virtual;
function typecheck_interface_to_guid : tnode; virtual;
function typecheck_dynarray_to_openarray : tnode; virtual;
function typecheck_pwchar_to_string : tnode; virtual;
function typecheck_variant_to_dynarray : tnode; virtual;
function typecheck_dynarray_to_variant : tnode; virtual;
function typecheck_variant_to_enum : tnode; virtual;
function typecheck_enum_to_variant : tnode; virtual;
function typecheck_proc_to_procvar : tnode; virtual;
function typecheck_variant_to_interface : tnode; virtual;
function typecheck_interface_to_variant : tnode; virtual;
function typecheck_array_2_dynarray : tnode; virtual;
function typecheck_elem_2_openarray : tnode; virtual;
function typecheck_arrayconstructor_to_dynarray : tnode; virtual;
function typecheck_arrayconstructor_to_array : tnode; virtual;
function typecheck_anonproc_2_funcref : tnode; virtual;
function typecheck_procvar_2_funcref : tnode; virtual;
private
function _typecheck_int_to_int : tnode;
function _typecheck_cord_to_pointer : tnode;
function _typecheck_chararray_to_string : tnode;
function _typecheck_string_to_chararray : tnode;
function _typecheck_string_to_string : tnode;
function _typecheck_char_to_string : tnode;
function _typecheck_char_to_chararray : tnode;
function _typecheck_int_to_real : tnode;
function _typecheck_real_to_real : tnode;
function _typecheck_real_to_currency : tnode;
function _typecheck_cchar_to_pchar : tnode;
function _typecheck_cstring_to_pchar : tnode;
function _typecheck_cstring_to_int : tnode;
function _typecheck_char_to_char : tnode;
function _typecheck_arrayconstructor_to_set : tnode;
function _typecheck_set_to_set : tnode;
function _typecheck_pchar_to_string : tnode;
function _typecheck_interface_to_string : tnode;
function _typecheck_interface_to_guid : tnode;
function _typecheck_dynarray_to_openarray : tnode;
function _typecheck_pwchar_to_string : tnode;
function _typecheck_variant_to_dynarray : tnode;
function _typecheck_dynarray_to_variant : tnode;
function _typecheck_variant_to_enum : tnode;
function _typecheck_enum_to_variant : tnode;
function _typecheck_proc_to_procvar : tnode;
function _typecheck_variant_to_interface : tnode;
function _typecheck_interface_to_variant : tnode;
function _typecheck_array_2_dynarray : tnode;
function _typecheck_elem_2_openarray : tnode;
function _typecheck_arrayconstructor_to_dynarray : tnode;
function _typecheck_arrayconstructor_to_array : tnode;
function _typecheck_anonproc_to_funcref : tnode;
function _typecheck_procvar_to_funcref : tnode;
protected
function first_int_to_int : tnode;virtual;
function first_cstring_to_pchar : tnode;virtual;
function first_cstring_to_int : tnode;virtual;
function first_string_to_chararray : tnode;virtual;
function first_char_to_string : tnode;virtual;
function first_char_to_chararray : tnode; virtual;
function first_nothing : tnode;virtual;
function first_array_to_pointer : tnode;virtual;
function first_int_to_real : tnode;virtual;
function first_real_to_real : tnode;virtual;
function first_pointer_to_array : tnode;virtual;
function first_cchar_to_pchar : tnode;virtual;
function first_bool_to_int : tnode;virtual;
function first_int_to_bool : tnode;virtual;
function first_bool_to_bool : tnode;virtual;
function first_proc_to_procvar : tnode;virtual;
function first_nil_to_methodprocvar : tnode;virtual;
function first_set_to_set : tnode;virtual;
function first_cord_to_pointer : tnode;virtual;
function first_ansistring_to_pchar : tnode;virtual;
function first_arrayconstructor_to_set : tnode;virtual;
function first_class_to_intf : tnode;virtual;
function first_char_to_char : tnode;virtual;
function first_string_to_string : tnode;virtual;
function first_call_helper(c : tconverttype) : tnode;
function typecheck_call_helper(c : tconverttype) : tnode;
private
{ these wrapper are necessary, because the first_* stuff is called }
{ through a table. Without the wrappers override wouldn't have }
{ any effect }
function _first_int_to_int : tnode;
function _first_cstring_to_pchar : tnode;
function _first_cstring_to_int : tnode;
function _first_string_to_chararray : tnode;
function _first_char_to_string : tnode;
function _first_char_to_chararray : tnode;
function _first_nothing : tnode;
function _first_array_to_pointer : tnode;
function _first_int_to_real : tnode;
function _first_real_to_real: tnode;
function _first_pointer_to_array : tnode;
function _first_cchar_to_pchar : tnode;
function _first_bool_to_int : tnode;
function _first_int_to_bool : tnode;
function _first_bool_to_bool : tnode;
function _first_proc_to_procvar : tnode;
function _first_nil_to_methodprocvar : tnode;
function _first_cord_to_pointer : tnode;
function _first_ansistring_to_pchar : tnode;
function _first_arrayconstructor_to_set : tnode;
function _first_class_to_intf : tnode;
function _first_char_to_char : tnode;
function _first_set_to_set : tnode;
function _first_string_to_string : tnode;
procedure _second_int_to_int;virtual;
procedure _second_string_to_string;virtual;
procedure _second_cstring_to_pchar;virtual;
procedure _second_cstring_to_int;virtual;
procedure _second_string_to_chararray;virtual;
procedure _second_array_to_pointer;virtual;
procedure _second_pointer_to_array;virtual;
procedure _second_chararray_to_string;virtual;
procedure _second_char_to_string;virtual;
procedure _second_int_to_real;virtual;
procedure _second_real_to_real;virtual;
procedure _second_cord_to_pointer;virtual;
procedure _second_proc_to_procvar;virtual;
procedure _second_nil_to_methodprocvar;virtual;
procedure _second_bool_to_int;virtual;
procedure _second_int_to_bool;virtual;
procedure _second_bool_to_bool;virtual;
procedure _second_set_to_set;virtual;
procedure _second_ansistring_to_pchar;virtual;
procedure _second_class_to_intf;virtual;
procedure _second_char_to_char;virtual;
procedure _second_elem_to_openarray;virtual;
procedure _second_nothing; virtual;
protected
procedure second_int_to_int;virtual;abstract;
procedure second_string_to_string;virtual;abstract;
procedure second_cstring_to_pchar;virtual;abstract;
procedure second_cstring_to_int;virtual;abstract;
procedure second_string_to_chararray;virtual;abstract;
procedure second_array_to_pointer;virtual;abstract;
procedure second_pointer_to_array;virtual;abstract;
procedure second_chararray_to_string;virtual;abstract;
procedure second_char_to_string;virtual;abstract;
procedure second_int_to_real;virtual;abstract;
procedure second_real_to_real;virtual;abstract;
procedure second_cord_to_pointer;virtual;abstract;
procedure second_proc_to_procvar;virtual;abstract;
procedure second_nil_to_methodprocvar;virtual;abstract;
procedure second_bool_to_int;virtual;abstract;
procedure second_int_to_bool;virtual;abstract;
procedure second_bool_to_bool;virtual;abstract;
procedure second_set_to_set;virtual;abstract;
procedure second_ansistring_to_pchar;virtual;abstract;
procedure second_class_to_intf;virtual;abstract;
procedure second_char_to_char;virtual;abstract;
procedure second_elem_to_openarray;virtual;abstract;
procedure second_nothing; virtual;abstract;
end;
ttypeconvnodeclass = class of ttypeconvnode;
{ common functionality of as-nodes and is-nodes }
tasisnode = class(tbinarynode)
protected
{ if non-standard usage of as-nodes is possible, targets can override
this method and return true in case the conditions are fulfilled }
function target_specific_typecheck: boolean;virtual;
public
function pass_typecheck:tnode;override;
end;
tasnode = class(tasisnode)
{ as nodes cannot be translated directly into call nodes bcause:
When using -CR, explicit class typecasts are replaced with as-nodes to perform
class type checking. The problem is that if a typecasted class instance is
passed as a var-parameter, then you cannot replace it with a function call. So the as-node
a) call the as helper to perform the type checking
b) still pass the original instance as parameter to var-parameters
(and in general: to return it as the result of the as-node)
so the call field is required
}
call: tnode;
constructor create(l,r : tnode);virtual;
constructor create_internal(l,r : tnode);virtual;
function pass_1 : tnode;override;
function dogetcopy: tnode;override;
function docompare(p: tnode): boolean; override;
destructor destroy; override;
end;
tasnodeclass = class of tasnode;
tisnode = class(tasisnode)
constructor create(l,r : tnode);virtual;
constructor create_internal(l,r : tnode);virtual;
function pass_1 : tnode;override;
procedure pass_generate_code;override;
end;
tisnodeclass = class of tisnode;
var
ctypeconvnode : ttypeconvnodeclass = ttypeconvnode;
casnode : tasnodeclass = tasnode;
cisnode : tisnodeclass=tisnode;
procedure inserttypeconv(var p:tnode;def:tdef);
procedure inserttypeconv_explicit(var p:tnode;def:tdef);
procedure inserttypeconv_internal(var p:tnode;def:tdef);
procedure arrayconstructor_to_set(var p : tnode);inline;
function arrayconstructor_to_set(p:tnode;freep:boolean):tnode;
function arrayconstructor_can_be_set(p:tnode):boolean;
procedure insert_varargstypeconv(var p : tnode; iscvarargs: boolean);
function maybe_global_proc_to_nested(var fromnode: tnode; todef: tdef): boolean;
implementation
uses
globtype,systems,constexp,compinnr,
cutils,verbose,globals,widestr,ppu,
symconst,symdef,symsym,symcpu,symtable,
ncon,ncal,nset,nadd,nmem,nmat,nbas,nutils,ninl,nflw,
psub,
cgbase,procinfo,
htypechk,blockutl,pparautl,procdefutil,pass_1,cpuinfo;
{*****************************************************************************
Helpers
*****************************************************************************}
type
ttypeconvnodetype = (tct_implicit,tct_explicit,tct_internal);
procedure do_inserttypeconv(var p: tnode;def: tdef; convtype: ttypeconvnodetype);
begin
if not assigned(p.resultdef) then
begin
typecheckpass(p);
if codegenerror then
exit;
end;
{ don't insert superfluous type conversions, but
in case of bitpacked accesses, the original type must
remain too so that not too many/few bits are laoded.
Also, in case the deftyp changes, don't ignore because lots of code
expects that if the resultdef is set to e.g. stringdef, it remains
that way (e.g., in case of Java where java_jlstring equals
unicodestring according to equal_defs, but an add node for strings
still expects the resultdef of the node to be a stringdef) }
if equal_defs(p.resultdef,def) and
(p.resultdef.typ=def.typ) and
not is_bitpacked_access(p) and
{ result of a hardware vector node must remain a hardware
vector of the same kind (will match to tc_equal with regular arrays
of same dimension/eledef) }
not((p.resultdef.typ=arraydef) and
tarraydef(p.resultdef).is_hwvector) and
((p.blocktype=bt_const) or
not ctypeconvnode.target_specific_need_equal_typeconv(p.resultdef,def)) then
begin
{ don't replace encoded string constants to rawbytestring encoding.
preserve the codepage }
if not (is_rawbytestring(def) and (p.nodetype=stringconstn)) then
p.resultdef:=def
end
else
begin
case convtype of
tct_implicit:
p:=ctypeconvnode.create(p,def);
tct_explicit:
p:=ctypeconvnode.create_explicit(p,def);
tct_internal:
p:=ctypeconvnode.create_internal(p,def);
end;
p.fileinfo:=ttypeconvnode(p).left.fileinfo;
typecheckpass(p);
end;
end;
procedure inserttypeconv(var p:tnode;def:tdef);
begin
do_inserttypeconv(p,def,tct_implicit);
end;
procedure inserttypeconv_explicit(var p: tnode; def: tdef);
begin
do_inserttypeconv(p,def,tct_explicit);
end;
procedure inserttypeconv_internal(var p:tnode;def:tdef);
begin
do_inserttypeconv(p,def,tct_internal);
end;
{*****************************************************************************
Array constructor to Set Conversion
*****************************************************************************}
procedure arrayconstructor_to_set(var p : tnode);
begin
p:=arrayconstructor_to_set(p,true);
end;
function arrayconstructor_to_set(p:tnode;freep:boolean):tnode;
var
constp : tsetconstnode;
p2,p3,p4 : tnode;
hdef : tdef;
constset : Pconstset;
constsetlo,
constsethi : TConstExprInt;
procedure update_constsethi(def:tdef; maybetruncenumrange: boolean);
begin
if (def.typ=orddef) and
((torddef(def).high>=constsethi) or
(torddef(def).low <=constsetlo)) then
begin
if torddef(def).ordtype=uwidechar then
begin
constsethi:=255;
constsetlo:=0;
if hdef=nil then
hdef:=def;
end
else
begin
if (torddef(def).high>=constsethi) then
constsethi:=torddef(def).high;
if (torddef(def).low<=constsetlo) then
constsetlo:=torddef(def).low;
if hdef=nil then
begin
if (constsethi>255) or
(torddef(def).low<0) then
hdef:=u8inttype
else
hdef:=def;
end;
if constsethi>255 then
constsethi:=255;
if constsetlo<0 then
constsetlo:=0;
end;
end
else if (def.typ=enumdef) and
((tenumdef(def).max>=constsethi) or
(tenumdef(def).min<=constsetlo)) then
begin
if hdef=nil then
hdef:=def;
if (tenumdef(def).max>=constsethi) then
constsethi:=tenumdef(def).max;
if (tenumdef(def).min<=constsetlo) then
constsetlo:=tenumdef(def).min;
{ for constant set elements, delphi allows the usage of elements of enumerations which
have value>255 if there is no element with a value > 255 used }
if (maybetruncenumrange) then
begin
if constsethi>255 then
constsethi:=255;
if constsetlo<0 then
constsetlo:=0;
end;
end;
end;
procedure do_set(pos : longint);
begin
if (pos and not $ff)<>0 then
begin
Message(parser_e_illegal_set_expr);
exit;
end;
if pos>constsethi then
constsethi:=pos;
if pos<constsetlo then
constsetlo:=pos;
if pos in constset^ then
Message(parser_e_illegal_set_expr);
include(constset^,pos);
end;
var
l : Longint;
lr,hr : TConstExprInt;
hp : tarrayconstructornode;
oldfilepos: tfileposinfo;
first: Boolean;
begin
{ keep in sync with arrayconstructor_can_be_set }
if p.nodetype<>arrayconstructorn then
internalerror(200205105);
new(constset);
constset^:=[];
hdef:=nil;
{ make sure to set constsetlo correctly for empty sets }
if assigned(tarrayconstructornode(p).left) then
constsetlo:=high(aint)
else
constsetlo:=0;
constsethi:=0;
constp:=csetconstnode.create(nil,hdef);
constp.value_set:=constset;
result:=constp;
hp:=tarrayconstructornode(p);
if assigned(hp.left) then
begin
first:=true;
while assigned(hp) do
begin
p4:=nil; { will contain the tree to create the set }
{ split a range into p2 and p3 }
if hp.left.nodetype=arrayconstructorrangen then
begin
p2:=tarrayconstructorrangenode(hp.left).left;
p3:=tarrayconstructorrangenode(hp.left).right;
tarrayconstructorrangenode(hp.left).left:=nil;
tarrayconstructorrangenode(hp.left).right:=nil;
end
else
begin
p2:=hp.left;
hp.left:=nil;
p3:=nil;
end;
typecheckpass(p2);
set_varstate(p2,vs_read,[vsf_must_be_valid]);
if assigned(p3) then
begin
typecheckpass(p3);
set_varstate(p3,vs_read,[vsf_must_be_valid]);
end;
if codegenerror then
break;
oldfilepos:=current_filepos;
current_filepos:=p2.fileinfo;
case p2.resultdef.typ of
enumdef,
orddef:
begin
{ widechars are not yet supported }
if is_widechar(p2.resultdef) then
begin
if block_type<>bt_const then
inserttypeconv(p2,cansichartype);
if (p2.nodetype<>ordconstn) and not (m_default_unicodestring in current_settings.modeswitches) then
incompatibletypes(cwidechartype,cansichartype);
end;
getrange(p2.resultdef,lr,hr);
if assigned(p3) then
begin
if is_widechar(p3.resultdef) then
begin
if block_type<>bt_const then
inserttypeconv(p3,cansichartype);
if (p3.nodetype<>ordconstn) and not (m_default_unicodestring in current_settings.modeswitches) then
begin
current_filepos:=p3.fileinfo;
incompatibletypes(cwidechartype,cansichartype);
end;
end;
{ this isn't good, you'll get problems with
type t010 = 0..10;
ts = set of t010;
var s : ts;b : t010
begin s:=[1,2,b]; end.
if is_integer(p3^.resultdef) then
begin
inserttypeconv(p3,u8bitdef);
end;
}
if assigned(hdef) and not(equal_defs(hdef,p3.resultdef)) then
begin
CGMessagePos(p3.fileinfo,type_e_typeconflict_in_set);
end
else
begin
if (p2.nodetype=ordconstn) and (p3.nodetype=ordconstn) then
begin
if not(is_integer(p3.resultdef)) then
begin
if not(assigned(hdef)) and first then
hdef:=p3.resultdef;
end
else
begin
inserttypeconv(p3,u8inttype);
inserttypeconv(p2,u8inttype);
end;
if tordconstnode(p2).value.svalue>tordconstnode(p3).value.svalue then
CGMessagePos(p2.fileinfo,type_w_empty_constant_range_set);
for l:=tordconstnode(p2).value.svalue to tordconstnode(p3).value.svalue do
do_set(l);
p2.free;
p3.free;
end
else
begin
update_constsethi(p2.resultdef,false);
inserttypeconv(p2,hdef);
update_constsethi(p3.resultdef,false);
inserttypeconv(p3,hdef);
if assigned(hdef) then
inserttypeconv(p3,hdef)
else if first then
hdef:=p3.resultdef
else
inserttypeconv(p3,u8inttype);
p4:=csetelementnode.create(p2,p3);
end;
end;
end
else
begin
{ Single value }
if p2.nodetype=ordconstn then
begin
if assigned(hdef) then
inserttypeconv(p2,hdef)
else if not(is_integer(p2.resultdef)) and first then
hdef:=p2.resultdef
else
inserttypeconv(p2,u8inttype);
if not(is_integer(p2.resultdef)) then
update_constsethi(p2.resultdef,true);
do_set(tordconstnode(p2).value.svalue);
p2.free;
end
else
begin
update_constsethi(p2.resultdef,false);
if assigned(hdef) then
inserttypeconv(p2,hdef)
else if not(is_integer(p2.resultdef)) and first then
hdef:=p2.resultdef
else
inserttypeconv(p2,u8inttype);
p4:=csetelementnode.create(p2,nil);
end;
end;
end;
else
CGMessage(type_e_ordinal_expr_expected);
end;
{ insert the set creation tree }
if assigned(p4) then
result:=caddnode.create(addn,result,p4);
{ load next and dispose current node }
p2:=hp;
hp:=tarrayconstructornode(tarrayconstructornode(p2).right);
tarrayconstructornode(p2).right:=nil;
if freep then
p2.free;
current_filepos:=oldfilepos;
first:=false;
end;
if (hdef=nil) then
hdef:=u8inttype;
end
else
begin
{ empty set [], only remove node }
if freep then
p.free;
end;
{ set the initial set type }
constp.resultdef:=csetdef.create(hdef,constsetlo.svalue,constsethi.svalue,true);
{ determine the resultdef for the tree }
typecheckpass(result);
end;
function arrayconstructor_can_be_set(p:tnode):boolean;
var
p1,p2 : tnode;
hdef : tdef;
begin
{ keep in sync with arrayconstructor_to_set }
if not assigned(p) then
internalerror(2015050401);
if not assigned(tarrayconstructornode(p).left) then
begin
if assigned(tarrayconstructornode(p).right) then
internalerror(2015050103);
result:=true;
end
else
begin
result:=false;
hdef:=nil;
while assigned(p) do
begin
if tarrayconstructornode(p).left.nodetype=arrayconstructorrangen then
begin
p1:=tarrayconstructorrangenode(tarrayconstructornode(p).left).left;
p2:=tarrayconstructorrangenode(tarrayconstructornode(p).left).right;
end
else
begin
p1:=tarrayconstructornode(p).left;
p2:=nil;
end;
case p1.resultdef.typ of
orddef,
enumdef:
begin
if is_widechar(p1.resultdef) then
begin
if p1.nodetype<>ordconstn then
exit
else if (tordconstnode(p1).value.uvalue>high(byte)) and not (m_default_unicodestring in current_settings.modeswitches) then
exit;
end;
if assigned(p2) then
begin
if is_widechar(p2.resultdef) then
begin
if p2.nodetype<>ordconstn then
exit
else if (tordconstnode(p2).value.uvalue>high(byte)) and not (m_default_unicodestring in current_settings.modeswitches) then
exit;
end;
{ anything to exclude? }
end
else
begin
{ anything to exclude? }
end;
end;
stringdef:
if p1.nodetype<>stringconstn then
exit
else if assigned(hdef) and not is_char(hdef) then
exit;
else
exit;
end;
p:=tarrayconstructornode(p).right;
end;
result:=true;
end;
end;
procedure insert_varargstypeconv(var p : tnode; iscvarargs: boolean);
begin
{ procvars without arguments in variant arrays are always called by
Delphi }
if not(iscvarargs) then
maybe_call_procvar(p,true);
if not(iscvarargs) and
(p.nodetype=stringconstn) and
{ don't cast to AnsiString if already casted to Wide/UnicodeString, issue #18266 }
(tstringconstnode(p).cst_type in [cst_conststring,cst_shortstring,cst_longstring]) then
p:=ctypeconvnode.create_internal(p,getansistringdef)
else
case p.resultdef.typ of
enumdef :
p:=ctypeconvnode.create_internal(p,s32inttype);
arraydef :
begin
if is_chararray(p.resultdef) then
p:=ctypeconvnode.create_internal(p,charpointertype)
else
if is_widechararray(p.resultdef) then
p:=ctypeconvnode.create_internal(p,widecharpointertype)
else
CGMessagePos1(p.fileinfo,type_e_wrong_type_in_array_constructor,p.resultdef.typename);
end;
orddef :
begin
if is_integer(p.resultdef) and
not(is_64bitint(p.resultdef)) then
if not(m_delphi in current_settings.modeswitches) then
p:=ctypeconvnode.create(p,s32inttype)
else
{ delphi doesn't generate a range error when passing a
cardinal >= $80000000, but since these are seen as
longint on the callee side, this causes data loss;
as a result, we require an explicit longint()
typecast in FPC mode on the caller side if range
checking should be disabled, but not in Delphi mode }
p:=ctypeconvnode.create_internal(p,s32inttype)
else if is_void(p.resultdef) then
CGMessagePos1(p.fileinfo,type_e_wrong_type_in_array_constructor,p.resultdef.typename)
else if iscvarargs and is_currency(p.resultdef)
and (current_settings.fputype<>fpu_none) then
p:=ctypeconvnode.create(p,s64floattype);
end;
floatdef :
if not(iscvarargs) then
begin
if not(is_currency(p.resultdef)) then
p:=ctypeconvnode.create(p,pbestrealtype^);
end
else
begin
if is_constrealnode(p) and
not(nf_explicit in p.flags) then
MessagePos(p.fileinfo,type_w_double_c_varargs);
if (tfloatdef(p.resultdef).floattype in [s32real,s64currency]) or
(is_constrealnode(p) and
not(nf_explicit in p.flags)) then
p:=ctypeconvnode.create(p,s64floattype);
end;
procvardef :
p:=ctypeconvnode.create(p,voidpointertype);
stringdef:
if iscvarargs then
p:=ctypeconvnode.create(p,charpointertype);
variantdef:
if iscvarargs then
CGMessagePos1(p.fileinfo,type_e_wrong_type_in_array_constructor,p.resultdef.typename);
{ maybe warn in case it's not using "packrecords c"? }
recorddef:
if not iscvarargs then
CGMessagePos1(p.fileinfo,type_e_wrong_type_in_array_constructor,p.resultdef.typename);
pointerdef:
;
classrefdef:
if iscvarargs then
p:=ctypeconvnode.create(p,voidpointertype);
objectdef :
if is_objc_class_or_protocol(p.resultdef) then
p:=ctypeconvnode.create(p,voidpointertype)
else if iscvarargs or
is_object(p.resultdef) then
CGMessagePos1(p.fileinfo,type_e_wrong_type_in_array_constructor,p.resultdef.typename)
else
else
CGMessagePos1(p.fileinfo,type_e_wrong_type_in_array_constructor,p.resultdef.typename);
end;
typecheckpass(p);
end;
{ in FPC mode, @procname immediately has to be evaluated as a
procvar. If procname is global, then this will be a global
procvar. Since converting global procvars to local procvars is
not allowed (see point d in defcmp.proc_to_procvar_equal()),
this results in errors when passing global procedures to local
procvar parameters or assigning them to nested procvars. The
solution is to remove the (wrong) conversion to a global procvar,
and instead insert a conversion to the local procvar type. }
function maybe_global_proc_to_nested(var fromnode: tnode; todef: tdef): boolean;
var
hp: tnode;
begin
result:=false;
if (m_nested_procvars in current_settings.modeswitches) and
not(m_tp_procvar in current_settings.modeswitches) and
(todef.typ=procvardef) and
is_nested_pd(tprocvardef(todef)) and
(fromnode.nodetype=typeconvn) and
(ttypeconvnode(fromnode).convtype=tc_proc_2_procvar) and
not is_nested_pd(tprocvardef(fromnode.resultdef)) and
(proc_to_procvar_equal(tprocdef(ttypeconvnode(fromnode).left.resultdef),tprocvardef(todef),false)>=te_convert_l1) then
begin
hp:=fromnode;
fromnode:=ctypeconvnode.create_proc_to_procvar(ttypeconvnode(fromnode).left);
ttypeconvnode(fromnode).totypedef:=todef;
typecheckpass(fromnode);
ttypeconvnode(hp).left:=nil;
hp.free;
result:=true;
end;
end;
{ similar as above, but for assigning @classtype.method to a
procvar of object. pexpr.do_proc_call() stores the symtable of classtype
in the loadnode so we can retrieve it here (rather than the symtable in
which method was found, which may be a parent class) }
function maybe_classmethod_to_methodprocvar(var fromnode: tnode; todef: tdef): boolean;
var
hp: tnode;
begin
result:=false;
if not(m_tp_procvar in current_settings.modeswitches) and
(todef.typ=procvardef) and
is_methodpointer(tprocvardef(todef)) and
(fromnode.nodetype=typeconvn) and
(ttypeconvnode(fromnode).convtype=tc_proc_2_procvar) and
is_methodpointer(fromnode.resultdef) and
(po_classmethod in tprocvardef(fromnode.resultdef).procoptions) and
not(po_staticmethod in tprocvardef(fromnode.resultdef).procoptions) and
(proc_to_procvar_equal(tprocdef(ttypeconvnode(fromnode).left.resultdef),tprocvardef(todef),false)>=te_convert_l1) then
begin
hp:=fromnode;
fromnode:=ttypeconvnode(fromnode).left;
if (fromnode.nodetype=loadn) and
not assigned(tloadnode(fromnode).left) then
tloadnode(fromnode).set_mp(cloadvmtaddrnode.create(ctypenode.create(tdef(tloadnode(fromnode).symtable.defowner))));
fromnode:=ctypeconvnode.create_proc_to_procvar(fromnode);
ttypeconvnode(fromnode).totypedef:=todef;
typecheckpass(fromnode);
ttypeconvnode(hp).left:=nil;
hp.free;
result:=true;
end;
end;
{*****************************************************************************
TTYPECONVNODE
*****************************************************************************}
constructor ttypeconvnode.create(node : tnode;def:tdef);
begin
inherited create(typeconvn,node);
convtype:=tc_none;
convnodeflags:=[];
totypedef:=def;
if def=nil then
internalerror(200103281);
fileinfo:=node.fileinfo;
{An attempt to convert the result of a floating point division
(with the / operator) to an integer type will fail. Give a hint
to use the div operator.}
if (node.nodetype=slashn) and (def.typ=orddef) and not(is_currency(def)) then
cgmessage(type_h_use_div_for_int);
{In expressions like int64:=longint+longint, an integer overflow could be avoided
by simply converting the operands to int64 first. Give a hint to do this.}
if (node.nodetype in [addn,subn,muln]) and
(def.typ=orddef) and (node.resultdef<>nil) and (node.resultdef.typ=orddef) and
((Torddef(node.resultdef).low>=Torddef(def).low) and (Torddef(node.resultdef).high<=Torddef(def).high)) and
((Torddef(node.resultdef).low>Torddef(def).low) or (Torddef(node.resultdef).high<Torddef(def).high)) then
case node.nodetype of
addn:
cgmessage1(type_h_convert_add_operands_to_prevent_overflow,def.typename);
subn:
cgmessage1(type_h_convert_sub_operands_to_prevent_overflow,def.typename);
muln:
cgmessage1(type_h_convert_mul_operands_to_prevent_overflow,def.typename);
else
;
end;
end;
constructor ttypeconvnode.create_explicit(node : tnode;def:tdef);
begin
self.create(node,def);
include(flags,nf_explicit);
end;
constructor ttypeconvnode.create_internal(node : tnode;def:tdef);
begin
self.create(node,def);
{ handle like explicit conversions }
include(flags,nf_explicit);
include(flags,nf_internal);
end;
constructor ttypeconvnode.create_proc_to_procvar(node : tnode);
begin
self.create(node,voidtype);
convtype:=tc_proc_2_procvar;
end;
constructor ttypeconvnode.ppuload(t:tnodetype;ppufile:tcompilerppufile);
begin
inherited ppuload(t,ppufile);
ppufile.getderef(totypedefderef);
convtype:=tconverttype(ppufile.getbyte);
ppufile.getset(tppuset1(convnodeflags));
end;
procedure ttypeconvnode.ppuwrite(ppufile:tcompilerppufile);
begin
inherited ppuwrite(ppufile);
ppufile.putderef(totypedefderef);
ppufile.putbyte(byte(convtype));
ppufile.putset(tppuset1(convnodeflags));
end;
procedure ttypeconvnode.buildderefimpl;
begin
inherited buildderefimpl;
totypedefderef.build(totypedef);
end;
procedure ttypeconvnode.derefimpl;
begin
inherited derefimpl;
totypedef:=tdef(totypedefderef.resolve);
end;
function ttypeconvnode.dogetcopy : tnode;
var
n : ttypeconvnode;
begin
n:=ttypeconvnode(inherited dogetcopy);
n.convtype:=convtype;
n.convnodeflags:=convnodeflags;
n.totypedef:=totypedef;
n.assignment_side:=assignment_side;
dogetcopy:=n;
end;
procedure ttypeconvnode.printnodeinfo(var t : text);
var
first: Boolean;
i: ttypeconvnodeflag;
begin
inherited printnodeinfo(t);
write(t,', totypedef = ',totypedef.GetTypeName);
write(t,', convtype = ',convtype);
write(t,', assignment_side = ',assignment_side);
write(t,', convnodeflags = [');
first:=true;
for i:=low(ttypeconvnodeflag) to high(ttypeconvnodeflag) do
if i in convnodeflags then
begin
if not first then
write(t,',')
else
first:=false;
write(t,i);
end;
write(t,']');
end;
{$ifdef DEBUG_NODE_XML}
procedure TTypeConvNode.XMLPrintNodeInfo(var T: Text);
var
First: Boolean;
i: TTypeConvNodeFlag;
begin
inherited XMLPrintNodeInfo(T);
Write(T,' convtype="', convtype);
First := True;
for i := Low(TTypeConvNodeFlag) to High(TTypeConvNodeFlag) do
if i in ConvNodeFlags then
begin
if First then
begin
Write(T, '" convnodeflags="', i);
First := False;
end
else
Write(T, ',', i);
end;
{ If no flags were printed, this is the closing " for convtype }
Write(T, '"');
end;
{$endif DEBUG_NODE_XML}
function ttypeconvnode.typecheck_cord_to_pointer : tnode;
begin
result:=nil;
if left.nodetype=ordconstn then
begin
{ check if we have a valid pointer constant (JM) }
{$if sizeof(pointer) > sizeof(TConstPtrUInt)}
{$if sizeof(TConstPtrUInt) = 4}
if (tordconstnode(left).value < int64(low(longint))) or
(tordconstnode(left).value > int64(high(cardinal))) then
CGMessage(parser_e_range_check_error);
{$else} {$if sizeof(TConstPtrUInt) = 8}
if (tordconstnode(left).value < int64(low(int64))) or
(tordconstnode(left).value > int64(high(qword))) then
CGMessage(parser_e_range_check_error);
{$else}
internalerror(2001020801);
{$endif} {$endif}
{$endif}
if not(nf_explicit in flags) then
if (tordconstnode(left).value.svalue=0) then
CGMessage(type_w_zero_to_nil)
else
{ in Delphi mode, these aren't caught in compare_defs_ext }
IncompatibleTypes(left.resultdef,resultdef);
result:=cpointerconstnode.create(TConstPtrUInt(tordconstnode(left).value.uvalue),resultdef);
end
else
internalerror(200104023);
end;
function ttypeconvnode.typecheck_chararray_to_string : tnode;
var
chartype : string[8];
newblock : tblocknode;
newstat : tstatementnode;
restemp : ttempcreatenode;
begin
if is_widechar(tarraydef(left.resultdef).elementdef) then
chartype:='widechar'
else
chartype:='char';
if tstringdef(resultdef).stringtype=st_shortstring then
begin
newblock:=internalstatements(newstat);
restemp:=ctempcreatenode.create(resultdef,resultdef.size,tt_persistent,false);
addstatement(newstat,restemp);
addstatement(newstat,ccallnode.createintern('fpc_'+chartype+'array_to_shortstr',
ccallparanode.create(cordconstnode.create(
ord(tarraydef(left.resultdef).lowrange=0),pasbool1type,false),
ccallparanode.create(left,ccallparanode.create(
ctemprefnode.create(restemp),nil)))));
addstatement(newstat,ctempdeletenode.create_normal_temp(restemp));
addstatement(newstat,ctemprefnode.create(restemp));
result:=newblock;
end
else if (tstringdef(resultdef).stringtype=st_ansistring) then
begin
result:=ccallnode.createinternres(
'fpc_'+chartype+'array_to_'+tstringdef(resultdef).stringtypname,
ccallparanode.create(
cordconstnode.create(
ord(tarraydef(left.resultdef).lowrange=0),
pasbool1type,
false
),
ccallparanode.create(
cordconstnode.create(
getparaencoding(resultdef),
u16inttype,
true
),
ccallparanode.create(left,nil)
)
),
resultdef
);
end
else
result:=ccallnode.createinternres(
'fpc_'+chartype+'array_to_'+tstringdef(resultdef).stringtypname,
ccallparanode.create(cordconstnode.create(
ord(tarraydef(left.resultdef).lowrange=0),pasbool1type,false),
ccallparanode.create(left,nil)),resultdef);
left:=nil;
end;
function ttypeconvnode.typecheck_string_to_chararray : tnode;
var
newblock : tblocknode;
newstat : tstatementnode;
restemp : ttempcreatenode;
pchtemp : pchar;
arrsize : tcgint;
chartype : string[8];
begin
result := nil;
with tarraydef(resultdef) do
begin
if highrange<lowrange then
internalerror(2005010502);
arrsize := highrange-lowrange+1;
end;
if (left.nodetype = stringconstn) and
(tstringconstnode(left).cst_type=cst_conststring) then
begin
if (m_iso in current_settings.modeswitches) and (arrsize<>tstringconstnode(left).len) and
is_char(tarraydef(resultdef).elementdef) then
Message2(type_w_array_size_does_not_match_size_of_constant_string,tostr(tstringconstnode(left).len),tostr(arrsize));
{ if the array of char is large enough we can use the string
constant directly. This is handled in ncgcnv }
if (arrsize>=tstringconstnode(left).len) and
is_char(tarraydef(resultdef).elementdef) then
begin
{ pad the constant string with #0 to the array len }
{ (2.0.x compatible) }
if (arrsize>tstringconstnode(left).len) then
begin
pchtemp:=concatansistrings(tstringconstnode(left).asconstpchar,pchar(StringOfChar(#0,arrsize-tstringconstnode(left).len)),tstringconstnode(left).len,arrsize-tstringconstnode(left).len);
left.free;
left:=cstringconstnode.createpchar(pchtemp,arrsize,nil);
freemem(pchtemp);
typecheckpass(left);
end;
exit;
end;
{ Convert to wide/short/ansistring and call default helper }
if is_widechar(tarraydef(resultdef).elementdef) then
inserttypeconv(left,cunicodestringtype)
else
begin
if tstringconstnode(left).len>255 then
inserttypeconv(left,getansistringdef)
else
inserttypeconv(left,cshortstringtype);
end;
end;
if is_widechar(tarraydef(resultdef).elementdef) then
chartype:='widechar'
else
chartype:='char';
newblock:=internalstatements(newstat);
restemp:=ctempcreatenode.create(resultdef,resultdef.size,tt_persistent,false);
addstatement(newstat,restemp);
addstatement(newstat,ccallnode.createintern('fpc_'+tstringdef(left.resultdef).stringtypname+
'_to_'+chartype+'array',ccallparanode.create(left,ccallparanode.create(
ctemprefnode.create(restemp),nil))));
addstatement(newstat,ctempdeletenode.create_normal_temp(restemp));
addstatement(newstat,ctemprefnode.create(restemp));
result:=newblock;
left:=nil;
end;
function ttypeconvnode.typecheck_char_to_string : tnode;
var
procname: string[31];
para : tcallparanode;
hp : tstringconstnode;
ws : tcompilerwidestring;
sa : ansistring;
cw : tcompilerwidechar;
l : SizeUInt;
exprtype : tdef;
begin
result:=nil;
sa:='';
if (left.nodetype=ordconstn) and
((tstringdef(resultdef).stringtype in [st_widestring,st_unicodestring,st_ansistring]) or
(torddef(left.resultdef).ordtype in [uchar,uwidechar])) then
begin
if (tstringdef(resultdef).stringtype in [st_widestring,st_unicodestring]) then
begin
initwidestring(ws);
if torddef(left.resultdef).ordtype=uwidechar then
concatwidestringchar(ws,tcompilerwidechar(tordconstnode(left).value.uvalue))
else
concatwidestringchar(ws,asciichar2unicode(chr(tordconstnode(left).value.uvalue)));
hp:=cstringconstnode.createunistr(ws);
hp.changestringtype(resultdef);
donewidestring(ws);
end
else
begin
if (torddef(left.resultdef).ordtype=uwidechar) then
begin
if not((current_settings.sourcecodepage=CP_UTF8) or
((tstringdef(resultdef).stringtype=st_ansistring) and
(tstringdef(resultdef).encoding=CP_UTF8))) then
begin
if tordconstnode(left).value.uvalue>127 then
begin
Message(type_w_unicode_data_loss);
// compiler has different codepage than a system running an application
// to prevent wrong codepage and data loss we are converting unicode char
// using a helper routine. This is not delphi compatible behavior.
// Delphi converts UniocodeChar to ansistring at the compile time
// old behavior:
// hp:=cstringconstnode.createstr(unicode2asciichar(tcompilerwidechar(tordconstnode(left).value.uvalue)));
para:=ccallparanode.create(left,nil);
if tstringdef(resultdef).stringtype=st_ansistring then
para:=ccallparanode.create(cordconstnode.create(getparaencoding(resultdef),u16inttype,true),para);
result:=ccallnode.createinternres('fpc_uchar_to_'+tstringdef(resultdef).stringtypname,
para,resultdef);
left:=nil;
exit;
end
else
hp:=cstringconstnode.createstr(unicode2asciichar(tcompilerwidechar(tordconstnode(left).value.uvalue)));
end
else
begin
cw:=tcompilerwidechar(tordconstnode(left).value.uvalue);
SetLength(sa,5);
l:=UnicodeToUtf8(@(sa[1]),Length(sa),@cw,1);
SetLength(sa,l-1);
hp:=cstringconstnode.createstr(sa);
{ explicitly set the type of string constant to avoid unnecessary conversion }
if (tstringdef(resultdef).stringtype=st_ansistring) and
(tstringdef(resultdef).encoding=CP_UTF8) then
begin
hp.cst_type:=cst_ansistring;
hp.resultdef:=resultdef;
end;
end
end
else
hp:=cstringconstnode.createstr(chr(tordconstnode(left).value.uvalue));
{ output string consts in local ansistring encoding }
if is_ansistring(resultdef) and ((tstringdef(resultdef).encoding=0) or (tstringdef(resultdef).encoding=globals.CP_NONE)) then
tstringconstnode(hp).changestringtype(getansistringdef)
else
tstringconstnode(hp).changestringtype(resultdef);
end;
result:=hp;
end
else
{ shortstrings are handled 'inline' (except for widechars) }
if (tstringdef(resultdef).stringtype<>st_shortstring) or
(torddef(left.resultdef).ordtype=uwidechar) or
(target_info.system in systems_managed_vm) then
begin
{ parameter }
para:=ccallparanode.create(left,nil);
{ encoding required? }
if tstringdef(resultdef).stringtype=st_ansistring then
para:=ccallparanode.create(cordconstnode.create(getparaencoding(resultdef),u16inttype,true),para);
{ create the procname }
if torddef(left.resultdef).ordtype<>uwidechar then
begin
procname:='fpc_char_to_';
if tstringdef(resultdef).stringtype in [st_widestring,st_unicodestring] then
if nf_explicit in flags then
Message2(type_w_explicit_string_cast,left.resultdef.typename,resultdef.typename)
else
Message2(type_w_implicit_string_cast,left.resultdef.typename,resultdef.typename);
end
else
begin
procname:='fpc_uchar_to_';
if not (tstringdef(resultdef).stringtype in [st_widestring,st_unicodestring]) then
if nf_explicit in flags then
Message2(type_w_explicit_string_cast_loss,left.resultdef.typename,resultdef.typename)
else
Message2(type_w_implicit_string_cast_loss,left.resultdef.typename,resultdef.typename);
end;
procname:=procname+tstringdef(resultdef).stringtypname;
{ and finally the call }
result:=ccallnode.createinternres(procname,para,resultdef);
left := nil;
end
else
begin
{ use at least u16inttype }
{$ifdef cpu8bitalu}
exprtype:=u16inttype;
{$else cpu8bitalu}
exprtype:=uinttype;
{$endif cpu8bitalu}
{ create word(byte(char) shl 8 or 1) for litte endian machines }
{ and word(byte(char) or 256) for big endian machines }
left := ctypeconvnode.create_internal(left,exprtype);
if (target_info.endian = endian_little) then
left := caddnode.create(orn,
cshlshrnode.create(shln,left,cordconstnode.create(8,exprtype,false)),
cordconstnode.create(1,exprtype,false))
else
left := caddnode.create(orn,left,
cordconstnode.create(1 shl 8,exprtype,false));
left := ctypeconvnode.create_internal(left,u16inttype);
typecheckpass(left);
end;
end;
function ttypeconvnode.typecheck_string_to_string : tnode;
begin
result:=nil;
if (left.nodetype=stringconstn) and
(((tstringdef(resultdef).stringtype=st_ansistring) and
(tstringdef(resultdef).encoding<>CP_NONE)
)
) and
(tstringdef(left.resultdef).stringtype in [st_unicodestring,st_widestring]) then
begin
tstringconstnode(left).changestringtype(resultdef);
Result:=left;
left:=nil;
end
else if (tstringdef(resultdef).stringtype=st_ansistring) and
(tstringdef(left.resultdef).stringtype=st_ansistring) and
(tstringdef(resultdef).encoding<>tstringdef(left.resultdef).encoding) then
begin
result:=ccallnode.createinternres(
'fpc_ansistr_to_ansistr',
ccallparanode.create(
cordconstnode.create(
tstringdef(resultdef).encoding,
u16inttype,
true
),
ccallparanode.create(left,nil)
),
resultdef
);
left:=nil;
end
else if (left.nodetype=stringconstn) and
(tstringdef(left.resultdef).stringtype in [st_unicodestring,st_widestring]) and
(tstringdef(resultdef).stringtype=st_shortstring) then
begin
if not hasnonasciichars(tstringconstnode(left).valuews) then
begin
tstringconstnode(left).changestringtype(resultdef);
Result:=left;
left:=nil;
end;
end
else if (tstringdef(left.resultdef).stringtype in [st_unicodestring,st_widestring]) and
not (tstringdef(resultdef).stringtype in [st_unicodestring,st_widestring]) then
begin
if nf_explicit in flags then
Message2(type_w_explicit_string_cast_loss,left.resultdef.typename,resultdef.typename)
else
Message2(type_w_implicit_string_cast_loss,left.resultdef.typename,resultdef.typename);
end
else if not (tstringdef(left.resultdef).stringtype in [st_unicodestring,st_widestring]) and
(tstringdef(resultdef).stringtype in [st_unicodestring,st_widestring]) then
begin
if nf_explicit in flags then
Message2(type_w_explicit_string_cast,left.resultdef.typename,resultdef.typename)
else
Message2(type_w_implicit_string_cast,left.resultdef.typename,resultdef.typename);
end
end;
function ttypeconvnode.typecheck_char_to_chararray : tnode;
begin
result:=nil;
end;
function ttypeconvnode.typecheck_char_to_char : tnode;
var
hp : tordconstnode;
begin
result:=nil;
if (left.nodetype=ordconstn) and
((torddef(resultdef).ordtype<>uchar) or
(torddef(left.resultdef).ordtype<>uwidechar) or
(current_settings.sourcecodepage<>CP_UTF8))
then
begin
if (torddef(resultdef).ordtype=uchar) and
(torddef(left.resultdef).ordtype=uwidechar) and
(current_settings.sourcecodepage<>CP_UTF8) then
begin
if tordconstnode(left).value.uvalue>127 then
Message(type_w_unicode_data_loss);
hp:=cordconstnode.create(
ord(unicode2asciichar(tcompilerwidechar(tordconstnode(left).value.uvalue))),
cansichartype,true);
result:=hp;
end
else if (torddef(resultdef).ordtype=uwidechar) and
(torddef(left.resultdef).ordtype=uchar) then
begin
hp:=cordconstnode.create(
asciichar2unicode(chr(tordconstnode(left).value.uvalue)),
cwidechartype,true);
result:=hp;
end
else
internalerror(200105131);
exit;
end;
end;
function ttypeconvnode.typecheck_int_to_int : tnode;
var
v : TConstExprInt;
begin
result:=nil;
if left.nodetype=ordconstn then
begin
v:=tordconstnode(left).value;
if is_currency(resultdef) and
not(nf_internal in flags) then
v:=v*10000;
if (resultdef.typ=pointerdef) then
result:=cpointerconstnode.create(TConstPtrUInt(v.uvalue),resultdef)
else
begin
if is_currency(left.resultdef) then
begin
if not(nf_internal in flags) then
v:=v div 10000;
end
else if (resultdef.typ in [orddef,enumdef]) then
adaptrange(resultdef,v,([nf_internal,nf_absolute]*flags)<>[],nf_explicit in flags,cs_check_range in localswitches);
result:=cordconstnode.create(v,resultdef,false);
end;
end
else if left.nodetype=pointerconstn then
begin
v:=tpointerconstnode(left).value;
if (resultdef.typ=pointerdef) then
result:=cpointerconstnode.create(v.uvalue,resultdef)
else
begin
if is_currency(resultdef) and
not(nf_internal in flags) then
v:=v*10000;
result:=cordconstnode.create(v,resultdef,false);
end;
end
else
begin
if (is_currency(resultdef) or
is_currency(left.resultdef)) and
(nf_internal in flags) then
begin
include(flags,nf_is_currency)
end
{ multiply by 10000 for currency. We need to use getcopy to pass
the argument because the current node is always disposed. Only
inserting the multiply in the left node is not possible because
it'll get in an infinite loop to convert int->currency }
else if is_currency(resultdef) then
begin
result:=caddnode.create(muln,getcopy,cordconstnode.create(10000,resultdef,false));
include(result.flags,nf_is_currency);
include(taddnode(result).left.flags,nf_internal);
end
else if is_currency(left.resultdef) then
begin
result:=cmoddivnode.create(divn,getcopy,cordconstnode.create(10000,resultdef,false));
include(result.flags,nf_is_currency);
include(tmoddivnode(result).left.flags,nf_internal);
end;
end;
end;
function ttypeconvnode.typecheck_int_to_real : tnode;
var
rv : bestreal;
begin
result:=nil;
if left.nodetype=ordconstn then
begin
rv:=tordconstnode(left).value;
if is_currency(resultdef) and
not(nf_internal in flags) then
rv:=rv*10000.0
else if is_currency(left.resultdef) and
not(nf_internal in flags) then
rv:=rv/10000.0;
result:=crealconstnode.create(rv,resultdef);
end
else
begin
if (is_currency(resultdef) or
is_currency(left.resultdef)) and
(nf_internal in flags) then
begin
include(flags,nf_is_currency)
end
{ multiply by 10000 for currency. We need to use getcopy to pass
the argument because the current node is always disposed. Only
inserting the multiply in the left node is not possible because
it'll get in an infinite loop to convert int->currency }
else if is_currency(resultdef) then
begin
result:=caddnode.create(muln,getcopy,crealconstnode.create(10000.0,resultdef));
include(result.flags,nf_is_currency);
end
else if is_currency(left.resultdef) then
begin
result:=caddnode.create(slashn,getcopy,crealconstnode.create(10000.0,resultdef));
include(result.flags,nf_is_currency);
end;
end;
end;
function ttypeconvnode.typecheck_real_to_currency : tnode;
begin
if not is_currency(resultdef) then
internalerror(200304221);
result:=nil;
if not(nf_internal in flags) then
begin
left:=caddnode.create(muln,left,crealconstnode.create(10000.0,left.resultdef));
include(left.flags,nf_is_currency);
{ Convert constants directly, else call Round() }
if left.nodetype=realconstn then
result:=cordconstnode.create(round(trealconstnode(left).value_real),resultdef,false)
else
begin
result:=cinlinenode.create(in_round_real,false,left);
{ Internal type cast to currency }
result:=ctypeconvnode.create_internal(result,s64currencytype);
left:=nil;
end
end
else
begin
include(left.flags,nf_is_currency);
result:=left;
left:=nil;
end;
end;
function ttypeconvnode.typecheck_real_to_real : tnode;
begin
result:=nil;
if not(nf_internal in flags) then
begin
if is_currency(left.resultdef) and not(is_currency(resultdef)) then
begin
left:=caddnode.create(slashn,left,crealconstnode.create(10000.0,left.resultdef));
include(left.flags,nf_is_currency);
typecheckpass(left);
end
else
if is_currency(resultdef) and not(is_currency(left.resultdef)) then
begin
left:=caddnode.create(muln,left,crealconstnode.create(10000.0,left.resultdef));
include(left.flags,nf_is_currency);
include(flags,nf_is_currency);
typecheckpass(left);
end;
{ comp is handled by the fpu but not a floating type point }
if is_fpucomp(resultdef) and not(is_fpucomp(left.resultdef)) and
not (nf_explicit in flags) then
Message(type_w_convert_real_2_comp);
end
else
include(flags,nf_is_currency);
end;
function ttypeconvnode.typecheck_cchar_to_pchar : tnode;
begin
result:=nil;
{ handle any constants via cunicodestringtype because the compiler
cannot convert arbitrary unicodechar constants at compile time to
a shortstring (since it doesn't know the code page to use) }
inserttypeconv(left,cunicodestringtype);
{ evaluate again, reset resultdef so the convert_typ
will be calculated again and cstring_to_pchar will
be used for futher conversion }
convtype:=tc_none;
result:=pass_typecheck;
end;
function ttypeconvnode.typecheck_cstring_to_pchar : tnode;
begin
result:=nil;
if is_pwidechar(resultdef) then
inserttypeconv(left,cunicodestringtype)
else
if is_pchar(resultdef) and
(is_widestring(left.resultdef) or
is_unicodestring(left.resultdef)) then
begin
inserttypeconv(left,getansistringdef);
{ the second pass of second_cstring_to_pchar expects a }
{ strinconstn, but this may become a call to the }
{ widestring manager in case left contains "high ascii" }
if (left.nodetype<>stringconstn) then
begin
result:=left;
left:=nil;
end;
end;
end;
function ttypeconvnode.typecheck_cstring_to_int : tnode;
var
fcc : cardinal;
pb : pbyte;
begin
result:=nil;
if left.nodetype<>stringconstn then
internalerror(200510012);
if (m_mac in current_settings.modeswitches) and
is_integer(resultdef) and
(tstringconstnode(left).cst_type=cst_conststring) and
(tstringconstnode(left).len=4) then
begin
pb:=pbyte(tstringconstnode(left).asconstpchar);
fcc:=(pb[0] shl 24) or (pb[1] shl 16) or (pb[2] shl 8) or pb[3];
result:=cordconstnode.create(fcc,u32inttype,false);
end
else
CGMessage2(type_e_illegal_type_conversion,left.resultdef.typename,resultdef.typename);
end;
function ttypeconvnode.typecheck_arrayconstructor_to_set : tnode;
var
hp : tnode;
begin
result:=nil;
if left.nodetype<>arrayconstructorn then
internalerror(5546);
{ remove typeconv node }
hp:=left;
left:=nil;
{ create a set constructor tree }
arrayconstructor_to_set(hp);
if is_emptyset(hp) then
begin
{ enforce the result type for an empty set }
hp.resultdef:=resultdef;
result:=hp;
end
else if hp.resultdef<>resultdef then
begin
{ the set might contain a subrange element (e.g. through a variable),
thus we need to insert another type conversion }
if nf_explicit in flags then
result:=ctypeconvnode.create_explicit(hp,totypedef)
else if nf_internal in flags then
result:=ctypeconvnode.create_internal(hp,totypedef)
else
result:=ctypeconvnode.create(hp,totypedef);
end
else
result:=hp;
end;
function ttypeconvnode.typecheck_set_to_set : tnode;
begin
result:=nil;
{ constant sets can be converted by changing the type only }
if (left.nodetype=setconstn) then
begin
left.resultdef:=resultdef;
result:=left;
left:=nil;
exit;
end;
end;
function ttypeconvnode.typecheck_pchar_to_string : tnode;
var
newblock : tblocknode;
newstat : tstatementnode;
restemp : ttempcreatenode;
begin
if tstringdef(resultdef).stringtype=st_shortstring then
begin
newblock:=internalstatements(newstat);
restemp:=ctempcreatenode.create(resultdef,resultdef.size,tt_persistent,false);
addstatement(newstat,restemp);
addstatement(newstat,ccallnode.createintern('fpc_pchar_to_shortstr',ccallparanode.create(left,ccallparanode.create(
ctemprefnode.create(restemp),nil))));
addstatement(newstat,ctempdeletenode.create_normal_temp(restemp));
addstatement(newstat,ctemprefnode.create(restemp));
result:=newblock;
end
else if tstringdef(resultdef).stringtype=st_ansistring then
result := ccallnode.createinternres(
'fpc_pchar_to_'+tstringdef(resultdef).stringtypname,
ccallparanode.create(
cordconstnode.create(getparaencoding(resultdef),u16inttype,true),
ccallparanode.create(left,nil)
),
resultdef
)
else
result := ccallnode.createinternres(
'fpc_pchar_to_'+tstringdef(resultdef).stringtypname,
ccallparanode.create(left,nil),resultdef);
left:=nil;
end;
function ttypeconvnode.typecheck_interface_to_string : tnode;
begin
if assigned(tobjectdef(left.resultdef).iidstr) then
begin
if not(oo_has_valid_guid in tobjectdef(left.resultdef).objectoptions) then
CGMessage1(type_e_interface_has_no_guid,tobjectdef(left.resultdef).typename);
result:=cstringconstnode.createstr(tobjectdef(left.resultdef).iidstr^);
tstringconstnode(result).changestringtype(cshortstringtype);
end
else
internalerror(2013112913);
end;
function ttypeconvnode.typecheck_interface_to_guid : tnode;
begin
if assigned(tobjectdef(left.resultdef).iidguid) then
begin
if not(oo_has_valid_guid in tobjectdef(left.resultdef).objectoptions) then
CGMessage1(type_e_interface_has_no_guid,tobjectdef(left.resultdef).typename);
result:=cguidconstnode.create(tobjectdef(left.resultdef).iidguid^);
end
else
internalerror(2013112914);
end;
function ttypeconvnode.typecheck_dynarray_to_openarray : tnode;
begin
if (actualtargetnode(@left)^.nodetype in [pointerconstn,niln]) then
CGMessage(type_e_no_addr_of_constant);
{ a dynamic array is a pointer to an array, so to convert it to }
{ an open array, we have to dereference it (JM) }
result:=ctypeconvnode.create_internal(left,cpointerdef.getreusable(resultdef));
typecheckpass(result);
{ left is reused }
left:=nil;
result:=cderefnode.create(result);
include(TDerefNode(result).derefnodeflags,drnf_no_checkpointer);
end;
function ttypeconvnode.typecheck_pwchar_to_string : tnode;
var
newblock : tblocknode;
newstat : tstatementnode;
restemp : ttempcreatenode;
begin
if tstringdef(resultdef).stringtype=st_shortstring then
begin
newblock:=internalstatements(newstat);
restemp:=ctempcreatenode.create(resultdef,resultdef.size,tt_persistent,false);
addstatement(newstat,restemp);
addstatement(newstat,ccallnode.createintern('fpc_pwidechar_to_shortstr',ccallparanode.create(left,ccallparanode.create(
ctemprefnode.create(restemp),nil))));
addstatement(newstat,ctempdeletenode.create_normal_temp(restemp));
addstatement(newstat,ctemprefnode.create(restemp));
result:=newblock;
end
else if tstringdef(resultdef).stringtype=st_ansistring then
begin
result:=ccallnode.createinternres(
'fpc_pwidechar_to_'+tstringdef(resultdef).stringtypname,
ccallparanode.create(
cordconstnode.create(
getparaencoding(resultdef),
u16inttype,
true
),
ccallparanode.create(left,nil)
),
resultdef
);
end
else
result := ccallnode.createinternres(
'fpc_pwidechar_to_'+tstringdef(resultdef).stringtypname,
ccallparanode.create(left,nil),resultdef);
left:=nil;
end;
function ttypeconvnode.typecheck_variant_to_dynarray : tnode;
begin
result := ccallnode.createinternres(
'fpc_variant_to_dynarray',
ccallparanode.create(caddrnode.create_internal(crttinode.create(tstoreddef(resultdef),initrtti,rdt_normal)),
ccallparanode.create(left,nil)
),resultdef);
typecheckpass(result);
left:=nil;
end;
function ttypeconvnode.typecheck_dynarray_to_variant : tnode;
begin
result := ccallnode.createinternres(
'fpc_dynarray_to_variant',
ccallparanode.create(caddrnode.create_internal(crttinode.create(tstoreddef(left.resultdef),initrtti,rdt_normal)),
ccallparanode.create(ctypeconvnode.create_explicit(left,voidpointertype),nil)
),resultdef);
typecheckpass(result);
left:=nil;
end;
function ttypeconvnode.typecheck_variant_to_interface : tnode;
begin
if def_is_related(tobjectdef(resultdef),tobjectdef(search_system_type('IDISPATCH').typedef)) then
result := ccallnode.createinternres(
'fpc_variant_to_idispatch',
ccallparanode.create(left,nil)
,resultdef)
else
result := ccallnode.createinternres(
'fpc_variant_to_interface',
ccallparanode.create(left,nil)
,resultdef);
typecheckpass(result);
left:=nil;
end;
function ttypeconvnode.typecheck_interface_to_variant : tnode;
begin
if def_is_related(tobjectdef(left.resultdef),tobjectdef(search_system_type('IDISPATCH').typedef)) then
result := ccallnode.createinternres(
'fpc_idispatch_to_variant',
ccallparanode.create(left,nil)
,resultdef)
else
result := ccallnode.createinternres(
'fpc_interface_to_variant',
ccallparanode.create(left,nil)
,resultdef);
typecheckpass(result);
left:=nil;
end;
function ttypeconvnode.typecheck_variant_to_enum : tnode;
begin
result := ctypeconvnode.create_internal(left,sinttype);
result := ctypeconvnode.create_internal(result,resultdef);
typecheckpass(result);
{ left is reused }
left := nil;
end;
function ttypeconvnode.typecheck_enum_to_variant : tnode;
begin
result := ctypeconvnode.create_internal(left,sinttype);
result := ctypeconvnode.create_internal(result,cvarianttype);
typecheckpass(result);
{ left is reused }
left := nil;
end;
function ttypeconvnode.typecheck_array_2_dynarray : tnode;
var
newstatement : tstatementnode;
temp : ttempcreatenode;
temp2 : ttempcreatenode;
begin
{ create statements with call to getmem+initialize }
result:=internalstatements(newstatement);
{ create temp for result }
temp:=ctempcreatenode.create(resultdef,resultdef.size,tt_persistent,true);
addstatement(newstatement,temp);
{ get temp for array of lengths }
temp2:=ctempcreatenode.create(sinttype,sinttype.size,tt_persistent,false);
addstatement(newstatement,temp2);
{ one dimensional }
addstatement(newstatement,cassignmentnode.create(
ctemprefnode.create(temp2),
cordconstnode.create
(tarraydef(left.resultdef).highrange+1,s32inttype,true)));
{ create call to fpc_dynarr_setlength }
addstatement(newstatement,ccallnode.createintern('fpc_dynarray_setlength',
ccallparanode.create(caddrnode.create_internal
(ctemprefnode.create(temp2)),
ccallparanode.create(cordconstnode.create
(1,s32inttype,true),
ccallparanode.create(caddrnode.create_internal
(crttinode.create(tstoreddef(resultdef),initrtti,rdt_normal)),
ccallparanode.create(
ctypeconvnode.create_internal(
ctemprefnode.create(temp),voidpointertype),
nil))))
));
addstatement(newstatement,ctempdeletenode.create(temp2));
{ copy ... }
addstatement(newstatement,cassignmentnode.create(
ctypeconvnode.create_internal(cderefnode.create(ctypeconvnode.create_internal(ctemprefnode.create(temp),voidpointertype)),left.resultdef),
left
));
{ left is reused }
left:=nil;
{ the last statement should return the value as
location and type, this is done be referencing the
temp and converting it first from a persistent temp to
normal temp }
addstatement(newstatement,ctempdeletenode.create_normal_temp(temp));
addstatement(newstatement,ctemprefnode.create(temp));
end;
function ttypeconvnode.typecheck_elem_2_openarray : tnode;
begin
result:=nil;
end;
function ttypeconvnode.typecheck_arrayconstructor_to_dynarray : tnode;
var
newstatement,
assstatement : tstatementnode;
arrnode : ttempcreatenode;
temp2 : ttempcreatenode;
assnode : tnode;
paracount : integer;
elemnode : tarrayconstructornode;
begin
{ assignment of []? }
if (
(left.nodetype=arrayconstructorn) and
not assigned(tarrayconstructornode(left).left)
) or
is_emptyset(left)
then
begin
result:=cnilnode.create;
exit;
end;
if resultdef.typ<>arraydef then
internalerror(2017050102);
tarrayconstructornode(left).force_type(tarraydef(resultdef).elementdef);
result:=internalstatements(newstatement);
{ create temp for result }
arrnode:=ctempcreatenode.create(totypedef,totypedef.size,tt_persistent,true);
addstatement(newstatement,arrnode);
paracount:=0;
{ create an assignment call for each element }
assnode:=internalstatements(assstatement);
if left.nodetype=arrayconstructorrangen then
internalerror(2016021902);
elemnode:=tarrayconstructornode(left);
while assigned(elemnode) do
begin
{ arr[i] := param_i }
if not assigned(elemnode.left) then
internalerror(2017050103);
addstatement(assstatement,
cassignmentnode.create(
cvecnode.create(
ctemprefnode.create(arrnode),
cordconstnode.create(paracount,tarraydef(totypedef).rangedef,false)),
elemnode.left));
elemnode.left:=nil;
inc(paracount);
elemnode:=tarrayconstructornode(elemnode.right);
if assigned(elemnode) and (elemnode.nodetype<>arrayconstructorn) then
internalerror(2016021903);
end;
{ get temp for array of lengths }
temp2:=ctempcreatenode.create_value(sinttype,sinttype.size,tt_persistent,false,cordconstnode.create(paracount,s32inttype,true));
addstatement(newstatement,temp2);
{ create call to fpc_dynarr_setlength }
addstatement(newstatement,ccallnode.createintern('fpc_dynarray_setlength',
ccallparanode.create(caddrnode.create_internal
(ctemprefnode.create(temp2)),
ccallparanode.create(cordconstnode.create
(1,s32inttype,true),
ccallparanode.create(caddrnode.create_internal
(crttinode.create(tstoreddef(totypedef),initrtti,rdt_normal)),
ccallparanode.create(
ctypeconvnode.create_internal(
ctemprefnode.create(arrnode),voidpointertype),
nil))))
));
{ add assignment statememnts }
addstatement(newstatement,ctempdeletenode.create(temp2));
addstatement(newstatement,assnode);
{ the last statement should return the value as
location and type, this is done be referencing the
temp and converting it first from a persistent temp to
normal temp }
addstatement(newstatement,ctempdeletenode.create_normal_temp(arrnode));
addstatement(newstatement,ctemprefnode.create(arrnode));
end;
function ttypeconvnode.typecheck_arrayconstructor_to_array : tnode;
var
newstatement,
assstatement : tstatementnode;
arrnode : ttempcreatenode;
temp2 : ttempcreatenode;
assnode : tnode;
paracount : integer;
elemnode : tarrayconstructornode;
begin
tarrayconstructornode(left).force_type(tarraydef(resultdef).elementdef);
result:=internalstatements(newstatement);
{ create temp for result }
arrnode:=ctempcreatenode.create(totypedef,totypedef.size,tt_persistent,true);
addstatement(newstatement,arrnode);
paracount:=0;
{ create an assignment call for each element }
assnode:=internalstatements(assstatement);
if left.nodetype=arrayconstructorrangen then
internalerror(2020041402);
elemnode:=tarrayconstructornode(left);
while assigned(elemnode) do
begin
{ arr[i] := param_i }
if not assigned(elemnode.left) then
internalerror(2020041403);
addstatement(assstatement,
cassignmentnode.create(
cvecnode.create(
ctemprefnode.create(arrnode),
cordconstnode.create(paracount+tarraydef(totypedef).lowrange,tarraydef(totypedef).rangedef,false)),
elemnode.left));
elemnode.left:=nil;
inc(paracount);
elemnode:=tarrayconstructornode(elemnode.right);
if assigned(elemnode) and (elemnode.nodetype<>arrayconstructorn) then
internalerror(2020041404);
end;
{ get temp for array of lengths }
temp2:=ctempcreatenode.create_value(sinttype,sinttype.size,tt_persistent,false,cordconstnode.create(paracount,s32inttype,true));
addstatement(newstatement,temp2);
{ add assignment statememnts }
addstatement(newstatement,ctempdeletenode.create(temp2));
addstatement(newstatement,assnode);
{ the last statement should return the value as
location and type, this is done be referencing the
temp and converting it first from a persistent temp to
normal temp }
addstatement(newstatement,ctempdeletenode.create_normal_temp(arrnode));
addstatement(newstatement,ctemprefnode.create(arrnode));
end;
function ttypeconvnode._typecheck_int_to_int : tnode;
begin
result := typecheck_int_to_int;
end;
function ttypeconvnode._typecheck_cord_to_pointer : tnode;
begin
result := typecheck_cord_to_pointer;
end;
function ttypeconvnode._typecheck_chararray_to_string : tnode;
begin
result := typecheck_chararray_to_string;
end;
function ttypeconvnode._typecheck_string_to_chararray : tnode;
begin
result := typecheck_string_to_chararray;
end;
function ttypeconvnode._typecheck_string_to_string: tnode;
begin
result := typecheck_string_to_string;
end;
function ttypeconvnode._typecheck_char_to_string : tnode;
begin
result := typecheck_char_to_string;
end;
function ttypeconvnode._typecheck_char_to_chararray : tnode;
begin
result := typecheck_char_to_chararray;
end;
function ttypeconvnode._typecheck_int_to_real : tnode;
begin
result := typecheck_int_to_real;
end;
function ttypeconvnode._typecheck_real_to_real : tnode;
begin
result := typecheck_real_to_real;
end;
function ttypeconvnode._typecheck_real_to_currency : tnode;
begin
result := typecheck_real_to_currency;
end;
function ttypeconvnode._typecheck_cchar_to_pchar : tnode;
begin
result := typecheck_cchar_to_pchar;
end;
function ttypeconvnode._typecheck_cstring_to_pchar : tnode;
begin
result := typecheck_cstring_to_pchar;
end;
function ttypeconvnode._typecheck_cstring_to_int : tnode;
begin
result := typecheck_cstring_to_int;
end;
function ttypeconvnode._typecheck_char_to_char : tnode;
begin
result := typecheck_char_to_char;
end;
function ttypeconvnode._typecheck_arrayconstructor_to_set : tnode;
begin
result := typecheck_arrayconstructor_to_set;
end;
function ttypeconvnode._typecheck_set_to_set : tnode;
begin
result := typecheck_set_to_set;
end;
function ttypeconvnode._typecheck_pchar_to_string : tnode;
begin
result := typecheck_pchar_to_string;
end;
function ttypeconvnode._typecheck_interface_to_string : tnode;
begin
result := typecheck_interface_to_string;
end;
function ttypeconvnode._typecheck_interface_to_guid : tnode;
begin
result := typecheck_interface_to_guid;
end;
function ttypeconvnode._typecheck_dynarray_to_openarray : tnode;
begin
result := typecheck_dynarray_to_openarray;
end;
function ttypeconvnode._typecheck_pwchar_to_string : tnode;
begin
result := typecheck_pwchar_to_string;
end;
function ttypeconvnode._typecheck_variant_to_dynarray : tnode;
begin
result := typecheck_variant_to_dynarray;
end;
function ttypeconvnode._typecheck_dynarray_to_variant : tnode;
begin
result := typecheck_dynarray_to_variant;
end;
function ttypeconvnode._typecheck_variant_to_enum : tnode;
begin
result := typecheck_variant_to_enum;
end;
function ttypeconvnode._typecheck_enum_to_variant : tnode;
begin
result := typecheck_enum_to_variant;
end;
function ttypeconvnode._typecheck_proc_to_procvar : tnode;
begin
result := typecheck_proc_to_procvar;
end;
function ttypeconvnode._typecheck_variant_to_interface : tnode;
begin
result := typecheck_variant_to_interface;
end;
function ttypeconvnode._typecheck_interface_to_variant : tnode;
begin
result := typecheck_interface_to_variant;
end;
function ttypeconvnode._typecheck_array_2_dynarray : tnode;
begin
result := typecheck_array_2_dynarray;
end;
function ttypeconvnode._typecheck_elem_2_openarray : tnode;
begin
result := typecheck_elem_2_openarray;
end;
function ttypeconvnode._typecheck_arrayconstructor_to_dynarray : tnode;
begin
result:=typecheck_arrayconstructor_to_dynarray;
end;
function ttypeconvnode._typecheck_arrayconstructor_to_array : tnode;
begin
result:=typecheck_arrayconstructor_to_array;
end;
function ttypeconvnode._typecheck_procvar_to_funcref : tnode;
begin
result:=typecheck_procvar_2_funcref;
end;
function ttypeconvnode._typecheck_anonproc_to_funcref : tnode;
begin
result:=typecheck_anonproc_2_funcref;
end;
function ttypeconvnode.target_specific_general_typeconv: boolean;
begin
result:=false;
end;
function ttypeconvnode.target_specific_explicit_typeconv: boolean;
begin
result:=false;
end;
class function ttypeconvnode.target_specific_need_equal_typeconv(fromdef, todef: tdef): boolean;
begin
result:=false;
end;
type
tsym_mapping = record
oldsym:tsym;
newsym:tsym;
end;
psym_mapping = ^tsym_mapping;
function replace_self_sym(var n:tnode;arg:pointer):foreachnoderesult;
var
mapping : psym_mapping absolute arg;
ld : tloadnode;
begin
if n.nodetype=loadn then
begin
ld:=tloadnode(n);
if ld.symtableentry=mapping^.oldsym then
begin
ld.symtableentry:=mapping^.newsym;
{ make sure that the node is processed again }
ld.resultdef:=nil;
if assigned(ld.left) then
begin
{ no longer loaded through the frame pointer }
ld.left.free;
ld.left:=nil;
end;
typecheckpass(n);
end;
end;
result:=fen_true;
end;
function ttypeconvnode.typecheck_proc_to_procvar : tnode;
function is_self_sym(sym:tsym):boolean;
begin
result:=(sym.typ in [localvarsym,paravarsym]) and
(vo_is_self in tabstractvarsym(sym).varoptions);
end;
var
pd : tabstractprocdef;
copytype : tproccopytyp;
source: pnode;
fpsym,
selfsym,
sym : tsym;
mapping : tsym_mapping;
pi : tprocinfo;
i : longint;
begin
result:=nil;
pd:=tabstractprocdef(left.resultdef);
{ create procvardef (default for create_proc_to_procvar is voiddef,
but if later a regular inserttypeconvnode() is used to insert a type
conversion to the actual procvardef, totypedef will be set to the
real procvartype that we are converting to) }
if assigned(totypedef) and
(totypedef.typ=procvardef) then
begin
{ have to do this in typecheckpass so that it's triggered for
typed constant declarations }
if po_is_block in tprocvardef(totypedef).procoptions then
begin
{ can only convert from procdef to procvardef, but in the mean
time other type conversions may have been inserted (pointers,
proc2procvar, ...) }
source:=actualtargetnode(@left);
while (source^.nodetype=typeconvn) and
(ttypeconvnode(source^).convtype=tc_proc_2_procvar) and
(is_void(source^.resultdef) or
(source^.resultdef.typ=procvardef)) do
begin
{ won't skip proc2procvar }
source:=actualtargetnode(@ttypeconvnode(source^).left);
end;
if (source^.nodetype=loadn) and
(source^.resultdef.typ=procdef) and
not is_nested_pd(tprocdef(source^.resultdef)) and
not is_objcclass(tdef(source^.resultdef.owner.defowner)) then
begin
result:=generate_block_for_procaddr(tloadnode(source^));
exit;
end
else
CGMessage2(type_e_illegal_type_conversion,left.resultdef.typename,resultdef.typename);
end
else if (pd.typ=procdef) and
(po_anonymous in pd.procoptions) then
begin
if left.nodetype<>loadn then
internalerror(2021062402);
{ get rid of any potential framepointer loading; if it's necessary
(for a nested procvar for example) it will be added again }
if assigned(tloadnode(left).left) and (tloadnode(left).left.nodetype=loadparentfpn) then
begin
tloadnode(left).left.free;
tloadnode(left).left:=nil;
tloadnode(left).resultdef:=nil;
end;
if tprocvardef(totypedef).is_methodpointer then
begin
if assigned(tprocdef(pd).capturedsyms) and
(
(tprocdef(pd).capturedsyms.count>1) or
(
(tprocdef(pd).capturedsyms.count=1) and
not is_self_sym(tsym(pcapturedsyminfo(tprocdef(pd).capturedsyms[0])^.sym))
)
) then
begin
result:=cerrornode.create;
exit;
end;
{ so that insert_self_and_vmt_para correctly inserts the
Self, cause it otherwise skips that for anonymous functions }
include(pd.procoptions,po_methodpointer);
{ we know this only captures Self, so we can move the
anonymous function to normal function level }
pd.parast.symtablelevel:=normal_function_level;
tprocdef(pd).localst.symtablelevel:=normal_function_level;
selfsym:=nil;
fpsym:=nil;
{ find the framepointer parameter and an eventual self }
for i:=0 to tprocdef(pd).parast.symlist.count-1 do
begin
sym:=tsym(tprocdef(pd).parast.symlist[i]);
if sym.typ<>paravarsym then
continue;
if vo_is_parentfp in tparavarsym(sym).varoptions then
fpsym:=sym;
if vo_is_self in tparavarsym(sym).varoptions then
selfsym:=sym;
if assigned(fpsym) and assigned(selfsym) then
break;
end;
if assigned(fpsym) then
tprocdef(pd).parast.symlist.remove(fpsym);
{ if we don't have a self parameter already we need to
insert a suitable one }
if not assigned(selfsym) then
begin
{ replace the self symbol by the new parameter if it was
captured }
if assigned(tprocdef(pd).capturedsyms) and
(tprocdef(pd).capturedsyms.count>0) then
begin
if not assigned(tprocdef(pd).struct) then
{ we can't use the captured symbol for the struct as that
might be the self of a type helper, thus we need to find
the parent procinfo that provides the Self }
tprocdef(pd).struct:=current_procinfo.get_normal_proc.procdef.struct;
if not assigned(tprocdef(pd).struct) then
internalerror(2021062204);
insert_self_and_vmt_para(pd);
mapping.oldsym:=tsym(pcapturedsyminfo(tprocdef(pd).capturedsyms[0])^.sym);
mapping.newsym:=nil;
{ find the new self parameter }
for i:=0 to tprocdef(pd).parast.symlist.count-1 do
begin
sym:=tsym(tprocdef(pd).parast.symlist[i]);
if (sym.typ=paravarsym) and (vo_is_self in tparavarsym(sym).varoptions) then
begin
mapping.newsym:=sym;
break;
end;
end;
if not assigned(mapping.newsym) then
internalerror(2021062202);
{ the anonymous function can only be a direct child of the
current_procinfo }
pi:=current_procinfo.get_first_nestedproc;
while assigned(pi) do
begin
if pi.procdef=pd then
break;
pi:=tprocinfo(pi.next);
end;
if not assigned(pi) then
internalerror(2021062203);
{ replace all uses of the captured Self by the new Self
parameter }
foreachnodestatic(pm_preprocess,tcgprocinfo(pi).code,@replace_self_sym,@mapping);
end
else
begin
{ for a nested function of a method struct is already
set }
if not assigned(tprocdef(pd).struct) then
{ simply add a TObject as Self parameter }
tprocdef(pd).struct:=class_tobject;
insert_self_and_vmt_para(pd);
{ there is no self, so load a nil value }
tloadnode(left).set_mp(cnilnode.create);
end;
end;
{ the anonymous function no longer adheres to the nested
calling convention }
exclude(pd.procoptions,po_delphi_nested_cc);
tprocdef(pd).calcparas;
if not assigned(tloadnode(left).left) then
tloadnode(left).set_mp(load_self_node);
end
else if tprocvardef(totypedef).is_addressonly then
begin
if assigned(tprocdef(pd).capturedsyms) and (tprocdef(pd).capturedsyms.count>0) then
begin
result:=cerrornode.create;
exit;
end;
{ remove framepointer and Self parameters }
for i:=tprocdef(pd).parast.symlist.count-1 downto 0 do
begin
sym:=tsym(tprocdef(pd).parast.symlist[i]);
if (sym.typ=paravarsym) and (tparavarsym(sym).varoptions*[vo_is_parentfp,vo_is_self]<>[]) then
tprocdef(pd).parast.symlist.delete(i);
end;
{ the anonymous function no longer adheres to the nested
calling convention }
exclude(pd.procoptions,po_delphi_nested_cc);
{ we don't need to look through the existing nodes, cause
the parameter was never used anyway }
tprocdef(pd).calcparas;
end
else
begin
{ this is a nested function pointer, so ensure that the
anonymous function is handled as such }
if assigned(tprocdef(pd).capturedsyms) and
(tprocdef(pd).capturedsyms.count>0) and
(left.nodetype=loadn) then
begin
tloadnode(left).left:=cloadparentfpnode.create(tprocdef(tloadnode(left).symtable.defowner),lpf_forload);
typecheckpass(tloadnode(left).left);
pi:=current_procinfo.get_first_nestedproc;
while assigned(pi) do
begin
if pi.procdef=pd then
break;
pi:=tprocinfo(pi.next);
end;
pi.set_needs_parentfp(tprocdef(tloadnode(left).symtable.defowner).parast.symtablelevel);
end;
end;
end;
resultdef:=totypedef;
end
else
begin
{ only need the address of the method? this is needed
for @tobject.create. In this case there will be a loadn without
a methodpointer. }
if (left.nodetype=loadn) and
not assigned(tloadnode(left).left) and
(not(m_nested_procvars in current_settings.modeswitches) or
not is_nested_pd(tabstractprocdef(tloadnode(left).resultdef))) then
copytype:=pc_address_only
else
copytype:=pc_normal;
resultdef:=cprocvardef.getreusableprocaddr(pd,copytype);
end;
end;
function ttypeconvnode.typecheck_procvar_2_funcref : tnode;
var
capturer : tsym;
intfdef : tdef;
ld,blck,hp : tnode;
stmt : tstatementnode;
begin
result:=nil;
if not(m_tp_procvar in current_settings.modeswitches) and
is_invokable(resultdef) and
(left.nodetype=typeconvn) and
(ttypeconvnode(left).convtype=tc_proc_2_procvar) and
is_methodpointer(left.resultdef) and
(po_classmethod in tprocvardef(left.resultdef).procoptions) and
not(po_staticmethod in tprocvardef(left.resultdef).procoptions) and
(proc_to_funcref_equal(tprocdef(ttypeconvnode(left).left.resultdef),tobjectdef(resultdef))>=te_convert_l1) then
begin
hp:=left;
left:=ttypeconvnode(left).left;
if (left.nodetype=loadn) and
not assigned(tloadnode(left).left) then
tloadnode(left).set_mp(cloadvmtaddrnode.create(ctypenode.create(tdef(tloadnode(left).symtable.defowner))));
left:=ctypeconvnode.create_proc_to_procvar(left);
ttypeconvnode(left).totypedef:=resultdef;
typecheckpass(left);
ttypeconvnode(hp).left:=nil;
hp.free;
end;
intfdef:=capturer_add_procvar_or_proc(current_procinfo,left,capturer,hp);
if assigned(intfdef) then
begin
if assigned(capturer) then
ld:=cloadnode.create(capturer,capturer.owner)
else
ld:=cnilnode.create;
result:=ctypeconvnode.create_internal(
ctypeconvnode.create_internal(
ld,
intfdef),
totypedef);
if assigned(hp) then
begin
blck:=internalstatements(stmt);
addstatement(stmt,cassignmentnode.create(hp,left));
left:=nil;
addstatement(stmt,result);
result:=blck;
end;
end;
if not assigned(result) then
result:=cerrornode.create;
end;
function ttypeconvnode.typecheck_anonproc_2_funcref : tnode;
var
capturer : tsym;
intfdef : tdef;
ldnode : tnode;
begin
intfdef:=capturer_add_anonymous_proc(current_procinfo,tprocdef(left.resultdef),capturer);
if assigned(intfdef) then
begin
if assigned(capturer) then
ldnode:=cloadnode.create(capturer,capturer.owner)
else
ldnode:=cnilnode.create;
result:=ctypeconvnode.create_internal(
ctypeconvnode.create_internal(
ldnode,
intfdef),
totypedef);
end
else
result:=cerrornode.create;
end;
function ttypeconvnode.typecheck_call_helper(c : tconverttype) : tnode;
const
resultdefconvert : array[tconverttype] of pointer = (
{none} nil,
{equal} nil,
{not_possible} nil,
{ string_2_string } @ttypeconvnode._typecheck_string_to_string,
{ char_2_string } @ttypeconvnode._typecheck_char_to_string,
{ char_2_chararray } @ttypeconvnode._typecheck_char_to_chararray,
{ pchar_2_string } @ttypeconvnode._typecheck_pchar_to_string,
{ cchar_2_pchar } @ttypeconvnode._typecheck_cchar_to_pchar,
{ cstring_2_pchar } @ttypeconvnode._typecheck_cstring_to_pchar,
{ cstring_2_int } @ttypeconvnode._typecheck_cstring_to_int,
{ ansistring_2_pchar } nil,
{ string_2_chararray } @ttypeconvnode._typecheck_string_to_chararray,
{ chararray_2_string } @ttypeconvnode._typecheck_chararray_to_string,
{ array_2_pointer } nil,
{ pointer_2_array } nil,
{ int_2_int } @ttypeconvnode._typecheck_int_to_int,
{ int_2_bool } nil,
{ bool_2_bool } nil,
{ bool_2_int } nil,
{ real_2_real } @ttypeconvnode._typecheck_real_to_real,
{ int_2_real } @ttypeconvnode._typecheck_int_to_real,
{ real_2_currency } @ttypeconvnode._typecheck_real_to_currency,
{ proc_2_procvar } @ttypeconvnode._typecheck_proc_to_procvar,
{ nil_2_methodprocvar } nil,
{ arrayconstructor_2_set } @ttypeconvnode._typecheck_arrayconstructor_to_set,
{ set_to_set } @ttypeconvnode._typecheck_set_to_set,
{ cord_2_pointer } @ttypeconvnode._typecheck_cord_to_pointer,
{ intf_2_string } @ttypeconvnode._typecheck_interface_to_string,
{ intf_2_guid } @ttypeconvnode._typecheck_interface_to_guid,
{ class_2_intf } nil,
{ char_2_char } @ttypeconvnode._typecheck_char_to_char,
{ dynarray_2_openarray} @ttypeconvnode._typecheck_dynarray_to_openarray,
{ pwchar_2_string} @ttypeconvnode._typecheck_pwchar_to_string,
{ variant_2_dynarray} @ttypeconvnode._typecheck_variant_to_dynarray,
{ dynarray_2_variant} @ttypeconvnode._typecheck_dynarray_to_variant,
{ variant_2_enum} @ttypeconvnode._typecheck_variant_to_enum,
{ enum_2_variant} @ttypeconvnode._typecheck_enum_to_variant,
{ variant_2_interface} @ttypeconvnode._typecheck_interface_to_variant,
{ interface_2_variant} @ttypeconvnode._typecheck_variant_to_interface,
{ array_2_dynarray} @ttypeconvnode._typecheck_array_2_dynarray,
{ elem_2_openarray } @ttypeconvnode._typecheck_elem_2_openarray,
{ arrayconstructor_2_dynarray } @ttypeconvnode._typecheck_arrayconstructor_to_dynarray,
{ arrayconstructor_2_array } @ttypeconvnode._typecheck_arrayconstructor_to_array,
{ anonproc_2_funcref } @ttypeconvnode._typecheck_anonproc_to_funcref,
{ procvar_2_funcref } @ttypeconvnode._typecheck_procvar_to_funcref
);
type
tprocedureofobject = function : tnode of object;
var
r : TMethod;
begin
result:=nil;
{ this is a little bit dirty but it works }
{ and should be quite portable too }
r.Code:=resultdefconvert[c];
r.Data:=self;
if assigned(r.Code) then
result:=tprocedureofobject(r)();
end;
function ttypeconvnode.pass_typecheck:tnode;
var
hdef : tdef;
hp : tnode;
currprocdef : tabstractprocdef;
aprocdef : tprocdef;
eq : tequaltype;
cdoptions : tcompare_defs_options;
selfnode : tnode;
newblock: tblocknode;
newstatement: tstatementnode;
tempnode: ttempcreatenode;
begin
result:=nil;
resultdef:=totypedef;
typecheckpass(left);
if codegenerror then
exit;
{ When absolute force tc_equal }
if (nf_absolute in flags) then
begin
convtype:=tc_equal;
{ we need to check regability only if something is really regable }
if ((tstoreddef(left.resultdef).is_intregable) or
(tstoreddef(resultdef).is_fpuregable)) and
(
(tstoreddef(resultdef).is_intregable<>tstoreddef(left.resultdef).is_intregable) or
(tstoreddef(resultdef).is_fpuregable<>tstoreddef(left.resultdef).is_fpuregable) or
{ like in pdecvar.read_absolute(): if the size changes, the
register size would also have to change (but second_nothing
does not handle this) }
(tstoreddef(resultdef).size<>tstoreddef(left.resultdef).size)) then
make_not_regable(left,[ra_addr_regable]);
exit;
end;
{ tp procvar support. Skip typecasts to procvar, record or set. Those
convert on the procvar value. This is used to access the
fields of a methodpointer }
if not(nf_load_procvar in flags) and
not(resultdef.typ in [procvardef,recorddef,setdef]) and
not is_invokable(resultdef) and
{ in case of interface assignments of invokables they'll be converted
to voidpointertype using an internal conversions; we must not call
the invokable in that case }
not (
(nf_internal in flags) and
is_invokable(left.resultdef)
) then
maybe_call_procvar(left,true);
if target_specific_general_typeconv then
exit;
if convtype=tc_none then
begin
cdoptions:=[cdo_allow_variant,cdo_warn_incompatible_univ];
{ overloaded operators require calls, which is not possible inside
a constant declaration }
if (block_type<>bt_const) and
not(nf_internal in flags) then
include(cdoptions,cdo_check_operator);
if nf_explicit in flags then
include(cdoptions,cdo_explicit);
if nf_internal in flags then
include(cdoptions,cdo_internal);
aprocdef:=nil;
eq:=compare_defs_ext(left.resultdef,resultdef,left.nodetype,convtype,aprocdef,cdoptions);
case eq of
te_exact,
te_equal :
begin
result := simplify(false);
if assigned(result) then
exit;
{ in case of bitpacked accesses, the original type must
remain so that not too many/few bits are laoded }
if is_bitpacked_access(left) then
convtype:=tc_int_2_int;
{ Only leave when there is no conversion to do.
We can still need to call a conversion routine,
like the routine to convert a stringconstnode }
if (convtype in [tc_equal,tc_not_possible]) and
{ some conversions, like dynarray to pointer in Delphi
mode, must not be removed, because then we get memory
leaks due to missing temp finalization }
(not is_managed_type(left.resultdef) or
{ different kinds of refcounted types may need calls
to different kinds of refcounting helpers }
(resultdef=left.resultdef)) then
begin
{$ifdef llvm}
{ we still may have to insert a type conversion at the
llvm level }
if (blocktype<>bt_const) and
(left.resultdef<>resultdef) and
{ if unspecialised generic -> we won't generate any code
for this, and keeping the type conversion node will
cause valid_for_assign to fail because the typecast will be from/to something of 0
bytes to/from something with a non-zero size }
not is_typeparam(left.resultdef) and
not is_typeparam(resultdef) then
result:=nil
else
{$endif llvm}
begin
left.resultdef:=resultdef;
if (nf_explicit in flags) and (left.nodetype = addrn) then
include(taddrnode(left).addrnodeflags,anf_typedaddr);
result:=left;
left:=nil;
end;
exit;
end;
end;
te_convert_l1,
te_convert_l2,
te_convert_l3,
te_convert_l4,
te_convert_l5,
te_convert_l6:
{ nothing to do }
;
te_convert_operator :
begin
include(current_procinfo.flags,pi_do_call);
addsymref(aprocdef.procsym,aprocdef);
hp:=ccallnode.create(ccallparanode.create(left,nil),Tprocsym(aprocdef.procsym),nil,nil,[],nil);
{ tell explicitly which def we must use !! (PM) }
tcallnode(hp).procdefinition:=aprocdef;
left:=nil;
result:=hp;
exit;
end;
te_incompatible :
begin
{ convert an array constructor to a set so that we still get
the error "set of Y incompatible to Z" instead of "array of
X incompatible to Z" }
if (resultdef.typ<>arraydef) and
is_array_constructor(left.resultdef) then
begin
arrayconstructor_to_set(left);
typecheckpass(left);
end;
{ Procedures have a resultdef of voiddef and functions of their
own resultdef. They will therefore always be incompatible with
a procvar. Because isconvertable cannot check for procedures we
use an extra check for them.}
if (left.nodetype=calln) and
(tcallnode(left).required_para_count=0) and
(
(resultdef.typ=procvardef) or
is_invokable(resultdef)
) and
(
(m_tp_procvar in current_settings.modeswitches) or
(m_mac_procvar in current_settings.modeswitches)
) then
begin
if assigned(tcallnode(left).right) then
begin
{ this is already a procvar, if it is really equal
is checked below }
convtype:=tc_equal;
hp:=tcallnode(left).right.getcopy;
currprocdef:=tabstractprocdef(hp.resultdef);
end
else
begin
if resultdef.typ=procvardef then
begin
convtype:=tc_proc_2_procvar;
currprocdef:=Tprocsym(Tcallnode(left).symtableprocentry).Find_procdef_byprocvardef(Tprocvardef(resultdef));
end
else
begin
convtype:=tc_procvar_2_funcref;
currprocdef:=tprocsym(tcallnode(left).symtableprocentry).find_procdef_byfuncrefdef(tobjectdef(resultdef));
end;
hp:=cloadnode.create_procvar(tprocsym(tcallnode(left).symtableprocentry),
tprocdef(currprocdef),tcallnode(left).symtableproc);
if (tcallnode(left).symtableprocentry.owner.symtabletype=ObjectSymtable) then
begin
selfnode:=tcallnode(left).methodpointer;
if assigned(selfnode) then
begin
{ in case the nodetype is a typen, avoid the internal error
in set_mp and instead let the code error out normally }
if selfnode.nodetype<>typen then
tloadnode(hp).set_mp(selfnode.getcopy)
end
else
tloadnode(hp).set_mp(load_self_node);
end;
typecheckpass(hp);
end;
left.free;
left:=hp;
{ Now check if the procedure we are going to assign to
the procvar, is compatible with the procvar's type }
if not(nf_explicit in flags) and
(
(
(resultdef.typ=procvardef) and
(proc_to_procvar_equal(currprocdef,tprocvardef(resultdef),false)=te_incompatible)
) or (
is_invokable(resultdef) and
(proc_to_funcref_equal(currprocdef,tobjectdef(resultdef))=te_incompatible)
)
) then
IncompatibleTypes(left.resultdef,resultdef)
else
result:=typecheck_call_helper(convtype);
exit;
end
else if maybe_global_proc_to_nested(left,resultdef) or
maybe_classmethod_to_methodprocvar(left,resultdef) then
begin
result:=left;
left:=nil;
exit;
end;
{ Handle explicit type conversions }
if nf_explicit in flags then
begin
{ do common tc_equal cast, except when dealing with proc -> procvar
(may have to get rid of method pointer) }
if (left.resultdef.typ<>procdef) or
(resultdef.typ<>procvardef) then
convtype:=tc_equal
else
convtype:=tc_proc_2_procvar;
{ ordinal constants can be resized to 1,2,4,8 bytes }
if (left.nodetype=ordconstn) then
begin
{ Insert typeconv for ordinal to the correct size first on left, after
that the other conversion can be done }
hdef:=nil;
case longint(resultdef.size) of
1 :
hdef:=s8inttype;
2 :
hdef:=s16inttype;
4 :
hdef:=s32inttype;
8 :
hdef:=s64inttype;
end;
{ we need explicit, because it can also be an enum }
if assigned(hdef) then
inserttypeconv_internal(left,hdef)
else
CGMessage2(type_e_illegal_type_conversion,left.resultdef.typename,resultdef.typename);
end;
{ class/interface to class/interface, with checkobject support }
if is_class_or_interface_or_objc(resultdef) and
is_class_or_interface_or_objc(left.resultdef) then
begin
{ check if the types are related }
if not(nf_internal in flags) and
(not(def_is_related(tobjectdef(left.resultdef),tobjectdef(resultdef)))) and
(not(def_is_related(tobjectdef(resultdef),tobjectdef(left.resultdef)))) then
begin
{ Give an error when typecasting class to interface, this is compatible
with delphi }
if is_interface(resultdef) and
not is_interface(left.resultdef) then
CGMessage2(type_e_classes_not_related,
FullTypeName(left.resultdef,resultdef),
FullTypeName(resultdef,left.resultdef))
else
CGMessage2(type_w_classes_not_related,
FullTypeName(left.resultdef,resultdef),
FullTypeName(resultdef,left.resultdef))
end;
{ Add runtime check? }
if not is_objc_class_or_protocol(resultdef) and
not is_objc_class_or_protocol(left.resultdef) and
(cs_check_object in current_settings.localswitches) and
not(nf_internal in flags) then
begin
{ we can translate the typeconvnode to 'as' when
typecasting to a class or interface }
{ we need to make sure the result can still be
passed as a var parameter }
newblock:=internalstatements(newstatement);
if (valid_for_var(left,false)) then
begin
tempnode:=ctempcreatenode.create(voidpointertype,voidpointertype.size,tt_persistent,true);
addstatement(newstatement,tempnode);
addstatement(newstatement,cassignmentnode.create(
ctemprefnode.create(tempnode),
caddrnode.create_internal(left)));
left:=ctypeconvnode.create_internal(cderefnode.create(ctemprefnode.create(tempnode)),left.resultdef);
end
else
begin
tempnode:=ctempcreatenode.create(left.resultdef,left.resultdef.size,tt_persistent,true);
addstatement(newstatement,tempnode);
addstatement(newstatement,cassignmentnode.create(
ctemprefnode.create(tempnode),
left));
left:=ctemprefnode.create(tempnode);
end;
addstatement(newstatement,casnode.create(left.getcopy,cloadvmtaddrnode.create(ctypenode.create(resultdef))));
addstatement(newstatement,ctempdeletenode.create_normal_temp(tempnode));
addstatement(newstatement,ctypeconvnode.create_internal(left,resultdef));
left:=nil;
result:=newblock;
exit;
end;
end
else
begin
{ only if the same size or formal def, and }
{ don't allow type casting of constants to }
{ structured types }
if not(
(left.resultdef.typ=formaldef) or
{$ifdef jvm}
{ enums /are/ class instances on the JVM
platform }
(((left.resultdef.typ=enumdef) and
(resultdef.typ=objectdef)) or
((resultdef.typ=enumdef) and
(left.resultdef.typ=objectdef))) or
{$endif}
(
is_void(left.resultdef) and
(left.nodetype=derefn)
) or
(
not(is_open_array(left.resultdef)) and
not(is_array_constructor(left.resultdef)) and
not(is_array_of_const(left.resultdef)) and
{ if the from type is an anonymous function then
don't blindly convert it if the size is the same
as compare_defs_ext already determined that the
anonymous function is not compatible }
not(
(left.resultdef.typ=procdef) and
(po_anonymous in tprocdef(left.resultdef).procoptions)
) and
(left.resultdef.size=resultdef.size) and
{ disallow casts of const nodes }
(not is_constnode(left) or
{ however, there are some exceptions }
(not(resultdef.typ in [arraydef,recorddef,setdef,stringdef,
filedef,variantdef,objectdef]) or
is_class_or_interface_or_objc(resultdef) or
{ the softfloat code generates casts <const. float> to record }
(nf_internal in flags)
))
)
) then
CGMessage2(type_e_illegal_type_conversion,left.resultdef.typename,resultdef.typename)
else
begin
{ perform target-specific explicit typecast
checks }
if target_specific_explicit_typeconv then
begin
result:=simplify(false);
exit;
end;
end;
end;
end
else
IncompatibleTypes(left.resultdef,resultdef);
end;
end;
end;
{ Give hint or warning for unportable code, exceptions are
- typecasts from constants
- void }
if not(nf_internal in flags) and
(left.nodetype<>ordconstn) and
not(is_void(left.resultdef)) and
(((left.resultdef.typ=orddef) and
(resultdef.typ in [pointerdef,procvardef,classrefdef])) or
((resultdef.typ=orddef) and
(left.resultdef.typ in [pointerdef,procvardef,classrefdef]))) then
begin
{Converting pointers to signed integers is a bad idea. Warn.}
warn_pointer_to_signed:=(resultdef.typ=orddef) and (Torddef(resultdef).ordtype in [s8bit,s16bit,s32bit,s64bit]);
{ Give a warning when sizes don't match, because then info will be lost }
if left.resultdef.size=resultdef.size then
CGMessage(type_h_pointer_to_longint_conv_not_portable)
else
CGMessage(type_w_pointer_to_longint_conv_not_portable);
end;
{ tc_cord_2_pointer still requires a type check, which
simplify does not do }
if (convtype<>tc_cord_2_pointer) then
begin
result := simplify(false);
if assigned(result) then
exit;
end;
{ now call the resultdef helper to do constant folding }
result:=typecheck_call_helper(convtype);
end;
{ some code generators for 64 bit CPUs might not support 32 bit operations, so we can
disable the following optimization in fpcdefs.inc. Currently the only CPU for which
this applies is powerpc64
}
{$ifndef CPUNO32BITOPS}
{ checks whether we can safely remove typeconversions to bigger types
in case range and overflow checking are off, and in case
the result of this node tree is downcasted again to a
smaller type value afterwards,
the smaller types being allowed are described by validints, ordinal constants must fit into l..h
We do this on 64 bit CPUs as well, they benefit from it as well }
function checkremovebiginttypeconvs(n: tnode; out gotsint: boolean;validints : tordtypeset;const l,h : Tconstexprint): boolean;
var
gotminus1,
gotsigned,
gotunsigned,
gotdivmod: boolean;
{ checks whether a node has an accepted resultdef, or originally
had one but was implicitly converted to s64bit }
function wasoriginallysmallerint(n: tnode): boolean;
begin
if (n.resultdef.typ<>orddef) then
exit(false);
gotsigned:=gotsigned or is_signed(n.resultdef);
gotunsigned:=gotunsigned or not(is_signed(n.resultdef));
{ actually, we should only check right (denominator) nodes here, but
setting it always is a safe approximation }
if ((n.nodetype=ordconstn) and
(tordconstnode(n).value=-1)) then
gotminus1:=true;
if (torddef(n.resultdef).ordtype in validints) then
begin
if is_signed(n.resultdef) then
gotsint:=true;
exit(true);
end;
{ type conv to a bigger int, we do not like to use? }
if (torddef(n.resultdef).ordtype in ([s8bit,u8bit,s16bit,u16bit,s32bit,u32bit,s64bit,u64bit]-validints)) and
{ nf_explicit is also set for explicitly typecasted }
{ ordconstn's }
([nf_internal,nf_explicit]*n.flags=[]) and
{ either a typeconversion node coming from a smaller type }
(((n.nodetype=typeconvn) and
(ttypeconvnode(n).left.resultdef.typ=orddef) and
(torddef(ttypeconvnode(n).left.resultdef).ordtype in validints)) or
{ or an ordconstnode which has a smaller type}
((n.nodetype=ordconstn) and
(tordconstnode(n).value>=l) and
(tordconstnode(n).value<=h))) then
begin
if ((n.nodetype=typeconvn) and
is_signed(ttypeconvnode(n).left.resultdef)) or
((n.nodetype=ordconstn) and
(tordconstnode(n).value<0)) then
begin
gotsint:=true;
gotsigned:=true;
end
else
gotunsigned:=true;
exit(true);
end;
result:=false;
end;
function docheckremoveinttypeconvs(n: tnode): boolean;
begin
if wasoriginallysmallerint(n) then
exit(true);
case n.nodetype of
subn,orn,xorn:
begin
{ the result could become negative in this case }
if n.nodetype=subn then
gotsint:=true;
result:=
docheckremoveinttypeconvs(tbinarynode(n).left) and
docheckremoveinttypeconvs(tbinarynode(n).right);
end;
unaryminusn:
begin
gotsint:=true;
result:=docheckremoveinttypeconvs(tunarynode(n).left);
end;
shrn:
begin
result:=wasoriginallysmallerint(tbinarynode(n).left) and
docheckremoveinttypeconvs(tbinarynode(n).right);
end;
notn:
result:=docheckremoveinttypeconvs(tunarynode(n).left);
addn,muln,divn,modn,andn,shln:
begin
if n.nodetype in [divn,modn] then
gotdivmod:=true;
result:=
(docheckremoveinttypeconvs(tbinarynode(n).left) and
docheckremoveinttypeconvs(tbinarynode(n).right) and
(not(n.nodetype in [modn,divn]) or (not(gotminus1)))
) or
(
(n.nodetype=andn) and
(
{ Right node is more likely to be a constant, so check
this one first }
wasoriginallysmallerint(tbinarynode(n).right) or
wasoriginallysmallerint(tbinarynode(n).left)
)
);
end;
else
result:=false;
end;
end;
begin { checkremove64bittypeconvs }
gotdivmod:=false;
gotsint:=false;
gotminus1:=false;
gotsigned:=false;
gotunsigned:=false;
result:=
docheckremoveinttypeconvs(n) and
(not(gotdivmod) or (gotsigned xor gotunsigned));
end;
{ remove int type conversions and set the result to the given type }
procedure doremoveinttypeconvs(level : dword;var n: tnode; todef: tdef; forceunsigned: boolean; signedtype,unsignedtype : tdef);
function SmallerOrSigned(def: tdef): Boolean;
begin
Result := (def.size < signedtype.size) or
(
(def.size = signedtype.size) and
is_signed(def)
)
end;
var
newblock: tblocknode;
newstatements: tstatementnode;
originaldivtree: tnode;
tempnode: ttempcreatenode;
NeedMinus1Check: Boolean;
begin
{ we may not recurse into shr nodes:
dword1:=dword1+((dword2+dword3) shr 2);
while we can remove an extension on the outermost addition, we cannot
remove it from the shr
}
{ Don't downsize into a division operation either, as the numerator can
be much larger than the result and non-linear properties prevent
accurate truncation; fixes #39646 [Kit] }
if (n.nodetype in [shrn,divn,modn]) and (level<>0) then
begin
inserttypeconv_internal(n,todef);
exit;
end;
case n.nodetype of
subn,addn,muln,divn,modn,xorn,andn,orn,shln,shrn:
begin
exclude(n.flags,nf_internal);
if not forceunsigned and
is_signed(n.resultdef) then
begin
originaldivtree:=nil;
NeedMinus1Check:=False;
if n.nodetype in [divn,modn] then
begin
{ If the DIV operation is being downsized, we must explicitly check for a divisor of -1 }
NeedMinus1Check := True;
{ If the operand size is equal or smaller, the -1 check isn't necessary }
if (
SmallerOrSigned(tbinarynode(n).left.resultdef) or
(
(tbinarynode(n).left.nodetype = typeconvn) and
SmallerOrSigned(ttypeconvnode(tbinarynode(n).left).left.resultdef)
)
) and
(
SmallerOrSigned(tbinarynode(n).right.resultdef) or
(
(tbinarynode(n).right.nodetype = typeconvn) and
SmallerOrSigned(ttypeconvnode(tbinarynode(n).right).left.resultdef)
)
) then
NeedMinus1Check := False;
end;
if NeedMinus1Check then
originaldivtree:=n.getcopy;
doremoveinttypeconvs(level+1,tbinarynode(n).left,signedtype,false,signedtype,unsignedtype);
doremoveinttypeconvs(level+1,tbinarynode(n).right,signedtype,false,signedtype,unsignedtype);
n.resultdef:=signedtype;
if NeedMinus1Check then
begin
newblock:=internalstatements(newstatements);
tempnode:=ctempcreatenode.create(n.resultdef,n.resultdef.size,tt_persistent,true);
addstatement(newstatements,tempnode);
addstatement(newstatements,cifnode.create_internal(
caddnode.create_internal(equaln,tbinarynode(n).right.getcopy,cordconstnode.create(-1,n.resultdef,false)),
cassignmentnode.create_internal(
ctemprefnode.create(tempnode),
cmoddivnode.create(n.nodetype,tbinarynode(originaldivtree).left.getcopy,cordconstnode.create(-1,tbinarynode(originaldivtree).right.resultdef,false))
),
cassignmentnode.create_internal(
ctemprefnode.create(tempnode),n
)
)
);
addstatement(newstatements,ctempdeletenode.create_normal_temp(tempnode));
addstatement(newstatements,ctemprefnode.create(tempnode));
n:=newblock;
do_typecheckpass(n);
originaldivtree.free;
end;
end
else
begin
doremoveinttypeconvs(level+1,tbinarynode(n).left,unsignedtype,forceunsigned,signedtype,unsignedtype);
doremoveinttypeconvs(level+1,tbinarynode(n).right,unsignedtype,forceunsigned,signedtype,unsignedtype);
n.resultdef:=unsignedtype;
end;
//if ((n.nodetype=andn) and (tbinarynode(n).left.nodetype=ordconstn) and
// ((tordconstnode(tbinarynode(n).left).value and $7fffffff)=tordconstnode(tbinarynode(n).left).value)
// ) then
// inserttypeconv_internal(tbinarynode(n).right,n.resultdef)
//else if (n.nodetype=andn) and (tbinarynode(n).right.nodetype=ordconstn) and
// ((tordconstnode(tbinarynode(n).right).value and $7fffffff)=tordconstnode(tbinarynode(n).right).value) then
// inserttypeconv_internal(tbinarynode(n).left,n.resultdef);
end;
unaryminusn,notn:
begin
exclude(n.flags,nf_internal);
if not forceunsigned and
is_signed(n.resultdef) then
begin
doremoveinttypeconvs(level+1,tunarynode(n).left,signedtype,false,signedtype,unsignedtype);
n.resultdef:=signedtype;
end
else
begin
doremoveinttypeconvs(level+1,tunarynode(n).left,unsignedtype,forceunsigned,signedtype,unsignedtype);
n.resultdef:=unsignedtype;
end;
end;
typeconvn:
begin
ttypeconvnode(n).totypedef:=todef;
{ may change the type conversion, e.g. if the old conversion was
from 64 bit to a 64 bit, and now becomes 64 bit to 32 bit }
n.resultdef:=nil;
ttypeconvnode(n).convtype:=tc_none;
typecheckpass(n);
end;
else
inserttypeconv_internal(n,todef);
end;
end;
{$endif not CPUNO32BITOPS}
procedure swap_const_value (var val : TConstExprInt; size : longint);
begin
case size of
1 : {do nothing };
2 : if val.signed then
val.svalue:=swapendian(smallint(val.svalue))
else
val.uvalue:=swapendian(word(val.uvalue));
4 : if val.signed then
val.svalue:=swapendian(longint(val.svalue))
else
val.uvalue:=swapendian(qword(val.uvalue));
8 : if val.signed then
val.svalue:=swapendian(int64(val.svalue))
else
val.uvalue:=swapendian(qword(val.uvalue));
else
internalerror(2014111201);
end;
end;
function ttypeconvnode.simplify(forinline : boolean): tnode;
var
hp: tnode;
v: Tconstexprint;
{$ifndef CPUNO32BITOPS}
foundsint: boolean;
{$endif not CPUNO32BITOPS}
begin
result := nil;
{ Constant folding and other node transitions to
remove the typeconv node }
case left.nodetype of
stringconstn :
if (resultdef.typ=stringdef) and
((convtype=tc_equal) or
((convtype=tc_string_2_string) and
(
((not is_widechararray(left.resultdef) and
not is_wide_or_unicode_string(left.resultdef)) or
(tstringdef(resultdef).stringtype in [st_widestring,st_unicodestring,st_ansistring])
)
)
)
) then
begin
{ output string consts in local ansistring encoding }
if is_ansistring(resultdef) and
{ do not mess with the result type for internally created nodes }
not(nf_internal in flags) and
((tstringdef(resultdef).encoding=0) or (tstringdef(resultdef).encoding=globals.CP_NONE)) then
tstringconstnode(left).changestringtype(getansistringdef)
else
tstringconstnode(left).changestringtype(resultdef);
result:=left;
left:=nil;
exit;
end
else if
(convtype<>tc_cstring_2_pchar) and
is_dynamicstring(left.resultdef) and
(tstringconstnode(left).len=0) and
(resultdef.typ=pointerdef) and
cstringconstnode.emptydynstrnil then
begin
result:=cnilnode.create;
exit;
end;
realconstn :
begin
if (convtype = tc_real_2_currency) then
result := typecheck_real_to_currency
else if (convtype = tc_real_2_real) then
result := typecheck_real_to_real
else
exit;
if not(assigned(result)) then
begin
result := left;
left := nil;
end;
if (result.nodetype = realconstn) then
begin
hp:=result;
result:=crealconstnode.create(trealconstnode(hp).value_real,resultdef);
if nf_is_currency in hp.flags then
include(result.flags,nf_is_currency);
if ([nf_explicit,nf_internal] * flags <> []) then
include(result.flags, nf_explicit);
hp.free;
end;
end;
niln :
begin
{ nil to ordinal node }
if (resultdef.typ=orddef) then
begin
hp:=cordconstnode.create(0,resultdef,true);
if ([nf_explicit,nf_internal] * flags <> []) then
include(hp.flags, nf_explicit);
result:=hp;
exit;
end
else
{ fold nil to any pointer type }
if (resultdef.typ=pointerdef) then
begin
hp:=cnilnode.create;
hp.resultdef:=resultdef;
if ([nf_explicit,nf_internal] * flags <> []) then
include(hp.flags, nf_explicit);
result:=hp;
exit;
end
else
{ remove typeconv after niln, but not when the result is a
methodpointer. The typeconv of the methodpointer will then
take care of updateing size of niln to OS_64 }
if not((resultdef.typ=procvardef) and
not(tprocvardef(resultdef).is_addressonly)) and
{ converting (dynamic array) nil to a an open array is not allowed }
not is_open_array(resultdef) then
begin
left.resultdef:=resultdef;
if ([nf_explicit,nf_internal] * flags <> []) then
include(left.flags, nf_explicit);
result:=left;
left:=nil;
exit;
end;
end;
ordconstn :
begin
{ ordinal contants can be directly converted }
{ but not char to char because it is a widechar to char or via versa }
{ which needs extra code to do the code page transistion }
{ constant ordinal to pointer }
if (resultdef.typ=pointerdef) and
(convtype<>tc_cchar_2_pchar) then
begin
if (target_info.system in systems_managed_vm) and
(tordconstnode(left).value<>0) then
message(parser_e_feature_unsupported_for_vm);
hp:=cpointerconstnode.create(TConstPtrUInt(tordconstnode(left).value.uvalue),resultdef);
if ([nf_explicit,nf_internal] * flags <> []) then
include(hp.flags, nf_explicit);
result:=hp;
exit;
end
else if is_ordinal(resultdef) and
not(convtype=tc_char_2_char) then
begin
{ replace the resultdef and recheck the range }
if ([nf_explicit,nf_absolute, nf_internal] * flags <> []) then
include(left.flags, nf_explicit)
else
{ no longer an ordconst with an explicit typecast }
exclude(left.flags, nf_explicit);
{ when converting from one boolean type to another, force }
{ booleans to 0/1, and byte/word/long/qwordbool to 0/-1 }
{ (Delphi-compatibile) }
if is_boolean(left.resultdef) and
is_boolean(resultdef) and
(is_cbool(left.resultdef) or
is_cbool(resultdef)) then
begin
if is_pasbool(resultdef) then
tordconstnode(left).value:=ord(tordconstnode(left).value<>0)
else
tordconstnode(left).value:=-ord(tordconstnode(left).value<>0);
end
else
begin
{ for constant values on absolute variables, swapping is required }
if (target_info.endian = endian_big) and (nf_absolute in flags) then
swap_const_value(tordconstnode(left).value,tordconstnode(left).resultdef.size);
if not(nf_generic_para in flags) then
adaptrange(
resultdef,tordconstnode(left).value,
{ when evaluating an explicit typecast during inlining, don't warn about
lost bits; only warn if someone literally typed e.g. byte($1ff) }
(([nf_internal,nf_absolute]*flags)<>[]) or (forinline and (nf_explicit in flags)),
nf_explicit in flags,
cs_check_range in localswitches);
{ swap value back, but according to new type }
if (target_info.endian = endian_big) and (nf_absolute in flags) then
swap_const_value(tordconstnode(left).value,resultdef.size);
{ cut off the new value? }
if resultdef.size<left.resultdef.size then
case resultdef.size of
1:
if is_signed(resultdef) then
tordconstnode(left).value:=tordconstnode(left).value and shortint($ff)
else
tordconstnode(left).value:=tordconstnode(left).value and byte($ff);
2:
if is_signed(resultdef) then
tordconstnode(left).value:=tordconstnode(left).value and smallint($ffff)
else
tordconstnode(left).value:=tordconstnode(left).value and word($ffff);
4:
if is_signed(resultdef) then
tordconstnode(left).value:=tordconstnode(left).value and longint($ffffffff)
else
tordconstnode(left).value:=tordconstnode(left).value and dword($ffffffff);
end;
end;
left.resultdef:=resultdef;
tordconstnode(left).typedef:=resultdef;
if is_signed(resultdef) then
tordconstnode(left).value.signed:=true
else
tordconstnode(left).value.signed:=false;
result:=left;
left:=nil;
exit;
end
else if (convtype=tc_int_2_int) and
is_currency(resultdef) then
begin
v:=tordconstnode(left).value;
if not(nf_internal in flags) and not(is_currency(left.resultdef)) then
v:=v*10000;
result:=cordconstnode.create(v,resultdef,false);
exit;
end;
end;
pointerconstn :
begin
{ pointerconstn to any pointer is folded too }
if (resultdef.typ=pointerdef) then
begin
left.resultdef:=resultdef;
if ([nf_explicit,nf_internal] * flags <> []) then
include(left.flags, nf_explicit)
else
{ no longer an ordconst with an explicit typecast }
exclude(left.flags, nf_explicit);
result:=left;
left:=nil;
exit;
end
{ constant pointer to ordinal }
else if is_ordinal(resultdef) then
begin
hp:=cordconstnode.create(TConstExprInt(tpointerconstnode(left).value),
resultdef,not(nf_explicit in flags));
if ([nf_explicit,nf_internal] * flags <> []) then
include(hp.flags, nf_explicit);
result:=hp;
exit;
end;
end;
else
;
end;
{$ifndef CPUNO32BITOPS}
{ must be done before code below, because we need the
typeconversions for ordconstn's as well }
case convtype of
tc_bool_2_int,
tc_int_2_bool,
tc_int_2_int:
begin
if (localswitches * [cs_check_range,cs_check_overflow] = []) and
(resultdef.typ in [pointerdef,orddef,enumdef]) then
begin
{ avoid unnecessary widening of intermediary calculations
to 64 bit }
if (resultdef.size <= 4) and
is_64bitint(left.resultdef) and
(left.nodetype in [subn,addn,muln,divn,modn,xorn,andn,orn,notn,unaryminusn,shln,shrn]) and
checkremovebiginttypeconvs(left,foundsint,[s8bit,u8bit,s16bit,u16bit,s32bit,u32bit],int64(low(longint)),high(cardinal)) then
doremoveinttypeconvs(0,left,generrordef,not foundsint,s32inttype,u32inttype);
{$if defined(cpu16bitalu)}
if (resultdef.size <= 2) and
(is_32bitint(left.resultdef) or is_64bitint(left.resultdef)) and
(left.nodetype in [subn,addn,muln,divn,modn,xorn,andn,orn,notn,unaryminusn,shln,shrn]) and
checkremovebiginttypeconvs(left,foundsint,[s8bit,u8bit,s16bit,u16bit],int64(low(smallint)),high(word)) then
doremoveinttypeconvs(0,left,generrordef,not foundsint,s16inttype,u16inttype);
{$endif defined(cpu16bitalu)}
{$if defined(cpu8bitalu)}
if (resultdef.size<left.resultdef.size) and
is_integer(left.resultdef) and
(left.nodetype in [subn,addn,muln,divn,modn,xorn,andn,orn,notn,unaryminusn,shln,shrn]) and
checkremovebiginttypeconvs(left,foundsint,[s8bit,u8bit],int64(low(shortint)),high(byte)) then
doremoveinttypeconvs(0,left,generrordef,not foundsint,s8inttype,u8inttype);
{$endif defined(cpu8bitalu)}
{ the above simplification may have left a redundant equal
typeconv (e.g. int32 to int32). If that's the case, we remove it }
if equal_defs(left.resultdef,resultdef) then
begin
result:=left;
left:=nil;
exit;
end;
if (convtype=tc_int_2_int) and (left.nodetype=typeconvn) and (ttypeconvnode(left).convtype=tc_bool_2_int) then
begin
ttypeconvnode(left).totypedef:=resultdef;
ttypeconvnode(left).resultdef:=resultdef;
result:=left;
left:=nil;
exit;
end;
end;
end;
else
;
end;
{$endif not CPUNO32BITOPS}
end;
procedure Ttypeconvnode.mark_write;
begin
if not(convtype=tc_pointer_2_array) then
left.mark_write;
end;
function ttypeconvnode.first_cord_to_pointer : tnode;
begin
result:=nil;
internalerror(200104043);
end;
function ttypeconvnode.first_int_to_int : tnode;
begin
first_int_to_int:=nil;
expectloc:=left.expectloc;
if not is_void(left.resultdef) then
begin
if (left.expectloc<>LOC_REGISTER) and
((resultdef.size>left.resultdef.size) or
(left.expectloc in [LOC_SUBSETREF,LOC_CSUBSETREF,LOC_SUBSETREG,LOC_CSUBSETREG])) then
expectloc:=LOC_REGISTER
else
if (left.expectloc=LOC_CREGISTER) and
(resultdef.size<left.resultdef.size) then
expectloc:=LOC_REGISTER;
end;
end;
function ttypeconvnode.first_cstring_to_pchar : tnode;
begin
result:=nil;
expectloc:=LOC_REGISTER;
end;
function ttypeconvnode.first_cstring_to_int : tnode;
begin
result:=nil;
internalerror(200510014);
end;
function ttypeconvnode.first_string_to_chararray : tnode;
begin
first_string_to_chararray:=nil;
expectloc:=left.expectloc;
end;
function ttypeconvnode.first_char_to_string : tnode;
begin
first_char_to_string:=nil;
if tstringdef(resultdef).stringtype=st_shortstring then
inc(current_procinfo.estimatedtempsize,256);
expectloc:=LOC_REFERENCE;
end;
function ttypeconvnode.first_char_to_chararray : tnode;
begin
if resultdef.size <> 1 then
begin
{ convert first to string, then to chararray }
inserttypeconv(left,cshortstringtype);
inserttypeconv(left,resultdef);
result:=left;
left := nil;
exit;
end;
result := nil;
end;
function ttypeconvnode.first_nothing : tnode;
begin
first_nothing:=nil;
end;
function ttypeconvnode.first_array_to_pointer : tnode;
begin
first_array_to_pointer:=nil;
make_not_regable(left,[ra_addr_regable]);
expectloc:=LOC_REGISTER;
end;
function ttypeconvnode.first_int_to_real: tnode;
var
fname: string[32];
begin
if target_info.system in systems_wince then
begin
{ converting a 64bit integer to a float requires a helper }
if is_64bitint(left.resultdef) or
is_currency(left.resultdef) then
begin
{ hack to avoid double division by 10000, as it's
already done by typecheckpass.resultdef_int_to_real }
if is_currency(left.resultdef) then
left.resultdef := s64inttype;
if is_signed(left.resultdef) then
fname:='i64to'
else
fname:='ui64to';
end
else
{ other integers are supposed to be 32 bit }
begin
if is_signed(left.resultdef) then
fname:='ito'
else
fname:='uto';
firstpass(left);
end;
if tfloatdef(resultdef).floattype=s64real then
fname:=fname+'d'
else
fname:=fname+'s';
result:=ccallnode.createintern(fname,ccallparanode.create(
left,nil));
left:=nil;
firstpass(result);
exit;
end
else
begin
{ converting a 64bit integer to a float requires a helper }
if is_64bitint(left.resultdef) or
is_currency(left.resultdef) then
begin
{ hack to avoid double division by 10000, as it's
already done by typecheckpass.resultdef_int_to_real }
if is_currency(left.resultdef) then
left.resultdef := s64inttype;
if is_signed(left.resultdef) then
fname:='int64_to_'
else
{ we can't do better currently }
fname:='qword_to_';
end
else
{ other integers are supposed to be 32 bit }
begin
if is_signed(left.resultdef) then
fname:='int32_to_'
else
fname:='int64_to_';
firstpass(left);
end;
if tfloatdef(resultdef).floattype=s64real then
fname:=fname+'float64'
else
fname:=fname+'float32';
result:=ctypeconvnode.create_internal(ccallnode.createintern(fname,ccallparanode.create(
left,nil)),resultdef);
left:=nil;
firstpass(result);
exit;
end;
end;
function ttypeconvnode.first_real_to_real : tnode;
begin
{$ifdef cpufpemu}
if cs_fp_emulation in current_settings.moduleswitches then
begin
if target_info.system in systems_wince then
begin
case tfloatdef(left.resultdef).floattype of
s32real:
case tfloatdef(resultdef).floattype of
s64real:
result:=ccallnode.createintern('stod',ccallparanode.create(left,nil));
s32real:
begin
result:=left;
left:=nil;
end;
else
internalerror(2005082704);
end;
s64real:
case tfloatdef(resultdef).floattype of
s32real:
result:=ccallnode.createintern('dtos',ccallparanode.create(left,nil));
s64real:
begin
result:=left;
left:=nil;
end;
else
internalerror(2005082703);
end;
else
internalerror(2005082702);
end;
left:=nil;
firstpass(result);
exit;
end
else
begin
case tfloatdef(left.resultdef).floattype of
s32real:
case tfloatdef(resultdef).floattype of
s64real:
result:=ctypeconvnode.create_explicit(ccallnode.createintern('float32_to_float64',ccallparanode.create(
ctypeconvnode.create_internal(left,search_system_type('FLOAT32REC').typedef),nil)),resultdef);
s32real:
begin
result:=left;
left:=nil;
end;
else
internalerror(200610151);
end;
s64real:
case tfloatdef(resultdef).floattype of
s32real:
result:=ctypeconvnode.create_explicit(ccallnode.createintern('float64_to_float32',ccallparanode.create(
ctypeconvnode.create_internal(left,search_system_type('FLOAT64').typedef),nil)),resultdef);
s64real:
begin
result:=left;
left:=nil;
end;
else
internalerror(200610152);
end;
else
internalerror(200610153);
end;
left:=nil;
firstpass(result);
exit;
end;
end
else
{$endif cpufpemu}
begin
first_real_to_real:=nil;
if not use_vectorfpu(resultdef) then
expectloc:=LOC_FPUREGISTER
else
expectloc:=LOC_MMREGISTER;
end;
end;
function ttypeconvnode.first_pointer_to_array : tnode;
begin
first_pointer_to_array:=nil;
expectloc:=LOC_REFERENCE;
end;
function ttypeconvnode.first_cchar_to_pchar : tnode;
begin
first_cchar_to_pchar:=nil;
internalerror(200104021);
end;
function ttypeconvnode.first_bool_to_int : tnode;
begin
first_bool_to_int:=nil;
{ byte(boolean) or word(wordbool) or longint(longbool) must
be accepted for var parameters }
if (nf_explicit in flags) and
(left.resultdef.size=resultdef.size) and
(left.expectloc in [LOC_REFERENCE,LOC_CREFERENCE,LOC_CREGISTER]) then
begin
expectloc:=left.expectloc;
exit;
end;
expectloc:=LOC_REGISTER;
end;
function ttypeconvnode.first_int_to_bool : tnode;
begin
first_int_to_bool:=nil;
{ byte(boolean) or word(wordbool) or longint(longbool) must
be accepted for var parameters }
if (nf_explicit in flags) and
(left.resultdef.size=resultdef.size) and
(left.expectloc in [LOC_REFERENCE,LOC_CREFERENCE,LOC_CREGISTER]) then
begin
{$ifdef xtensa}
expectloc:=LOC_REGISTER;
{$else xtensa}
expectloc:=left.expectloc;
{$endif xtensa}
exit;
end;
{ when converting 64bit int to C-ctyle boolean, first convert to an int32 and then }
{ convert to a boolean (only necessary for 32bit processors) }
{ note: not if left is already a bool (qwordbool that is true, even if
only because the highest bit is set, must remain true if it is
--implicitly, unlike integers-- converted to another type of bool),
Left can already be a bool because this routine can also be called
from first_bool_to_bool }
if not is_boolean(left.resultdef) and
(left.resultdef.size > sizeof(aint)) and
(left.resultdef.size<>resultdef.size)
and is_cbool(resultdef) then
begin
left:=ctypeconvnode.create_internal(left,s32inttype);
firstpass(left);
exit;
end;
expectloc:=LOC_REGISTER;
end;
function ttypeconvnode.first_bool_to_bool : tnode;
begin
first_bool_to_bool:=nil;
if (left.expectloc in [LOC_FLAGS,LOC_JUMP]) and
not is_cbool(resultdef) then
expectloc := left.expectloc
{ the following cases use the code generation for bool_to_int/
int_to_bool -> also set their expectlocs }
else if (resultdef.size=left.resultdef.size) and
(is_cbool(resultdef)=is_cbool(left.resultdef)) then
result:=first_bool_to_int
else
result:=first_int_to_bool
end;
function ttypeconvnode.first_char_to_char : tnode;
var
fname: string[18];
begin
if (torddef(resultdef).ordtype=uchar) and
(torddef(left.resultdef).ordtype=uwidechar) then
fname := 'fpc_uchar_to_char'
else if (torddef(resultdef).ordtype=uwidechar) and
(torddef(left.resultdef).ordtype=uchar) then
fname := 'fpc_char_to_uchar'
else
internalerror(2007081201);
result := ccallnode.createintern(fname,ccallparanode.create(left,nil));
left:=nil;
firstpass(result);
end;
function ttypeconvnode.first_proc_to_procvar : tnode;
begin
first_proc_to_procvar:=nil;
{ if we take the address of a nested function, the current function/
procedure needs a stack frame since it's required to construct
the nested procvar }
if is_nested_pd(tprocvardef(resultdef)) and
(
not (po_anonymous in tprocdef(left.resultdef).procoptions) or
(po_delphi_nested_cc in tprocvardef(resultdef).procoptions)
) then
include(current_procinfo.flags,pi_needs_stackframe);
if tabstractprocdef(resultdef).is_addressonly then
expectloc:=LOC_REGISTER
else
expectloc:=left.expectloc;
end;
function ttypeconvnode.first_nil_to_methodprocvar : tnode;
begin
first_nil_to_methodprocvar:=nil;
expectloc:=LOC_REGISTER;
end;
function ttypeconvnode.first_set_to_set : tnode;
var
newstatement : tstatementnode;
temp : ttempcreatenode;
begin
{ in theory, we should do range checking here,
but Delphi doesn't do it either (FK) }
if left.nodetype=setconstn then
begin
left.resultdef:=resultdef;
result:=left;
left:=nil;
end
{ equal sets for the code generator? }
else if (left.resultdef.size=resultdef.size) and
(tsetdef(left.resultdef).setbase=tsetdef(resultdef).setbase) then
{ TODO: This causes wrong (but Delphi-compatible) results for disjoint subsets}
{ e.g., this prints true because of this:
var
sa: set of 1..2;
sb: set of 5..6;
b: byte;
begin
b:=1;
sa:=[1..2];
sb:=sa;
writeln(b in sb);
end.
}
begin
result:=left;
left:=nil;
end
else
begin
result:=internalstatements(newstatement);
{ in case left is a smallset expression, it can be an addn or so. }
{ fpc_varset_load expects a formal const parameter, which doesn't }
{ accept set addn's -> assign to a temp first and pass the temp }
if not(left.expectloc in [LOC_REFERENCE,LOC_CREFERENCE]) then
begin
temp:=ctempcreatenode.create(left.resultdef,left.resultdef.size,tt_persistent,false);
addstatement(newstatement,temp);
{ temp := left }
addstatement(newstatement,cassignmentnode.create(
ctemprefnode.create(temp),left));
addstatement(newstatement,ctempdeletenode.create_normal_temp(temp));
addstatement(newstatement,ctemprefnode.create(temp));
left:=result;
firstpass(left);
{ recreate the result's internalstatements list }
result:=internalstatements(newstatement);
end;
{ create temp for result }
temp:=ctempcreatenode.create(resultdef,resultdef.size,tt_persistent,true);
addstatement(newstatement,temp);
addstatement(newstatement,ccallnode.createintern('fpc_varset_load',
ccallparanode.create(cordconstnode.create(tsetdef(left.resultdef).setbase div 8 - tsetdef(resultdef).setbase div 8,sinttype,false),
ccallparanode.create(cordconstnode.create(resultdef.size,sinttype,false),
ccallparanode.create(ctemprefnode.create(temp),
ccallparanode.create(cordconstnode.create(left.resultdef.size,sinttype,false),
ccallparanode.create(left,nil))))))
);
addstatement(newstatement,ctempdeletenode.create_normal_temp(temp));
addstatement(newstatement,ctemprefnode.create(temp));
left:=nil;
end;
end;
function ttypeconvnode.first_ansistring_to_pchar : tnode;
begin
first_ansistring_to_pchar:=nil;
expectloc:=LOC_REGISTER;
end;
function ttypeconvnode.first_arrayconstructor_to_set : tnode;
begin
first_arrayconstructor_to_set:=nil;
internalerror(200104022);
end;
function ttypeconvnode.first_class_to_intf : tnode;
var
hd : tobjectdef;
ImplIntf : TImplementedInterface;
begin
result:=nil;
expectloc:=LOC_REGISTER;
hd:=tobjectdef(left.resultdef);
while assigned(hd) do
begin
ImplIntf:=find_implemented_interface(hd,tobjectdef(resultdef));
if assigned(ImplIntf) then
begin
case ImplIntf.IType of
etStandard:
{ handle in pass 2 }
;
etFieldValue, etFieldValueClass:
if is_interface(tobjectdef(resultdef)) then
begin
result:=left;
propaccesslist_to_node(result,tpropertysym(implintf.implementsgetter).owner,tpropertysym(implintf.implementsgetter).propaccesslist[palt_read]);
{ this ensures proper refcounting when field is of class type }
if not is_interface(result.resultdef) then
inserttypeconv(result, resultdef);
left:=nil;
end
else
begin
internalerror(200802213);
end;
etStaticMethodResult, etStaticMethodClass,
etVirtualMethodResult, etVirtualMethodClass:
if is_interface(tobjectdef(resultdef)) then
begin
{ TODO: generating a call to TObject.GetInterface instead could yield
smaller code size. OTOH, refcounting gotchas are possible that way. }
{ constructor create(l:tnode; v : tprocsym;st : TSymtable; mp: tnode; callflags:tcallnodeflags); }
result:=ccallnode.create(nil,tprocsym(tpropertysym(implintf.implementsgetter).propaccesslist[palt_read].firstsym^.sym),
tprocsym(tpropertysym(implintf.implementsgetter).propaccesslist[palt_read].firstsym^.sym).owner,
left,[],nil);
addsymref(tpropertysym(implintf.implementsgetter).propaccesslist[palt_read].firstsym^.sym);
{ if it is a class, process it further in a similar way }
if not is_interface(result.resultdef) then
inserttypeconv(result, resultdef);
left:=nil;
end
else if is_class(tobjectdef(resultdef)) then
begin
internalerror(200802211);
end
else
internalerror(200802231);
end;
break;
end;
hd:=hd.childof;
end;
if hd=nil then
internalerror(200802164);
end;
function ttypeconvnode.first_string_to_string : tnode;
var
procname: string[31];
newblock : tblocknode;
newstat : tstatementnode;
restemp : ttempcreatenode;
begin
{ get the correct procedure name }
procname := 'fpc_'+tstringdef(left.resultdef).stringtypname+
'_to_'+tstringdef(resultdef).stringtypname;
if tstringdef(resultdef).stringtype=st_shortstring then
begin
newblock:=internalstatements(newstat);
restemp:=ctempcreatenode.create(resultdef,resultdef.size,tt_persistent,false);
addstatement(newstat,restemp);
addstatement(newstat,ccallnode.createintern(procname,ccallparanode.create(left,ccallparanode.create(
ctemprefnode.create(restemp),nil))));
addstatement(newstat,ctempdeletenode.create_normal_temp(restemp));
addstatement(newstat,ctemprefnode.create(restemp));
result:=newblock;
end
{ encoding parameter required? }
else if (tstringdef(resultdef).stringtype=st_ansistring) and
(tstringdef(left.resultdef).stringtype in [st_widestring,st_unicodestring,st_shortstring,st_ansistring]) then
result:=ccallnode.createinternres(procname,
ccallparanode.create(cordconstnode.create(getparaencoding(resultdef),u16inttype,true),
ccallparanode.create(left,nil)),resultdef)
else
result:=ccallnode.createinternres(procname,ccallparanode.create(left,nil),resultdef);
left:=nil;
end;
function ttypeconvnode._first_int_to_int : tnode;
begin
result:=first_int_to_int;
end;
function ttypeconvnode._first_cstring_to_pchar : tnode;
begin
result:=first_cstring_to_pchar;
end;
function ttypeconvnode._first_cstring_to_int : tnode;
begin
result:=first_cstring_to_int;
end;
function ttypeconvnode._first_string_to_chararray : tnode;
begin
result:=first_string_to_chararray;
end;
function ttypeconvnode._first_char_to_string : tnode;
begin
result:=first_char_to_string;
end;
function ttypeconvnode._first_char_to_chararray: tnode;
begin
result:=first_char_to_chararray;
end;
function ttypeconvnode._first_nothing : tnode;
begin
result:=first_nothing;
end;
function ttypeconvnode._first_array_to_pointer : tnode;
begin
result:=first_array_to_pointer;
end;
function ttypeconvnode._first_int_to_real : tnode;
begin
result:=first_int_to_real;
end;
function ttypeconvnode._first_real_to_real : tnode;
begin
result:=first_real_to_real;
end;
function ttypeconvnode._first_pointer_to_array : tnode;
begin
result:=first_pointer_to_array;
end;
function ttypeconvnode._first_cchar_to_pchar : tnode;
begin
result:=first_cchar_to_pchar;
end;
function ttypeconvnode._first_bool_to_int : tnode;
begin
result:=first_bool_to_int;
end;
function ttypeconvnode._first_int_to_bool : tnode;
begin
result:=first_int_to_bool;
end;
function ttypeconvnode._first_bool_to_bool : tnode;
begin
result:=first_bool_to_bool;
end;
function ttypeconvnode._first_proc_to_procvar : tnode;
begin
result:=first_proc_to_procvar;
end;
function ttypeconvnode._first_nil_to_methodprocvar : tnode;
begin
result:=first_nil_to_methodprocvar;
end;
function ttypeconvnode._first_set_to_set : tnode;
begin
result:=first_set_to_set;
end;
function ttypeconvnode._first_cord_to_pointer : tnode;
begin
result:=first_cord_to_pointer;
end;
function ttypeconvnode._first_ansistring_to_pchar : tnode;
begin
result:=first_ansistring_to_pchar;
end;
function ttypeconvnode._first_arrayconstructor_to_set : tnode;
begin
result:=first_arrayconstructor_to_set;
end;
function ttypeconvnode._first_class_to_intf : tnode;
begin
result:=first_class_to_intf;
end;
function ttypeconvnode._first_char_to_char : tnode;
begin
result:=first_char_to_char;
end;
function ttypeconvnode._first_string_to_string : tnode;
begin
result:=first_string_to_string;
end;
function ttypeconvnode.first_call_helper(c : tconverttype) : tnode;
const
firstconvert : array[tconverttype] of pointer = (
nil, { none }
@ttypeconvnode._first_nothing, {equal}
@ttypeconvnode._first_nothing, {not_possible}
@ttypeconvnode._first_string_to_string,
@ttypeconvnode._first_char_to_string,
@ttypeconvnode._first_char_to_chararray,
nil, { removed in typecheck_chararray_to_string }
@ttypeconvnode._first_cchar_to_pchar,
@ttypeconvnode._first_cstring_to_pchar,
@ttypeconvnode._first_cstring_to_int,
@ttypeconvnode._first_ansistring_to_pchar,
@ttypeconvnode._first_string_to_chararray,
nil, { removed in typecheck_chararray_to_string }
@ttypeconvnode._first_array_to_pointer,
@ttypeconvnode._first_pointer_to_array,
@ttypeconvnode._first_int_to_int,
@ttypeconvnode._first_int_to_bool,
@ttypeconvnode._first_bool_to_bool,
@ttypeconvnode._first_bool_to_int,
@ttypeconvnode._first_real_to_real,
@ttypeconvnode._first_int_to_real,
nil, { removed in typecheck_real_to_currency }
@ttypeconvnode._first_proc_to_procvar,
@ttypeconvnode._first_nil_to_methodprocvar,
@ttypeconvnode._first_arrayconstructor_to_set,
@ttypeconvnode._first_set_to_set,
@ttypeconvnode._first_cord_to_pointer,
@ttypeconvnode._first_nothing,
@ttypeconvnode._first_nothing,
@ttypeconvnode._first_class_to_intf,
@ttypeconvnode._first_char_to_char,
@ttypeconvnode._first_nothing,
@ttypeconvnode._first_nothing,
nil,
nil,
nil,
nil,
nil,
nil,
nil,
@ttypeconvnode._first_nothing,
@ttypeconvnode._first_nothing,
@ttypeconvnode._first_nothing,
nil,
nil
);
type
tprocedureofobject = function : tnode of object;
var
r : TMethod;
begin
{ this is a little bit dirty but it works }
{ and should be quite portable too }
r.Code:=firstconvert[c];
r.Data:=self;
if not assigned(r.Code) then
internalerror(200312081);
first_call_helper:=tprocedureofobject(r)()
end;
function ttypeconvnode.pass_1 : tnode;
begin
if warn_pointer_to_signed then
cgmessage(type_w_pointer_to_signed);
result:=nil;
firstpass(left);
if codegenerror then
exit;
expectloc:=left.expectloc;
if nf_explicit in flags then
{ check if the result could be in a register }
if (not(tstoreddef(resultdef).is_intregable) and
not(tstoreddef(resultdef).is_const_intregable) and
not(tstoreddef(resultdef).is_fpuregable)) or
((left.resultdef.typ = floatdef) and
(resultdef.typ <> floatdef)) then
make_not_regable(left,[ra_addr_regable]);
result:=first_call_helper(convtype);
end;
function ttypeconvnode.retains_value_location:boolean;
begin
result:=assigned(left.resultdef) and
(
(convtype=tc_equal) or
{ typecasting from void is always allowed }
is_void(left.resultdef) or
(left.resultdef.typ=formaldef) or
{ int 2 int with same size reuses same location, or for
tp7 mode also allow size < orignal size }
(
(convtype=tc_int_2_int) and
(
not is_bitpacked_access(left) and
(resultdef.size=left.resultdef.size) or
((m_tp7 in current_settings.modeswitches) and
(resultdef.size<left.resultdef.size))
)
) or
{ int 2 bool/bool 2 int, explicit typecast, see also nx86cnv }
((convtype in [tc_int_2_bool,tc_bool_2_int,tc_bool_2_bool]) and
(nf_explicit in flags) and
(resultdef.size=left.resultdef.size)) or
{ on managed platforms, converting an element to an open array
involves creating an actual array -> value location changes }
((convtype=tc_elem_2_openarray) and
not(target_info.system in systems_managed_vm))
);
end;
function ttypeconvnode.assign_allowed:boolean;
begin
result:=retains_value_location;
{ When using only a part of the value it can't be in a register since
that will load the value in a new register first }
{ the same goes for changing the sign of equal-sized values which
are smaller than an entire register }
if result and
{ don't try to check the size of an open array }
(is_open_array(resultdef) or
is_open_array(left.resultdef) or
(resultdef.size<left.resultdef.size) or
((resultdef.size=left.resultdef.size) and
(left.resultdef.size<sizeof(aint)) and
(is_signed(resultdef) xor is_signed(left.resultdef)))) then
make_not_regable(left,[ra_addr_regable]);
end;
function ttypeconvnode.docompare(p: tnode) : boolean;
begin
docompare :=
inherited docompare(p) and
(convtype = ttypeconvnode(p).convtype) and
(convnodeflags = ttypeconvnode(p).convnodeflags) and
equal_defs(totypedef,ttypeconvnode(p).totypedef);
end;
procedure ttypeconvnode._second_int_to_int;
begin
second_int_to_int;
end;
procedure ttypeconvnode._second_string_to_string;
begin
second_string_to_string;
end;
procedure ttypeconvnode._second_cstring_to_pchar;
begin
second_cstring_to_pchar;
end;
procedure ttypeconvnode._second_cstring_to_int;
begin
second_cstring_to_int;
end;
procedure ttypeconvnode._second_string_to_chararray;
begin
second_string_to_chararray;
end;
procedure ttypeconvnode._second_array_to_pointer;
begin
second_array_to_pointer;
end;
procedure ttypeconvnode._second_pointer_to_array;
begin
second_pointer_to_array;
end;
procedure ttypeconvnode._second_chararray_to_string;
begin
second_chararray_to_string;
end;
procedure ttypeconvnode._second_char_to_string;
begin
second_char_to_string;
end;
procedure ttypeconvnode._second_int_to_real;
begin
second_int_to_real;
end;
procedure ttypeconvnode._second_real_to_real;
begin
second_real_to_real;
end;
procedure ttypeconvnode._second_cord_to_pointer;
begin
second_cord_to_pointer;
end;
procedure ttypeconvnode._second_proc_to_procvar;
begin
second_proc_to_procvar;
end;
procedure ttypeconvnode._second_nil_to_methodprocvar;
begin
second_nil_to_methodprocvar;
end;
procedure ttypeconvnode._second_bool_to_int;
begin
second_bool_to_int;
end;
procedure ttypeconvnode._second_int_to_bool;
begin
second_int_to_bool;
end;
procedure ttypeconvnode._second_bool_to_bool;
begin
second_bool_to_bool;
end;
procedure ttypeconvnode._second_set_to_set;
begin
second_set_to_set;
end;
procedure ttypeconvnode._second_ansistring_to_pchar;
begin
second_ansistring_to_pchar;
end;
procedure ttypeconvnode._second_class_to_intf;
begin
second_class_to_intf;
end;
procedure ttypeconvnode._second_char_to_char;
begin
second_char_to_char;
end;
procedure ttypeconvnode._second_elem_to_openarray;
begin
second_elem_to_openarray;
end;
procedure ttypeconvnode._second_nothing;
begin
second_nothing;
end;
procedure ttypeconvnode.second_call_helper(c : tconverttype);
const
secondconvert : array[tconverttype] of pointer = (
@ttypeconvnode._second_nothing, {none}
@ttypeconvnode._second_nothing, {equal}
@ttypeconvnode._second_nothing, {not_possible}
@ttypeconvnode._second_nothing, {second_string_to_string, handled in resultdef pass }
@ttypeconvnode._second_char_to_string,
@ttypeconvnode._second_nothing, {char_to_charray}
@ttypeconvnode._second_nothing, { pchar_to_string, handled in resultdef pass }
@ttypeconvnode._second_nothing, {cchar_to_pchar}
@ttypeconvnode._second_cstring_to_pchar,
@ttypeconvnode._second_cstring_to_int,
@ttypeconvnode._second_ansistring_to_pchar,
@ttypeconvnode._second_string_to_chararray,
@ttypeconvnode._second_nothing, { chararray_to_string, handled in resultdef pass }
@ttypeconvnode._second_array_to_pointer,
@ttypeconvnode._second_pointer_to_array,
@ttypeconvnode._second_int_to_int,
@ttypeconvnode._second_int_to_bool,
@ttypeconvnode._second_bool_to_bool,
@ttypeconvnode._second_bool_to_int,
@ttypeconvnode._second_real_to_real,
@ttypeconvnode._second_int_to_real,
@ttypeconvnode._second_nothing, { real_to_currency, handled in resultdef pass }
@ttypeconvnode._second_proc_to_procvar,
@ttypeconvnode._second_nil_to_methodprocvar,
@ttypeconvnode._second_nothing, { arrayconstructor_to_set }
@ttypeconvnode._second_nothing, { second_set_to_set, handled in first pass }
@ttypeconvnode._second_cord_to_pointer,
@ttypeconvnode._second_nothing, { interface 2 string }
@ttypeconvnode._second_nothing, { interface 2 guid }
@ttypeconvnode._second_class_to_intf,
@ttypeconvnode._second_char_to_char,
@ttypeconvnode._second_nothing, { dynarray_2_openarray }
@ttypeconvnode._second_nothing, { pwchar_2_string }
@ttypeconvnode._second_nothing, { variant_2_dynarray }
@ttypeconvnode._second_nothing, { dynarray_2_variant}
@ttypeconvnode._second_nothing, { variant_2_enum }
@ttypeconvnode._second_nothing, { enum_2_variant }
@ttypeconvnode._second_nothing, { variant_2_interface }
@ttypeconvnode._second_nothing, { interface_2_variant }
@ttypeconvnode._second_nothing, { array_2_dynarray }
@ttypeconvnode._second_elem_to_openarray, { elem_2_openarray }
@ttypeconvnode._second_nothing, { arrayconstructor_2_dynarray }
@ttypeconvnode._second_nothing, { arrayconstructor_2_array }
@ttypeconvnode._second_nothing, { anonproc_2_funcref }
@ttypeconvnode._second_nothing { procvar_2_funcref }
);
type
tprocedureofobject = procedure of object;
var
r : TMethod;
begin
{ this is a little bit dirty but it works }
{ and should be quite portable too }
r.Code:=secondconvert[c];
r.Data:=self;
tprocedureofobject(r)();
end;
{*****************************************************************************
TASNODE
*****************************************************************************}
function tasisnode.target_specific_typecheck: boolean;
begin
result:=false;
end;
function tasisnode.pass_typecheck: tnode;
var
hp : tnode;
begin
result:=nil;
typecheckpass(right);
typecheckpass(left);
set_varstate(right,vs_read,[vsf_must_be_valid]);
set_varstate(left,vs_read,[vsf_must_be_valid]);
if codegenerror then
exit;
if target_specific_typecheck then
begin
// ok
end
else if (right.resultdef.typ=classrefdef) then
begin
{ left maybe an interface reference }
if is_interfacecom(left.resultdef) or
is_javainterface(left.resultdef) then
begin
{ relation checks are not possible }
end
{ or left must be a class }
else if is_class(left.resultdef) or
is_javaclass(left.resultdef) then
begin
{ the operands must be related }
if (not(def_is_related(tobjectdef(left.resultdef),
tobjectdef(tclassrefdef(right.resultdef).pointeddef)))) and
(not(def_is_related(tobjectdef(tclassrefdef(right.resultdef).pointeddef),
tobjectdef(left.resultdef)))) then
CGMessage2(type_e_classes_not_related,
FullTypeName(left.resultdef,tclassrefdef(right.resultdef).pointeddef),
FullTypeName(tclassrefdef(right.resultdef).pointeddef,left.resultdef));
end
else
CGMessage1(type_e_class_or_cominterface_type_expected,left.resultdef.typename);
case nodetype of
isn:
resultdef:=pasbool1type;
asn:
resultdef:=tclassrefdef(right.resultdef).pointeddef;
else
;
end;
end
else if is_interface(right.resultdef) or
is_dispinterface(right.resultdef) or
is_javainterface(right.resultdef) then
begin
case nodetype of
isn:
resultdef:=pasbool1type;
asn:
resultdef:=right.resultdef;
else
;
end;
{ left is a class or interface }
if is_javainterface(right.resultdef) then
begin
if not is_java_class_or_interface(left.resultdef) then
CGMessage1(type_e_class_or_cominterface_type_expected,left.resultdef.typename);
end
else if not(is_class(left.resultdef) or
is_interfacecom(left.resultdef)) then
CGMessage1(type_e_class_or_cominterface_type_expected,left.resultdef.typename)
else
begin
{ load the GUID of the interface }
if (right.nodetype=typen) then
begin
if tobjectdef(right.resultdef).objecttype=odt_interfacecorba then
begin
if assigned(tobjectdef(right.resultdef).iidstr) then
begin
hp:=cstringconstnode.createstr(tobjectdef(right.resultdef).iidstr^);
tstringconstnode(hp).changestringtype(cshortstringtype);
right.free;
right:=hp;
end
else
internalerror(201006131);
end
else
begin
if assigned(tobjectdef(right.resultdef).iidguid) then
begin
if not(oo_has_valid_guid in tobjectdef(right.resultdef).objectoptions) then
CGMessage1(type_e_interface_has_no_guid,tobjectdef(right.resultdef).typename);
hp:=cguidconstnode.create(tobjectdef(right.resultdef).iidguid^);
right.free;
right:=hp;
end
else
internalerror(201006132);
end;
typecheckpass(right);
end;
end;
end
else
CGMessage1(type_e_class_or_interface_type_expected,right.resultdef.typename);
end;
{*****************************************************************************
TISNODE
*****************************************************************************}
constructor tisnode.create(l,r : tnode);
begin
inherited create(isn,l,r);
end;
constructor tisnode.create_internal(l, r: tnode);
begin
create(l,r);
include(flags,nf_internal);
end;
function tisnode.pass_1 : tnode;
var
procname: string;
statement : tstatementnode;
tempnode : ttempcreatenode;
begin
result:=nil;
{ Passing a class type to an "is" expression cannot result in a class
of that type to be constructed.
}
include(right.flags,nf_ignore_for_wpo);
if is_class(left.resultdef) and
(right.resultdef.typ=classrefdef) then
begin
if (right.nodetype=loadvmtaddrn) and
(tloadvmtaddrnode(right).left.nodetype=typen) and
(oo_is_sealed in tobjectdef(tloadvmtaddrnode(right).left.resultdef).objectoptions) and
equal_defs(left.resultdef,tclassrefdef(right.resultdef).pointeddef) then
begin
if might_have_sideeffects(left) or
(node_complexity(left)>2) then
begin
result:=internalstatements(statement);
tempnode:=ctempcreatenode.create(left.resultdef,left.resultdef.size,tt_persistent,true);
addstatement(statement,tempnode);
addstatement(statement,cassignmentnode.create_internal(ctemprefnode.create(tempnode),left));
addstatement(statement,caddnode.create_internal(andn,
caddnode.create_internal(unequaln,ctemprefnode.create(tempnode),cnilnode.create),
caddnode.create_internal(equaln,cloadvmtaddrnode.create(ctemprefnode.create(tempnode)),right)
)
);
left:=nil;
right:=nil;
end
else
begin
result:=caddnode.create_internal(andn,
caddnode.create_internal(unequaln,left.getcopy,cnilnode.create),
caddnode.create_internal(equaln,cloadvmtaddrnode.create(left.getcopy),right)
);
right:=nil;
end;
end
else
result := ccallnode.createinternres('fpc_do_is',
ccallparanode.create(left,ccallparanode.create(right,nil)),
resultdef);
end
else
begin
if is_class(left.resultdef) then
if is_shortstring(right.resultdef) then
procname := 'fpc_class_is_corbaintf'
else
procname := 'fpc_class_is_intf'
else
if right.resultdef.typ=classrefdef then
procname := 'fpc_intf_is_class'
else
procname := 'fpc_intf_is';
result := ctypeconvnode.create_internal(ccallnode.createintern(procname,
ccallparanode.create(right,ccallparanode.create(left,nil))),resultdef);
end;
left := nil;
right := nil;
//firstpass(call);
if codegenerror then
exit;
end;
{ dummy pass_2, it will never be called, but we need one since }
{ you can't instantiate an abstract class }
procedure tisnode.pass_generate_code;
begin
end;
{*****************************************************************************
TASNODE
*****************************************************************************}
constructor tasnode.create(l,r : tnode);
begin
inherited create(asn,l,r);
call := nil;
end;
constructor tasnode.create_internal(l,r : tnode);
begin
create(l,r);
include(flags,nf_internal);
end;
destructor tasnode.destroy;
begin
call.free;
inherited destroy;
end;
function tasnode.dogetcopy: tnode;
begin
result := inherited dogetcopy;
if assigned(call) then
tasnode(result).call := call.getcopy
else
tasnode(result).call := nil;
end;
function tasnode.docompare(p: tnode): boolean;
begin
result:=
inherited docompare(p) and
tasnode(p).call.isequal(call);
end;
function tasnode.pass_1 : tnode;
var
procname: string;
begin
result:=nil;
{ Passing a class type to an "as" expression cannot result in a class
of that type to be constructed.
We could put this inside the if-block below, but this way it is
safe for sure even if the code below changes
}
if assigned(right) then
include(right.flags,nf_ignore_for_wpo);
if not assigned(call) then
begin
if is_class(left.resultdef) and
(right.resultdef.typ=classrefdef) then
call := ccallnode.createinternres('fpc_do_as',
ccallparanode.create(left,ccallparanode.create(right,nil)),
resultdef)
else
begin
if is_class(left.resultdef) then
if is_shortstring(right.resultdef) then
procname := 'fpc_class_as_corbaintf'
else
procname := 'fpc_class_as_intf'
else
if right.resultdef.typ=classrefdef then
procname := 'fpc_intf_as_class'
else
procname := 'fpc_intf_as';
call := ctypeconvnode.create_internal(ccallnode.createintern(procname,
ccallparanode.create(right,ccallparanode.create(left,nil))),resultdef);
end;
left := nil;
right := nil;
firstpass(call);
if codegenerror then
exit;
expectloc:=call.expectloc;
end;
end;
end.