fpc/compiler/i386/n386mat.pas

361 lines
15 KiB
ObjectPascal

{
Copyright (c) 1998-2002 by Florian Klaempfl
Generate i386 assembler for math nodes
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
****************************************************************************
}
unit n386mat;
{$i fpcdefs.inc}
interface
uses
node,nmat,ncgmat,nx86mat;
type
ti386moddivnode = class(tmoddivnode)
procedure pass_generate_code;override;
end;
ti386shlshrnode = class(tcgshlshrnode)
procedure second_64bit;override;
function first_shlshr64bitint: tnode; override;
end;
ti386unaryminusnode = class(tx86unaryminusnode)
end;
ti386notnode = class(tx86notnode)
end;
implementation
uses
globtype,systems,constexp,
cutils,verbose,globals,
symconst,symdef,aasmbase,aasmtai,aasmdata,defutil,
cgbase,pass_2,
ncon,
cpubase,cpuinfo,
cga,ncgutil,cgobj,cgutils,
hlcgobj;
{*****************************************************************************
TI386MODDIVNODE
*****************************************************************************}
procedure ti386moddivnode.pass_generate_code;
var
hreg1,hreg2:Tregister;
power:longint;
hl:Tasmlabel;
op:Tasmop;
e : longint;
d,m: dword;
s: byte;
sm: aint;
m_add: boolean;
begin
secondpass(left);
if codegenerror then
exit;
secondpass(right);
if codegenerror then
exit;
if is_64bitint(resultdef) then
{ should be handled in pass_1 (JM) }
internalerror(200109052);
{ put numerator in register }
location_reset(location,LOC_REGISTER,def_cgsize(resultdef));
hlcg.location_force_reg(current_asmdata.CurrAsmList,left.location,left.resultdef,resultdef,false);
hreg1:=left.location.register;
if (nodetype=divn) and (right.nodetype=ordconstn) then
begin
if ispowerof2(tordconstnode(right).value.svalue,power) then
begin
{ for signed numbers, the numerator must be adjusted before the
shift instruction, but not wih unsigned numbers! Otherwise,
"Cardinal($ffffffff) div 16" overflows! (JM) }
if is_signed(left.resultdef) Then
begin
if (current_settings.optimizecputype <> cpu_386) and
not(cs_opt_size in current_settings.optimizerswitches) then
{ use a sequence without jumps, saw this in
comp.compilers (JM) }
begin
{ no jumps, but more operations }
hreg2:=cg.getintregister(current_asmdata.CurrAsmList,OS_INT);
emit_reg_reg(A_MOV,S_L,hreg1,hreg2);
{If the left value is signed, hreg2=$ffffffff, otherwise 0.}
emit_const_reg(A_SAR,S_L,31,hreg2);
{If signed, hreg2=right value-1, otherwise 0.}
emit_const_reg(A_AND,S_L,tordconstnode(right).value.svalue-1,hreg2);
{ add to the left value }
emit_reg_reg(A_ADD,S_L,hreg2,hreg1);
{ do the shift }
emit_const_reg(A_SAR,S_L,power,hreg1);
end
else
begin
{ a jump, but less operations }
emit_reg_reg(A_TEST,S_L,hreg1,hreg1);
current_asmdata.getjumplabel(hl);
cg.a_jmp_flags(current_asmdata.CurrAsmList,F_NS,hl);
if power=1 then
emit_reg(A_INC,S_L,hreg1)
else
emit_const_reg(A_ADD,S_L,tordconstnode(right).value.svalue-1,hreg1);
cg.a_label(current_asmdata.CurrAsmList,hl);
emit_const_reg(A_SAR,S_L,power,hreg1);
end
end
else
emit_const_reg(A_SHR,S_L,power,hreg1);
location.register:=hreg1;
end
else
begin
if is_signed(left.resultdef) then
begin
e:=tordconstnode(right).value.svalue;
calc_divconst_magic_signed(32,e,sm,s);
cg.getcpuregister(current_asmdata.CurrAsmList,NR_EAX);
emit_const_reg(A_MOV,S_L,sm,NR_EAX);
cg.getcpuregister(current_asmdata.CurrAsmList,NR_EDX);
emit_reg(A_IMUL,S_L,hreg1);
{ only the high half of result is used }
cg.ungetcpuregister(current_asmdata.CurrAsmList,NR_EAX);
{ add or subtract dividend }
if (e>0) and (sm<0) then
emit_reg_reg(A_ADD,S_L,hreg1,NR_EDX)
else if (e<0) and (sm>0) then
emit_reg_reg(A_SUB,S_L,hreg1,NR_EDX);
{ shift if necessary }
if (s<>0) then
emit_const_reg(A_SAR,S_L,s,NR_EDX);
{ extract and add the sign bit }
if (e<0) then
emit_reg_reg(A_MOV,S_L,NR_EDX,hreg1);
{ if e>=0, hreg1 still contains dividend }
emit_const_reg(A_SHR,S_L,31,hreg1);
emit_reg_reg(A_ADD,S_L,hreg1,NR_EDX);
cg.ungetcpuregister(current_asmdata.CurrAsmList,NR_EDX);
location.register:=cg.getintregister(current_asmdata.CurrAsmList,OS_INT);
cg.a_load_reg_reg(current_asmdata.CurrAsmList,OS_INT,OS_INT,NR_EDX,location.register)
end
else
begin
d:=tordconstnode(right).value.svalue;
if d>=$80000000 then
begin
emit_const_reg(A_CMP,S_L,aint(d),hreg1);
location.register:=cg.getintregister(current_asmdata.CurrAsmList,OS_INT);
emit_const_reg(A_MOV,S_L,0,location.register);
emit_const_reg(A_SBB,S_L,-1,location.register);
end
else
begin
calc_divconst_magic_unsigned(32,d,m,m_add,s);
cg.getcpuregister(current_asmdata.CurrAsmList,NR_EAX);
emit_const_reg(A_MOV,S_L,aint(m),NR_EAX);
cg.getcpuregister(current_asmdata.CurrAsmList,NR_EDX);
emit_reg(A_MUL,S_L,hreg1);
cg.ungetcpuregister(current_asmdata.CurrAsmList,NR_EAX);
if m_add then
begin
{ addition can overflow, shift first bit considering carry,
then shift remaining bits in regular way. }
emit_reg_reg(A_ADD,S_L,hreg1,NR_EDX);
emit_const_reg(A_RCR,S_L,1,NR_EDX);
dec(s);
end;
if s<>0 then
emit_const_reg(A_SHR,S_L,aint(s),NR_EDX);
cg.ungetcpuregister(current_asmdata.CurrAsmList,NR_EDX);
location.register:=cg.getintregister(current_asmdata.CurrAsmList,OS_INT);
cg.a_load_reg_reg(current_asmdata.CurrAsmList,OS_INT,OS_INT,NR_EDX,location.register)
end;
end
end
end
else
begin
cg.getcpuregister(current_asmdata.CurrAsmList,NR_EAX);
emit_reg_reg(A_MOV,S_L,hreg1,NR_EAX);
cg.getcpuregister(current_asmdata.CurrAsmList,NR_EDX);
{Sign extension depends on the left type.}
if torddef(left.resultdef).ordtype=u32bit then
emit_reg_reg(A_XOR,S_L,NR_EDX,NR_EDX)
else
emit_none(A_CDQ,S_NO);
{Division depends on the right type.}
if Torddef(right.resultdef).ordtype=u32bit then
op:=A_DIV
else
op:=A_IDIV;
if right.location.loc in [LOC_REFERENCE,LOC_CREFERENCE] then
emit_ref(op,S_L,right.location.reference)
else if right.location.loc in [LOC_REGISTER,LOC_CREGISTER] then
emit_reg(op,S_L,right.location.register)
else
begin
hreg1:=cg.getintregister(current_asmdata.CurrAsmList,right.location.size);
hlcg.a_load_loc_reg(current_asmdata.CurrAsmList,right.resultdef,u32inttype,right.location,hreg1);
emit_reg(op,S_L,hreg1);
end;
{Copy the result into a new register. Release EAX & EDX.}
cg.ungetcpuregister(current_asmdata.CurrAsmList,NR_EDX);
cg.ungetcpuregister(current_asmdata.CurrAsmList,NR_EAX);
location.register:=cg.getintregister(current_asmdata.CurrAsmList,OS_INT);
if nodetype=divn then
cg.a_load_reg_reg(current_asmdata.CurrAsmList,OS_INT,OS_INT,NR_EAX,location.register)
else
cg.a_load_reg_reg(current_asmdata.CurrAsmList,OS_INT,OS_INT,NR_EDX,location.register);
end;
end;
{*****************************************************************************
TI386SHLRSHRNODE
*****************************************************************************}
function ti386shlshrnode.first_shlshr64bitint: tnode;
begin
result := nil;
end;
procedure ti386shlshrnode.second_64bit;
var
hreg64hi,hreg64lo:Tregister;
v : TConstExprInt;
l1,l2,l3:Tasmlabel;
begin
location_reset(location,LOC_REGISTER,def_cgsize(resultdef));
{ load left operator in a register }
hlcg.location_force_reg(current_asmdata.CurrAsmList,left.location,left.resultdef,resultdef,false);
hreg64hi:=left.location.register64.reghi;
hreg64lo:=left.location.register64.reglo;
{ shifting by a constant directly coded: }
if (right.nodetype=ordconstn) then
begin
v:=Tordconstnode(right).value and 63;
if v>31 then
begin
if nodetype=shln then
begin
emit_reg_reg(A_XOR,S_L,hreg64hi,hreg64hi);
if ((v and 31) <> 0) then
emit_const_reg(A_SHL,S_L,v.svalue and 31,hreg64lo);
end
else
begin
emit_reg_reg(A_XOR,S_L,hreg64lo,hreg64lo);
if ((v and 31) <> 0) then
emit_const_reg(A_SHR,S_L,v.svalue and 31,hreg64hi);
end;
location.register64.reghi:=hreg64lo;
location.register64.reglo:=hreg64hi;
end
else
begin
if nodetype=shln then
begin
emit_const_reg_reg(A_SHLD,S_L,v.svalue and 31,hreg64lo,hreg64hi);
emit_const_reg(A_SHL,S_L,v.svalue and 31,hreg64lo);
end
else
begin
emit_const_reg_reg(A_SHRD,S_L,v.svalue and 31,hreg64hi,hreg64lo);
emit_const_reg(A_SHR,S_L,v.svalue and 31,hreg64hi);
end;
location.register64.reglo:=hreg64lo;
location.register64.reghi:=hreg64hi;
end;
end
else
begin
{ load right operators in a register }
cg.getcpuregister(current_asmdata.CurrAsmList,NR_ECX);
hlcg.a_load_loc_reg(current_asmdata.CurrAsmList,right.resultdef,u32inttype,right.location,NR_ECX);
{ left operator is already in a register }
{ hence are both in a register }
{ is it in the case ECX ? }
{ the damned shift instructions work only til a count of 32 }
{ so we've to do some tricks here }
current_asmdata.getjumplabel(l1);
current_asmdata.getjumplabel(l2);
current_asmdata.getjumplabel(l3);
emit_const_reg(A_CMP,S_L,64,NR_ECX);
cg.a_jmp_flags(current_asmdata.CurrAsmList,F_L,l1);
emit_reg_reg(A_XOR,S_L,hreg64lo,hreg64lo);
emit_reg_reg(A_XOR,S_L,hreg64hi,hreg64hi);
cg.a_jmp_always(current_asmdata.CurrAsmList,l3);
cg.a_label(current_asmdata.CurrAsmList,l1);
emit_const_reg(A_CMP,S_L,32,NR_ECX);
cg.a_jmp_flags(current_asmdata.CurrAsmList,F_L,l2);
emit_const_reg(A_SUB,S_L,32,NR_ECX);
if nodetype=shln then
begin
emit_reg_reg(A_SHL,S_L,NR_CL,hreg64lo);
emit_reg_reg(A_MOV,S_L,hreg64lo,hreg64hi);
emit_reg_reg(A_XOR,S_L,hreg64lo,hreg64lo);
cg.a_jmp_always(current_asmdata.CurrAsmList,l3);
cg.a_label(current_asmdata.CurrAsmList,l2);
emit_reg_reg_reg(A_SHLD,S_L,NR_CL,hreg64lo,hreg64hi);
emit_reg_reg(A_SHL,S_L,NR_CL,hreg64lo);
end
else
begin
emit_reg_reg(A_SHR,S_L,NR_CL,hreg64hi);
emit_reg_reg(A_MOV,S_L,hreg64hi,hreg64lo);
emit_reg_reg(A_XOR,S_L,hreg64hi,hreg64hi);
cg.a_jmp_always(current_asmdata.CurrAsmList,l3);
cg.a_label(current_asmdata.CurrAsmList,l2);
emit_reg_reg_reg(A_SHRD,S_L,NR_CL,hreg64hi,hreg64lo);
emit_reg_reg(A_SHR,S_L,NR_CL,hreg64hi);
end;
cg.a_label(current_asmdata.CurrAsmList,l3);
cg.ungetcpuregister(current_asmdata.CurrAsmList,NR_ECX);
location.register64.reglo:=hreg64lo;
location.register64.reghi:=hreg64hi;
end;
end;
begin
cunaryminusnode:=ti386unaryminusnode;
cmoddivnode:=ti386moddivnode;
cshlshrnode:=ti386shlshrnode;
cnotnode:=ti386notnode;
end.