fpc/compiler/aarch64/cpubase.pas

711 lines
23 KiB
ObjectPascal

{
Copyright (c) 1998-2012 by Florian Klaempfl and Peter Vreman
Copyright (c) 2014 by Jonas Maebe and Florian Klaempfl
Contains the base types for Aarch64
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
****************************************************************************
}
{ Base unit for processor information. This unit contains
enumerations of registers, opcodes, sizes, and other
such things which are processor specific.
}
unit cpubase;
{$define USEINLINE}
{$i fpcdefs.inc}
interface
uses
cutils,cclasses,
globtype,globals,
cpuinfo,
aasmbase,
cgbase
;
{*****************************************************************************
Assembler Opcodes
*****************************************************************************}
type
TAsmOp= {$i a64op.inc}
{ This should define the array of instructions as string }
op2strtable=array[tasmop] of string[11];
const
{ First value of opcode enumeration }
firstop = low(tasmop);
{ Last value of opcode enumeration }
lastop = high(tasmop);
{ Last value of opcode for TCommonAsmOps set below }
LastCommonAsmOp = A_MOV;
type
{ See comment for this type in arm/cpubase.pas }
TCommonAsmOps = Set of A_None .. LastCommonAsmOp;
{*****************************************************************************
Registers
*****************************************************************************}
type
{ Number of registers used for indexing in tables }
tregisterindex=0..{$i ra64nor.inc}-1;
const
{ Available Superregisters }
{$i ra64sup.inc}
RS_IP0 = RS_X16;
RS_IP1 = RS_X17;
RS_XR = RS_X8;
R_SUBWHOLE = R_SUBQ;
{ Available Registers }
{$i ra64con.inc}
NR_IP0 = NR_X16;
NR_IP1 = NR_X17;
NR_XR = NR_X8;
{ Integer Super registers first and last }
first_int_supreg = RS_X0;
{ xzr and sp take up a separate super register because some instructions
are ambiguous otherwise }
first_int_imreg = $21;
{ Integer Super registers first and last }
first_fpu_supreg = RS_S0;
first_fpu_imreg = $20;
{ MM Super register first and last }
first_mm_supreg = RS_S0;
first_mm_imreg = $20;
{ Required parameter alignment when calling a routine declared as
stdcall and cdecl. The alignment value should be the one defined
by GCC or the target ABI.
The value of this constant is equal to the constant
PARM_BOUNDARY / BITS_PER_UNIT in the GCC source.
}
std_param_align = 8;
{ TODO: Calculate bsstart}
regnumber_count_bsstart = 512;
regnumber_table : array[tregisterindex] of tregister = (
{$i ra64num.inc}
);
regstabs_table : array[tregisterindex] of shortint = (
{$i ra64sta.inc}
);
regdwarf_table : array[tregisterindex] of shortint = (
{$i ra64dwa.inc}
);
{ registers which may be destroyed by calls }
VOLATILE_INTREGISTERS = [RS_X0..RS_X17,RS_X30];
VOLATILE_MMREGISTERS = [RS_D0..RS_D7,RS_D16..RS_D31];
{*****************************************************************************
Instruction post fixes
*****************************************************************************}
type
{ ARM instructions load/store and arithmetic instructions
can have several instruction post fixes which are collected
in this enumeration
}
TOpPostfix = (PF_None,
{ update condition flags }
PF_S,
{ load/store sizes }
PF_B,PF_SB,PF_H,PF_SH,PF_W,PF_SW
);
TOpPostfixes = set of TOpPostfix;
const
tcgsizep2size: array[tcgsize] of byte =
{OS_NO }
(0,
{OS_8,OS_16,OS_32,OS_64,OS_128,OS_S8,OS_S16,OS_S32,OS_S64,OS_S128}
0, 1, 2, 3, 4, 0, 1, 2, 3, 4,
{OS_F32,OS_F64,OS_F80,OS_C64,OS_F128,}
2, 3, 0, 3, 4,
{OS_M8, OS_M16, OS_M32, OS_M64, OS_M128, OS_M256, OS_M512}
0, 1, 2, 3, 4, 5, 6);
oppostfix2str: array[TOpPostfix] of string[2] = ('',
's',
'b','sb','h','sh','w','sw');
{*****************************************************************************
Conditions
*****************************************************************************}
type
TAsmCond=(C_None,
C_EQ,C_NE,C_HS,C_LO,C_MI,C_PL,C_VS,C_VC,C_HI,C_LS,
C_GE,C_LT,C_GT,C_LE,C_AL,C_NV
);
TAsmConds = set of TAsmCond;
const
C_CS = C_HS;
C_CC = C_LO;
cond2str : array[TAsmCond] of string[2]=('',
'eq','ne','hs','lo','mi','pl','vs','vc','hi','ls',
'ge','lt','gt','le','al','nv'
);
uppercond2str : array[TAsmCond] of string[2]=('',
'EQ','NE','HS','LO','MI','PL','VS','VC','HI','LS',
'GE','LT','GT','LE','AL','NV'
);
{*****************************************************************************
Flags
*****************************************************************************}
type
TResFlags = (F_EQ,F_NE,F_CS,F_CC,F_MI,F_PL,F_VS,F_VC,F_HI,F_LS,
F_GE,F_LT,F_GT,F_LE);
const
F_HS = F_CS;
F_LO = F_CC;
{*****************************************************************************
Operands
*****************************************************************************}
type
taddressmode = (AM_OFFSET,AM_PREINDEXED,AM_POSTINDEXED);
tshiftmode = (SM_None,
{ shifted register instructions. LSL can also be used for
the index register of certain loads/stores }
SM_LSL,SM_LSR,SM_ASR,SM_ROR,
{ extended register instructions: zero/sign extension +
optional shift (interpreted as LSL after extension)
-- the index register of certain loads/stores can be
extended via (s|u)xtw with a shiftval of either 0 or
log2(transfer size of the load/store)
}
SM_UXTB,SM_UXTH,SM_UXTW,SM_UXTX,SM_SXTB,SM_SXTH,SM_SXTW,SM_SXTX);
tupdatereg = (UR_None,UR_Update);
pshifterop = ^tshifterop;
tshifterop = record
shiftmode : tshiftmode;
shiftimm : byte;
end;
{*****************************************************************************
Constants
*****************************************************************************}
const
max_operands = 6;
maxintregs = 32;
maxfpuregs = 32;
maxaddrregs = 0;
shiftedregmodes = [SM_LSL,SM_UXTB,SM_UXTH,SM_UXTW,SM_UXTX,SM_SXTB,SM_SXTH,SM_SXTW,SM_SXTX];
extendedregmodes = [SM_LSL,SM_LSR,SM_ASR];
logicalshiftedregmodes = [SM_LSL,SM_LSR,SM_ASR,SM_ROR];
{*****************************************************************************
Operand Sizes
*****************************************************************************}
type
topsize = (S_NO,
S_B,S_W,S_L,S_BW,S_BL,S_WL,
S_IS,S_IL,S_IQ,
S_FS,S_FL,S_FX,S_D,S_Q,S_FV,S_FXX
);
{*****************************************************************************
Default generic sizes
*****************************************************************************}
const
{ Defines the default address size for a processor, }
OS_ADDR = OS_64;
{ the natural int size for a processor,
has to match osuinttype/ossinttype as initialized in psystem }
OS_INT = OS_64;
OS_SINT = OS_S64;
{ the maximum float size for a processor, }
OS_FLOAT = OS_F64;
{ the size of a vector register for a processor }
OS_VECTOR = OS_M128;
{*****************************************************************************
Generic Register names
*****************************************************************************}
NR_FP = NR_X29;
RS_FP = RS_X29;
NR_WFP = NR_W29;
RS_WFP = RS_W29;
NR_LR = NR_X30;
RS_LR = RS_X30;
NR_WLR = NR_W30;
RS_WLR = RS_W30;
{ Stack pointer register }
NR_STACK_POINTER_REG = NR_SP;
RS_STACK_POINTER_REG = RS_SP;
{ Frame pointer register }
NR_FRAME_POINTER_REG = NR_X29;
RS_FRAME_POINTER_REG = RS_X29;
{ Register for addressing absolute data in a position independant way,
such as in PIC code. The exact meaning is ABI specific. For
further information look at GCC source : PIC_OFFSET_TABLE_REGNUM
}
NR_PIC_OFFSET_REG = NR_X18;
{ Results are returned in this register (32-bit values) }
NR_FUNCTION_RETURN_REG = NR_X0;
RS_FUNCTION_RETURN_REG = RS_X0;
{ The value returned from a function is available in this register }
NR_FUNCTION_RESULT_REG = NR_FUNCTION_RETURN_REG;
RS_FUNCTION_RESULT_REG = RS_FUNCTION_RETURN_REG;
NR_FPU_RESULT_REG = NR_NO;
NR_MM_RESULT_REG = NR_D0;
NR_RETURN_ADDRESS_REG = NR_LR;
{ Offset where the parent framepointer is pushed }
PARENT_FRAMEPOINTER_OFFSET = 0;
NR_DEFAULTFLAGS = NR_NZCV;
RS_DEFAULTFLAGS = RS_NZCV;
{*****************************************************************************
Helpers
*****************************************************************************}
{ Returns the tcgsize corresponding with the size of reg.}
function reg_cgsize(const reg: tregister) : tcgsize;
function cgsize2subreg(regtype: tregistertype; s:Tcgsize):Tsubregister;
function is_calljmp(o:tasmop):boolean;{$ifdef USEINLINE}inline;{$endif USEINLINE}
function is_calljmpmaybeuncondret(o:tasmop):boolean;{$ifdef USEINLINE}inline;{$endif USEINLINE}
procedure inverse_flags(var f: TResFlags);
function flags_to_cond(const f: TResFlags) : TAsmCond;
function findreg_by_number(r:Tregister):tregisterindex;
function std_regnum_search(const s:string):Tregister;
function std_regname(r:Tregister):string;
function inverse_cond(const c: TAsmCond): TAsmCond; {$ifdef USEINLINE}inline;{$endif USEINLINE}
function conditions_equal(const c1, c2: TAsmCond): boolean; {$ifdef USEINLINE}inline;{$endif USEINLINE}
{ Checks if Subset is a subset of c (e.g. "less than" is a subset of "less than or equal" }
function condition_in(const Subset, c: TAsmCond): Boolean;
procedure shifterop_reset(var so : tshifterop); {$ifdef USEINLINE}inline;{$endif USEINLINE}
function dwarf_reg(r:tregister):shortint;
function dwarf_reg_no_error(r:tregister):shortint;
function eh_return_data_regno(nr: longint): longint;
function is_shifter_const(d: aint; size: tcgsize): boolean;
function IsFloatImmediate(ft : tfloattype;value : bestreal) : boolean;
implementation
uses
systems,rgBase,verbose;
const
std_regname_table : TRegNameTable = (
{$i ra64std.inc}
);
regnumber_index : array[tregisterindex] of tregisterindex = (
{$i ra64rni.inc}
);
std_regname_index : array[tregisterindex] of tregisterindex = (
{$i ra64sri.inc}
);
function cgsize2subreg(regtype: tregistertype; s:Tcgsize):Tsubregister;
begin
case regtype of
R_INTREGISTER:
begin
case s of
{ there's only Wn and Xn }
OS_64,
OS_S64:
cgsize2subreg:=R_SUBWHOLE;
else
cgsize2subreg:=R_SUBD;
end;
end;
R_MMREGISTER:
begin
case s of
{ records }
OS_32,
OS_F32:
cgsize2subreg:=R_SUBMMS;
OS_64,
OS_F64:
cgsize2subreg:=R_SUBMMD;
else
internalerror(2009112701);
end;
end;
else
cgsize2subreg:=R_SUBWHOLE;
end;
end;
function reg_cgsize(const reg: tregister): tcgsize;
begin
case getregtype(reg) of
R_INTREGISTER:
case getsubreg(reg) of
R_SUBD:
result:=OS_32
else
result:=OS_64;
end;
R_MMREGISTER :
begin
case getsubreg(reg) of
R_SUBMMD:
result:=OS_F64;
R_SUBMMS:
result:=OS_F32;
{ always use OS_M128, because these could be the top or bottom bytes (or middle in some cases) }
R_SUBMM8B:
result:=OS_M128;
R_SUBMM16B:
result:=OS_M128;
R_SUBMM4H:
result:=OS_M128;
R_SUBMM8H:
result:=OS_M128;
R_SUBMM2S:
result:=OS_M128;
R_SUBMM4S:
result:=OS_M128;
R_SUBMM1D:
result:=OS_M128;
R_SUBMM2D:
result:=OS_M128;
R_SUBMMWHOLE:
result:=OS_M128;
else
internalerror(2009112903);
end;
end;
else
internalerror(200303181);
end;
end;
function is_calljmp(o:tasmop):boolean;{$ifdef USEINLINE}inline;{$endif USEINLINE}
begin
is_calljmp:=o in [A_B,A_BL,A_BLR,A_RET,A_CBNZ,A_CBZ,A_TBNZ,A_TBZ];
end;
function is_calljmpmaybeuncondret(o:tasmop):boolean;{$ifdef USEINLINE}inline;{$endif USEINLINE}
begin
{ Note that the caller still has to check the instruction's condition }
is_calljmpmaybeuncondret:=(o in [A_B,A_BL,A_BLR,A_RET]);
end;
procedure inverse_flags(var f: TResFlags);
const
inv_flags: array[TResFlags] of TResFlags =
(F_NE,F_EQ,F_CC,F_CS,F_PL,F_MI,F_VC,F_VS,F_LS,F_HI,
F_LT,F_GE,F_LE,F_GT);
begin
f:=inv_flags[f];
end;
function flags_to_cond(const f: TResFlags) : TAsmCond;
const
flag_2_cond: array[TResFlags] of TAsmCond =
(C_EQ,C_NE,C_HS,C_LO,C_MI,C_PL,C_VS,C_VC,C_HI,C_LS,
C_GE,C_LT,C_GT,C_LE);
begin
if f>high(flag_2_cond) then
internalerror(200112301);
result:=flag_2_cond[f];
end;
function findreg_by_number(r:Tregister):tregisterindex;
begin
result:=rgBase.findreg_by_number_table(r,regnumber_index);
end;
function std_regnum_search(const s:string):Tregister;
begin
result:=regnumber_table[findreg_by_name_table(s,std_regname_table,std_regname_index)];
end;
function std_regname(r:Tregister):string;
var
p : tregisterindex;
begin
p:=findreg_by_number_table(r,regnumber_index);
if p<>0 then
result:=std_regname_table[p]
else
result:=generic_regname(r);
end;
procedure shifterop_reset(var so : tshifterop);{$ifdef USEINLINE}inline;{$endif USEINLINE}
begin
FillChar(so,sizeof(so),0);
end;
function inverse_cond(const c: TAsmCond): TAsmCond; {$ifdef USEINLINE}inline;{$endif USEINLINE}
const
inverse: array[TAsmCond] of TAsmCond=(C_None,
C_NE,C_EQ,C_LO,C_HS,C_PL,C_MI,C_VC,C_VS,C_LS,C_HI,
C_LT,C_GE,C_LE,C_GT,C_None,C_None
);
begin
result := inverse[c];
end;
function conditions_equal(const c1, c2: TAsmCond): boolean; {$ifdef USEINLINE}inline;{$endif USEINLINE}
begin
result := c1 = c2;
end;
{ Checks if Subset is a subset of c (e.g. "less than" is a subset of "less than or equal" }
function condition_in(const Subset, c: TAsmCond): Boolean;
begin
Result := (c = C_None) or conditions_equal(Subset, c);
{ Please update as necessary. [Kit] }
if not Result then
case Subset of
C_EQ:
Result := (c in [C_GE, C_LE]);
C_LT:
Result := (c in [C_LE]);
C_GT:
Result := (c in [C_GE]);
else
Result := False;
end;
end;
function dwarf_reg(r:tregister):shortint;
begin
result:=regdwarf_table[findreg_by_number(r)];
if result=-1 then
internalerror(200603251);
end;
function dwarf_reg_no_error(r:tregister):shortint;
begin
result:=regdwarf_table[findreg_by_number(r)];
end;
function is_shifter_const(d: aint; size: tcgsize): boolean;
var
pattern, checkpattern: qword;
patternlen, maxbits, replicatedlen: longint;
rightmostone, rightmostzero, checkbit, secondrightmostbit: longint;
begin
result:=false;
{ patterns with all bits 0 or 1 cannot be represented this way }
if (d=0) then
exit;
case size of
OS_64,
OS_S64:
begin
if d=-1 then
exit;
maxbits:=64;
end
else
begin
if longint(d)=-1 then
exit;
{ we'll generate a 32 bit pattern -> ignore upper sign bits in
case of negative longint value }
d:=cardinal(d);
maxbits:=32;
end;
end;
{ "The Logical (immediate) instructions accept a bitmask immediate value
that is a 32-bit pattern or a 64-bit pattern viewed as a vector of
identical elements of size e = 2, 4, 8, 16, 32 or, 64 bits. Each
element contains the same sub-pattern, that is a single run of
1 to (e - 1) nonzero bits from bit 0 followed by zero bits, then
rotated by 0 to (e - 1) bits." (ARMv8 ARM)
Rather than generating all possible patterns and checking whether they
match our constant, we check whether the lowest 2/4/8/... bits are
a valid pattern, and if so whether the constant consists of a
replication of this pattern. Such a valid pattern has the form of
either (regexp notation)
* 1+0+1*
* 0+1+0* }
patternlen:=2;
while patternlen<=maxbits do
begin
{ try lowest <patternlen> bits of d as pattern }
if patternlen<>64 then
pattern:=qword(d) and ((qword(1) shl patternlen)-1)
else
pattern:=qword(d);
{ valid pattern? If it contains too many 1<->0 transitions, larger
parts of d cannot be a valid pattern either }
rightmostone:=BsfQWord(pattern);
rightmostzero:=BsfQWord(not(pattern));
{ pattern all ones or zeroes -> not a valid pattern (but larger ones
can still be valid, since we have too few transitions) }
if (rightmostone<patternlen) and
(rightmostzero<patternlen) then
begin
if rightmostone>rightmostzero then
begin
{ we have .*1*0* -> check next zero position by shifting
out the existing zeroes (shr rightmostone), inverting and
then again looking for the rightmost one position }
checkpattern:=not(pattern);
checkbit:=rightmostone;
end
else
begin
{ same as above, but for .*0*1* }
checkpattern:=pattern;
checkbit:=rightmostzero;
end;
secondrightmostbit:=BsfQWord(checkpattern shr checkbit)+checkbit;
{ if this position is >= patternlen -> ok (1 transition),
otherwise we now have 2 transitions and have to check for a
third (if there is one, abort)
bsf returns 255 if no 1 bit is found, so in that case it's
also ok
}
if secondrightmostbit<patternlen then
begin
secondrightmostbit:=BsfQWord(not(checkpattern) shr secondrightmostbit)+secondrightmostbit;
if secondrightmostbit<patternlen then
exit;
end;
{ ok, this is a valid pattern, now does d consist of a
repetition of this pattern? }
replicatedlen:=patternlen;
checkpattern:=pattern;
while replicatedlen<maxbits do
begin
{ douplicate current pattern }
checkpattern:=checkpattern or (checkpattern shl replicatedlen);
replicatedlen:=replicatedlen*2;
end;
if qword(d)=checkpattern then
begin
{ yes! }
result:=true;
exit;
end;
end;
patternlen:=patternlen*2;
end;
end;
function eh_return_data_regno(nr: longint): longint;
begin
if (nr>=0) and (nr<2) then
result:=nr
else
result:=-1;
end;
function IsFloatImmediate(ft : tfloattype;value : bestreal) : boolean;
var
singlerec : tcompsinglerec;
doublerec : tcompdoublerec;
begin
Result:=false;
case ft of
s32real:
begin
singlerec.value:=value;
singlerec:=tcompsinglerec(NtoLE(DWord(singlerec)));
Result:=(singlerec.bytes[0]=0) and (singlerec.bytes[1]=0) and ((singlerec.bytes[2] and 7)=0) and
(((singlerec.bytes[3] and $7e)=$40) or ((singlerec.bytes[3] and $7e)=$3e));
end;
s64real:
begin
doublerec.value:=value;
doublerec:=tcompdoublerec(NtoLE(QWord(doublerec)));
Result:=(doublerec.bytes[0]=0) and (doublerec.bytes[1]=0) and (doublerec.bytes[2]=0) and
(doublerec.bytes[3]=0) and (doublerec.bytes[4]=0) and (doublerec.bytes[5]=0) and
((((doublerec.bytes[6] and $c0)=$0) and ((doublerec.bytes[7] and $7f)=$40)) or
(((doublerec.bytes[6] and $c0)=$c0) and ((doublerec.bytes[7] and $7f)=$3f)));
end;
else
;
end;
end;
end.