mirror of
https://gitlab.com/freepascal.org/fpc/source.git
synced 2025-05-06 06:12:32 +02:00
5686 lines
180 KiB
TeX
5686 lines
180 KiB
TeX
\documentclass [a4paper,12pt]{article}
|
|
\usepackage {graphicx}
|
|
\usepackage {intfpc}
|
|
\usepackage {longtable}
|
|
%\usepackage {float}
|
|
\usepackage{listings}
|
|
\lstset{language=Delphi}
|
|
\lstset{basicstyle=\sffamily\small}
|
|
\lstset{commentstyle=\itshape}
|
|
\lstset{keywordstyle=\bfseries}
|
|
\lstset{frame=tb}
|
|
% eats mem for longtable, but speeds up. Set to 10 for minimal mem req.
|
|
\setcounter{LTchunksize}{200}
|
|
% right aligned longtables
|
|
\setlength\LTleft{0pt}
|
|
\setlength\LTright\fill
|
|
%\restylefloat{table}
|
|
%\restylefloat{longtable}
|
|
%\squeezetable
|
|
\setcounter{totalnumber}{10}
|
|
% This comes from the MDWTOOLS package and should discourage floating.
|
|
\def\textfraction{0.1}
|
|
\def\topfraction{0.9}
|
|
\def\bottomfraction{0.9}
|
|
\def\floatpagefraction{0.7}
|
|
\def\fps@figure{htbp}
|
|
\def\fpc@longtable{h}
|
|
|
|
|
|
\title{FREE PASCAL}
|
|
\title{Free Pascal 1.0.x Internal documentation\\version 1.0}
|
|
\author{Carl Eric Cod\`{e}re}
|
|
\makeindex
|
|
\begin{document}
|
|
\maketitle
|
|
\tableofcontents
|
|
\newpage
|
|
\listoffigures
|
|
\newpage
|
|
|
|
\textbf{TODO:}
|
|
\begin{itemize}
|
|
\item Describe in detail tsymtable, including all methods and fields
|
|
\item Describe in detail procinfo (tprocinfo)
|
|
\item Explain how a symbol is inserted into the symbol table (and how alignment requirements are met)
|
|
\item Explain pparaitem
|
|
\item Explain all symbol table fields
|
|
\item Finish all internal routines definitions
|
|
\item Architecture of the assembler generators + API
|
|
\item Architecture of the PPU file and information
|
|
\item Explain systems.pas
|
|
\item routine parsing and code generation algorithm
|
|
\item (MvdV) OS specific stuff (like hardcoded linker includedirs)
|
|
\end{itemize}
|
|
|
|
\section{Introduction}
|
|
\label{sec:introductionappendix}
|
|
|
|
This document describes the internal architecture of the Free Pascal
|
|
Compiler version 1.0 release. This document is meant to be used as a guide
|
|
for those who wish to understand how the compiler was created. Most of the
|
|
architecture of the compiler described herein is based on the m68k version
|
|
on the compiler, the i386 version of the compiler ressembles closely the
|
|
m68k version, but there are subtle differences in the different interfaces.
|
|
|
|
The architecture, and the different passes of the compiler are shown in
|
|
figure \seefig{passesfig}.
|
|
|
|
\begin{figure}
|
|
\ifpdf
|
|
% \epsfig{file=arch1d.pdf,width=\textwidth}
|
|
\includegraphics{arch1.pdf}
|
|
\else
|
|
\includegraphics[width=6.45in,height=4.95in]{arch1.eps}
|
|
\fi
|
|
\caption{compiler overview}
|
|
\label{passesfig}
|
|
\end{figure}
|
|
|
|
\section{Scanner / Tokenizer}
|
|
|
|
The scanner and tokenizer is used to construct an input stream of tokens
|
|
which will be fed to the parser. It is in this stage that the preprocessing
|
|
is done, that all read compiler directives change the internal state
|
|
variables of the compiler, and that all illegal characters found in the
|
|
input stream cause an error.
|
|
|
|
\subsection{Architecture}
|
|
\label{subsec:architectureand}
|
|
|
|
The general architecture of the scanner is shown in figure \ref{fig2}
|
|
|
|
\begin{figure}
|
|
\ifpdf
|
|
%\epsfig{file=arch2.png,width=\textwidth}
|
|
\includegraphics{arch2.pdf}
|
|
\else
|
|
\includegraphics[width=5.87in,height=6.90in]{arch2.eps}
|
|
\fi
|
|
\caption{scanner interface overview}
|
|
\label{fig2}
|
|
\end{figure}
|
|
|
|
Several types can be read from the input stream, a string, handled by
|
|
\var{readstring()}, a numeric value, handled by \var{readnumeric()}, comments , compiler
|
|
and preprocessor directives.
|
|
|
|
\subsubsection{Input stream}
|
|
\label{subsubsec:input}
|
|
|
|
The input data is handled via the standard way of handling all the I/O in
|
|
the compiler. That is to say, that it is a hook which can be overriden in
|
|
\textbf{comphook.pas (do{\_}openinputfile)}, in case where another I/O
|
|
method wants to be used.
|
|
|
|
The default hook uses a non-buffered dos stream contained in
|
|
\textbf{files.pas}
|
|
|
|
\subsubsection{Preprocessor}
|
|
\label{subsubsec:preprocessorhook}
|
|
|
|
The scanner resolves all preprocessor directives and only gives to the
|
|
parser the visible parts of the code (such as those which are included in
|
|
conditional compilation). Compiler switches and directives are also saved in
|
|
global variables while in the preprocessor, therefore this is part is
|
|
completely independent of the parser.
|
|
|
|
\paragraph{Conditional compilation (scandir.inc, scanner.pas)}
|
|
|
|
The conditional compilation is handled via a preprocessor stack, where each
|
|
directive is pushed on a stack, and popped when it is resolved. The actual
|
|
implementation of the stack is a linked list of preprocessor directive
|
|
items.
|
|
|
|
\paragraph{Compiler switches (scandir.inc, switches.pas)}
|
|
|
|
The compiler switches are handled via a lookup table which is linearly
|
|
searched. Then another lookup table takes care of setting the appropriate
|
|
bit flags and variables in the switches for this compilation process.
|
|
|
|
\subsection{Scanner interface}
|
|
\label{subsec:scanner}
|
|
|
|
The parser only receives tokens as its input, where a token is a enumeration
|
|
which indicates the type of the token, either a reserved word, a special
|
|
character, an operator, a numeric constant, string, or an identifier.
|
|
|
|
Resolution of the string into a token is done via lookup which searches the
|
|
string table to find the equivalent token. This search is done using a
|
|
binary search algorithm through the string table.
|
|
|
|
In the case of identifiers, constants (including numeric values), the value
|
|
is returned in the \textbf{pattern} string variable , with the appropriate
|
|
return value of the token (numeric values are also returned as non-converted
|
|
strings, with any special prefix included). In the case of operators, and
|
|
reserved words, only the token itself must be assumed to be preserved. The
|
|
read input string is assmued to be lost.
|
|
|
|
Therefore the interface with the parser is with the \textbf{readtoken()}
|
|
routine and the \textbf{pattern} variable.
|
|
|
|
\subsubsection{Routines}
|
|
\label{subsubsec:routinese}
|
|
|
|
\begin{procedure}{ReadToken}
|
|
\Declaration
|
|
Procedure ReadToken;
|
|
\Description
|
|
Sets the global variable \textsf{token} to the current token read, and sets
|
|
the \textsf{pattern} variable appropriately (if required).
|
|
\end{procedure}
|
|
|
|
% ?? :
|
|
%\caption{: Symbol tables in memory}
|
|
%\label{tab2}
|
|
|
|
\subsubsection{Variables}
|
|
\label{subsubsec:variablesglobal}
|
|
|
|
\begin{variable}{Token}
|
|
\Description
|
|
Var Token : TToken;
|
|
\Description
|
|
Contains the contain token which was last read by a call to \seep{ReadToken}
|
|
\SeeAlso
|
|
\seep{ReadToken}
|
|
\end{variable}
|
|
|
|
%\caption{: Possible symbol table types (tsymboltabletype)}
|
|
%\label{tab3}
|
|
%\end{table}
|
|
|
|
\begin{variable}{Pattern}
|
|
\Declaration
|
|
var Pattern : String;
|
|
\Description
|
|
Contains the string of the last pattern read by a call to
|
|
\seep{ReadToken}
|
|
\SeeAlso
|
|
\seep{ReadToken}
|
|
\end{variable}
|
|
|
|
%\caption{: Symbol entry relationships (tsym)}
|
|
%\label{tab4}
|
|
|
|
\subsection{Assembler parser interface}
|
|
\label{subsec:assembler}
|
|
|
|
The inline assembler parser is completely separate from the pascal parser,
|
|
therefore its scanning process is also completely independent. The scanner
|
|
only takes care of the preprocessor part and comments, all the rest is
|
|
passed character per character to the assembler parser via the
|
|
\seef{AsmGetChar}() scanner routine.
|
|
|
|
\subsubsection{routines}
|
|
|
|
\begin{function}{AsmGetChar}
|
|
\Declaration
|
|
Function AsmGetChar: Char;
|
|
\Description
|
|
Returns the next character in the input stream.
|
|
\end{function}
|
|
|
|
%\caption{Possible symbol types (TSymTyp)}
|
|
%\label{tab5}
|
|
|
|
\section{The tree}
|
|
\label{sec:mylabel2}
|
|
|
|
\subsection{Architecture}
|
|
\label{subsec:architecturenext}
|
|
|
|
The tree is the basis of the compiler. When the compiler parses statements
|
|
and blocks of code, they are converted to a tree representation. This tree
|
|
representation is actually a doubly linked list. From this tree the code
|
|
generation can easily be implemented.
|
|
|
|
Assuming that you have the following pascal syntax:
|
|
|
|
%\lstinline!x := x * y + (6 shl x);!
|
|
|
|
\begin{center}
|
|
$ x := x * y + (6\; shl \; x);$
|
|
\end{center}
|
|
|
|
The tree structure in picture \ref{fig3} will be built in memory, where each
|
|
circle represents an element (a node ) in the tree:
|
|
|
|
\begin{figure}
|
|
\begin{center}
|
|
\ifpdf
|
|
%\epsfig{file=arch3.png,width=\textwidth}
|
|
\includegraphics{arch3.pdf}
|
|
\else
|
|
\includegraphics[width=3.88in,height=3.65in]{arch3.eps}
|
|
\fi
|
|
\caption{Example tree structure}
|
|
\label{fig3}
|
|
\end{center}
|
|
\end{figure}
|
|
|
|
\subsection{Tree types}
|
|
|
|
The following tree nodes are possible (of type \textsf{TTreeTyp):}
|
|
|
|
\begin{longtable}{|l|p{10cm}|}
|
|
\caption{Possible node types (ttreetyp)}\label{tab6}\\
|
|
\hline
|
|
Tree type definition& Description \\
|
|
\hline
|
|
\endfirsthead
|
|
%{|p{125pt}|p{316pt}|}
|
|
\caption{Possible node types (ttreetyp) - continued}\\
|
|
\hline
|
|
\hline
|
|
Tree type definition&
|
|
Description \\
|
|
\hline
|
|
\endhead
|
|
\hline
|
|
\endfoot
|
|
\textsf{addn}&
|
|
\textsf{Represents the + operator} \\
|
|
\textsf{muln}&
|
|
\textsf{Represents the * operator} \\
|
|
\textsf{subn}&
|
|
\textsf{Represents the }\textsf{\textbf{-}}\textsf{ operator} \\
|
|
\textsf{divn}&
|
|
\textsf{Represents the }\textsf{\textbf{div}}\textsf{ operator} \\
|
|
\textsf{symdifn}&
|
|
\textsf{Represents the }\textsf{\textbf{><}}\textsf{ operator} \\
|
|
\textsf{modn}&
|
|
\textsf{Represents the }\textsf{\textbf{mod}}\textsf{ operator} \\
|
|
\textsf{assignn}&
|
|
\textsf{Represents the }\textsf{\textbf{:=}}\textsf{ operator (assignment)} \\
|
|
\textsf{loadn}&
|
|
\textsf{Represents the use of a variable} \\
|
|
\textsf{rangen}&
|
|
\textsf{Represents a numeric range (i.e 0..9)} \\
|
|
\textsf{ltn}&
|
|
\textsf{Represents the }\textsf{\textbf{<}}\textsf{ operator} \\
|
|
\textsf{lten}&
|
|
\textsf{Represents the }\textsf{\textbf{<=}}\textsf{ operator} \\
|
|
\textsf{gtn}&
|
|
\textsf{Represents the }\textsf{\textbf{>}}\textsf{ operator} \\
|
|
\textsf{gten}&
|
|
\textsf{Represents the }\textsf{\textbf{>=}}\textsf{ operator} \\
|
|
\textsf{equaln}&
|
|
\textsf{Represents the = operator} \\
|
|
\textsf{unequaln}&
|
|
\textsf{Represents the }\textsf{\textbf{<>}}\textsf{ operator} \\
|
|
\textsf{inn}&
|
|
\textsf{Represents the }\textsf{\textbf{in}}\textsf{ operator} \\
|
|
\textsf{orn}&
|
|
\textsf{Represents the }\textsf{\textbf{or}}\textsf{ operator} \\
|
|
\textsf{xorn}&
|
|
\textsf{Represents the }\textsf{\textbf{xor}}\textsf{ operator} \\
|
|
\textsf{shrn}&
|
|
\textsf{Represents the }\textsf{\textbf{shr}}\textsf{ operator} \\
|
|
\textsf{shln}&
|
|
\textsf{Represents the }\textsf{\textbf{shl}}\textsf{ operator} \\
|
|
\textsf{slashn}&
|
|
\textsf{Represents the / operator} \\
|
|
\textsf{andn}&
|
|
\textsf{Represents the }\textsf{\textbf{and}}\textsf{ operator} \\
|
|
\textsf{subscriptn}&
|
|
\textsf{Represents a field in an object or record} \\
|
|
\textsf{derefn}&
|
|
\textsf{Represents a pointer reference (such as the }\textsf{\textbf{\^}}\textsf{ operator)} \\
|
|
\textsf{addrn}&
|
|
\textsf{Represents the }\textsf{\textbf{@}}\textsf{ operator} \\
|
|
\textsf{doubleaddrn}&
|
|
\textsf{Represents the }\textsf{\textbf{@@}}\textsf{ operator} \\
|
|
\textsf{ordconstn}&
|
|
\textsf{Represents an ordinal constant} \\
|
|
\textsf{typeconvn}&
|
|
\textsf{Represents a typecast / type conversion} \\
|
|
\textsf{calln}&
|
|
\textsf{Represents a routine call} \\
|
|
\textsf{callparan}&
|
|
\textsf{Represents a parameter passed to a routine} \\
|
|
\textsf{realconstn}&
|
|
\textsf{Represents a floating point constant} \\
|
|
\textsf{fixconstn}&
|
|
\textsf{Represents a fixed point constant} \\
|
|
\textsf{unaryminusn}&
|
|
\textsf{Represents a sign change (e.g : -)} \\
|
|
\textsf{asmn}&
|
|
\textsf{Represents an assembler statement node} \\
|
|
\textsf{vecn}&
|
|
\textsf{Represents array indexing} \\
|
|
\textsf{pointerconstn}&
|
|
\textsf{Represents a pointer constant} \\
|
|
\textsf{stringconstn}&
|
|
\textsf{Represents a string constant} \\
|
|
\textsf{funcretn}&
|
|
\textsf{Represents the return function result variable (not loadn)} \\
|
|
\textsf{selfn}&
|
|
\textsf{Represents the self parameter} \\
|
|
\textsf{notn}&
|
|
\textsf{Represents the }\textsf{\textbf{not}}\textsf{ operator} \\
|
|
\textsf{inlinen}&
|
|
\textsf{Represents one of the internal routines (writeln,ord, etc.)} \\
|
|
\textsf{niln}&
|
|
\textsf{Represents the }\textsf{\textbf{nil}}\textsf{ pointer } \\
|
|
\textsf{erron}&
|
|
\textsf{Represents error in parsing this node (used for error detection and correction)} \\
|
|
\textsf{typen}&
|
|
\textsf{Represents a type name (i.e typeof(obj))} \\
|
|
\textsf{hnewn}&
|
|
\textsf{Represents the }\textsf{\textbf{new }}\textsf{routine call on objects} \\
|
|
\textsf{hdisposen}&
|
|
\textsf{Represents the }\textsf{\textbf{dispose}}\textsf{ routine call on objects} \\
|
|
\textsf{newn}&
|
|
\textsf{Represents the }\textsf{\textbf{new}}\textsf{ routine call on non-objects} \\
|
|
\textsf{simpledisposen}&
|
|
\textsf{Represents the }\textsf{\textbf{dispose}}\textsf{ routine call on non-objects} \\
|
|
\textsf{setelementn}&
|
|
\textsf{Represents set elements (i.e : [a..b], [a,b,c]) (non-constant)} \\
|
|
\textsf{setconstn}&
|
|
\textsf{Represents set element constants i.e : [1..9], [1,2,3])} \\
|
|
\textsf{blockn}&
|
|
\textsf{Represents a block of statements} \\
|
|
\textsf{statementn}&
|
|
\textsf{One statement in a block of nodes} \\
|
|
\textsf{loopn}&
|
|
\textsf{Represents a loop (for, while, repeat) node} \\
|
|
\textsf{ifn}&
|
|
\textsf{Represents an }\textsf{\textbf{if}}\textsf{ statement} \\
|
|
\textsf{breakn}&
|
|
\textsf{Represents a }\textsf{\textbf{break}}\textsf{ statement} \\
|
|
\textsf{continuen}&
|
|
\textsf{Represents a }\textsf{\textbf{continue}}\textsf{ statement} \\
|
|
\textsf{repeatn}&
|
|
\textsf{Represents a }\textsf{\textbf{repeat }}\textsf{statement} \\
|
|
\textsf{whilen}&
|
|
\textsf{Represents a }\textsf{\textbf{while}}\textsf{ statement} \\
|
|
\textsf{forn}&
|
|
\textsf{Represents a }\textsf{\textbf{for}}\textsf{ statement} \\
|
|
\textsf{exitn}&
|
|
\textsf{Represents an }\textsf{\textbf{exit}}\textsf{ statement} \\
|
|
\textsf{withn}&
|
|
\textsf{Represents a }\textsf{\textbf{with}}\textsf{ statement} \\
|
|
\textsf{casen}&
|
|
\textsf{Represents a }\textsf{\textbf{case}}\textsf{ statement} \\
|
|
\textsf{labeln}&
|
|
\textsf{Represents a label statement} \\
|
|
\textsf{goton}&
|
|
\textsf{Represents a }\textsf{\textbf{goto}}\textsf{ statement} \\
|
|
\textsf{simplenewn}&
|
|
\textsf{Represents a }\textsf{\textbf{new}}\textsf{ statement } \\
|
|
\textsf{tryexceptn}&
|
|
\textsf{Represents a }\textsf{\textbf{try}}\textsf{ statement} \\
|
|
\textsf{raisen}&
|
|
\textsf{Represents a }\textsf{\textbf{raise}}\textsf{ statement} \\
|
|
\textsf{\textit{switchesn}}&
|
|
\textsf{\textit{Unused}} \\
|
|
\textsf{tryfinallyn}&
|
|
\textsf{Represents a }\textsf{\textbf{try..finally}}\textsf{ statement} \\
|
|
\textsf{onn}&
|
|
\textsf{Represents an }\textsf{\textbf{on..do}}\textsf{ statement} \\
|
|
\textsf{isn}&
|
|
\textsf{Represents the }\textsf{\textbf{is}}\textsf{ operator} \\
|
|
\textsf{asn}&
|
|
\textsf{Represents the }\textsf{\textbf{as}}\textsf{ typecast operator} \\
|
|
\textsf{caretn}&
|
|
\textsf{Represents the \ operator} \\
|
|
\textsf{failn}&
|
|
\textsf{Represents the }\textsf{\textbf{fail}}\textsf{ statement} \\
|
|
\textsf{starstarn}&
|
|
\textsf{Represents the }\textsf{\textbf{**}}\textsf{ operator (exponentiation)} \\
|
|
\textsf{procinlinen}&
|
|
\textsf{Represents an }\textsf{\textbf{inline}}\textsf{ routine} \\
|
|
\textsf{arrayconstrucn}&
|
|
\textsf{Represents a }\textsf{\textbf{[..]}}\textsf{ statement (array or sets)} \\
|
|
\textsf{arrayconstructrangen}&
|
|
\textsf{Represents ranges in [..] statements (array or sets)} \\
|
|
\textsf{nothingn}&
|
|
\textsf{Empty node} \\
|
|
\textsf{loadvmtn}&
|
|
\textsf{Load method table register} \\
|
|
\hline
|
|
\end{longtable}
|
|
|
|
\subsection{Tree structure fields (tree.pas)}
|
|
\label{subsec:mylabel2}
|
|
|
|
Each element in a node is a pointer to a TTree structure, which is summarily
|
|
explained and defined as follows:
|
|
|
|
\begin{tabular*}{6.5in}{|l@{\extracolsep{\fill}}lp{8.0cm}|}
|
|
\hline
|
|
\textsf{TYPE}& & \\
|
|
\xspace pTree = & \^{} TTree; & \\
|
|
\xspace \textsf{TTree} = & \textbf{RECORD}& \\
|
|
& \textsf{Error : boolean;}& Set to TRUE if there was an error parsing this node\\
|
|
&\textsf{DisposeTyp : tdisposetyp;}&
|
|
\\
|
|
&\textsf{Swaped : boolean;}&
|
|
Set to TRUE if the left and right nodes (fields) of this node have been swaped. \\
|
|
& \textsf{VarStateSet : boolean;}&
|
|
\\
|
|
& \textsf{Location : tlocation;}&
|
|
Location information for this information (cf. Code generator) \\
|
|
& \textsf{Registers32 : longint;}&
|
|
Minimum number of general purpose registers required to evaluate this node \\
|
|
& \textsf{RegistersFpu : longint;}&
|
|
Minimum number of floating point registers required to evaluate this node \\
|
|
& \textsf{Left : pTree;}&
|
|
LEFT leaf of this node \\
|
|
& \textsf{Right : pTree;}&
|
|
RIGHT leaf of this node \\
|
|
& \textsf{ResultType : pDef;}&
|
|
Result type of this node \par (cf. Type definitions) \\
|
|
& \textsf{FileInfo : TFilePosInfo;}&
|
|
Line number information for this node creation in the original source code (for error management) \\
|
|
& \textsf{LocalSwitches : tlocalswitches;}&
|
|
Local compiler switches used for code generation \par (Cf. \ref{tlocalswitches}) \\
|
|
& \textsf{IsProperty : boolean;}&
|
|
TRUE if this is a property \\
|
|
& \textsf{TreeType : ttreetyp;}&
|
|
Type of this tree (cf. \ref{tab1}) \\
|
|
& \textsf{END;}& \\
|
|
\hline
|
|
\end{tabular*}
|
|
%\caption{Possible definition types (tdeftype)}
|
|
|
|
\begin{longtable}{|l|l|p{10cm}|}
|
|
% p{126pt}|p{45pt}|p{319pt}|}
|
|
\caption{local compiler switches (tlocalswitches)}\label{tlocalswitches}\\
|
|
\hline
|
|
tlocalswitches & Switch & Description \\
|
|
\hline
|
|
\endfirsthead
|
|
\hline
|
|
tlocalswitches & Switch & Description \\
|
|
\hline
|
|
\endhead
|
|
\hline
|
|
\endfoot
|
|
\textsf{cs{\_}check{\_}overflow} & {\{}{\$}Q+{\}}&
|
|
Code generator should emit overflow checking code \\
|
|
\textsf{cs{\_}check{\_}range} & {\{}{\$}R+{\}}&
|
|
Code generator should emit range checking code \\
|
|
\textsf{cs{\_}check{\_}IO} & {\{}{\$}I+{\}}&
|
|
Code generator should emit I/O checking code \\
|
|
\textsf{cs{\_}check{\_}object{\_}ext} & N/A&
|
|
Code generator should emit extended object access checks \\
|
|
\textsf{\textit{cs{\_}omitstackframe}} & $N/A$ &
|
|
\textit{Code generator should not emit frame{\_}pointer setup code
|
|
in entry code} \\
|
|
\textsf{cs{\_}do{\_}assertion} & {\{}{\$}C+{\}} &
|
|
Code generator supports using the assert inline routine \\
|
|
\textsf{cs{\_}generate{\_}rtti} & {\{}{\$}M+{\}} &
|
|
Code generator should emit runtime type information \\
|
|
\textsf{cs{\_}typed{\_}addresses} & {\{}{\$}T+{\}}&
|
|
Parser emits typed pointer using the @ operator \\
|
|
\textsf{cs{\_}ansistrings} & {\{}{\$}H+{\}}&
|
|
Parser creates an \textsf{ansistring} when an unspecified
|
|
\textsf{String} type is declared instead of the default
|
|
\textsf{ShortString} \\
|
|
\textsf{cs{\_}strict{\_}var{\_}strings} & {\{}{\$}V+{\}}&
|
|
String types must be identical (same length) to be compatible \\
|
|
\hline
|
|
\end{longtable}
|
|
|
|
\subsubsection{Additional fields}
|
|
\label{subsubsec:additional}
|
|
|
|
Depending on the tree type, some additional fields may be present in the
|
|
tree node. This section describes these additional fields. Before accessing
|
|
these additional fields, a check on the \textsf{treetype} should always be
|
|
done to verify if not reading invalid memory ranges.
|
|
|
|
\paragraph{AddN}\mbox{}
|
|
|
|
\begin{longtable}{|l|p{10cm}|}
|
|
\hline
|
|
Field & Description \\
|
|
\hline
|
|
\endhead
|
|
\hline
|
|
\endfoot
|
|
\textsf{\textit{Use{\_}StrConcat : Boolean;}}&
|
|
\textit{Currently unused (use for optimizations in future versions)} \\
|
|
\hline
|
|
\textsf{String{\_}Typ: TStringType;}&
|
|
In the case where the + operator is applied on a string, this field indicates the string type. \\
|
|
\hline
|
|
\end{longtable}
|
|
|
|
\paragraph{CallParaN}\mbox{}
|
|
|
|
\begin{longtable}{|l|p{10cm}|}
|
|
\hline
|
|
Field & Description \\
|
|
\hline
|
|
\endhead
|
|
\hline
|
|
\endfoot
|
|
\textsf{Is{\_}Colon{\_}Para : Boolean;}&
|
|
Used for internal routines which can use optional format parameters
|
|
(using colons). Is set to TRUE if this parameter was preceded by a
|
|
colon (i.e : :1) \\
|
|
\textsf{Exact{\_}Match{\_}Found : Boolean;}&
|
|
Set to TRUE if the parameter type is exactly the same as the one
|
|
expected by the routine. \\
|
|
\textsf{ConvLevel1Found : Boolean;}&
|
|
Set to TRUE if the parameter type requires a level 1 type conversion
|
|
to conform to the parameter expected by the routine. \\
|
|
\textsf{ConvLevel2Found : Boolean;}&
|
|
Set to TRUE if the parameter type requires a level 2 type conversion
|
|
to conform to the parameter expected by the routine. \\
|
|
\textsf{HighTree : pTree;}& \\
|
|
\hline
|
|
\end{longtable}
|
|
|
|
\paragraph{AssignN}\mbox{}
|
|
|
|
\begin{longtable}{|l|p{10cm}|}
|
|
\hline
|
|
Field & Description \\
|
|
\hline
|
|
\endhead
|
|
\hline
|
|
\endfoot
|
|
\textsf{\textit{AssignTyp : TAssignTyp;}}&
|
|
\textit{Currently unused (Used to be used for C-like assigns)} \\
|
|
\textsf{\textit{Concat{\_}String : Boolean;}}&
|
|
\textit{Currently unused (use for optimizations in future versions)}\\
|
|
\hline
|
|
\end{longtable}
|
|
|
|
\paragraph{LoadN}\mbox{}
|
|
|
|
\begin{longtable}{|l|p{10cm}|}
|
|
\hline
|
|
Field & Description \\
|
|
\hline
|
|
\endhead
|
|
\hline
|
|
\endfoot
|
|
\textsf{SymTableEntry : pSym;}&
|
|
Symbol table entry for this symbol \\
|
|
\textsf{SymTable : pSymTable;}&
|
|
Symbol table in which this symbol is stored \\
|
|
\textsf{Is{\_}Absolute : Boolean;}&
|
|
set to TRUE if this variable is absolute \\
|
|
\textsf{Is{\_}First : Boolean;}&
|
|
set to TRUE if this is the first occurrence of the load for this
|
|
variable (used with the varstate variable for optimizations) \\
|
|
\hline
|
|
\end{longtable}
|
|
|
|
\paragraph{CallN}\mbox{}
|
|
|
|
\begin{longtable}{|l|p{10cm}|}
|
|
\hline
|
|
Field & Description \\
|
|
\hline
|
|
\endhead
|
|
\hline
|
|
\endfoot
|
|
\textsf{SymTableProcEntry : pProcSym;}&
|
|
Symbol table entry for this routine \\
|
|
\textsf{SymTableProc : pSymTable;}&
|
|
Symbol table associated with a call (object symbol table or routine
|
|
symbol table) \\
|
|
\textsf{ProcDefinition : pAbstractProcDef;}&
|
|
Type definition for this routine \\
|
|
\textsf{MethodPointer : pTree;}&
|
|
????????? \\
|
|
\textsf{\textit{No{\_}Check : Boolean;}}&
|
|
\textit{Currently unused} \\
|
|
\textsf{Unit{\_}Specific : Boolean;}&
|
|
set to TRUE if the routine is imported in a unit specific way (for
|
|
example: system.writeln()) \\
|
|
\textsf{Return{\_}Value{\_}Used : Boolean}&
|
|
set to TRUE if the routine is a function and that the return value
|
|
is not used (in extended syntax parsing - {\$}X+) \\
|
|
\textsf{\textit{Static{\_}Call : Boolean;}}&
|
|
\textit{unused} \\
|
|
\hline
|
|
\end{longtable}
|
|
|
|
\paragraph{addrn}\mbox{}
|
|
|
|
\begin{longtable}{|l|p{10cm}|}
|
|
\hline
|
|
Field & Description \\
|
|
\hline
|
|
\endhead
|
|
\hline
|
|
\endfoot
|
|
\textsf{ProcVarLoad : Boolean;}&
|
|
Set to TRUE if this is a procedural variable call \\
|
|
\hline
|
|
\end{longtable}
|
|
|
|
\paragraph{OrdConstN}\mbox{}
|
|
|
|
\begin{longtable}{|l|p{10cm}|}
|
|
\hline
|
|
Field & Description \\
|
|
\hline
|
|
\endhead
|
|
\hline
|
|
\endfoot
|
|
\textsf{Value : Longint;}&
|
|
The numeric value of this constant node \\
|
|
\hline
|
|
\end{longtable}
|
|
|
|
\paragraph{RealConstN}\mbox{}
|
|
|
|
\begin{longtable}{|l|p{10cm}|}
|
|
\hline
|
|
Field & Description \\
|
|
\hline
|
|
\endhead
|
|
\hline
|
|
\endfoot
|
|
\textsf{Value{\_}Real : Best{\_}Real;}&
|
|
The numeric value of this constant node \\
|
|
\textsf{Lab{\_}Real : pAsmLabel;}&
|
|
The assembler label reference to this constant \\
|
|
\hline
|
|
\end{longtable}
|
|
|
|
\paragraph{FixConstN}\mbox{}
|
|
|
|
\begin{longtable}{|l|p{10cm}|}
|
|
\hline
|
|
Field & Description \\
|
|
\hline
|
|
\endhead
|
|
\hline
|
|
\endfoot
|
|
\textsf{Value{\_}Fix : Longint;}&
|
|
The numeric value of this constant node \\
|
|
\hline
|
|
\end{longtable}
|
|
|
|
\paragraph{FuncRetN}\mbox{}
|
|
|
|
\begin{longtable}{|l|p{10cm}|}
|
|
\hline
|
|
Field & Description \\
|
|
\hline
|
|
\endhead
|
|
\hline
|
|
\endfoot
|
|
\textsf{FuncRetProcInfo : Pointer; (pProcInfo)}&
|
|
Pointer to procedure information \\
|
|
\textsf{RetType : TType;}& Indicates the return type of the function \\
|
|
\textsf{Is{\_}First{\_}FuncRet : Boolean;}& \\
|
|
\hline
|
|
\end{longtable}
|
|
|
|
\paragraph{SubscriptN}\mbox{}
|
|
|
|
\begin{longtable}{|l|p{10cm}|}
|
|
\hline
|
|
Field & Description \\
|
|
\hline
|
|
\endhead
|
|
\hline
|
|
\endfoot
|
|
\textsf{vs : pVarSym;}&
|
|
Symbol table entry for this variable (a field of
|
|
object/class/record) \\
|
|
\hline
|
|
\end{longtable}
|
|
|
|
\paragraph{RaiseN}\mbox{}
|
|
|
|
\begin{longtable}{|l|p{10cm}|}
|
|
\hline
|
|
Field & Description \\
|
|
\hline
|
|
\endhead
|
|
\hline
|
|
\endfoot
|
|
\textsf{FrameTree : pTree;} & Exception frame tree (code in Raise statement)
|
|
\end{longtable}
|
|
|
|
\paragraph{VecN}\mbox{}
|
|
|
|
\begin{longtable}{|l|p{10cm}|}
|
|
\hline
|
|
Field & Description \\
|
|
\hline
|
|
\endhead
|
|
\hline
|
|
\endfoot
|
|
\textsf{MemIndex : Boolean;} & Set to TRUE if Mem[Seg:Ofs] directive is parsed \\
|
|
\textsf{MemSeg : Boolean;} & Set to TRUE if Mem[Seg:Ofs] directive is parsed \\
|
|
\textsf{CallUnique: Boolean;} &
|
|
\end{longtable}
|
|
|
|
\paragraph{StringConstN}\mbox{}
|
|
|
|
\begin{longtable}{|l|p{10cm}|}
|
|
\hline
|
|
Field & Description \\
|
|
\hline
|
|
\endhead
|
|
\hline
|
|
\endfoot
|
|
\textsf{Value{\_}Str : pChar;} & The constant value of the string \\
|
|
\textsf{Length : Longint;} & Length of the string in bytes (or in characters???) \\
|
|
\textsf{Lab{\_}Str : pAsmLabel;} & The assembler label reference to this constant \\
|
|
\textsf{StringType : TStringType;}& The string type (short, long, ansi, wide)
|
|
\end{longtable}
|
|
|
|
\paragraph{TypeConvN}\mbox{}
|
|
|
|
\begin{longtable}{|l|p{10cm}|}
|
|
\hline
|
|
Field & Description \\
|
|
\hline
|
|
\endhead
|
|
\hline
|
|
\endfoot
|
|
\textsf{ConvType: TConvertType;}& Indicates the conversion type to do \\
|
|
\textsf{Explizit : Boolean;}&
|
|
set to TRUE if this was an explicit conversion (with explicit
|
|
typecast, or calling one of the internal conversion routines)
|
|
\end{longtable}
|
|
|
|
\paragraph{TypeN}\mbox{}
|
|
|
|
\begin{longtable}{|l|p{10cm}|}
|
|
\hline
|
|
Field & Description \\
|
|
\hline
|
|
\endhead
|
|
\hline
|
|
\endfoot
|
|
\textsf{TypeNodeType : pDef;}& The type definition for this node \\
|
|
\textsf{TypeNodeSym : pTypeSym;}& The type symbol information
|
|
\label{tab24}
|
|
\end{longtable}
|
|
|
|
\paragraph{InlineN}\mbox{}
|
|
|
|
\begin{longtable}{|l|p{10cm}|}
|
|
\hline
|
|
Field & Description \\
|
|
\hline
|
|
\endhead
|
|
\hline
|
|
\endfoot
|
|
\textsf{InlineNumber: Byte;} & Indicates the internal routine called (Cf. code generator) \\
|
|
\textsf{InlineConst : Boolean;} &
|
|
One or more of the parameters to this inline routine call contains
|
|
constant values
|
|
\label{tab25}
|
|
\end{longtable}
|
|
|
|
\paragraph{ProcInlineN}\mbox{}
|
|
|
|
Inline nodes are created when a routine is declared as being inline. The
|
|
routine is actually inlined when the following conditions are satisfied:
|
|
|
|
It is called within the same module
|
|
|
|
The appropriate compiler switch to support inline is activated
|
|
|
|
It is a non-method routine (a standard procedure or function)
|
|
|
|
Otherwise a normal call is made, ignoring the inline directive. In the case
|
|
where a routine is inlined, all parameters , return values and local
|
|
variables of the inlined routine are actually allocated in the stack space
|
|
of the routine which called the inline routine.
|
|
|
|
\begin{longtable}{|l|p{10cm}|}
|
|
\hline
|
|
Field & Description \\
|
|
\hline
|
|
\endhead
|
|
\hline
|
|
\endfoot
|
|
\textsf{InlineTree : pTree;}&
|
|
The complete tree for this inline procedure \\
|
|
\textsf{InlineProcsym : pProcSym;}&
|
|
Symbol table entry for this procedure \\
|
|
\textsf{RetOffset : Longint;}&
|
|
Return offset in parent routine stack space \\
|
|
\textsf{Para{\_}Offset : Longint;}&
|
|
Parameter start offset in parent routine stack space \\
|
|
\textsf{Para{\_}Size : Longint;}&
|
|
Parameter size in the parent routine stack space
|
|
\label{tab26}
|
|
\end{longtable}
|
|
|
|
\paragraph{SetConstN}\mbox{}
|
|
|
|
\begin{longtable}{|l|p{10cm}|}
|
|
\hline
|
|
Field & Description \\
|
|
\hline
|
|
\endhead
|
|
\hline
|
|
\endfoot
|
|
\textsf{Value{\_}Set : pConstSet;}& The numeric value of this constant node \\
|
|
\textsf{Lab{\_}Set : pAsmLabel;} & The assembler label reference to this constant
|
|
\label{tab27}
|
|
\end{longtable}
|
|
|
|
\paragraph{LoopN}\mbox{}
|
|
|
|
\begin{longtable}{|l|p{10cm}|}
|
|
\hline
|
|
Field & Description \\
|
|
\hline
|
|
\endhead
|
|
\hline
|
|
\endfoot
|
|
& \\
|
|
& \\
|
|
&
|
|
\end{longtable}
|
|
|
|
\paragraph{AsmN}\mbox{}
|
|
|
|
\begin{longtable}{|l|p{10cm}|}
|
|
\hline
|
|
Field & Description \\
|
|
\hline
|
|
\endhead
|
|
\hline
|
|
\endfoot
|
|
\textsf{p{\_}Asm : pAasmOutput;}&
|
|
The instruction tree created by the assembler parser \\
|
|
\textsf{Object{\_}Preserved : Boolean;}&
|
|
set to FALSE if the Self{\_}Register was modified in the asm statement.
|
|
\label{tab29}
|
|
\end{longtable}
|
|
|
|
\paragraph{CaseN}\mbox{}
|
|
|
|
\begin{longtable}{|l|p{10cm}|}
|
|
\hline
|
|
Field & Description \\
|
|
\hline
|
|
\endhead
|
|
\hline
|
|
\endfoot
|
|
\textsf{Nodes : pCaserecord;}&
|
|
Tree for each of the possible case in the case statement \\
|
|
\textsf{ElseBlock : pTree;}&
|
|
Else statement block tree
|
|
\label{tab30}
|
|
\end{longtable}
|
|
|
|
\paragraph{LabelN, GotoN}\mbox{}
|
|
|
|
\begin{longtable}{|l|p{10cm}|}
|
|
\hline
|
|
Field & Description \\
|
|
\hline
|
|
\endhead
|
|
\hline
|
|
\endfoot
|
|
\textsf{LabelNr : pAsmLabel;} & Assembler label associated with this statement \\
|
|
\textsf{ExceptionBlock : ptree;}& ? \\
|
|
\textsf{LabSym : pLabelSym;} & Symbol table entry for this label
|
|
\label{tab31}
|
|
\end{longtable}
|
|
|
|
\paragraph{WithN}\mbox{}
|
|
|
|
\begin{longtable}{|l|p{10cm}|}
|
|
\hline
|
|
Field & Description \\
|
|
\hline
|
|
\endhead
|
|
\hline
|
|
\endfoot
|
|
\textsf{WithSymTables : pWithSymTable;} & \\
|
|
\textsf{TableCount : Longint;} & \\
|
|
\textsf{WithReference : pReference;} & \\
|
|
\textsf{IsLocal : Boolean;} &
|
|
\label{tab32}
|
|
\end{longtable}
|
|
|
|
\paragraph{OnN}\mbox{}
|
|
|
|
\begin{longtable}{|l|p{10cm}|}
|
|
\hline
|
|
Field & Description \\
|
|
\hline
|
|
\endhead
|
|
\hline
|
|
\endfoot
|
|
\textsf{ExceptSymTable : pSymtable;}& \\
|
|
\textsf{ExceptType : pObjectdef;}&
|
|
\label{tab33}
|
|
\end{longtable}
|
|
|
|
\paragraph{ArrayConstructorN}\mbox{}
|
|
|
|
\begin{longtable}{|l|p{10cm}|}
|
|
\hline
|
|
Field & Description \\
|
|
\hline
|
|
\endhead
|
|
\hline
|
|
\endfoot
|
|
\textsf{CArgs : Boolean;} & \\
|
|
\textsf{CArgSwap : Boolean;} & \\
|
|
\textsf{ForceVaria : Boolean;} & \\
|
|
\textsf{NoVariaAllowed : Boolean;} & \\
|
|
\textsf{ConstructorDef : pDef;} &
|
|
\label{tab34}
|
|
\end{longtable}
|
|
|
|
\section{Symbol tables}
|
|
\label{sec:symbol}
|
|
|
|
\subsection{Architecture}
|
|
\label{subsec:architecturesructord}
|
|
|
|
The symbol table contains all definitions for all symbols in the compiler.
|
|
It also contains all type information for all symbols encountered during the
|
|
parsing process. All symbols and definitions are streamable, and are used
|
|
within PPU files to avoid recompiling everything to verify if all symbols are valid.
|
|
|
|
There are different types of symbol tables, all of which maybe active at one
|
|
time or another depending on the context of the parser.
|
|
|
|
An architectural overview of the interaction between the symbol tables, the
|
|
symbol entries and the definition entries is displayed in figure \ref{fig4}
|
|
|
|
\begin{figure}
|
|
\ifpdf
|
|
\includegraphics{arch4.pdf}
|
|
%\epsfig{file=arch4.png,width=\textwidth}
|
|
\else
|
|
\includegraphics[width=6.29in,height=3.29in]{arch4.eps}
|
|
\fi
|
|
\label{fig4}
|
|
\caption{Interactions between symbol tables}
|
|
\end{figure}
|
|
|
|
As can be seen, the symbol table entries in the symbol table are done using
|
|
the fast hashing algorithm with a hash dictionary.
|
|
|
|
\subsection{The Symbol table object}
|
|
\label{subsec:mylabel3}
|
|
|
|
All symbol tables in the compiler are from this type of object, which
|
|
contains fields for the total size of the data in the symbol table, and
|
|
methods to read and write the symbol table into a stream. The start of the
|
|
linked list of active symbol tables is the \textbf{symtablestack} variable.
|
|
|
|
\begin{tabular*}{6.5in}{|l@{\extracolsep{\fill}}lp{6,5cm}|}
|
|
\hline
|
|
\textsf{TYPE} & & \\
|
|
\xspace \textsf{pSymTable} &= \^{} \textbf{TSymTable};& \\
|
|
\xspace \textsf{TSymTable} &= \textbf{object} & \\
|
|
& \textsf{Name : pString;}& \\
|
|
& \textsf{DataSize : Longint;}&
|
|
The total size of all the data in this symbol table (after the data has been aligned). Only valid for certain types of symbol tables. \\
|
|
& \textsf{DataAlignment : Longint;}& \\
|
|
& \textsf{SymIndex : pIndexArray;}& \\
|
|
& \textsf{DefIndex : pIndexArray;}& \\
|
|
& \textsf{SymSearch : pDictionary;}& \\
|
|
& \textsf{Next : pSymtable;}&
|
|
Points to the next symbol table in the linked list of active symbol tables. \\
|
|
& \textsf{DefOwner : pDef;}&
|
|
The owner definition (only valid in the cases of objects and records, this points to the definition of that object or record). \\
|
|
& \textsf{Address{\_}Fixup : Longint}& \\
|
|
& \textsf{UnitId : Word;}& \\
|
|
& \textsf{SymTableLevel : Byte;}& \\
|
|
& \textsf{SymTableType :TSymTableType;}&
|
|
Indicates the type of this symbol table (\ref{fig2}). \\
|
|
&\textsf{end;}& \\
|
|
\hline
|
|
\end{tabular*}
|
|
|
|
The type of possible symbol tables are shown in the following table:
|
|
|
|
\begin{longtable}{|l|p{10cm}|}
|
|
\hline
|
|
TSymTableType& Description \\
|
|
\hline
|
|
\endhead
|
|
\hline
|
|
\endfoot
|
|
\textsf{InvalidSymTable}&
|
|
Default value when the symbol table is created and its type is not defined. Used for debugging purposes \\
|
|
\textsf{WithSymTable}&
|
|
All symbols accessed in a with statement \\
|
|
\textsf{StaticSymTable}& \\
|
|
\textsf{GlobalSymTable}& \\
|
|
\textsf{UnitSymTable}&
|
|
Linked list of units symbol used (all or unit?). The linked list is
|
|
composed of \textsf{tunitsym} structures. \\
|
|
\textsf{ObjectSymTable}& \\
|
|
\textsf{RecordSymTable}&
|
|
Contains all symbols within a record statement \\
|
|
\textsf{MacroSymTable}&
|
|
Holds all macros currently in scope. \\
|
|
\textsf{LocalSymTable}&
|
|
Hold symbols for all local variables of a routine \\
|
|
\textsf{ParaSymTable}&
|
|
Holds symbols for all parameters of a routine (the actual parameter declaration symbols) \\
|
|
\textsf{InlineParaSymTable}&
|
|
Holds all parameter symbols for the current inline routine \\
|
|
\textsf{InlineLocalSymTable}&
|
|
Holds all local symbols for the current inline routine \\
|
|
\textsf{Stt{\_}ExceptSymTable}& \\
|
|
\textsf{StaticPPUSymTable}&
|
|
\label{tab36}
|
|
\end{longtable}
|
|
|
|
\subsection{Inserting symbols into a symbol table}
|
|
\label{subsec:inserting}
|
|
|
|
To add a symbol into a specific symbol table, that's symbol table's
|
|
\textsf{Insert} method is called, which in turns call the
|
|
\textsf{Insert{\_}In{\_}Data} method of that symbol.
|
|
\textsf{Insert{\_}In{\_}Data}, depending on the symbol type, adjusts the
|
|
alignment and sizes of the data and actually creates the data entry in the
|
|
correct segment.
|
|
|
|
\begin{figure}
|
|
\begin{center}
|
|
\ifpdf
|
|
%\epsfig{file=arch5.png,width=\textwidth}
|
|
\includegraphics{arch5.pdf}
|
|
\else
|
|
\includegraphics[width=1.51in,height=5.51in]{arch5.eps}
|
|
\fi
|
|
\label{fig5}
|
|
\caption{Inserting into the symbol table}
|
|
\end{center}
|
|
\end{figure}
|
|
|
|
\subsection{Symbol table interface}
|
|
|
|
\subsubsection{Routines}
|
|
\label{subsubsec:routinesable}
|
|
|
|
\begin{functionl}{Search{\_}a{\_}Symtable}{searchasymtable}
|
|
\Declaration
|
|
Function Search{\_}a{\_}Symtable(Const Symbol:String; \\
|
|
SymTableType : TSymTableType):pSym;
|
|
\Description
|
|
Search for a symbol \textsf{Symbol} in a specified symbol table
|
|
\textsf{SymTableType}. Returns \textsf{NIL} if the symbol table is not
|
|
found, and also if the symbol cannot be found in the desired symbol table.
|
|
\end{functionl}
|
|
|
|
\begin{procedure}{GetSym}
|
|
\Declaration
|
|
Procedure GetSym(Const S : StringId; NotFoundError: Boolean);
|
|
\Description
|
|
Search all the active symbol tables for the symbol \textsf{s},setting the
|
|
global variable \textsf{SrSym} to the found symbol, or to \textsf{nil} if
|
|
the symbol was not found. \textsf{notfounderror} should be set to TRUE if
|
|
the routine must give out an error when the symbol is not found.
|
|
\end{procedure}
|
|
|
|
\begin{function}{GlobalDef}
|
|
\Declaration
|
|
Function GlobalDef(Const S : String) : pDef;
|
|
\Description
|
|
Returns a pointer to the definition of the fully qualified type symbol
|
|
\textsf{S}, or \textsf{NIL} if not found.
|
|
\Notes
|
|
It is fully qualified, in that the symbol \textsf{system.byte}, for example,
|
|
will be fully resolved to a unit and byte type component The symbol must
|
|
have a global scope, and it must be a type symbol, otherwise \textsf{NIL}
|
|
will be returned..
|
|
\end{function}
|
|
|
|
\subsubsection{Variables}
|
|
\label{subsubsec:variablesly}
|
|
|
|
\begin{variable}{SrSym}
|
|
\Declaration
|
|
Var SrSym : pSym;
|
|
\Description
|
|
This points to the symbol entry found, when calling \textsf{getsym}.
|
|
\end{variable}
|
|
|
|
\begin{variable}{SrSymTable}
|
|
\Declaration
|
|
Var SrSymTable : pSymTable;
|
|
\Description
|
|
This points to the symbol table of the symbol \seevar{SrSym} when calling
|
|
\seep{GetSym}.
|
|
\end{variable}
|
|
|
|
\section{Symbol entries}
|
|
\label{sec:mylabel3}
|
|
|
|
\subsection{Architecture}
|
|
\label{subsec:architecturees}
|
|
|
|
There are different possible types of symbols, each one having different
|
|
fields then the others. Each symbol type has a specific signature to
|
|
indicate what kind of entry it is. Each entry in the symbol table is
|
|
actually one of the symbol entries described in the following sections. The
|
|
relationship between a symbol entry, a type definition, and the type name
|
|
symbol entry is shown in figure \ref{fig6}.
|
|
|
|
\begin{figure}
|
|
\begin{center}
|
|
\ifpdf
|
|
\includegraphics{arch6.pdf}
|
|
%\epsfig{file=arch6.png,width=\textwidth}
|
|
\else
|
|
\includegraphics[width=5.51in,height=4.51in]{arch6.eps}
|
|
\fi
|
|
\label{fig6}
|
|
\caption{relation between symbol entry and type definition and name}
|
|
\end{center}
|
|
\end{figure}
|
|
|
|
\subsection{Symbol entry types}
|
|
\label{subsec:symbol}
|
|
|
|
\subsubsection{Base symbol type (TSym)}
|
|
\label{subsubsec:mylabel1}
|
|
|
|
All entries in the symbol table are derived from this base object which
|
|
contains information on the symbol type as well as information on the owner
|
|
of this symbol entry.
|
|
|
|
\begin{tabular*}{6.5in}{|l@{\extracolsep{\fill}}lp{9cm}|}
|
|
\hline
|
|
\textsf{TYPE} & & \\
|
|
\xspace pSym = & \^{} TSym; & \\
|
|
\xspace \textsf{TSym} = & \textbf{Object}(TSymTableEntry) & \\
|
|
& \textsf{SymOptions : TSymOptions;}& Indicate the access scope of the symbol \\
|
|
& \textsf{FileInfo : tFilePosInfo;}& \\
|
|
& \textsf{Refs : Longint;}&
|
|
Indicates how many times this label is refered in the parsed code (is only used with variable and assembler label symbols). \\
|
|
&\textsf{LastRef : pRef;}& \\
|
|
&\textsf{DefRef : pRef;}& \\
|
|
&\textsf{LastWritten : pRef;}& \\
|
|
&\textsf{RefCount : Longint;}& Browser information indicating the reference count\\
|
|
&\textsf{Typ : tSymTyp;}& Indicates the symbol type \\
|
|
&\textsf{IsStabWritten : Boolean;}& Set to TRUE if the stabs debugging information has been written for this symbol.\\
|
|
&\textsf{end; }&\\
|
|
\hline
|
|
\end{tabular*}
|
|
|
|
\begin{longtable}{|l|p{10cm}|}
|
|
\caption{tsymtyp}\label{tsymtyp}\\
|
|
\hline
|
|
TSymTyp & Description \\
|
|
\hline
|
|
\endfirsthead
|
|
\hline
|
|
TSymTyp & Description \\
|
|
\hline
|
|
\endhead
|
|
\hline
|
|
\endfoot
|
|
\textsf{AbstractSym}&
|
|
This is a special abstract symbol (this should never occur) \\
|
|
\textsf{VarSym}&
|
|
This symbol is a variable declaration in the \textsf{var} section, or a \textsf{var} parameter. \\
|
|
\textsf{TypeSym}&
|
|
This symbol is a type name \\
|
|
\textsf{ProcSym}&
|
|
This symbol is a routine or method name \\
|
|
\textsf{UnitSym}&
|
|
This symbol is a unit name \\
|
|
\textsf{\textit{ProgramSym}}&
|
|
\textit{This symbol is the main program name} \\
|
|
\textsf{ConstSym}&
|
|
This symbol is a constant \\
|
|
\textsf{EnumSym}&
|
|
This symbol is an enumeration symbol (an element in an enumeration) \\
|
|
\textsf{TypedConstSym}&
|
|
This symbol is pre-initialized variable (pascal typed constant) \\
|
|
\textsf{ErrorSym}&
|
|
This symbol is created for error generation \\
|
|
\textsf{SysSym}&
|
|
This symbol represents an inlined system unit routine \\
|
|
\textsf{LabelSym}&
|
|
This symbol represents a label in a \textsf{label} pascal declaration \\
|
|
\textsf{AbsoluteSym}&
|
|
This symbol represents an the symbol following an \textsf{absolute} variable declaration \\
|
|
\textsf{PropertySym}&
|
|
This symbol is a property name \\
|
|
\textsf{FuncRetSym}&
|
|
This symbol is the name of the return value for functions \\
|
|
\textsf{MacroSym}&
|
|
This symbol is a macro symbol (just like {\#}define in C)
|
|
\end{longtable}
|
|
|
|
\subsubsection{label symbol (TLabelSym)}
|
|
\label{subsubsec:label}
|
|
|
|
The label symbol table entry is only created when a pascal label is declared
|
|
via the label keyword. The object has the following fields which are
|
|
available for use publicly:
|
|
|
|
\begin{tabular*}{6.5in}{|l@{\extracolsep{\fill}}lp{9cm}|}
|
|
\hline
|
|
\textsf{TYPE} & & \\
|
|
\xspace pLabelSym = & \^{} TLabelSym; & \\
|
|
\xspace \textsf{TLabelSym} = & \textbf{Object}(TSym) & \\
|
|
& \textsf{Used : Boolean}&
|
|
Set to TRUE if this pascal label is used using a \textsf{goto} or in an assembler statement \\
|
|
& \textsf{Defined: Boolean}&
|
|
Set to TRUE if this label has been declared \\
|
|
& \textsf{Lab : pAsmLabel}&
|
|
Points to the actual assembler label structure which will be emitted by the code generator \\
|
|
& \textsf{Code : Pointer}& \\
|
|
& \textsf{end;}& \\
|
|
\hline
|
|
\end{tabular*}
|
|
|
|
\subsubsection{unit symbol (TUnitSym)}
|
|
\label{subsubsec:mylabel2}
|
|
|
|
The unit symbol is created and added to the symbol table each time that the
|
|
uses clause is parsed and a unit name is found, it is also used when
|
|
compiling a unit, with the first entry in that symbol table being the unit
|
|
name being compiled. The unit symbol entry is actual part of a linked list
|
|
which is used in the unit symbol table.
|
|
|
|
\begin{tabular*}{6.5in}{|l@{\extracolsep{\fill}}lp{7cm}|}
|
|
\hline
|
|
\textsf{TYPE} & & \\
|
|
\xspace pUnitSym = & \^{} TUnitSym; & \\
|
|
\xspace \textsf{TUnitSym} = & \textbf{Object}(TSym) & \\
|
|
& \textsf{UnitSymTable:pUnitSymTable}&
|
|
Pointer to the global symbol table for that unit, containing entries for each public? symbol in that unit \\
|
|
& \textsf{PrevSym : pUnitSym}&
|
|
Pointer to previous entry in the linked list \\
|
|
& \textsf{end;}& \\
|
|
\hline
|
|
\end{tabular*}
|
|
|
|
\subsubsection{macro symbol (TMacroSym)}
|
|
\label{subsubsec:macro}
|
|
|
|
The macro synbols are used in the preprocessor for conditional compilation
|
|
statements. There is one such entry created for each {\$}define directive,
|
|
it contains the value of the define (stored as a string).
|
|
|
|
\begin{tabular*}{6.5in}{|l@{\extracolsep{\fill}}lp{6cm}|}
|
|
\hline
|
|
\textsf{TYPE}& & \\
|
|
\xspace pMacroSym = & \^{} TMacroSym; & \\
|
|
\xspace \textsf{TMacroSym} = & \textbf{Object}(TSym) & \\
|
|
& \textsf{Defined : Boolean;}&
|
|
TRUE if the symbol has been defined with a \textsf{{\$}define}
|
|
directive, or false if it has been undefined with a
|
|
\textsf{{\$}undef} directive \\
|
|
& \textsf{Defined{\_}At{\_}Startup : Boolean;}&
|
|
TRUE if the symbol is a system wide define \\
|
|
& \textsf{Is{\_}Used: Boolean;}&
|
|
TRUE if the define has been used such as in a \textsf{{\$}ifdef}
|
|
directive. \\
|
|
& \textsf{BufText : pChar;}&
|
|
The actual string text of the define \\
|
|
& \textsf{BufLength : Longint;}&
|
|
The actual string length of the define \\
|
|
& \textsf{end;}& \\
|
|
\hline
|
|
\end{tabular*}
|
|
|
|
\subsubsection{error symbol (TErrorSym)}
|
|
\label{subsubsec:error}
|
|
|
|
This symbol is actually an empty symbol table entry. When the parser
|
|
encounters an error when parsing a symbol, instead of putting nothing in the
|
|
symbol table, it puts this symbol entry. This avoids illegal memory accesses
|
|
later in parsing.
|
|
|
|
\subsubsection{procedure symbol (TProcSym)}
|
|
\label{subsubsec:procedure}
|
|
|
|
The procedure symbol is created each time a routine is defined in the code.
|
|
This can be either a forward definition or the actual implementation of the
|
|
routine. After creation, the symbol is added into the appropriate symbol
|
|
table stack.
|
|
|
|
\begin{tabular*}{6.5in}{|l@{\extracolsep{\fill}}lp{8cm}|}
|
|
\hline
|
|
\textsf{TYPE}& & \\
|
|
\xspace pProcSym = & \^{} TProcSym; & \\
|
|
\xspace \textsf{TProcSym} = & \textbf{Object}(TSym) & \\
|
|
& \textsf{Is{\_}Global : Boolean}&
|
|
Set if the routine is exported by the unit \\
|
|
& \textsf{Definition : pProcDef}&
|
|
Procedure definition, including parameter information and return
|
|
values \\
|
|
& \textsf{end;}& \\
|
|
\hline
|
|
\end{tabular*}
|
|
|
|
\subsubsection{type symbol (TTypeSym)}
|
|
\label{subsubsec:mylabel3}
|
|
|
|
The type symbol is created each time a new type declaration is done, the
|
|
current symbol table stack is then inserted with this symbol. Furthermore,
|
|
each time the compiler compiles a module, the default base types are
|
|
initialized and added into the symbol table (\textbf{psystem.pas}) The type
|
|
symbol contains the name of a type, as well as a pointer to its type
|
|
definition.
|
|
|
|
\begin{tabular*}{6.5in}{|l@{\extracolsep{\fill}}lp{9cm}|}
|
|
\hline
|
|
\textsf{TYPE}& & \\
|
|
\xspace pTypeSym = & \^{} TTypeSym; & \\
|
|
\xspace \textsf{TTypeSym} = & \textbf{Object}(TSym) & \\
|
|
& \textsf{ResType : TType}&
|
|
Contains base type information as well as the type definition \\
|
|
& \textsf{end;}& \\
|
|
\hline
|
|
\end{tabular*}
|
|
|
|
\subsubsection{variable symbol (TVarSym)}
|
|
\label{subsubsec:variable}
|
|
|
|
Variable declarations, as well as parameters which are passed onto routines
|
|
are declared as variable symbol types. Access information, as well as type
|
|
information and optimization information are stored in this symbol type.
|
|
|
|
\begin{tabular*}{6.5in}{|l@{\extracolsep{\fill}}lp{8.5cm}|}
|
|
\hline
|
|
\textsf{TYPE}& & \\
|
|
\xspace pVarSym = & \^{} TVarSym; & \\
|
|
\xspace \textsf{TVarSym} = & \textbf{Object}(TSym) & \\
|
|
& \textsf{Reg: TRegister;}&
|
|
If the value is a register variable, the \textsf{reg} field will be
|
|
different then R{\_}NO \\
|
|
& \textsf{VarSpez : TVarSpez;}&
|
|
Indicates the variable type (parameters only) (Cf. \ref{tvarspez}). \\
|
|
& \textsf{Address : Longint;}&
|
|
In the case where the variable is a routine parameter, this
|
|
indicates the positive offset from the \textsf{frame{\_}pointer }to
|
|
access this variable. In the case of a local variable, this field
|
|
indicates the negative offset from the \textsf{frame{\_}pointer}. to
|
|
access this variable. \\
|
|
& \textsf{LocalVarSym : pVarSym;}& \\
|
|
& \textsf{VarType : TType;}&
|
|
Contains base type information as well as the type definition \\
|
|
& \textsf{VarOptions : TVarOptions;}&
|
|
Flags for this variable (Cf. \ref{tvaroptions}) \\
|
|
& \textsf{VarState : TVarState}&
|
|
Indicates the state of the variable, if it's used or declared \\
|
|
& \textsf{end;}& \\
|
|
\hline
|
|
\end{tabular*}
|
|
|
|
\begin{longtable}{|l|p{10cm}|}
|
|
\caption{tvaroptions}\label{tvaroptions}\\
|
|
\hline
|
|
TVarOptions & Description \\
|
|
\hline
|
|
\endfirsthead
|
|
\caption{tvaroptions (continued)}\\
|
|
\hline
|
|
TVarOptions & Description \\
|
|
\hline
|
|
\endhead
|
|
\hline
|
|
\endfoot
|
|
\textsf{vo{\_}regable}&
|
|
The variable can be put into a hardware general purpose register \\
|
|
\textsf{vo{\_}is{\_}c{\_}var}&
|
|
The variable is imported from a C module \\
|
|
\textsf{vo{\_}is{\_}external}&
|
|
The variable is declared external \\
|
|
\textsf{vo{\_}is{\_}Dll{\_}var}&
|
|
The variable is a shared library variable \\
|
|
\textsf{vo{\_}is{\_}thread{\_}var}&
|
|
The variable is declared as being thread safe \\
|
|
\textsf{vo{\_}fpuregable}&
|
|
The variable can be put into a hardware floating point register \\
|
|
\textsf{vo{\_}is{\_}local{\_}copy}& \\
|
|
\textsf{\textit{vo{\_}is{\_}const}}&
|
|
\textit{unused and useless} \\
|
|
\textsf{vo{\_}is{\_}exported}&
|
|
The variable is declared as exported in a dynamic link library
|
|
\end{longtable}
|
|
|
|
\begin{longtable}{|l|p{10cm}|}
|
|
\caption{parameter type}\label{tvarspez}\\
|
|
\hline
|
|
TVarSpez & Description \\
|
|
\hline
|
|
\endfirsthead
|
|
\caption{parameter type (continued)}\\
|
|
\hline
|
|
TVarSpez & Description \\
|
|
\hline
|
|
\endhead
|
|
\hline
|
|
\endfoot
|
|
\textsf{vs{\_}value}&
|
|
This is a value parameter \\
|
|
\textsf{vs{\_}const}&
|
|
This is a constant parameter, property or array \\
|
|
\textsf{vs{\_}var}&
|
|
This is a variable parameter
|
|
\end{longtable}
|
|
|
|
\subsubsection{property symbol (TPropertySym)}
|
|
\label{subsubsec:property}
|
|
|
|
|
|
\begin{tabular*}{6.25in}{|l@{\extracolsep{\fill}}lp{4cm}|}
|
|
\hline
|
|
\textsf{TYPE}& & \\
|
|
\xspace pPropertySym = & \^{} TPropertySym; & \\
|
|
\xspace \textsf{TPropertySym} = & \textbf{Object}(TSym) & \\
|
|
& \textsf{propoptions: tpropertyoptions;}&
|
|
??? \\
|
|
& \textsf{proptype : ttype;}&
|
|
Indicates the type of the property\\
|
|
& \textsf{propoverriden : ppropertysym;}&
|
|
??? \\
|
|
& \textsf{indextype : ttype;}& \\
|
|
& \textsf{index : longint;}&
|
|
???? \\
|
|
& \textsf{default : longint}&
|
|
??? \\
|
|
& \textsf{readaccess : psymlist}&
|
|
??? \\
|
|
& \textsf{writeaccess : psymlist}&
|
|
??? \\
|
|
& \textsf{storedaccess : psymlist}&
|
|
??? \\
|
|
& \textsf{end;}& \\
|
|
\hline
|
|
\end{tabular*}
|
|
|
|
|
|
\subsubsection{return value of function symbol}
|
|
\label{subsubsec:return}
|
|
|
|
\subsubsection{absolute declared symbol (TAbsoluteSym)}
|
|
\label{subsubsec:absolute}
|
|
|
|
This symbol represents a variable declared with the \var{absolute} keyword. The
|
|
\var{address} of the \var{TVarSym} object holds the address of the variable
|
|
in the case of an absolute address variable.
|
|
|
|
The possible types of absolute symbols, are from an external object
|
|
reference, an absolute address (for certain targets only), or on top
|
|
of another declared variable. For the possible types, \ref{tabsolutetyp}.
|
|
|
|
\begin{tabular*}{6.5in}{|l@{\extracolsep{\fill}}lp{8.5cm}|}
|
|
\hline
|
|
\textsf{TYPE}& & \\
|
|
\xspace pAbsoluteSym = & \^{} TAbsoluteSym; & \\
|
|
\xspace \textsf{TAbsoluteSym} = & \textbf{Object}(TVarSym) & \\
|
|
& \textsf{abstyp : absolutetyp;}&
|
|
Indicates the type of absolute symbol it is (Cf. \ref{tabsolutetyp}) \\
|
|
& \textsf{absseg : boolean;}&
|
|
???\\
|
|
& \textsf{ref : psym;}&
|
|
In case \var{abstyp} is \var{tovar}, this field indicates
|
|
the symbol which is overlaid with this symbol. Otherwise
|
|
this field is unused.\\
|
|
& \textsf{asmname : pstring;}& In case \var{abstyp} is \var{toasm},
|
|
this field indicates label name for the variable.\\
|
|
\hline
|
|
\end{tabular*}
|
|
|
|
|
|
\begin{longtable}{|l|p{10cm}|}
|
|
\caption{possible absolute variable types}\label{tabsolutetyp}\\
|
|
\hline
|
|
tabsolutetyp & Description \\
|
|
\hline
|
|
\endfirsthead
|
|
\hline
|
|
tabsolutetyp & Description \\
|
|
\hline
|
|
\endhead
|
|
\hline
|
|
\endfoot
|
|
\textsf{tovar}&
|
|
The symbol will be declared on top of another symbol (variable or typed constant)\\
|
|
\textsf{toasm}&
|
|
The variable is imported from an external module \\
|
|
\textsf{toaddr}&
|
|
The variable is declared as being at an absolute address \\
|
|
\end{longtable}
|
|
|
|
|
|
\subsubsection{typed constant symbol}
|
|
\label{subsubsec:typed}
|
|
|
|
\subsubsection{constant symbol (TConstSym)}
|
|
\label{subsubsec:constant}
|
|
|
|
|
|
This symbol type will contain all constants defined and encountered
|
|
during the parsing. The values of the constants are also set in
|
|
this symbol type entry.
|
|
|
|
\begin{tabular*}{6.5in}{|l@{\extracolsep{\fill}}lp{8.5cm}|}
|
|
\hline
|
|
\textsf{TYPE}& & \\
|
|
\xspace pConstSym = & \^{} TConstSym; & \\
|
|
\xspace \textsf{TConstSym} = & \textbf{Object}(TSym) & \\
|
|
& \textsf{consttype : ttype;}&
|
|
Type information for this constant (?). \\
|
|
& \textsf{consttyp : tconsttyp}&
|
|
Indicates the type of the constant\\
|
|
& \textsf{resstrindex : longint}& If this is a resource
|
|
string constant, it indicates the index in the resource
|
|
table \\
|
|
& \textsf{value : longint}& In certain cases, contains
|
|
the value of the constant \\
|
|
& \textsf{len : longint}&
|
|
\\
|
|
\hline
|
|
\end{tabular*}
|
|
|
|
|
|
\subsubsection{enumeration symbol}
|
|
\label{subsubsec:enumeration}
|
|
|
|
\subsubsection{program symbol}
|
|
\label{subsubsec:program}
|
|
|
|
The program symbol type (\var{tprogramsym}) is used to store the name
|
|
of the program, which is declared using \var{program} in the pascal source.
|
|
This symbol type is currently unused in FreePascal.
|
|
|
|
\subsubsection{sys symbol}
|
|
\label{subsubsec:mylabel4}
|
|
|
|
The \var{tsyssym} symbol type is used to load indexes into the symbol
|
|
table of the internal routines which are inlined directly by the compiler.
|
|
It has a single field, which is the index of the inline routine.
|
|
|
|
\subsection{Symbol interface}
|
|
\label{subsec:mylabel5}
|
|
|
|
\section{Type information}
|
|
\label{sec:mylabel4}
|
|
|
|
\subsection{Architecture}
|
|
\label{subsec:architecturetionolbo}
|
|
|
|
A type declaration , which is the basis for the symbol table, since
|
|
inherently everything comes down to a type after parsing is a special
|
|
structure with two principal fields, which point to a symbol table entry
|
|
which is the type name, and the actual definition which gives the
|
|
information on other symbols in the type, the size of the type and other
|
|
such information.
|
|
|
|
\begin{tabular*}{6.5in}{|l@{\extracolsep{\fill}}lp{9cm}|}
|
|
\hline
|
|
\textsf{TYPE} & & \\
|
|
\xspace \textsf{TType} = & \textbf{Object} & \\
|
|
&\textsf{Sym : pSym;}&
|
|
Points to the symbol table of this type \\
|
|
& \textsf{Def : pDef;}&
|
|
Points to the actual definition of this type \\
|
|
&\textsf{end;}& \\
|
|
\hline
|
|
\end{tabular*}
|
|
|
|
\begin{center}
|
|
\begin{figure}
|
|
\ifpdf
|
|
\includegraphics{arch7.pdf}
|
|
%\epsfig{file=arch7.png,width=\textwidth}
|
|
\else
|
|
\includegraphics[width=4.39in,height=3.56in]{arch7.eps}
|
|
\fi
|
|
\caption{Type symbol and definition relations}
|
|
\label{fig7}
|
|
|
|
\end{figure}
|
|
\end{center}
|
|
|
|
\subsection{Definition types}
|
|
|
|
Definitions represent the type information for all possible symbols which
|
|
can be encountered by the parser. The definition types are associated with
|
|
symbols in the symbol table, and are used by the parsing process (among
|
|
other things) to perform type checking.
|
|
|
|
The current possible definition types are enumerated in \textsf{TDefType}
|
|
and can have one of the following symbolic values:
|
|
|
|
\begin{longtable}{|l|p{10cm}|}
|
|
\hline
|
|
deftype of TDef object & Description \\
|
|
\hline
|
|
\endhead
|
|
\hline
|
|
\endfoot
|
|
\textsf{AbstractDef} & \\
|
|
\textsf{ArrayDef} & array type definition \\
|
|
\textsf{RecordDef} & record type definition \\
|
|
\textsf{PointerDef} & pointer type definition \\
|
|
\textsf{OrdDef} & ordinal (numeric value) type definition \\
|
|
\textsf{StringDef} & string type definition \\
|
|
\textsf{EnumDef} & enumeration type definition \\
|
|
\textsf{ProcDef} & procedure type definition \\
|
|
\textsf{ObjectDef} & object or class type definition \\
|
|
\textsf{ErrorDef} & error definition (empty, used for error recovery) \\
|
|
\textsf{FileDef} & file type definition \\
|
|
\textsf{FormalDef} & \\
|
|
\textsf{SetDef} & set type definition \\
|
|
\textsf{ProcVarDef} & procedure variable type definition \\
|
|
\textsf{FloatDef} & floating point type definition \\
|
|
\textsf{ClassrefDef} & \\
|
|
\textsf{ForwardDef} & \\
|
|
\end{longtable}
|
|
|
|
\subsubsection{base definition (TDef)}
|
|
\label{subsubsec:mylabel5}
|
|
|
|
All type definitions are based on this object. Therefore all derived object
|
|
all posess the fields in this object in addition to their own private
|
|
fields.
|
|
|
|
\begin{tabular*}{6.5in}{|l@{\extracolsep{\fill}}lp{7cm}|}
|
|
\hline
|
|
\textsf{TYPE} & & \\
|
|
\xspace pDef = & \^{} TDef; & \\
|
|
\xspace \textsf{TDef} = & \textbf{Object}(TSymTableEntry) & \\
|
|
&\textsf{TypeSym : pTypeSym;}&
|
|
Pointer to symbol table entry for this type definition \\
|
|
&\textsf{InitTable{\_}Label : pAsmLabel;}&
|
|
Label to initialization information (required for some complex types) \\
|
|
&\textsf{Rtti{\_}Label : pAsmLabel;}&
|
|
Label to the runtime type information. \\
|
|
&\textsf{NextGlobal : pDef;}& \\
|
|
&\textsf{PreviousGlobal : pDef;}& \\
|
|
&\textsf{SaveSize : Longint;}&
|
|
Size in bytes of the data definition \\
|
|
&\textsf{DefType : tDefType;}&
|
|
Indicates the definition type (see table \ref{tab5}). \\
|
|
&\textsf{Has{\_}InitTable : Boolean;}& \\
|
|
&\textsf{Has{\_}Rtti : Boolean;}& \\
|
|
&\textsf{Is{\_}Def{\_}Stab{\_}Written : TDefStabStatus}&
|
|
Can be one of the following states : (\textsf{Not{\_}Written,
|
|
written, Being{\_}Written}) which indicates if the debug information
|
|
for this type has been defined or not. \\
|
|
&\textsf{GlobalNb : Longint;}&
|
|
Internal stabs debug information type signature (each type definition has a
|
|
numeric signature). \\
|
|
&\textsf{end;}& \\
|
|
\hline
|
|
\end{tabular*}
|
|
|
|
\subsubsection{file definition (TFileDef)}
|
|
\label{subsubsec:mylabel6}
|
|
|
|
The file definition can occur in only some rare instances, when a
|
|
\textsf{file of }\textsf{\textit{type}} is parsed, a file definition of that
|
|
type will be created. Furthermore, internally, a definition for a
|
|
\textbf{Text} file type and \textbf{untyped} File type are created when the
|
|
system unit is loaded. These types are always defined when compiling any
|
|
unit or program.
|
|
|
|
\begin{tabular*}{6.5in}{|l@{\extracolsep{\fill}}lp{8.5cm}|}
|
|
\hline
|
|
\textsf{TYPE}& & \\
|
|
\xspace pFileDef = & \^{} TFileDef; & \\
|
|
\xspace \textsf{TFileDef} = & \textbf{Object}(TDef) & \\
|
|
&\textsf{FileTyp : TFileTyp;}&
|
|
Indicates what type of file definition it is (\textsf{text},
|
|
\textsf{untyped} or \textsf{typed}). \\
|
|
&\textsf{TypedFileType : TType;}&
|
|
In the case of a typed file definition, definition of the type of
|
|
the file \\
|
|
&\textsf{end;}& \\
|
|
\hline
|
|
\end{tabular*}
|
|
|
|
\subsubsection{formal definition (TFormalDef)}
|
|
\label{subsubsec:formal}
|
|
|
|
\subsubsection{forward definition (TForwardDef)}
|
|
\label{subsubsec:forward}
|
|
|
|
The forward definition is created, when a type is declared before an actual
|
|
definition exists. This is the case, when, for example \textsf{type
|
|
pmyobject = \ tmyobject}, while \textsf{tmyobject} has yet to be defined.
|
|
|
|
\begin{tabular*}{6.5in}{|l@{\extracolsep{\fill}}lp{6.5cm}|}
|
|
\hline
|
|
\textsf{TYPE} & & \\
|
|
\xspace pForwardDef = & \^{} TForwardDef; & \\
|
|
\xspace \textsf{TForwardDef} = & \textbf{Object}(TDef) & \\
|
|
&\textsf{toSymName : String;}&
|
|
The symbol name for this forward declaration (the actual real
|
|
definition does not exist yet) \\
|
|
&\textsf{ForwardPos : TFilePosInfo;}&
|
|
Indicates file position where this forward definition was declared. \\
|
|
&\textsf{end;}& \\
|
|
\hline
|
|
\end{tabular*}
|
|
|
|
\subsubsection{error definition (TErrorDef)}
|
|
\label{subsubsec:mylabel7}
|
|
|
|
This definition is actually an empty definition entry. When the parser
|
|
encounters an error when parsing a definition instead of putting nothing in
|
|
the type for a symbol, it puts this entry. This avoids illegal memory
|
|
accesses later in parsing.
|
|
|
|
\subsubsection{pointer definition (TPointerDef)}
|
|
\label{subsubsec:pointer}
|
|
|
|
The pointer definition is used for distinguishing between different types of
|
|
pointers in the compiler, and are created at each \textsf{\ typename}
|
|
parsing construct found.
|
|
|
|
\begin{tabular*}{6.5in}{|l@{\extracolsep{\fill}}lp{9cm}|}
|
|
\hline
|
|
\textsf{TYPE} & & \\
|
|
\xspace pPointerDef = & \^{} TPointerDef; & \\
|
|
\xspace \textsf{TPointerDef} = & \textbf{Object}(TDef) & \\
|
|
&\textsf{Is{\_}Far : Boolean;}&
|
|
Used to indicate if this is a far pointer or not (this flag is
|
|
cpu-specific) \\
|
|
&\textsf{PointerType : TType;}&
|
|
This indicates to what type definition this pointer points to. \\
|
|
&\textsf{end;}& \\
|
|
\hline
|
|
\end{tabular*}
|
|
|
|
\subsubsection{object definition (TObjectDef)}
|
|
\label{subsubsec:object}
|
|
|
|
The object definition is created each time an object declaration is found in
|
|
the type declaration section.
|
|
|
|
\begin{tabular*}{6.5in}{|l@{\extracolsep{\fill}}lp{5.5cm}|}
|
|
\hline
|
|
\textsf{TYPE}& & \\
|
|
\xspace pObjectDef = & \^{} TObjectDef; & \\
|
|
\xspace \textsf{TObjectDef} = & \textbf{Object}(TDef) & \\
|
|
&\textsf{ChildOf : pObjectDef;}&
|
|
This is a pointer to the parent object definition. It is set to nil,
|
|
if this object definition has no parent. \\
|
|
&\textsf{ObjName : pString;}&
|
|
This is the object name \\
|
|
&\textsf{SymTable : pSymTable;}&
|
|
This is a pointer to the symbol table entries within this object. \\
|
|
&\textsf{PbjectOptions : TObjectOptions;}&
|
|
The options for this object, see the following table for the
|
|
possible options for the object. \\
|
|
&\textsf{VMT{\_}Offset : Longint;}&
|
|
This is the offset from the start of the object image in memory
|
|
where the virtual method table is located. \\
|
|
&\textsf{Writing{\_}Class{\_}Record{\_}Stab : Boolean;}& \\
|
|
&\textsf{end;}& \\
|
|
\hline
|
|
\end{tabular*}
|
|
|
|
|
|
\begin{longtable}{|l|p{10cm}|}
|
|
\hline
|
|
Object Options(TObjectOptions) & Description \\
|
|
\hline
|
|
\endhead
|
|
\hline
|
|
\endfoot
|
|
\textsf{oo{\_}is{\_}class}&
|
|
This is a delphi styled class declaration, and not a Turbo Pascal
|
|
object. \\
|
|
\textsf{oo{\_}is{\_}forward}&
|
|
This flag is set to indicate that the object has been declared in a
|
|
type section, but there is no implementation yet. \\
|
|
\textsf{oo{\_}has{\_}virtual}&
|
|
This object / class contains virtual methods \\
|
|
\textsf{oo{\_}has{\_}private}&
|
|
This object / class contains private fields or methods \\
|
|
\textsf{oo{\_}has{\_}protected}&
|
|
This object / class contains protected fields or methods \\
|
|
\textsf{oo{\_}has{\_}constructor}&
|
|
This object / class has a constructor method \\
|
|
\textsf{oo{\_}has{\_}destructor}&
|
|
This object / class has a destructor method \\
|
|
\textsf{oo{\_}has{\_}vmt}&
|
|
This object / class has a virtual method table \\
|
|
\textsf{oo{\_}has{\_}msgstr}&
|
|
This object / class contains one or more message handlers \\
|
|
\textsf{oo{\_}has{\_}msgint}&
|
|
This object / class contains one or more message handlers \\
|
|
\textsf{oo{\_}has{\_}abstract}&
|
|
This object / class contains one or more abstract methods \\
|
|
\textsf{oo{\_}can{\_}have{\_}published}&
|
|
the class has runtime type information, i.e. you can publish
|
|
properties \\
|
|
\textsf{oo{\_}cpp{\_}class}&
|
|
the object/class uses an C++ compatible class layout \\
|
|
\textsf{oo{\_}interface}&
|
|
this class is a delphi styled interface
|
|
\end{longtable}
|
|
|
|
\subsubsection{class reference definition (TClassRefDef)}
|
|
\label{subsubsec:class}
|
|
|
|
\subsubsection{array definition (TArrayDef)}
|
|
\label{subsubsec:array}
|
|
|
|
This definition is created when an array type declaration is parsed. It
|
|
contains all the information necessary for array type checking and code
|
|
generation.
|
|
|
|
\begin{tabular*}{6.5in}{|l@{\extracolsep{\fill}}lp{8.4cm}|}
|
|
\hline
|
|
\textsf{TYPE}& & \\
|
|
\xspace pArrayDef = & \^{} TArrayDef; & \\
|
|
\xspace \textsf{TArrayDef} = & \textbf{Object}(TDef) & \\
|
|
&\textsf{IsVariant : Boolean;}& \\
|
|
&\textsf{IsConstructor : Boolean;}& \\
|
|
&\textsf{RangeNr: Longint;}&
|
|
Label number associated with the index values when range checking is
|
|
on \\
|
|
&\textsf{LowRange : Longint;}&
|
|
The lower index range of the array definition \\
|
|
&\textsf{HighRange : Longint;}&
|
|
The higher index range of the array definition \\
|
|
&\textsf{ElementType : TType;}&
|
|
The type information for the elements of the array \\
|
|
&\textsf{RangeType : TType;}&
|
|
The type information for the index ranges of the array \\
|
|
&\textsf{IsArrayofConst : Boolean;}& \\
|
|
&\textsf{end;}& \\
|
|
\hline
|
|
\end{tabular*}
|
|
|
|
\subsubsection{record definition (TRecordDef)}
|
|
\label{subsubsec:record}
|
|
|
|
The record definition entry is created each time a record type declaration
|
|
is parsed. It contains the symbol table to the elements in the record.
|
|
|
|
\begin{tabular*}{6.5in}{|l@{\extracolsep{\fill}}lp{8.7cm}|}
|
|
\hline
|
|
\textsf{TYPE} & & \\
|
|
\xspace pRecordDef = & \^{} TRecordDef; & \\
|
|
\xspace \textsf{TRecordDef} = & \textbf{Object}(TDef) & \\
|
|
&\textsf{SymTable : PSymTable;}&
|
|
This is a pointer to the symbol table entries within this record. \\
|
|
&\textsf{end;}& \\
|
|
\hline
|
|
\end{tabular*}
|
|
|
|
\subsubsection{ordinal definition (TOrdDef)}
|
|
\label{subsubsec:ordinal}
|
|
|
|
This type definition is the one used for all ordinal values such as char,
|
|
bytes and other numeric integer type values. Some of the predefined type
|
|
definitions are automatically created and loaded when the compiler starts.
|
|
Others are created at compile time, when declared.
|
|
|
|
\begin{tabular*}{6.5in}{|l@{\extracolsep{\fill}}lp{9cm}|}
|
|
\hline
|
|
\textsf{TYPE} & & \\
|
|
\xspace pOrdDef = & \^{} TOrdDef; & \\
|
|
\xspace \textsf{TOrdDef} = & \textbf{Object}(TDef) & \\
|
|
&\textsf{Low : Longint;}&
|
|
The minimum value of this ordinal type \\
|
|
&\textsf{High : Longint;}&
|
|
The maximum value of this ordinal type \\
|
|
&\textsf{Typ : TBaseType;}&
|
|
The type of ordinal value (cf. table \ref{tbasetype}) \\
|
|
&\textsf{end;}& \\
|
|
\hline
|
|
\end{tabular*}
|
|
|
|
\begin{longtable}{|l|p{10cm}|}
|
|
\caption{Base types}\label{tbasetyp}\\
|
|
\hline
|
|
Base ordinal type (TBaseType) & Description \\
|
|
\hline
|
|
\endfirsthead
|
|
\caption{Base types (continued)}\\
|
|
\hline
|
|
Base ordinal type (TBaseType) & Description \\
|
|
\hline
|
|
\endhead
|
|
\hline
|
|
\endfoot
|
|
\textsf{uauto} & user defined ordinal type definition \\
|
|
\textsf{uvoid} & Represents a void return value or node \\
|
|
\textsf{uchar} & ASCII character (1 byte) \\
|
|
\textsf{u8bit} & unsigned 8-bit value \\
|
|
\textsf{u16bit}& unsigned 16-bit value \\
|
|
\textsf{u32bit}& unsigned 32-bit value \\
|
|
\textsf{s16bit}& signed 16-bit value \\
|
|
\textsf{s32bit}& signed 32-bit value \\
|
|
\textsf{bool8bit}& boolean 8-bit value \\
|
|
\textsf{bool16bit}& boolean 16-bit value \\
|
|
\textsf{bool32bit}& boolean 32-bit value \\
|
|
\textsf{\textit{u64bit}}&
|
|
\textit{unsigned 64-bit value (not fully supported/tested)} \\
|
|
\textsf{s64bit}& signed 64-bit value \\\textsf{\textit{uwidechar}}&
|
|
\textit{Currently not supported and unused} \\
|
|
\end{longtable}
|
|
|
|
\subsubsection{float definition (TFloatDef)}
|
|
\label{subsubsec:float}
|
|
|
|
This type definition is the one used for all floating point values such as
|
|
SINGLE, DOUBLE. Some of the predefined type definitions are automatically
|
|
created and loaded when the compiler starts.
|
|
|
|
\begin{tabular*}{6.5in}{|l@{\extracolsep{\fill}}lp{9cm}|}
|
|
\hline
|
|
\textsf{TYPE} & & \\
|
|
\xspace pFloatDef = & \^{} TFloatDef; & \\
|
|
\xspace \textsf{TFloatDef} = & \textbf{Object}(TDef) & \\
|
|
&\textsf{Typ : TFloatType;}&
|
|
The type of floating point value (cf. table \ref{tfloattype}). \\
|
|
&\textsf{end;}& \\
|
|
\hline
|
|
\end{tabular*}
|
|
|
|
\begin{longtable}{|l|p{10cm}|}
|
|
\caption{Floating point types}\label{tfloattype}\\
|
|
\hline
|
|
Base floating point type (TFloatType) & Description \\
|
|
\hline
|
|
\endfirsthead
|
|
\hline
|
|
Base floating point type (TFloatType) & Description \\
|
|
\hline
|
|
\endhead
|
|
\hline
|
|
\endfoot
|
|
\textsf{s32real}& IEEE Single precision floating point value \\
|
|
\textsf{s64real}& IEEE Double precision floating point value \\
|
|
\textsf{s80real}&
|
|
Extended precision floating point value (cpu-specific,
|
|
usually maps to double) \\
|
|
\textsf{s64comp}& 63-bit signed value, using 1 bit for sign indication \\
|
|
\textsf{\textit{f16bit}}& \textit{Unsupported} \\
|
|
\textsf{\textit{f32bit}}& \textit{Unsupported} \\
|
|
\end{longtable}
|
|
|
|
\subsubsection{abstract procedure definition (tabstractprocdef)}
|
|
\label{subsubsec:abstract}
|
|
|
|
This is the base of all routine type definitions. This object is abstract,
|
|
and is not directly used in a useful way. The derived object of this object
|
|
are used for the actual parsing process.
|
|
|
|
\begin{tabular*}{6.5in}{|l@{\extracolsep{\fill}}lp{5.2cm}|}
|
|
\hline
|
|
\textsf{TYPE}& & \\
|
|
\xspace pAbstractProcDef = & \^{} TAbstractProcDef; & \\
|
|
\xspace \textsf{TAbstractProcDef} = & \textbf{Object}(TDef) & \\
|
|
&\textsf{SymtableLevel : byte;}& \\
|
|
&\textsf{Fpu{\_}Used : Byte;}&
|
|
Number of floating point registers used in this routine \\
|
|
&\textsf{RetType : TType;}&
|
|
Type information for the return value \par (uvoid if it returns nothing) \\
|
|
&\textsf{ProcTypeOption : TProcTypeOption;} &
|
|
Indicates the type of routine it is (cf table \ref{tproctypeoption}). \\
|
|
&\textsf{ProcCallOptions : TProcCallOptions;} &
|
|
Indicates the calling convention of the routine (cf. table \ref{tproccalloptions}). \\
|
|
&\textsf{ProcOptions : TProcOptions;}&
|
|
Indicates general procedure options. \par (cf. table \ref{tprocoptions}). \\
|
|
&\textsf{Para : pLinkedList;}&
|
|
This is a linked list of parameters (pparaitem list) \\
|
|
&\textsf{end;}& \\
|
|
\hline
|
|
\end{tabular*}
|
|
|
|
\begin{longtable}{|l|p{10cm}|}
|
|
\caption{Procedure type options}\label{tproctypeoption}\\
|
|
\hline
|
|
Procedure options \par (TProcTypeOption)& Description \\
|
|
\hline
|
|
\endfirsthead
|
|
\caption{Procedure type options (continued)}\\
|
|
\hline
|
|
Procedure options \par (TProcTypeOption)& Description \\
|
|
\hline
|
|
\endhead
|
|
\hline
|
|
\endfoot
|
|
\textsf{poType{\_}ProgInit}&
|
|
Routine is the program entry point (defined as `\textsf{main}' in
|
|
the compiler). \\
|
|
\textsf{poType{\_}UnitInit}&
|
|
Routine is the unit initialization code \par (defined as
|
|
unitname\textsf{{\_}init} in the compiler \\
|
|
\textsf{poType{\_}UnitFinalize}&
|
|
Routine is the unit exit code \par (defined as
|
|
unitname\textsf{{\_}finalize} in the compiler) \\
|
|
\textsf{poType{\_}Constructor}&
|
|
Routine is an object or class constructor \\
|
|
\textsf{poType{\_}Destructor}&
|
|
Routine is an object or class destructor \\
|
|
\textsf{poType{\_}Operator}&
|
|
Procedure is an operator \\
|
|
\end{longtable}
|
|
|
|
\begin{longtable}{|l|p{10cm}|}
|
|
\caption{Procedure call options}\label{tproccalloptions}\\
|
|
\hline
|
|
call options \par (TProcCallOptions) & Description \\
|
|
\hline
|
|
\endfirsthead
|
|
\caption{Procedure call options (continued)}\\
|
|
\hline
|
|
call options \par (TProcCallOptions) & Description \\
|
|
\hline
|
|
\endhead
|
|
\hline
|
|
\endfoot
|
|
\textsf{pocall{\_}clearstack}&
|
|
The routine caller clears the stack upon return \\
|
|
\textsf{pocall{\_}leftright}&
|
|
Send parameters to routine from left to right \\
|
|
\textsf{pocall{\_}cdecl}&
|
|
Passing parameters is done using the GCC alignment scheme, passing
|
|
parameter values is directly copied into the stack space \\
|
|
\textsf{\textit{pocall{\_}register}}&
|
|
\textit{unused (Send parameters via registers)} \\
|
|
\textsf{pocall{\_}stdcall}&
|
|
Passing parameters is done using GCC alignment scheme, standard GCC registers
|
|
are saved \\
|
|
\textsf{\textit{pocall{\_}safecall}}&
|
|
Standard GCC registers are saved\\
|
|
\textsf{\textit{pocall{\_}palmsssyscall}}&
|
|
This is a special syscall macro for embedded system \\
|
|
\textsf{\textit{pocall{\_}system}}&
|
|
\textit{unused} \\
|
|
\textsf{pocall{\_}inline}&
|
|
Routine is an inline assembler macro (not a true call) \\
|
|
\textsf{pocall{\_}internproc}&
|
|
System unit code generator helper routine \\
|
|
\textsf{pocall{\_}internconst}&
|
|
System unit code generator helper macro routine \\
|
|
\end{longtable}
|
|
|
|
\begin{longtable}{|l|p{10cm}|}
|
|
\caption{Procedure options}\label{tprocoptions}\\
|
|
\hline
|
|
routine options (TProcOptions) & Description \\
|
|
\hline
|
|
\endfirsthead
|
|
\caption{Procedure options (continued)}\\
|
|
\hline
|
|
routine options (TProcOptions) & Description \\
|
|
\hline
|
|
\endhead
|
|
\hline
|
|
\endfoot
|
|
\textsf{po{\_}classmethod} & This is a class method \\
|
|
\textsf{po{\_}virtualmethod }& This is a virtual method \\
|
|
\textsf{po{\_}abstractmethod}& This is an abstract method \\
|
|
\textsf{po{\_}staticmethod} & This is a static method \\
|
|
\textsf{po{\_}overridingmethod}&
|
|
This is an overriden method (with po{\_}virtual flag usually) \\
|
|
\textsf{po{\_}methodpointer}&
|
|
This is a method pointer (not a normal routine pointer) \\
|
|
\textsf{po{\_}containsself}&
|
|
self is passed explicitly as a parameter to the method \\
|
|
\textsf{po{\_}interrupt}&
|
|
This routine is an interrupt handler \\
|
|
\textsf{po{\_}iocheck}&
|
|
IO checking should be done after a call to the procedure \\
|
|
\textsf{po{\_}assembler}&
|
|
The routine is in assembler \\
|
|
\textsf{po{\_}msgstr}&
|
|
method for string message handling \\
|
|
\textsf{po{\_}msgint}&
|
|
method for int message handling \\
|
|
\textsf{po{\_}exports}&
|
|
Routine has export directive \\
|
|
\textsf{po{\_}external}&
|
|
Routine is external (in other object or lib) \\
|
|
\textsf{po{\_}savestdregs}&
|
|
Routine entry should save all registers used by GCC \\
|
|
\textsf{po{\_}saveregisters}&
|
|
Routine entry should save all registers \\
|
|
\textsf{po{\_}overload}&
|
|
Routine is declared as being overloaded \\
|
|
\end{longtable}
|
|
|
|
\subsubsection{procedural variable definition (TProcVarDef)}
|
|
\label{subsubsec:procedural}
|
|
|
|
This definition is created when a procedure variable type is declared. It
|
|
gives information on the type of a procedure, and is used when assigning and
|
|
directly calling a routine through a pointer.
|
|
|
|
\begin{tabular*}{6.5in}{|l@{\extracolsep{\fill}}lp{7.8cm}|}
|
|
\hline
|
|
\textsf{TYPE} & & \\
|
|
\xspace pProcVarDef = & \^{} TProcVarDef; & \\
|
|
\xspace \textsf{TProcVarDef} = & \textbf{Object}(TAbstractProcDef) & \\
|
|
& \textsf{end;}&\\
|
|
\hline
|
|
\end{tabular*}
|
|
|
|
\subsubsection{procedure definition (TProcDef)}
|
|
\label{subsubsec:mylabel8}
|
|
|
|
When a procedure head is parsed, the definition of the routine is created.
|
|
Thereafter, other fields containing information on the definition of the
|
|
routine are populated as required.
|
|
|
|
\begin{tabular*}{6.5in}{|l@{\extracolsep{\fill}}lp{7.8cm}|}
|
|
\hline
|
|
\textsf{TYPE} & & \\
|
|
\xspace pProcDef = & \^{} TProcDef; & \\
|
|
\xspace \textsf{TProcDef} = & \textbf{Object}(TAbstractProcDef) & \\
|
|
&\textsf{ForwardDef : Boolean;}& TRUE if this is a forward definition \\
|
|
&\textsf{InterfaceDef: Boolean;} & \\
|
|
&\textsf{ExtNumber : Longint;} & \\
|
|
&\textsf{MessageInf : TMessageInf;} & \\
|
|
&\textsf{NextOverloaded : pProcDef;} & \\
|
|
&\textsf{FileInfo : TFilePosInfo;} &
|
|
Position in source code for the declaration of this routine. Used
|
|
for error management. \\
|
|
&\textsf{Localst : pSymTable;} & The local variables symbol table \\
|
|
&\textsf{Parast: pSymTable;}& The parameter symbol table \\
|
|
&\textsf{ProcSym : pProcSym;}& Points to owner of this definition \\
|
|
&\textsf{LastRef : pRef;}& \\
|
|
&\textsf{DefRef: pRef;}& \\
|
|
&\textsf{CrossRef : pRef;}& \\
|
|
&\textsf{LastWritten : pRef;}& \\
|
|
&\textsf{RefCount : Longint;}& \\
|
|
&\textsf{{\_}Class : ProbjectDef;}& \\
|
|
&\textsf{Code : Pointer;}&
|
|
The actual code for the routine (only for inlined routines) \\
|
|
&\textsf{UsedRegisters : TRegisterSet;}&
|
|
The set of registers used in this routine \\
|
|
&\textsf{HasForward : Boolean;}& \\
|
|
&\textsf{Count: Boolean;}& \\
|
|
&\textsf{Is{\_}Used : Boolean;}& \\
|
|
&\textsf{end;}& \\
|
|
\hline
|
|
\end{tabular*}
|
|
|
|
\subsubsection{string definition (TStringDef)}
|
|
\label{subsubsec:string}
|
|
|
|
This definition represents all string types as well as derived types. Some
|
|
of the default string type definitions are loaded when the compiler starts
|
|
up. Others are created at compile time as they are declared with a specific
|
|
length type.
|
|
|
|
\begin{tabular*}{6.5in}{|l@{\extracolsep{\fill}}lp{8cm}|}
|
|
\hline
|
|
\textsf{TYPE}& & \\
|
|
\xspace pStringDef = & \^{} TStringDef; & \\
|
|
\xspace \textsf{TStringDef} = & \textbf{Object}(TDef) & \\
|
|
&\textsf{String{\_}Typ : TStringType;}&
|
|
Indicates the string type definition (cf. \ref{tstringtype}) \\
|
|
&\textsf{Len : Longint;}&
|
|
This is the maximum length which can have the string \\
|
|
&\textsf{end;}& \\
|
|
\hline
|
|
\end{tabular*}
|
|
|
|
\begin{longtable}{|l|p{10cm}|}
|
|
\caption{string types}\label{tstringtype}\\
|
|
\hline
|
|
String type \par (TStringType) & Description \\
|
|
\hline
|
|
\endfirsthead
|
|
\caption{string types (continued)}\\
|
|
\hline
|
|
String type \par (TStringType) & Description \\
|
|
\hline
|
|
\endhead
|
|
\hline
|
|
\endfoot
|
|
\textsf{st{\_}default}&
|
|
Depends on current compiler switches, can either be a
|
|
st{\_}ShortString or st{\_}AnsiString \\
|
|
\textsf{st{\_}shortstring}&
|
|
short string (length byte followed by actual ASCII characters (1
|
|
byte/char)) \\
|
|
\textsf{st{\_}longstring}&
|
|
long string (length longint followed by actual ASCII characters (1
|
|
byte/char)) \\
|
|
\textsf{st{\_}ansistring}&
|
|
long string garbage collected (pointer to a length, reference count
|
|
followed by actual ASCII characters (1 byte/char)) \\
|
|
\textsf{\textit{st{\_}widestring}}&
|
|
\textit{long string garbage collected (pointer to a length,
|
|
reference count followed by actual unicode characters (1
|
|
word/char (utf16)))} \\
|
|
\end{longtable}
|
|
|
|
\subsubsection{enumeration definition (TEnumDef)}
|
|
\label{subsubsec:mylabel9}
|
|
|
|
An enumeration definition is created each time an enumeration is declared
|
|
and parsed. Each element in the enumeration will be added to the linked list
|
|
of symbols associated with this enumeration, and this symbol table will then
|
|
be attached to the enumeration definition.
|
|
|
|
\begin{tabular*}{6,5in}{|l@{\extracolsep{\fill}}lp{6,5cm}|}
|
|
\hline
|
|
\textsf{TYPE} & & \\
|
|
\xspace \textsf{pEnumDef} &= \^{} \textbf{TEnumDef};& \\
|
|
\xspace \textsf{TEnumDef} &= \textbf{object}(TDef) & \\
|
|
&\textsf{\textit{Has{\_}Jumps : Boolean;}}&
|
|
\textit{Currently unused} \\
|
|
&\textsf{MinVal : Longint;}&
|
|
Value of the first element in the enumeration \\
|
|
&\textsf{MaxVal : Longint;}&
|
|
Value of the last element in the enumeration \\
|
|
&\textsf{FirstEnum : pEnumSym;}&
|
|
Pointer to a linked list of elements in the enumeration, each with
|
|
its name and value. \\
|
|
&\textsf{BaseDef : pEnumDef;}&
|
|
In the case where the enumeration is a subrange of another enumeration,
|
|
this gives information on the base range of the elements \\
|
|
&\textsf{end;}& \\
|
|
\hline
|
|
\end{tabular*}
|
|
|
|
\subsubsection{set definition (TSetDef)}
|
|
\label{subsubsec:mylabel10}
|
|
|
|
This definition is created when a set type construct is parsed (\textsf{set
|
|
of declaration}).
|
|
|
|
\begin{tabular*}{6.5in}{|l@{\extracolsep{\fill}}lp{6,5cm}|}
|
|
\hline
|
|
\textsf{TYPE} & & \\
|
|
\xspace \textsf{pSetDef} &= \^{} \textbf{TSetDef};& \\
|
|
\xspace \textsf{TSetDef} &= \textbf{object}(TDef) & \\
|
|
&\textsf{SetType : TSetType;}&
|
|
Indicates the storage type of the set (Cf. table \ref{tsettype}). \\
|
|
&\textsf{ElementType : TType;}&
|
|
Points the type definition and symbol table to the elements in the set. \\
|
|
&\textsf{end;}& \\
|
|
\hline
|
|
\end{tabular*}
|
|
|
|
\begin{longtable}{|l|p{10cm}|}
|
|
\caption{set types}\label{tsettype}\\
|
|
\hline
|
|
set type (TSetType) & Description \\
|
|
\hline
|
|
\endfirsthead
|
|
\caption{set types (continued)}\\
|
|
\hline
|
|
set type (TSetType) & Description \\
|
|
\hline
|
|
\endhead
|
|
\hline
|
|
\endfoot
|
|
\textsf{NormSet}&
|
|
Normal set of up to 256 elements (32 byte storage space required) \\
|
|
\textsf{SmallSet}&
|
|
Small set of up to 32 elements (4 byte storage space) \\
|
|
\textsf{\textit{VarSet}}&
|
|
\textit{Variable number of element set (storage size is dependent on number
|
|
of elements) (currently unused and unsupported)} \\
|
|
\end{longtable}
|
|
|
|
\subsection{Definition interface}
|
|
\label{subsec:definition}
|
|
|
|
\subsubsection{routines}
|
|
|
|
\begin{function}{TDef.Size}
|
|
\Declaration
|
|
Function TDef.Size : Longint;
|
|
\Description
|
|
This method returns the true size of the memory space required in bytes for
|
|
this type definition (after alignment considerations).
|
|
\end{function}
|
|
|
|
\begin{function}{TDef.Alignment}
|
|
\Declaration
|
|
Function TDef.Alignment : Longint;
|
|
\Description
|
|
This method returns the alignment of the data for complex types such as
|
|
records and objects, otherwise returns 0 or 1 (no alignment).
|
|
\end{function}
|
|
|
|
\section{The parser}
|
|
\label{sec:mylabel5}
|
|
|
|
The task of the parser is to read the token fed by the scanner, and make
|
|
sure that the pascal syntax is respected. It also populates the symbol
|
|
table, and creates the intermediate nodes (the tree) which will be used by
|
|
the code generator.
|
|
|
|
An overview of the parsing process, as well as its relationship with the
|
|
tree the type checker and the code generator is shown in the following
|
|
diagram:
|
|
|
|
\subsection{Module information}
|
|
\label{subsec:module}
|
|
|
|
Each module being compiled, be it a library , unit or main program has some
|
|
information which is required. This is stored in the tmodule object in
|
|
memory. To avoid recompilation of already compiled module, the dependencies
|
|
of the modules is stored in a PPU file, which makes it easier to determine
|
|
which modules to recompile.
|
|
|
|
\begin{longtable}{|l@{\extracolsep{\fill}}lp{6cm}|}
|
|
\hline
|
|
\endhead
|
|
\hline
|
|
\endfoot
|
|
%\begin{tabular*}
|
|
\textsf{TYPE}& & \\
|
|
\xspace pModule = & \^{} TModule; & \\
|
|
\xspace \textsf{TModule} = & \textbf{Object}(TLinkedList\_Item) & \\
|
|
&\textsf{PPUFile : pPPUFile;}& Pointer to PPU file object (unit file) \\
|
|
&\textsf{Crc : Longint;}& CRC-32 bit of the whole PPU file \\
|
|
&\textsf{Interface{\_}CRC : Longint;}& CRC-32 bit of the interface part of the PPU file \\
|
|
&\textsf{Flags: Longint;}& Unit file flags \\
|
|
&\textsf{Compiled: Boolean;}& TRUE if module is already compiled \\
|
|
&\textsf{Do{\_}Reload : Boolean;} & TRUE if the PPU file must be reloaded \\
|
|
&\textsf{Do{\_}Assemble : Boolean;} & Only assemble, don't recompile unit \\
|
|
&\textsf{Sources{\_}Avail : Boolean;} & TRUE if all sources of module are available \\
|
|
&\textsf{Sources{\_}Checked : Boolean;} & TRUE if the sources has already been checked \\
|
|
&\textsf{Is{\_}Unit: Boolean;} & TRUE if this is a unit (otherwise a library or a main program) \\
|
|
&\textsf{In{\_}Compile: Boolean;} & module is currently being recompiled \\
|
|
&\textsf{In{\_}Second{\_}Compile: Boolean;}& module is being compiled for second time \\
|
|
&\textsf{In{\_}Second{\_}Load: Boolean;} & module is being reloaded a second time \\
|
|
&\textsf{In{\_}Implementation : Boolean;}& currently compiling implementation part (units only) \\
|
|
&\textsf{In{\_}Global : Boolean;} & currently compiling implementation part (units only) \\
|
|
&\textsf{Recompile{\_}Reason : TRecompile{\_}Reason;}& Reason why module should be recompiled \\
|
|
&\textsf{Islibrary : Boolean;}& TRUE if this module is a shared library \\
|
|
&\textsf{Map : pUnitMap;} & Map of all used units for this unit \\
|
|
&\textsf{Unitcount : Word;} & Internal identifier of unit (for GDB support) \\
|
|
&\textsf{Unit{\_}index : Eord;} & \\
|
|
&\textsf{Globalsymtable : Pointer;} & Symbol table for this module of externally visible symbols \\
|
|
&\textsf{Localsymtable : Pointer;} & Symbol table for this module of locally visible symbols \\
|
|
&\textsf{Scanner : Pointer;} & Scanner object pointer \\
|
|
&\textsf{Loaded{\_}From : pModule;} & Module which referred to this module \\
|
|
&\textsf{Uses{\_}Imports : Boolean;} & TRUE if this module imports symbols from a shared library \\
|
|
&\textsf{Imports : pLinkedList} & Linked list of imported symbols \\
|
|
&\textsf{{\_}Exports : pLinkedList;} & Linked list of exported symbols (libraries only) \\
|
|
&\textsf{SourceFiles : pFileManager;} & List of all source files for this module \\
|
|
&\textsf{ResourceFiles : TStringContainer;} & List of all resource files for this module \\
|
|
&\textsf{Used{\_}Units : TLinkedList; } & Information on units used by this module (pused{\_}unit) \\
|
|
&\textsf{Dependent{\_}Units : TLinkedList;}& \\
|
|
&\textsf{LocalUnitSearchPath,}& Search path for obtaining module source code \\
|
|
&\textsf{LocalObjectSearchPath,}& \\
|
|
&\textsf{LocalIncludeSearchPath,}& Search path for includes for this module \\
|
|
&\textsf{LocalLibrarySearchPath:TSearchPathList;}& \\
|
|
&\textsf{Path : pString;}& Path were module is located or created \\
|
|
&\textsf{OutputPath : pString;}& Path where object files (unit), executable (program) or shared library (library) is created \\
|
|
&\textsf{ModuleName : pString;}& Name of the module in uppercase \\
|
|
&\textsf{ObjFileName : pString;}& Full name of object file or executable file \\
|
|
&\textsf{AsmFileName : pString;}& Full name of the assembler file \\
|
|
&\textsf{PPUFileName : pString;}& Full name of the PPU file \\
|
|
&\textsf{StaticLibFilename : pString;}& Full name of the static library name (used when smart linking is used) \\
|
|
&\textsf{SharedLibFilename : pString;}& Filename of the output shared library (in the case of a library) \\
|
|
&\textsf{ExeFileName : pString;}& Filename of the output executable (in the case of a program) \\
|
|
&\textsf{AsmPrefix : pString;}& Filename prefix of output assembler files when using smartlinking \\
|
|
&\textsf{MainSource : pString;}& Name of the main source file \\
|
|
&\textsf{end;}& \\
|
|
%\end{tabular*}
|
|
\end{longtable}
|
|
|
|
\subsection{Parse types}
|
|
\label{subsec:parse}
|
|
|
|
\subsubsection{Entry}
|
|
\label{subsubsec:entry}
|
|
|
|
\begin{figure}
|
|
\begin{center}
|
|
\ifpdf
|
|
\includegraphics{arch8.pdf}
|
|
%\epsfig{file=arch8.png,width=\textwidth}
|
|
\else
|
|
\includegraphics[width=4.99in,height=8.36in]{arch8.eps}
|
|
\fi
|
|
\label{fig8}
|
|
\caption{Parser - Scanner flow}
|
|
\end{center}
|
|
\end{figure}
|
|
|
|
\subsubsection{program or library parsing }
|
|
|
|
\subsubsection{unit parsing }
|
|
\label{subsubsec:mylabel12}
|
|
|
|
\subsubsection{routine parsing }
|
|
\label{subsubsec:routine}
|
|
|
|
\subsubsection{label declarations }
|
|
\label{subsubsec:mylabel13}
|
|
|
|
\subsubsection{constant declarations}
|
|
\label{subsubsec:mylabel14}
|
|
|
|
\subsubsection{type declarations}
|
|
\label{subsubsec:mylabel15}
|
|
|
|
\subsubsection{variable declarations}
|
|
\label{subsubsec:mylabel16}
|
|
|
|
\subsubsection{thread variable declarations}
|
|
\label{subsubsec:thread}
|
|
|
|
\subsubsection{resource string declarations}
|
|
\label{subsubsec:resource}
|
|
|
|
\subsubsection{exports declaration}
|
|
\label{subsubsec:exports}
|
|
|
|
\subsubsection{expression parsing }
|
|
\label{subsubsec:expression}
|
|
|
|
\subsubsection{typed constant declarations}
|
|
\label{subsubsec:mylabel17}
|
|
|
|
\subsection{Parser interface}
|
|
\label{subsec:parser}
|
|
|
|
\subsubsection{variables}
|
|
|
|
|
|
\begin{variable}{AktProcSym}
|
|
\Declaration
|
|
Var AktProcSym : pProcSym;
|
|
\Description
|
|
Pointer to the symbol information for the routine currently being parsed.
|
|
\end{variable}
|
|
|
|
\begin{variable}{LexLevel}
|
|
\Declaration
|
|
var LexLevel : longint;
|
|
\Description
|
|
Level of code currently being parsed and compiled \par 0 = for main program
|
|
\par 1 = for subroutine \par 2 = for local / nested subroutines.
|
|
\end{variable}
|
|
|
|
\begin{variablel}{Current{\_}Module}{currentmodule}
|
|
\Declaration
|
|
Var Current{\_}Module : pModule;
|
|
\Description
|
|
Information on the current module (program, library or unit) being compiled.
|
|
\end{variablel}
|
|
|
|
The following variables are default type definitions which are created each
|
|
time compilation begins (default system-unit definitions), these definitions
|
|
should always be valid:
|
|
|
|
\begin{variable}{VoidDef}
|
|
\Declaration
|
|
Var VoidDef : pOrdDef;
|
|
\Description
|
|
Pointer to nothing type
|
|
\Notes
|
|
This is loaded as a default supported type for the compiler
|
|
\end{variable}
|
|
|
|
\begin{variable}{cCharDef}
|
|
\Declaration
|
|
Var cCharDef : pOrdDef;
|
|
\Description
|
|
Type definition for a character (\textsf{char})
|
|
\Notes
|
|
This is loaded as a default supported type for the compiler
|
|
\end{variable}
|
|
|
|
\begin{variable}{cWideCharDef}
|
|
\Declaration
|
|
Var cWideCharDef : pOrdDef;
|
|
\Description
|
|
Type definition for a unicode character (\textsf{widechar})
|
|
\Notes
|
|
This is loaded as a default supported type for the compiler
|
|
\end{variable}
|
|
|
|
\begin{variable}{BoolDef}
|
|
\Declaration
|
|
Var BoolDef : pOrdDef;
|
|
\Description
|
|
Type definition for a boolean value (\textsf{boolean})
|
|
\Notes
|
|
This is loaded as a default supported type for the compiler
|
|
\end{variable}
|
|
|
|
\begin{variable}{u8BitDef}
|
|
\Declaration
|
|
Var u8BitDef : pOrdDef;
|
|
\Description
|
|
Type definition for an 8-nit unsigned value (\textsf{byte})
|
|
\Notes
|
|
This is loaded as a default supported type for the compiler
|
|
\end{variable}
|
|
|
|
\begin{variable}{u16BitDef}
|
|
\Declaration
|
|
Var u16BitDef : pOrdDef;
|
|
\Description
|
|
Type definition for an unsigned 16-bit value (\textsf{word})
|
|
\Notes
|
|
This is loaded as a default supported type for the compiler
|
|
\end{variable}
|
|
|
|
\begin{variable}{u32BitDef}
|
|
\Declaration
|
|
Var u32BitDef : pOrdDef;
|
|
\Description
|
|
Type definition for an unsigned 32-bit value (\textsf{cardinal})
|
|
\Notes
|
|
This is loaded as a default supported type for the compiler
|
|
\end{variable}
|
|
|
|
\begin{variable}{s32BitDef}
|
|
\Declaration
|
|
Var s32BitDef : pOrdDef;
|
|
\Description
|
|
Type definition for a signed 32-bit value (\textsf{longint})
|
|
\Notes
|
|
This is loaded as a default supported type for the compiler
|
|
\end{variable}
|
|
|
|
\begin{variable}{cu64BitDef}
|
|
\Declaration
|
|
Var cu64BitDef : pOrdDef;
|
|
\Description
|
|
Type definition for an unsigned 64-bit value (\textsf{qword})
|
|
\Notes
|
|
This is loaded as a default supported type for the compiler
|
|
\end{variable}
|
|
|
|
\begin{variable}{cs64BitDef}
|
|
\Declaration
|
|
Var cs64BitDef : pOrdDef;
|
|
\Description
|
|
Type definition for a signed 64-bit value (\textsf{int64})
|
|
\Notes
|
|
This is loaded as a default supported type for the compiler
|
|
\end{variable}
|
|
|
|
The following variables are default type definitions which are created each
|
|
time compilation begins (default system-unit definitions), these definitions
|
|
should always be valid:
|
|
|
|
\begin{variable}{s64FloatDef}
|
|
\Declaration
|
|
Var s64FloatDef : pFloatDef;
|
|
\Description
|
|
Type definition for a 64-bit IEEE floating point type (\textsf{double})
|
|
\Notes
|
|
This is loaded as a default supported type for the compiler. This might not
|
|
actually really point to the double type if the cpu does not support it.
|
|
\end{variable}
|
|
|
|
\begin{variable}{s32FloatDef}
|
|
\Declaration
|
|
Var s32FloatDef : pFloatDef;
|
|
\Description
|
|
Type definition for a 32-bit IEEE floating point type (\textsf{single})
|
|
\Notes
|
|
This is loaded as a default supported type for the compiler. This might not
|
|
actually really point to the single type if the cpu does not support it.
|
|
\end{variable}
|
|
|
|
\begin{variable}{s80FloatDef}
|
|
\Declaration
|
|
Var s80FloatDef : pFloatDef;
|
|
\Description
|
|
Type definition for an extended floating point type (\textsf{extended})
|
|
\Notes
|
|
This is loaded as a default supported type for the compiler. This
|
|
might not actually really point to the extended type if the cpu does not
|
|
support it.
|
|
\end{variable}
|
|
|
|
\begin{variable}{s32FixedDef}
|
|
\Declaration
|
|
Var s32FixedDef : pFloatDef;
|
|
\Description
|
|
Type definition for a fixed point 32-bit value (\textsf{fixed})
|
|
\Notes
|
|
This is loaded as a default supported type for the compiler. This is
|
|
not supported officially in FPC 1.0
|
|
\end{variable}
|
|
|
|
The following variables are default type definitions which are created each
|
|
time compilation begins (default system-unit definitions), these definitions
|
|
should always be valid:
|
|
|
|
\begin{variable}{cShortStringDef}
|
|
\Declaration
|
|
Var cShortStringDef : pStringDef;
|
|
\Description
|
|
Type definition for a short string type (\textsf{shortstring})
|
|
\Notes
|
|
This is loaded as a default supported type for the compiler.
|
|
\end{variable}
|
|
|
|
\begin{variable}{cLongStringDef}
|
|
\Declaration
|
|
Var cLongStringDef : pStringDef;
|
|
\Description
|
|
Type definition for a long string type (\textsf{\textit{longstring}})
|
|
\Notes
|
|
This is loaded as a default supported type for the compiler.
|
|
\end{variable}
|
|
|
|
\begin{variable}{cAnsiStringDef}
|
|
\Declaration
|
|
Var cAnsiStringDef : pStringDef;
|
|
\Description
|
|
Type definition for an ansistring type (\textsf{ansistring})
|
|
\Notes
|
|
This is loaded as a default supported type for the compiler.
|
|
\end{variable}
|
|
|
|
\begin{variable}{cWideStringDef}
|
|
\Declaration
|
|
Var cWideStringDef : pStringDef;
|
|
\Description
|
|
Type definition for an wide string type (\textsf{\textit{widestring}})
|
|
\Notes
|
|
This is loaded as a default supported type for the compiler.
|
|
\end{variable}
|
|
|
|
\begin{variable}{OpenShortStringDef}
|
|
\Declaration
|
|
Var OpenShortStringDef : pStringDef;
|
|
\Description
|
|
Type definition for an open string type (\textsf{openstring})
|
|
\Notes
|
|
This is loaded as a default supported type for the compiler.
|
|
\end{variable}
|
|
|
|
\begin{variable}{OpenCharArrayDef}
|
|
\Declaration
|
|
Var OpenCharArrayDef : pArrayDef;
|
|
\Description
|
|
Type definition for an open char array type(\textsf{openchararray})
|
|
\Notes
|
|
This is loaded as a default supported type for the compiler.
|
|
\end{variable}
|
|
|
|
The following variables are default type definitions which are created each
|
|
time compilation begins (default system-unit definitions), these definitions
|
|
should always be valid:
|
|
|
|
\begin{variable}{VoidPointerDef}
|
|
\Declaration
|
|
Var VoidPointerDef : pPointerDef;
|
|
\Description
|
|
Type definition for a pointer which can point to anything (\textsf{pointer})
|
|
\Notes
|
|
This is loaded as a default supported type for the compiler
|
|
\end{variable}
|
|
|
|
\begin{variable}{CharPointerDef}
|
|
\Declaration
|
|
Var CharPointerDef : pPointerDef;
|
|
\Description
|
|
Type definition for a pointer which can point to characters (\textsf{pchar})
|
|
\Notes
|
|
This is loaded as a default supported type for the compiler
|
|
\end{variable}
|
|
|
|
\begin{variable}{VoidFarPointerDef}
|
|
\Declaration
|
|
Var VoidFarPointerDef : pPointerDef;
|
|
\Description
|
|
Type definition for a pointer which can point to anything
|
|
(intra-segment) (\textsf{far pointer})
|
|
\Notes
|
|
This is loaded as a default supported type for the compiler
|
|
\end{variable}
|
|
|
|
\begin{variable}{cFormalDef}
|
|
\Declaration
|
|
Var cFormalDef : pFormalDef;
|
|
\Notes
|
|
This is loaded as a default supported type for the compiler
|
|
\end{variable}
|
|
|
|
\begin{variable}{cfFileDef}
|
|
\Declaration
|
|
Var cfFileDef : pFileDef;
|
|
\Description This is the default file type (\textsf{file})
|
|
\Notes This is loaded as a default supported type for the compiler
|
|
\end{variable}
|
|
|
|
\section{The inline assembler parser}
|
|
\label{sec:mylabel6}
|
|
|
|
To be written.
|
|
|
|
\section{The code generator}
|
|
\label{sec:mylabel7}
|
|
|
|
\subsection{Introduction}
|
|
\label{subsec:introductioneratorer}
|
|
|
|
The code generator is responsible for creating the assembler output in form
|
|
of a linked list, taking as input the node created in the parser and the
|
|
1$^{st}$ pass. Picture \seefig{fig9} shows an overview of the code generator
|
|
architecture:
|
|
|
|
\begin{figure}
|
|
\begin{center}
|
|
\ifpdf
|
|
\includegraphics{arch9.pdf}
|
|
%\epsfig{file=arch9.png,width=\textwidth}
|
|
\else
|
|
\includegraphics[width=5.68in,height=1.76in]{arch9.eps}
|
|
\fi
|
|
\label{fig:fig9}
|
|
\caption{Code generator architecture}
|
|
\end{center}
|
|
\end{figure}
|
|
|
|
The code generation is only done when a procedure body is parsed; the
|
|
interaction, between the 1$^{st}$ pass (type checking phase), the code
|
|
generation and the parsing process is show in the following diagram:
|
|
|
|
\begin{figure}
|
|
\ifpdf
|
|
\includegraphics{arch10.pdf}
|
|
%\epsfig{file=arch10.png,width=\textwidth}
|
|
\else
|
|
\includegraphics[width=6.95in,height=4.90in]{arch10.eps}
|
|
\fi
|
|
\label{fig:fig10}
|
|
\caption{Interaction between codegeneration and the parsing process}
|
|
\end{figure}
|
|
|
|
The \textsf{secondpass()} is actually a simple dispatcher. Each possible
|
|
tree type node (Cf. Tree types) is associated with
|
|
a second pass routine which is called using a dispatch table.
|
|
|
|
\subsection{Locations (cpubase.pas)}
|
|
\label{subsec:locations}
|
|
|
|
The code generator uses the tree location component to indicate the location
|
|
where the current node operands are located. This is then used by the code
|
|
generator to generate the appropriate instruction, all depending on the
|
|
location of the operand. The possible operand locations:
|
|
|
|
\begin{longtable}{|l|p{10cm}|}
|
|
\hline
|
|
Location define & Description \\
|
|
\hline
|
|
\endhead
|
|
\hline
|
|
\endfoot
|
|
\textsf{LOC{\_}INVALID}&
|
|
Invalid location (should never occur) \\
|
|
\textsf{LOC{\_}FPU}&
|
|
Floating point registers \\
|
|
\textsf{LOC{\_}REGISTER}&
|
|
Integer registers \\
|
|
\textsf{LOC{\_}MEM}&
|
|
Memory Location \\
|
|
\textsf{LOC{\_}REFERENCE}&
|
|
Constant node with constant value \\
|
|
\textsf{LOC{\_}JUMP}&
|
|
Label operand \\
|
|
\textsf{LOC{\_}FLAGS}&
|
|
Flags operand \\
|
|
\textsf{LOC{\_}CREGISTER}&
|
|
Constant integer register (when operand is in this
|
|
location, it should be considered as read-only) \\
|
|
\end{longtable}
|
|
|
|
Depending on the location type, a variable structure is defined indicating
|
|
more information on the operand. This is used by the code generator to
|
|
generate the exact instructions.
|
|
|
|
\subsubsection{LOC{\_}INVALID}
|
|
\label{subsubsec:mylabel18}
|
|
|
|
This location does not contain any related information, when this location
|
|
occurs, it indicates that the operand location was not initially allocated
|
|
correctly. This indicates a problem in the compiler.
|
|
|
|
\subsubsection{LOC{\_}FPU}
|
|
\label{subsubsec:mylabel19}
|
|
|
|
This indicates a location in the coprocessor; this is platform dependant.
|
|
|
|
\paragraph{Stack based FPU}
|
|
|
|
Only one CPU uses a stack based FPU architecture, this is the intel 80x86
|
|
family of processors. When the operand is on the top of the stack, the
|
|
operand is of type LOC{\_}FPU.
|
|
|
|
\paragraph{Register based FPU}
|
|
|
|
When the floating point co-processor is register based, the following
|
|
field(s) are defined in the structure to indicate the current location of
|
|
the operand:
|
|
|
|
\begin{longtable}{|l|p{7cm}|}
|
|
\hline
|
|
Field & Description \\
|
|
\hline
|
|
\endhead
|
|
\hline
|
|
\endfoot
|
|
\textsf{FpuRegister : TRegister;}&
|
|
Indicates in what register the operand is located (a general purpose
|
|
register in emulation mode, and a floating point register when floating
|
|
point hardware is present) \\
|
|
\textsf{FpuRegisterHigh, } \par
|
|
\textsf{FpuRegisterLow : TRegister;}&
|
|
Indicates in what registers the operand are located (for emulation
|
|
support - these are general purpose registers)
|
|
\end{longtable}
|
|
|
|
\subsubsection{LOC{\_}REGISTER}
|
|
\label{subsubsec:mylabel20}
|
|
|
|
This fields indicates that the operand is located in a CPU register. It is
|
|
possible to allocate more then one register, if trying to access 64-bit
|
|
values on 32-bit wide register machines.
|
|
|
|
\begin{longtable}{|l|p{10cm}|}
|
|
\hline
|
|
Field & Description \\
|
|
\hline
|
|
\endhead
|
|
\hline
|
|
\endfoot
|
|
\textsf{Register : TRegister}&
|
|
Indicates in what register the operand is located. \\
|
|
\textsf{RegisterHigh : TRegister;}&
|
|
High 32-bit of 64-bit virtual register (on 32-bit machines) \\
|
|
\textsf{RegisterLow : TRegister;}&
|
|
Low 32-bit of 64-bit virtual register (on 32-bit machines)
|
|
\end{longtable}
|
|
|
|
\subsubsection{LOC{\_}MEM, LOC{\_}REFERENCE}
|
|
\label{subsubsec:mylabel21}
|
|
|
|
This either indicates an operand in memory, or a constant integer numeric
|
|
value. The fields for this type of operand is as follows:
|
|
|
|
\begin{longtable}{|l|p{10cm}|}
|
|
\hline
|
|
Field & Description \\
|
|
\hline
|
|
\endhead
|
|
\hline
|
|
\endfoot
|
|
\textsf{Reference : TReference;}&
|
|
Information on the location in memory
|
|
\end{longtable}
|
|
|
|
References are the basic building blocks of the code generator, every load
|
|
and store in memory is done via a reference. A reference type can either
|
|
point to a symbolic name, an assembler expression (base register + index
|
|
register + offset)*scale factor, as well as simply giving information on a
|
|
numeric value.
|
|
|
|
The treference consists of the following:
|
|
|
|
\begin{tabular*}{6.5in}{|l@{\extracolsep{\fill}}lp{6,5cm}|}
|
|
\hline
|
|
\textsf{TYPE} & & \\
|
|
\xspace \textsf{pReference} &= \^{} \textbf{TReference};& \\
|
|
\xspace \textsf{TReference} &= \textbf{packed Record} & \\
|
|
&\textsf{Is{\_}Immediate : Boolean;}&
|
|
Indicates that this location points to a memory location, but to a
|
|
constant value (TRUE), which is located in the offset field. \\
|
|
&\textsf{Segment : TRegister;}& (cpu-specific) \\
|
|
&\textsf{Base : TRegister;}&
|
|
Base address register for assembler expression \\
|
|
&\textsf{Index : TRegister;}&
|
|
Index register for assembler expression \\
|
|
&\textsf{ScaleFactor : Byte;}&
|
|
Multiplication factor for assembler expression (this field is
|
|
cpu-specific) \\
|
|
&\textsf{Offset : Longint;}&
|
|
Either an offset from base assembler address expression to add (if
|
|
Is{\_}Constant = FALSE) otherwise the numeric value of the operand \\
|
|
&\textsf{Symbol : pAsmSymbol;}&
|
|
Pointer to the symbol name string of the reference in case where it is
|
|
a symbolic reference \\
|
|
&\textsf{OffsetFixup : Longint;}& \\
|
|
&\textsf{Options : TRefOptions;}& \\
|
|
&\textsf{END;}& \\
|
|
\hline
|
|
\end{tabular*}
|
|
|
|
\subsubsection{LOC{\_}JUMP}
|
|
\label{subsubsec:mylabel22}
|
|
|
|
There are no fields associated with this location, it simply indicates that
|
|
it is a boolean comparison which must be done to verify the succeeding
|
|
operations. (i.e the processor zero flag is valid and gives information on
|
|
the result of the last operation).
|
|
|
|
\subsubsection{LOC{\_}FLAGS}
|
|
\label{subsubsec:mylabel23}
|
|
|
|
The operand is in the flags register. From this operand, the conditional
|
|
jumps can be done. This is processor dependant, but normally the flags for
|
|
all different comparisons should be present.
|
|
|
|
\begin{longtable}{|l|p{10cm}|}
|
|
\hline
|
|
Field & Description \\
|
|
\hline
|
|
\endhead
|
|
\hline
|
|
\endfoot
|
|
\textsf{ResFlags : TResFlags;}&
|
|
This indicates the flag which must be verified for the actual jump
|
|
operation. \textsf{tresflags }is an enumeration of all possible
|
|
conditional flags which can be set by the processor. \\
|
|
\end{longtable}
|
|
|
|
\subsubsection{LOC{\_}CREGISTER}
|
|
\label{subsubsec:mylabel24}
|
|
|
|
This is a read-only register allocated somewhere else in the code generator.
|
|
It is used mainly for optimization purposes. It has the same fields as
|
|
LOC{\_}REGISTER, except that the registers associated with this location can
|
|
only be read from, and should never be modified directly.
|
|
|
|
\begin{longtable}{|l|p{10cm}|}
|
|
\hline
|
|
Field & Description \\
|
|
\hline
|
|
\endhead
|
|
\hline
|
|
\endfoot
|
|
\textsf{Register : TRegister}&
|
|
Indicates in what register the operand is located. \\
|
|
\textsf{RegisterHigh : TRegister;}&
|
|
High 32-bit of 64-bit virtual register (on 32-bit machines) \\
|
|
\textsf{RegisterLow : TRegister;}&
|
|
Low 32-bit of 64-bit virtual register (on 32-bit machines) \\
|
|
\end{longtable}
|
|
|
|
\subsubsection{LOCATION PUBLIC INTERFACE}
|
|
\label{subsubsec:location}
|
|
|
|
\begin{procedurel}{Del{\_}Location}{dellocation}
|
|
\Declaration
|
|
procedur Del{\_}Location(const L : TLocation);
|
|
\Description
|
|
If the location points to a LOC{\_}REGISTER or LOC{\_}CREGISTER, it frees up
|
|
the allocated register(s) associated with this location. If the location
|
|
points to LOC{\_}REFERENCE or LOC{\_}MEM, it frees up the the allocated base
|
|
and index registers associated with this node.
|
|
\end{procedurel}
|
|
|
|
\begin{procedurel}{Clear{\_}Location}{clearlocation}
|
|
\Declaration
|
|
procedure Clear{\_}location(var Loc : TLocation);
|
|
\Description
|
|
Sets the location to point to a LOC{\_}INVALID type.
|
|
\end{procedurel}
|
|
|
|
\begin{procedurel}{Set{\_}Location}{setlocation}
|
|
\Declaration
|
|
procedure Set{\_}Location(var Destloc,Sourceloc : TLocation);
|
|
\Description
|
|
The destination location now points to the destination location (now copy is
|
|
made, a simple pointer assignment)
|
|
\end{procedurel}
|
|
|
|
\begin{procedurel}{Swap{\_}Location}{swaplocation}
|
|
\Declaration
|
|
Procedure Swap{\_}Location(var Destloc,Sourceloc : TLocation);
|
|
\Description
|
|
Swap both location pointers.
|
|
\end{procedurel}
|
|
|
|
\subsection{Registers (cpubase.pas)}
|
|
\label{subsec:registers}
|
|
|
|
The code generator defines several types of registers which are categorized
|
|
by classes. All (except for the scratch register class) of these register
|
|
classes are allocated / freed on the fly, when the code is generated in the
|
|
code generator: The registers are defined in a special enumeration called
|
|
tregister. This enumeration contains all possible register defines for the
|
|
target architecture, and a possible definition could be as follows :
|
|
|
|
\begin{verbatim}
|
|
tregister = ( { general purpose registers }
|
|
R_NO,R_D0,R_D1,R_D2,R_D3,R_D4,R_D5,R_D6,R_D7,
|
|
{ address registers }
|
|
R_A0,R_A1,R_A2,R_A3,R_A4,R_A5,R_A6,R_SP,
|
|
{ PUSH/PULL- quick and dirty hack }
|
|
R_SPPUSH,R_SPPULL,
|
|
{ misc. and floating point registers }
|
|
R_CCR,R_FP0,R_FP1,R_FP2,R_FP3,R_FP4,R_FP5,R_FP6,
|
|
R_FP7,R_FPCR,R_SR,R_SSP,R_DFC,R_SFC,R_VBR,R_FPSR,
|
|
{ other - not used }
|
|
R_DEFAULT_SEG
|
|
);
|
|
|
|
\end{verbatim}
|
|
|
|
\subsubsection{integer registers}
|
|
\label{subsubsec:integer}
|
|
|
|
\textsf{intregs: array[1..maxintregs] of tregister;}
|
|
|
|
General purpose registers which can contain any data, usually integer
|
|
values. These can also be used, when no floating point coprocessor is
|
|
present, to hold values for floating point operations.
|
|
|
|
\subsubsection{address registers}
|
|
\label{subsubsec:address}
|
|
|
|
\textsf{addrregs: array[1..maxaddrregs] of tregister;}
|
|
|
|
Registers which are used to construct assembler address expressions, usually
|
|
the address registers are used as the base registers in these assembler
|
|
expressions.
|
|
|
|
\subsubsection{fpu registers}
|
|
\label{subsubsec:mylabel25}
|
|
|
|
\textsf{FpuRegs: array[1..MaxFpuRegs] of TRegister;}
|
|
|
|
Hardware floating point registers. These registers must at least be able to
|
|
load and store IEEE DOUBLE floating point values, otherwise they cannot be
|
|
considered as FPU registers. Not available on systems with no floating point
|
|
coprocessor.
|
|
|
|
\subsubsection{scratch registers}
|
|
\label{subsubsec:scratch}
|
|
|
|
\textsf{Scratch{\_}Regs: array[1..MaxScratchRegs] of TRegister;}
|
|
|
|
These registers are used as scratch, and can be used in assembler statement
|
|
in the pascal code, without being saved. They will always be valid across
|
|
routine calls. These registers are sometimes temporarily allocated inside
|
|
code generator nodes, and then immediately freed (always inside the same
|
|
routine).
|
|
|
|
\subsection{Special registers (cpubase.pas)}
|
|
\label{subsec:special}
|
|
|
|
The code generator has special uses for certain types of registers. These
|
|
special registers are of course CPU dependant, but as an indication, the
|
|
following sections explains the uses of these special registers and their
|
|
defines.
|
|
|
|
\subsubsection{Stack{\_}Pointer}
|
|
\label{subsubsec:stack}
|
|
|
|
\textsf{Const Stack{\_}Pointer = R{\_}A7}
|
|
|
|
This represents the stack pointer, an address register pointing to the
|
|
allocated stack area.
|
|
|
|
\subsubsection{Frame{\_}Pointer}
|
|
\label{subsubsec:frame}
|
|
|
|
\textsf{Const Frame{\_}Pointer = R{\_}A6}
|
|
|
|
This represents the frame register which is used to access values in the
|
|
stack. This is usually also an address register.
|
|
|
|
\subsubsection{Self{\_}Pointer}
|
|
\label{subsubsec:mylabel26}
|
|
|
|
\textsf{Const Self{\_}Pointer = R{\_}A5}
|
|
|
|
This represents the self register, which represents a pointer to the current
|
|
instance of a class or object.
|
|
|
|
\subsubsection{accumulator}
|
|
\label{subsubsec:accumulatorents}
|
|
|
|
\textsf{Const Accumulator = R{\_}D0}
|
|
|
|
The accumulator is used (except in the i386) as a scratch register, and also
|
|
for return value in functions (in the case where they are 32-bit or less).
|
|
In the case it is a 64-bit value (and the target processor only supports
|
|
32-bit registers) , the result of the routine is stored in the accumulator
|
|
for the low 32-bit value, and in the scratch register
|
|
(\textsf{scratch{\_}register}) for the high 32-bit value.
|
|
|
|
\subsubsection{scratch register}
|
|
\label{subsubsec:mylabel27}
|
|
|
|
\textsf{const scratch{\_}reg = R{\_}D1}
|
|
|
|
This register is used in special circumstances by the code generator. It is
|
|
simply a define to one of the registers in the \textsf{scratch{\_}regs
|
|
}array.
|
|
|
|
\subsection{Instructions}
|
|
\label{subsec:instructionsr}
|
|
|
|
\subsection{Reference subsystem}
|
|
\label{subsec:reference}
|
|
|
|
\subsubsection{Architecture}
|
|
\label{subsubsec:architecturebsysteme}
|
|
|
|
As described before in the locations section, one of the possible locations
|
|
for an operand is a memory location, which is described in a special
|
|
structure \textsf{treference} (described earlier). This subsection describes
|
|
the interface available by the code generator for allocation and freeing
|
|
reference locations.
|
|
|
|
\subsubsection{Code generator interface}
|
|
\label{subsubsec:mylabel28}
|
|
|
|
%\lstinline!Function NewReference(Const R : TReference) : pReference;!
|
|
|
|
\begin{procedure}{DisposeReference}
|
|
\Declaration
|
|
Procedure DisposeReference(Var R : pReference);
|
|
\Description
|
|
Disposes of the reference \textsf{R} and sets r to \textsf{NIL}
|
|
\Notes
|
|
Does not verify if \textsf{R} is assigned first.
|
|
\end{procedure}
|
|
|
|
\begin{function}{NewReference}
|
|
\Declaration
|
|
Function NewReference(Const R : TReference) : pReference;
|
|
\Description
|
|
Allocates in the heap a copy of the reference \textsf{r} and returns that
|
|
allocated pointer.
|
|
\end{function}
|
|
|
|
\begin{functionl}{Del{\_}Reference}{delreference}
|
|
\Declaration
|
|
Procedure Del{\_}Reference(Const Ref : tReference);
|
|
\Description
|
|
Free up all address registers allocated in this reference for the index and
|
|
base (if required).
|
|
\Notes
|
|
Does not free the reference symbol if it exists.
|
|
\end{functionl}
|
|
|
|
\begin{functionl}{New{\_}Reference}{resetreference}
|
|
\Declaration
|
|
Function New{\_}Reference(Base : TRegister;Offset : Longint) : PReference;
|
|
\Description
|
|
Allocates a reference pointer, clears all the fields to zero, and sets the
|
|
offset to the offset field and the base to the base fields of the newly
|
|
allocated reference. Returns this newly allocated reference.
|
|
\end{functionl}
|
|
|
|
\begin{procedurel}{Reset{\_}Reference}{resetreference}
|
|
\Declaration
|
|
Procedure Reset{\_}Reference(Var Ref : TReference);
|
|
\Description
|
|
Clears all fields of the reference.
|
|
\end{procedurel}
|
|
|
|
\subsection{The register allocator subsystem}
|
|
\label{subsec:mylabel7}
|
|
|
|
\subsubsection{Architecture}
|
|
\label{subsubsec:architecture}
|
|
|
|
This system allocates and deallocates registers, from a pool of free
|
|
registers. Each time the code generator requires a register for generating
|
|
assembler instructions, it either calls the register allocator subsystem to
|
|
get a free register or directly uses the scratch registers (which are never
|
|
allocated in a pool except in the optimization phases of the compiler).
|
|
|
|
The code generator when no longer referencing the register should deallocate
|
|
it so it can be used once again.
|
|
|
|
\subsubsection{Code generator interface (tgen.pas)}
|
|
\label{subsubsec:mylabel29}
|
|
|
|
The following interface routines are used by the code generator to allocate
|
|
and deallocate registers from the different register pools available to code
|
|
generator.
|
|
|
|
\begin{function}{GetRegister32}
|
|
\Declaration
|
|
Function GetRegister32 : TRegister;
|
|
\Description
|
|
Allocates and returns a general purpose (integer) register which can be used
|
|
in the code generator. The register, when no longer used should be
|
|
deallocated with ungetregister32() or ungetregister()
|
|
\Notes
|
|
On non 32-bit machines, this routine should return the normal register for
|
|
this machine (eg : 64-bit machines will alloate and return a 64-bit
|
|
register).
|
|
\end{function}
|
|
|
|
\begin{procedure}{GetRegisterPair}
|
|
\Declaration
|
|
Procedure GetRegisterPair(Var Low, High : TRegister);
|
|
\Description
|
|
Returns a register pair to be used by the code generator when accessing
|
|
64-bit values on 32-bit wide register machines.
|
|
\Notes
|
|
On machines which support 64-bit registers naturally, this routine should
|
|
never be used, it is intended for 32-bit machines only.par Some machines
|
|
support 64-bit integer operations using register 32-bit pairs in hardware,
|
|
but the allocated registers must be specific, this routine is here to
|
|
support these architectures.
|
|
\end{procedure}
|
|
|
|
\begin{procedure}{UngetRegister32}
|
|
\Declaration
|
|
Procedure UnGetRegister32(R : TRegister);
|
|
\Description
|
|
Deallocates a general purpose register which was previously allocated with
|
|
\seef{GetRegister32}().
|
|
\end{procedure}
|
|
|
|
\begin{function}{GetFloatRegister}
|
|
\Declaration
|
|
Function GetFloatRegister : TRegister;
|
|
\Description
|
|
Allocates and returns a floating point register which can be used in the
|
|
code generator. The register, when no longer used should be deallocated with
|
|
ungetregister(). The register returned is a true floating point register (if
|
|
supported).
|
|
\Notes
|
|
This routine should only be used when floating point hardware is present in
|
|
the system. For emulation of floating point, the general purpose register
|
|
allocator / deallocator routines should be used instead.
|
|
\end{function}
|
|
|
|
\begin{function}{IsFloatsRegister}
|
|
\Declaration
|
|
Function IsFloatsRegister(R : TRegister): Boolean;
|
|
\Description
|
|
Returns TRUE if the register r is actually a floating point register,
|
|
otherwise returns FALSE. This is used when the location is LOC{\_}FPU on
|
|
machines which do not support true floating point registers.
|
|
\end{function}
|
|
|
|
\begin{function}{GetAdressReg}
|
|
\Declaration
|
|
Function GetAddressReg : TRegister;
|
|
\Description
|
|
Allocates and returns an address register which can be used for address
|
|
related opcodes in the code generator. The register, when no longer used
|
|
should be deallocated with ungetregister()
|
|
\Notes
|
|
If there is no distinction between address registers, and general purpose
|
|
register in the architecture, this routine may simply call and return the
|
|
getregister32() result.
|
|
\end{function}
|
|
|
|
\begin{function}{IsAddressRegister}
|
|
\Declaration
|
|
Function IsAddressRegister(r : TRegister): Boolean;
|
|
\Description
|
|
Returns TRUE if the register r is actually an address register, otherwise
|
|
returns FALSE.
|
|
\Notes
|
|
If there is no distinction between address registers, and general purpose
|
|
register in the architecture, this routine may simply verify if this is a
|
|
general purpose register and return TRUE in that case.
|
|
\end{function}
|
|
|
|
\begin{procedure}{UngetRegister}
|
|
\Declaration
|
|
Procedure UngetRegister(r : TRegister);
|
|
\Description
|
|
Deallocates any register which was previously allocated with any of the
|
|
allocation register routines.
|
|
\end{procedure}
|
|
|
|
\begin{function}{SaveUsedRegisters}
|
|
\Declaration
|
|
Procedure SaveUsedRegisters(Var Saved : TSaved; ToSave: TRegisterset);
|
|
\Description
|
|
Saves in a temporary location all specified registers. On stack based
|
|
machines the registers are saved on the stack, otherwise they are saved in a
|
|
temporary memory location. The registers which were saved are stored in the
|
|
\textsf{saved} variable. The constant \textsf{ALL{\_}REGISTERS} passed to
|
|
the \textsf{tosave} parameter indicates to save all used registers.
|
|
\end{function}
|
|
|
|
\begin{function}{RestoreUsedRegisters}
|
|
\Declaration
|
|
procedure restoreusedregisters(Saved : TSaved);
|
|
\Description
|
|
Restores all saved registers from the stack (or a temporary memory
|
|
location). Free any temporary memory space allocated, if necessary.
|
|
\end{function}
|
|
|
|
\begin{function}{GetExplicitRegister32}
|
|
\Declaration
|
|
Function GetExplicitRegister32(R : TRegister): TRegister;
|
|
\Description
|
|
This routine allocates specifically the specified register \textsf{r} and
|
|
returns that register. The register to allocate can only be one of the
|
|
scratch registers.
|
|
\Notes
|
|
This routine is used for debugging purposes only. It should be used in
|
|
conjunctions with UnGetRegister32() to explicitly allocate and deallocate a
|
|
scratch register.
|
|
\end{function}
|
|
|
|
\subsection{Temporary memory allocator subsystem}
|
|
\label{subsec:temporary}
|
|
|
|
\subsubsection{Architecture}
|
|
\label{subsubsec:architecturemory}
|
|
|
|
Sometimes it is necessary to reserve temporary memory locations on the stack
|
|
to store intermediate results of statements. This is done by the temporary
|
|
management module.
|
|
|
|
Since entry and exit code for routines are added after the code for the
|
|
statements in the routine have been generated, temporary memory allocation
|
|
can be used `on the fly' in the case where temporary memory values are
|
|
required in the code generation phase of the routines being compiled. After
|
|
usage, the temporary memory space should be freed, so it can be reused if
|
|
necessary.
|
|
|
|
The temporary memory allocation is a linked list of entries containing
|
|
information where to access the data via a negative offset from the
|
|
Frame{\_}Pointer register. The linked list is only valid when compiling and
|
|
generating the code for the procedure bodies; it is reset and cleared each
|
|
time a new routine is compiled. There are currently three different types of
|
|
memory spaces in use : volatile (\textsf{tt{\_}Normal}) which can be
|
|
allocated and freed any time in the procedure body, ansistring, which is
|
|
currently the same as volatile, except it only stored references to
|
|
ansistring's, and persistent (\textsf{tt{\_}Persistent}) which are memory
|
|
blocks which are reserved throughout the routine duration; persistent
|
|
allocated space can never be reused in a procedure body, unless explicitly
|
|
released.
|
|
|
|
The temporary memory allocator guarantees to allocate memory space on the
|
|
stack at least on a 16-bit alignment boundary. The exact alignment depends
|
|
on the operating system required alignment.
|
|
|
|
\subsubsection{Temporary memory allocator interface (temp{\_}gen.pas)}
|
|
\label{subsubsec:temporary}
|
|
|
|
\begin{function}{GetTempOfSize}
|
|
\Declaration
|
|
Function GetTempOfSize(Size : Longint) : Longint;
|
|
\Description
|
|
Allocates at least \textsf{size} bytes of temporary volatile memory on the
|
|
stack. The return value is the negative offset from the frame pointer where
|
|
this memory was allocated.
|
|
\Notes
|
|
The return offset always has the required alignment for the target system,
|
|
and can be used as an offset from the Frame{\_}Pointer to access the
|
|
temporary space.
|
|
\end{function}
|
|
|
|
\begin{procedure}{GetTempOfSizeReference}
|
|
\Declaration
|
|
Procedure GetTempOfSizeReference(L : Longint;Var Ref : TReference);
|
|
\Description
|
|
This routine is used to assign and allocate extra temporary volatile memory
|
|
space on the stack from a reference. \textsf{l} is the size of the
|
|
persistent memory space to allocate, while \textsf{Ref} is a reference entry
|
|
which will be set to the correct offset from the Frame{\_}Pointer register
|
|
base. The \textsf{Offset} and \textsf{Base} fields of \textsf{Ref} will be
|
|
set appropriately in this routine, and can be considered valid on exit of
|
|
this routine.
|
|
\Notes
|
|
The return offset always has the required alignment for the target system.
|
|
\end{procedure}
|
|
|
|
\begin{procedure}{UnGetIfTemp}
|
|
\Declaration
|
|
Procedure UnGetIfTemp(Const Ref : TReference);
|
|
\Description
|
|
Frees a reference \textsf{Ref} which was allocated in the volatile temporary
|
|
memory space.
|
|
\Notes
|
|
The freed space can later be reallocated and reused.
|
|
\end{procedure}
|
|
|
|
\begin{procedure}{GetTempAnsiStringReference}
|
|
\Declaration
|
|
Procedure GetTempAnsiStringReference(Var Ref : TReference);
|
|
\Description
|
|
Allocates \textsf{Ref} on the volatile memory space and sets the
|
|
\textsf{Base} to the Frame{\_}Pointer register and \textsf{Offset} to the
|
|
correct offset to access this allocated memory space.
|
|
\Notes
|
|
The return offset always has the required alignment for the target system.
|
|
\end{procedure}
|
|
|
|
\begin{function}{GetTempOfSizePersistant}
|
|
\Declaration
|
|
Function GetTempOfSizePersistant(Size : Longint) :Longint;
|
|
\Description
|
|
Allocates persistent storage space on the stack. return value is the
|
|
negative offset from the frame pointer where this memory was allocated.
|
|
\Notes
|
|
The return offset always has the required alignment for the target system.
|
|
\end{function}
|
|
|
|
\begin{function}{UngetPersistantTemp}
|
|
\Declaration
|
|
Procedure UnGetPersistantTemp(Pos : Longint);
|
|
\Description
|
|
Frees space allocated as being persistent. This persistent space can then
|
|
later be used and reallocated. \textsf{Pos} is the offset relative to the
|
|
Frame{\_}Pointer of the persistent memory block to free.
|
|
\end{function}
|
|
|
|
\begin{procedure}{ResetTempGen}
|
|
\Declaration
|
|
Procedure ResetTempGen;
|
|
\Description
|
|
Clear and free the complete linked list of temporary memory locations. The
|
|
list is set to nil.
|
|
\Notes
|
|
This routine is called each time a routine has been fully compiled.
|
|
\end{procedure}
|
|
|
|
\begin{procedure}{SetFirstTemp}
|
|
\Declaration
|
|
Procedure SetFirstTemp(L : Longint);
|
|
\Description
|
|
This routine sets the start of the temporary local area (this value is a
|
|
negative offset from the Frame{\_}Pointer, which is located after the local
|
|
variables). Usually the start offset is the size of the local variables,
|
|
modified by any alignment requirements.
|
|
\Notes
|
|
This routine is called once before compiling a routine, it indicates the
|
|
start address where to allocate temporary memory space.
|
|
\end{procedure}
|
|
|
|
\begin{function}{GetFirstTempSize}
|
|
\Declaration
|
|
Function GetFirstTempSize : Longint;
|
|
\Description
|
|
Returns the total number of bytes allocated for local and temporary
|
|
allocated stack space. This value is aligned according to the target system
|
|
alignment requirements, even if the actual size is not aligned.
|
|
\Notes
|
|
This routine is used by the code generator to get the total number of bytes
|
|
to allocate locally (i.e the stackframe size) in the entry and exit code of
|
|
the routine being compiled.
|
|
\end{function}
|
|
|
|
\begin{function}{NormalTempToPersistant}
|
|
\Declaration
|
|
Procedure NormalTempToPersistant(Pos : Longint);
|
|
\Description
|
|
Searches the list of currently temporary memory allocated for the one with
|
|
the offset \textsf{Pos}, and if found converts this temporary memory space
|
|
as persistent (can never be freed and reallocated).
|
|
\end{function}
|
|
|
|
\begin{function}{PersistantTempToNormal}
|
|
\Declaration
|
|
Procedure PersistantTempToNormal(Pos : Longint);
|
|
\Description
|
|
Searches the list of currently allocated persistent memory space as the
|
|
specified address \textsf{Pos}, and if found converts this memory space to
|
|
normal volatile memory space which can be freed and reused.
|
|
\end{function}
|
|
|
|
\begin{function}{IsTemp}
|
|
\Declaration
|
|
Function IsTemp(const Ref : TReference): Boolean;
|
|
\Description
|
|
Returns TRUE if the reference \textsf{ref }is allocated in temporary
|
|
volatile memory space, otherwise returns FALSE.
|
|
\end{function}
|
|
|
|
\subsection{Assembler generation}
|
|
\label{subsec:mylabel8}
|
|
|
|
\subsubsection{Architecture}
|
|
\label{subsubsec:architectureneration}
|
|
|
|
The different architectures on the market today only support certain types
|
|
of operands as assembler instructions. The typical format of an assembler
|
|
instruction has the following format:
|
|
|
|
\begin{center}
|
|
\textsf{OPCODE [opr1,opr2[,opr3][\ldots ]]}
|
|
\end{center}
|
|
|
|
The opcode field is a mnemonic for a specific assembler instruction, such as
|
|
\textsf{MOV} on the 80x86, or \textsf{ADDX} on the 680x0. Furthermore, in
|
|
most cases, this mnemonic is followed by zero to three operands which can be
|
|
of the following types:
|
|
|
|
Possible Operand Types
|
|
\begin{itemize}
|
|
\item a LABEL or SYMBOL (to code or data)
|
|
\item a REGISTER (one of the predefined hardware registers)
|
|
\item a CONSTANT (an immediate value)
|
|
\item a MEMORY EXPRESSION (indirect addressing through offsets, symbols, and
|
|
address registers)
|
|
\end{itemize}
|
|
|
|
In the compiler, this concept of different operand types has been directly
|
|
defined for easier generation of assembler output. All opcodes generated by
|
|
the code generator are stored in a linked list of opcodes which contain
|
|
information on the operand types, The opcode and the size (which is
|
|
important to determine on what size the operand must be operated on) are
|
|
stored in that linked list.
|
|
|
|
The possible operand sizes for the code generator are as follows (a
|
|
enumeration of type \textsf{topsize}):
|
|
|
|
\begin{longtable}{|l|p{10cm}|}
|
|
\hline
|
|
Operand size enum (\textsf{topsize}) & Description \\
|
|
\hline
|
|
\endhead
|
|
\hline
|
|
\endfoot
|
|
\textsf{S{\_}B}& 8-bit integer operand \\
|
|
\textsf{S{\_}W}& 16-bit integer operand \\
|
|
\textsf{S{\_}L}& 32-bit integer operand \\
|
|
\textsf{S{\_}Q}& 64-bit integer operand \\
|
|
\textsf{S{\_}FS}& 32-bit IEEE 754 Single floating point operand \\
|
|
\textsf{S{\_}FL}& 64-bit IEEE 754 Double floating point operand \\
|
|
\textsf{S{\_}FX}& Extended point floating point operand (cpu-specific) \\
|
|
\textsf{S{\_}CPU}& A constant equal to one of the previous sizes (natural size of operands) \\
|
|
\end{longtable}
|
|
|
|
The possible operand types for the code generator are as follows (other
|
|
might be added as required by the target architecture):
|
|
|
|
\begin{longtable}{|l|p{10cm}|}
|
|
\hline
|
|
Operand type (\textsf{TOpType}) & Description \\
|
|
\hline
|
|
\endhead
|
|
\hline
|
|
\endfoot
|
|
\textsf{top{\_}None}& No operand \\
|
|
\textsf{top{\_}Reg}& Operand is a register \\
|
|
\textsf{top{\_}Ref}& Operand is a reference (\textsf{treference} type) \\
|
|
\textsf{top{\_}Symbol}& Operand is a symbol (reference or label) \\
|
|
\end{longtable}
|
|
|
|
The architecture specific opcodes are done in an enumeration of type
|
|
\textsf{tasmop}. An example of an enumeration for some of the opcodes of the
|
|
PowerPC 32-bit architecture is as follows:
|
|
|
|
\begin{lstlisting}{}
|
|
Type TAsmOp = (a_Add, a_Add_, a_Addo, a_Addo_, a_Addc, a_Addc_, a_Addco,
|
|
a_Addco_,a_Adde, a_Adde_, a_Addeo, a_Addeo_, a_Addi,
|
|
a_Addic, a_Addic_, a_Addis \ldots
|
|
\end{lstlisting}
|
|
|
|
\subsubsection{Generic instruction generation interface}
|
|
\label{subsubsec:generic}
|
|
|
|
To independently generate code for different architectures, wrappers for the
|
|
most used instructions in the code generator have been created which are
|
|
totally independent of the target system.
|
|
|
|
\begin{procedurel}{Emit\_Load\_Loc\_Reg}{EmitLoadLocReg}
|
|
\Declaration
|
|
Procedure Emit{\_}Load{\_}Loc{\_}Reg(Src:TLocation;Srcdef:pDef; DstDef : pDef; Dst : TRegister);
|
|
\Description
|
|
Loads an operand from the source location in \textsf{Src} into the
|
|
destination register \textsf{Dst} taking into account the source definition
|
|
and destination definition (sign-extension, zero extension depending on the
|
|
sign and size of the operands).
|
|
\Notes
|
|
The source location can only be in LOC{\_}REGISTER, LOC{\_}CREGISTER,
|
|
LOC{\_}MEM or LOC{\_}REFERENCE otherwise an internal error will occur. This
|
|
generic opcode does not work on floating point values, only integer values.
|
|
\end{procedurel}
|
|
|
|
\begin{procedure}{FloatLoad}
|
|
\Declaration
|
|
Procedure FloatLoad(t : tFloatType;Ref : TReference; Var Location:TLocation);
|
|
\Description
|
|
This routine is to be called each time a location must be set to LOC{\_}FPU
|
|
and a value loaded into a FPU register
|
|
\Notes
|
|
The routine sets up the register field of LOC{\_}FPU correctly. The source
|
|
location can only be : LOC{\_}MEM or LOC{\_}REFERENCE. The destination
|
|
location is set to LOC{\_}FPU.
|
|
\end{procedure}
|
|
|
|
\begin{function}{FloatStore}
|
|
\Declaration
|
|
Procedure FloatStore(t : TFloatType;Var Location:TLocation; Ref:TReference);
|
|
\Description
|
|
This routine is to be called when a value located in LOC{\_}FPU must be
|
|
stored into memory.
|
|
\Notes
|
|
The destination must be LOC{\_}REFERENCE or LOC{\_}MEM. This routine frees
|
|
the LOC{\_}FPU location \\
|
|
\end{function}
|
|
|
|
\begin{functionl}{emit{\_}mov{\_}ref{\_}reg64}{emitmovrefreg64}
|
|
\Declaration
|
|
Procedure Emit{\_}Mov{\_}Ref{\_}Reg64(r : TReference;rl,rh : TRegister);
|
|
\Description
|
|
This routine moves a 64-bit integer value stored in memory location
|
|
\textsf{r} into the low 32-bit register \textsf{rl} and the high 32-bit
|
|
register \textsf{rh}.
|
|
\end{functionl}
|
|
|
|
\begin{functionl}{Emit{\_}Lea{\_}Loc{\_}Ref}{emitlealocref}
|
|
\Declaration
|
|
Procedure Emit{\_}Lea{\_}Loc{\_}Ref(Const t:TLocation;Const Ref:TReference; FreeTemp:Boolean);
|
|
\Description
|
|
Loads the address of the location \textsf{loc }and stores the result into
|
|
\textsf{Ref}
|
|
\Notes
|
|
The store address \textsf{ref }should point to an allocated area at least
|
|
\textsf{sizeof(pointer)} bytes, otherwise unexpected code might be
|
|
generated.
|
|
\end{functionl}
|
|
|
|
\begin{functionl}{Emit{\_}Lea{\_}Loc{\_}Reg}{Emitlealocreg}
|
|
\Declaration
|
|
Procedure Emit{\_}Lea{\_}Loc{\_}Reg(const t:TLocation;Reg:TRegister;Freetemp:Boolean);
|
|
\Description
|
|
Loads the address of the location \textsf{loc }and stores the result into
|
|
ther target register \textsf{reg}
|
|
\end{functionl}
|
|
|
|
\begin{procedure}{GetLabel}
|
|
\Declaration
|
|
Procedure GetLabel(Var l : pAsmLabel);
|
|
\Description
|
|
Returns a label associated with code. This label can then be used with the
|
|
instructions output by the code generator using the instruction generation
|
|
templates which require labels as parameters. The label itself can be
|
|
emitted to the assembler source by calling the \seep{EmitLab} routine.
|
|
\end{procedure}
|
|
|
|
\begin{procedure}{EmitLab}
|
|
\Declaration
|
|
Procedure EmitLab(Var l : pAsmLabel);
|
|
\Description
|
|
Output the label \textsf{l} to the assembler instruction stream.
|
|
\Notes
|
|
The label should have been previously allocated with \textsf{GetLabel}, The
|
|
output label will be of the form label: in the instruction stream. This
|
|
label is usually a jump target.
|
|
\end{procedure}
|
|
|
|
\begin{procedure}{EmitLabeled}
|
|
\Declaration
|
|
Procedure EmitLabeled(op : TAsmOp; Var l : pAsmLabel);
|
|
\Description
|
|
Output the opcode \textsf{op} with the operand \textsf{l}
|
|
which is a previously allocated label.
|
|
\Notes
|
|
This routine is used to output jump instructions such as : jmp label, jne
|
|
label. The label should have been previously allocated with a call to
|
|
\textsf{GetLabel}
|
|
\end{procedure}
|
|
|
|
\begin{function}{EmitCall}
|
|
\Declaration
|
|
Procedure EmitCall(Const Routine:String);
|
|
\Description
|
|
Emit a call instruction to an internal routine
|
|
\Parameters
|
|
Routine = The name of the routine to call.
|
|
\end{function}
|
|
|
|
\begin{procedure}{ConcatCopy}
|
|
\Declaration
|
|
procedure ConcatCopy(Source,Dest : TReference;Size : Longint;DelSource : Boolean; loadref:boolean);
|
|
\Description
|
|
This routine copies \textsf{Size} data from the \textsf{Source} reference to
|
|
the destination \textsf{Dest} reference. \\
|
|
\Parameters
|
|
Source = Source reference to copy from \par
|
|
Dest = Depending on the value of loadref, either indicates a location where a pointer to the data to copy is
|
|
Stored, or this reference directly the address to copy to. \par
|
|
Size = Number of bytes to copy \par
|
|
DelSource = TRUE if the source reference should be freed in this routine \par
|
|
LoadRef = TRUE if the source reference contains a pointer to the address we
|
|
wish to copy to, otherwise the reference itself is the destination
|
|
location to copy to.
|
|
\end{procedure}
|
|
|
|
\begin{procedurel}{Emit{\_}Flag2Reg}{emitflag2reg}
|
|
\Declaration
|
|
Procedure Emit{\_}Flag2Reg(Flag:TResflags;HRegister:TRegister);
|
|
\Description
|
|
Sets the value of the register to 1 if the condition code flag in
|
|
\textsf{Flag} is TRUE, otherwise sets the register to zero.
|
|
\Notes
|
|
The operand should be zero extended to the natural register size for the
|
|
target architecture.
|
|
\end{procedurel}
|
|
|
|
%\subsubsection{Instruction generation interface}
|
|
%\label{subsubsec:instruction}
|
|
|
|
\section{The assembler output}
|
|
\label{sec:mylabel8}
|
|
|
|
All code is generated via special linked lists of instructions. The base of
|
|
this is a special object, an abstract assembler which implements all
|
|
directives which are usually implemented in the different assemblers
|
|
available on the market . When the code generator and parser generates the
|
|
final output, it is generated as a linked list for each of the sections
|
|
available for the output assembler. Each entry in the linked list is either
|
|
an instruction, or one of the abstract directives for the assembler.
|
|
|
|
\begin{figure}
|
|
\ifpdf
|
|
\includegraphics{arch11.pdf}
|
|
%\epsfig{file=arch11.png,width=\textwidth}
|
|
\else
|
|
\includegraphics[width=5.67in,height=2.17in]{arch11.eps}
|
|
\fi
|
|
\label{fig:fig11}
|
|
\caption{Assembler generation organisation}
|
|
\end{figure}
|
|
|
|
% FIXME
|
|
% If I don't do this, the assembler node table has a problem.
|
|
% untested for more recent versions (with less floats due to longtable)
|
|
\clearpage
|
|
|
|
The different possible sections which are output are as follows:
|
|
|
|
\begin{center}
|
|
Section lists for the assembler output
|
|
\end{center}
|
|
|
|
\begin{longtable}{|l|p{10cm}|}
|
|
\hline
|
|
Internal section name & Description \\
|
|
\hline
|
|
\endhead
|
|
\hline
|
|
\endfoot
|
|
ExparAsmList & temporary list \\
|
|
DataSegment & initialized variables \\
|
|
CodeSegment & instructions and general code directives \\
|
|
DebugList & debugging information \\
|
|
WithDebugList & ??????????????? \\
|
|
Consts & read only constants \\
|
|
ImportSection & imported symbols \\
|
|
ExportSection & exported symbols \\
|
|
ResourceSection & Resource data \\
|
|
RttiList & runtime type information data \\
|
|
ResourceStringList& resource string data
|
|
\end{longtable}
|
|
|
|
The following directives for the abstract assembler currently exist:
|
|
|
|
Abstract assembler node types:
|
|
|
|
\begin{longtable}{|l|p{10cm}|}
|
|
\hline
|
|
Node entry Type & Description \\
|
|
\hline
|
|
\endhead
|
|
\hline
|
|
\endfoot
|
|
Ait{\_}None&
|
|
This entry in the linked list is invalid (this should
|
|
normally never occur) \\
|
|
Ait{\_}Direct&
|
|
Direct output to the resulting assembler file (as string) \\
|
|
Ait{\_}String&
|
|
Shortstring with a predefined length \\
|
|
Ait{\_}Label&
|
|
Numbered assembler label used for jumps \\
|
|
Ait{\_}Comment&
|
|
Assembler output comment \\
|
|
Ait{\_}Instruction&
|
|
Processor specific instruction \\
|
|
Ait{\_}DataBlock&
|
|
Unitialized data block (BSS) \\
|
|
Ait{\_}Symbol&
|
|
Entry represents a symbol (exported, imported, or other public
|
|
symbol type) \newline
|
|
Possible symbol types : NONE, EXTERNAL, LOCAL and GLOBAL \newline
|
|
eg : A symbol followed by an Ait{\_}const{\_}32bit \\
|
|
Ait{\_}Symbol{\_}End &
|
|
Symbol end (for example the end of a routine) \\
|
|
Ait{\_}Const{\_}32bit&
|
|
Initialized 32-bit constant (without a symbol) \\
|
|
Ait{\_}Const{\_}16bit&
|
|
Initialized 16-bit constant (without a symbol) \\
|
|
Ait{\_}Const{\_}8bit&
|
|
Initialized 8-bit constant (without a symbol) \\
|
|
Ait{\_}Const{\_}symbol & ???????????? \\
|
|
Ait{\_}Real{\_}80bit (x86)&
|
|
Initialized 80-bit floating point constant (without symbol) \\
|
|
Ait{\_}Real{\_}64bit&
|
|
Initialized Double IEEE floating point constant (without symbol) \\
|
|
Ait{\_}Real{\_}32bit&
|
|
Initialized Single IEEE floating point constant (without symbol) \\
|
|
Ait{\_}Comp{\_}64bit (x86)&
|
|
Initialized 64-bit floating point integer (without symbol) \\
|
|
Ait{\_}Align&
|
|
Alignment directive \\
|
|
Ait{\_}Section&
|
|
Section directive \\
|
|
Ait{\_}const{\_}rva (Win32)& \\
|
|
Ait{\_}Stabn &
|
|
stabs debugging information (numerical value) \\
|
|
Ait{\_}Stabs &
|
|
stabs debugging information (string) \\
|
|
Ait{\_}Force{\_}Line&
|
|
stabs debugging line information \\
|
|
Ait{\_}Stab{\_}Function{\_}Name&
|
|
stabs debug information routine name \\
|
|
Ait{\_}Cut&
|
|
Cut in the assembler files (used for smartlinking) \\
|
|
Ait{\_}RegAlloc&
|
|
Debugging information for the register allocator \\
|
|
Ait{\_}Marker & ???????????? \\
|
|
Ait{\_}Frame (Alpha)& \\
|
|
Ait{\_}Ent (Alpha)& \\
|
|
Ait{\_}Labeled{\_}Instruction (m68k)& \\
|
|
Ait{\_}Dummy & Unused - should never appear
|
|
\end{longtable}
|
|
|
|
\section{The Runtime library}
|
|
\label{sec:mylabel9}
|
|
|
|
This section describes the requirements of the internal routines which MUST
|
|
be implemented for all relevant platforms to port the system unit to a new
|
|
architecture or operating system.
|
|
|
|
The following defines are available when compiling the runtime library:
|
|
|
|
\begin{longtable}{|l|p{10cm}|}
|
|
\hline
|
|
Define Name & Description \\
|
|
\hline
|
|
\endhead
|
|
\hline
|
|
\endfoot
|
|
i386 & Intel 80x86 family of processors (and compatibles) \\
|
|
m68k & Motorola 680x0 family of processors (excludes coldfire) \\
|
|
alpha & Alpha 21x64 family of processors \\
|
|
powerpc & Motorola / IBM 32-bit family of processors \\
|
|
sparc & SPARC v7 compatible processors
|
|
\end{longtable}
|
|
|
|
\begin{longtable}{|l|p{10cm}|}
|
|
\hline
|
|
Define name & Description \\
|
|
\hline
|
|
\endhead
|
|
\hline
|
|
\endfoot
|
|
RTLLITE&
|
|
Removes some extraneous routine from compilation (system unit
|
|
is minimal). Mvdv: Afaik the status of this is unknown \\
|
|
DEFAULT{\_}EXTENDED&
|
|
|
|
The runtime library routines dealing with fixed point values have the
|
|
\textsf{extended} type instead of the \textsf{real} type. \\
|
|
SUPPORT{\_}SINGLE&
|
|
The compiler supports the \textsf{single} floating point precision type \\
|
|
SUPPORT{\_}DOUBLE&
|
|
The compiler supports the \textsf{double }floating point precision type \\
|
|
SUPPORT{\_}EXTENDED&
|
|
The compiler supports the \textsf{extended }floating point
|
|
precision type \\
|
|
SUPPORT{\_}FIXED&
|
|
The compiler supports the \textsf{fixed} floating point precision type \\
|
|
HASWIDECHAR&
|
|
The compiler supported the \textsf{widechar} character type \\
|
|
INT64&
|
|
The compiler supports 64-bit integer operations \\
|
|
MAC{\_}LINEBREAK&
|
|
Text I/O uses Mac styled line break ({\#}13) instead of {\#}13{\#}10 \\
|
|
SHORT{\_}LINEBREAK&
|
|
Text I/O uses UNIX styled line breaks ({\#}10) instead of {\#}13{\#}10 \\
|
|
EOF{\_}CTRLZ&
|
|
A Ctrl-Z character in a text file is an EOF marker (UNIX mostly) \\
|
|
\end{longtable}
|
|
|
|
The following defines are used for fexpand definitions:
|
|
|
|
% FIXME Seem to miss a *nix symlink expand behaviour define.
|
|
\begin{longtable}{|l|p{10cm}|}
|
|
\hline
|
|
Define name & Description \\
|
|
\hline
|
|
\endhead
|
|
\hline
|
|
\endfoot
|
|
FPC{\_}EXPAND{\_}DRIVES&
|
|
Different devices with different names (as drives) are
|
|
supported \par (like DOS, Netware, etc\ldots ) \\
|
|
FPC{\_}EXPAND{\_}UNC&
|
|
Universal Naming convention support i.e \par $\backslash \backslash
|
|
< $server-name>$\backslash $<share-name>$\backslash $<directory/filename> \\
|
|
UNIX&
|
|
Unix style file names \\
|
|
FPC{\_}EXPAND{\_}VOLUMES&
|
|
Volume names (i.e. drive descriptions longer than 1
|
|
character) are supported. \\
|
|
FPC{\_}EXPAND{\_}TILDE&
|
|
Replaces the $\sim $ character, with the `HOME' directory
|
|
(mostly on UNIX platforms) \\
|
|
\end{longtable}
|
|
|
|
The following defines some debugging routines for the runtime library:
|
|
|
|
\begin{longtable}{|l|p{10cm}|}
|
|
\hline
|
|
Define Name & Description \\
|
|
\hline
|
|
\endhead
|
|
\hline
|
|
\endfoot
|
|
DEFINE NAME & Description \\
|
|
ANSISTRDEBUG & Add Debug routines for ansi string support \\
|
|
EXCDEBUG & Add Debug routines for exception debugging \\
|
|
LOGGING & Log the operations to a file \\
|
|
\end{longtable}
|
|
|
|
\subsection{Operating system hooks}
|
|
\label{subsec:operating}
|
|
|
|
This section contains information on all routines which should be hooked and
|
|
implemented to be able to compile and use the system unit for a new
|
|
operating system:
|
|
|
|
\begin{functionl}{System{\_}Exit}{systemexit}
|
|
\Declaration
|
|
Procedure System{\_}Exit;
|
|
\Description
|
|
This routine is internally called by the system unit when the application
|
|
exits.
|
|
\Notes
|
|
This routine should actually exit the application. It should exit with the
|
|
error code specified in the \textsf{ExitCode} variable.
|
|
\Algorithm
|
|
Exit application with ExitCode value.
|
|
\end{functionl}
|
|
|
|
\begin{function}{ParamCount}
|
|
\Declaration
|
|
Function ParamCount : Longint;
|
|
\Description
|
|
This routine is described in the Free Pascal reference manual.
|
|
\end{function}
|
|
|
|
\begin{procedure}{Randomize}
|
|
\Declaration
|
|
Procedure Randomize;
|
|
\Description
|
|
This routine should initialize the built-in random generator with a random value.
|
|
\Notes
|
|
This routine is used by random
|
|
\Algorithm
|
|
Randseed := pseudo random 32-bit value
|
|
\end{procedure}
|
|
|
|
\begin{function}{GetHeapStart}
|
|
\Declaration
|
|
Function GetHeapStart : Pointer;
|
|
\Description
|
|
This routine should return a pointer to the start of the heap area.
|
|
\Algorithm
|
|
GetHeapStart := address of start of heap.
|
|
\end{function}
|
|
|
|
\begin{function}{GetHeapSize}
|
|
\Declaration
|
|
Function GetHeapSize : Longint;
|
|
\Description
|
|
This routine should return the total heap size in bytes
|
|
\Algorithm
|
|
GetHeapSize := total size of the initial heap area.
|
|
\end{function}
|
|
|
|
\begin{function}{sbrk}
|
|
\Declaration
|
|
Function Sbrk(Size : Longint): Longint;
|
|
\Description
|
|
This routine should grow the heap by the number of bytes specified. If
|
|
the heap cannot be grown it should return -1, otherwise it should return
|
|
a pointer to the newly allocated area.
|
|
\Parameters
|
|
size = Number of bytes to allocate
|
|
\end{function}
|
|
|
|
\begin{procedurel}{Do{\_}Close}{doclose}
|
|
\Declaration
|
|
Procedure Do{\_}Close(Handle : Longint);
|
|
\Description
|
|
This closes the file specified of the specified handle number.
|
|
\Parameters
|
|
handle = file handle of file to close
|
|
\Notes
|
|
This routine should close the specified file.
|
|
\Notes
|
|
This routine should set InoutRes in case of error.
|
|
\end{procedurel}
|
|
|
|
\begin{procedurel}{Do{\_}Erase}{doerase}
|
|
\Declaration
|
|
Procedure Do{\_}Erase(p: pChar);
|
|
\Description
|
|
This erases the file specifed by p.
|
|
\Parameters
|
|
p = name of the file to erase
|
|
\Notes
|
|
This routine should set InoutRes in case of error.
|
|
\end{procedurel}
|
|
|
|
\begin{procedurel}{Do{\_}Truncate}{dotruncate}
|
|
\Declaration
|
|
Procedure Do{\_}Truncate(Handle, FPos : Longint);
|
|
\Description
|
|
This truncates the file at the specified position.
|
|
\Parameters
|
|
handle = file handle of file to truncate
|
|
fpos = file position where the truncate should occur
|
|
\Notes
|
|
This routine should set InoutRes in case of error.
|
|
\end{procedurel}
|
|
|
|
|
|
\begin{procedurel}{Do{\_}Rename}{dorename}
|
|
\Declaration
|
|
Procedure Do{\_}Rename(p1, p2 : pchar);
|
|
\Description
|
|
This renames the file specified.
|
|
\Parameters
|
|
p1 = old file name
|
|
p2 = new file name
|
|
\Notes
|
|
This routine should set InoutRes in case of error.
|
|
\end{procedurel}
|
|
|
|
\begin{functionl}{Do{\_}Write}{dowrite}
|
|
\Declaration
|
|
Function Do{\_}Write(Handle,Addr,Len:Longint):longint;
|
|
\Description
|
|
This writes to the specified file. Returns the number of bytes
|
|
actually written.
|
|
\Parameters
|
|
handle = file handle of file to write to
|
|
addr = address of buffer containing the data to write
|
|
len = number of bytes to write
|
|
\Notes
|
|
This routine should set InoutRes in case of error.
|
|
\end{functionl}
|
|
|
|
\begin{functionl}{Do{\_}Read}{doread}
|
|
\Declaration
|
|
Function Do{\_}Read(Handle,Addr,Len:Longint):Longint;
|
|
\Description
|
|
Reads from a file. Returns the number of bytes read.
|
|
\Parameters
|
|
handle = file handle of file to read from
|
|
addr = address of buffer containing the data to read
|
|
len = number of bytes to read
|
|
\Notes
|
|
This routine should set InoutRes in case of error.
|
|
\end{functionl}
|
|
|
|
\begin{functionl}{Do{\_}FilePos}{dofilepos}
|
|
\Declaration
|
|
function Do{\_}FilePos(Handle: Longint):longint;
|
|
\Description
|
|
Returns the file pointer position
|
|
\Parameters
|
|
handle = file handle of file to get file position on
|
|
\Notes
|
|
This routine should set InoutRes in case of error.
|
|
\end{functionl}
|
|
|
|
\begin{procedurel}{Do{\_}Seek}{doseek}
|
|
\Declaration
|
|
Procedure Do{\_}Seek(Handle,Pos:Longint);
|
|
\Description
|
|
Set file pointer of file to a new position
|
|
\Parameters
|
|
handle = file handle of file to seek in
|
|
pos = new position of file pointer (from start of file)
|
|
\Notes
|
|
This routine should set InoutRes in case of error.
|
|
\end{procedurel}
|
|
|
|
\begin{functionl}{Do{\_}Seekend}{doseekend}
|
|
\Declaration
|
|
Function Do{\_}SeekEnd(Handle:Longint): Longint;
|
|
\Description
|
|
Seeks to the end of the file. Returns the
|
|
new file pointer position.
|
|
\Parameters
|
|
handle = file handle of file to seek to end of file
|
|
\Notes
|
|
This routine should set InoutRes in case of error.
|
|
\end{functionl}
|
|
|
|
\begin{functionl}{Do{\_}FileSize}{dofilesize}
|
|
\Declaration
|
|
Function Do{\_}FileSize(Handle:Longint): Longint;
|
|
\Description
|
|
Returns the filesize in bytes.
|
|
\Parameters
|
|
handle = file handle of file to get the file size
|
|
\Notes
|
|
This routine should set InoutRes in case of error.
|
|
\end{functionl}
|
|
|
|
\begin{functionl}{Do{\_}IsDevice}{doisdevice}
|
|
\Declaration
|
|
Function Do{\_}ISDevice(Handle:Longint): boolean;
|
|
\Description
|
|
Returns TRUE if the file handle points to a device
|
|
instead of a file.
|
|
\Parameters
|
|
handle = file handle to gtet status on
|
|
\Notes
|
|
This routine should set InoutRes in case of error.
|
|
\end{functionl}
|
|
|
|
\begin{procedurel}{Do{\_}Open}{doopen}
|
|
\Declaration
|
|
Procedure Do{\_}Open(var f;p:pchar;flags:longint);
|
|
\Description
|
|
Opens a file in the specified mode, and sets the
|
|
\var{mode} and \var{handle} fields of the \var{f}
|
|
structure parameter.
|
|
\Parameters
|
|
f = pointer to \var{textrec} or \var{filerec} structure
|
|
p = name and path of file to open
|
|
flags = access mode to open the file with
|
|
\Notes
|
|
This routine should set InoutRes in case of error.
|
|
\end{procedurel}
|
|
|
|
\begin{procedurel}{ChDir}{chdir}
|
|
\Declaration
|
|
Procedure ChDir(Const s: String);[IOCheck];
|
|
\Description
|
|
Changes to the specified directory. . and ..
|
|
should also be supported by this call.
|
|
\Parameters
|
|
s = new directory to change to
|
|
\Notes
|
|
This routine should set InoutRes in case of error.
|
|
\end{procedurel}
|
|
|
|
|
|
\begin{procedurel}{MkDir}{mkdir}
|
|
\Declaration
|
|
Procedure MkDir(Const s: String);[IOCheck];
|
|
\Description
|
|
Creates the specified directory.
|
|
\Parameters
|
|
s = name of directory to create
|
|
\Notes
|
|
This routine should set InoutRes in case of error.
|
|
\end{procedurel}
|
|
|
|
|
|
\begin{procedurel}{RmDir}{rmdir}
|
|
\Declaration
|
|
Procedure RmDir(Const s: String);[IOCheck];
|
|
\Description
|
|
Removes the specified directory.
|
|
\Parameters
|
|
s = name of directory to remove
|
|
\Notes
|
|
This routine should set InoutRes in case of error.
|
|
\end{procedurel}
|
|
|
|
|
|
The following variables should also be defined for each new operating
|
|
system, they are used by external units:
|
|
|
|
\noindent
|
|
argc : The number of command line arguments of the program
|
|
|
|
\noindent
|
|
argv : A pointer to each of the command line arguments (an array of pchar
|
|
pointers)
|
|
|
|
\subsection{CPU specific hooks}
|
|
\label{subsec:mylabel9}
|
|
|
|
The following routines must absolutely be implemented for each processor, as
|
|
they are dependent on the processor:
|
|
|
|
\subsubsection{FPC{\_}SETJMP}
|
|
\label{subsubsec:mylabel30}
|
|
|
|
\begin{function}{SetJmp}
|
|
\Declaration
|
|
Function SetJmp (Var S : Jmp{\_}Buf) : Longint;
|
|
\Description
|
|
A call to SetJmp(), saves the calling environment in its \textsf{s} argument
|
|
for later use by \textsf{longjmp()}. Called by the code generator in
|
|
exception handling code. The return value should be zero.
|
|
\Notes
|
|
This routine should save / restore all used registers (except the
|
|
accumulator which should be cleared).
|
|
\end{function}
|
|
|
|
\subsubsection{FPC{\_}LONGJMP}
|
|
\label{subsubsec:mylabel31}
|
|
|
|
\subsubsection{function SPtr()}
|
|
\label{subsubsec:function}
|
|
|
|
\subsubsection{function Get{\_}Caller{\_}Frame(framebp:longint):longint;}
|
|
\label{subsubsec:mylabel32}
|
|
|
|
\subsubsection{function Get{\_}Caller{\_}Addr(framebp:longint):longint;}
|
|
\label{subsubsec:mylabel33}
|
|
|
|
\subsubsection{function Get{\_}Frame:longint;}
|
|
\label{subsubsec:mylabel34}
|
|
|
|
\subsubsection{function Trunc()}
|
|
\label{subsubsec:mylabel35}
|
|
|
|
\subsection{String related}
|
|
\label{subsec:string}
|
|
|
|
\subsubsection{FPC{\_}SHORTSTR{\_}COPY}
|
|
\label{subsubsec:mylabel36}
|
|
|
|
\begin{procedurel}{Int{\_}StrCopy}{intstrcopy}
|
|
\Declaration
|
|
Procedure Int{\_}StrCopy(Len:Longint;SStr,DStr:pointer);
|
|
\Description
|
|
This routine copies the string pointed to by the address in sstr, to the
|
|
string pointed in the destination. The old string is overwritten, and the
|
|
source string will be truncated to make it fit in destination if the length
|
|
of the source is greater then destination string len (the len parameter).
|
|
\Parameters
|
|
Len = maximum length to copy (the destination string length) \par
|
|
SStr = pointer to source shortstring \par
|
|
DStr = point to destination shortstring
|
|
\Notes
|
|
Called by code generator when a string is assigned to another string.
|
|
\end{procedurel}
|
|
|
|
\subsubsection{FPC{\_}SHORTSTR{\_}COMPARE}
|
|
\label{subsubsec:mylabel37}
|
|
|
|
\begin{functionl}{Int{\_}StrCmp}{intstrcmp}
|
|
\Declaration
|
|
Function Int{\_}StrCmp(DStr,SStr:Pointer) : Longint;
|
|
\Description
|
|
The routine compares two shortstrings, and returns 0 if both are equal, 1 if
|
|
\textsf{DStr} is greater then \textsf{SSrc}, otherwise it returns --1.
|
|
\Notes
|
|
Both pointers must point to shortstrings. Length checking must be performed
|
|
in the routine.
|
|
\end{functionl}
|
|
|
|
\subsubsection{FPC{\_}SHORTSTR{\_}CONCAT}
|
|
\label{subsubsec:mylabel38}
|
|
|
|
\begin{procedurel}{Int{\_}StrConcat}{intstrconcat}
|
|
\Declaration
|
|
Procedure Int{\_}StrConcat(Src,Dest:Pointer);
|
|
\Description
|
|
This routine appends the string pointed to by \textsf{Src} to the end of the
|
|
string pointed to by \textsf{Dest}.
|
|
\Parameters
|
|
Src = pointer to shortstring to append to dest \par
|
|
Dest = pointer to shortstring to receive appended string
|
|
\Notes
|
|
Both pointers must point to shortstrings. In the case where the src string
|
|
length does not fit in dest, it is truncated.
|
|
\Algorithm
|
|
\begin{lstlisting}{}
|
|
if src =nil or dest = nil then
|
|
exit routine;
|
|
if (src string length + dest string length) > 255 then
|
|
number of bytes to copy = 255 -- dest string length
|
|
else
|
|
number of bytes to copy = src string length;
|
|
copy the string data (except the length byte)
|
|
dest string length = dest string length + number of bytes to copied
|
|
\end{lstlisting}
|
|
\end{procedurel}
|
|
|
|
\subsubsection{FPC{\_}ANSISTR{\_}CONCAT}
|
|
\label{subsubsec:mylabel39}
|
|
|
|
\begin{procedurel}{AnsiStr{\_}Concat}{ansistrconcat}
|
|
\Declaration
|
|
Procedure AnsiStr{\_}Concat(s1,s2:Pointer;var s3:Pointer);
|
|
\Description
|
|
This routine appends \textsf{s1}+\textsf{s2} and stores the result at the
|
|
address pointed to by \textsf{s3}.
|
|
\Notes
|
|
All pointers must point to ansistrings.
|
|
\end{procedurel}
|
|
|
|
\subsubsection{FPC{\_}ANSISTR{\_}COMPARE}
|
|
\label{subsubsec:mylabel40}
|
|
|
|
\begin{functionl}{AnsiStr{\_}Compare}{ansistrcompare}
|
|
\Declaration
|
|
Function AnsiStr{\_}Compare(s1,s2 : Pointer): Longint;
|
|
\Description
|
|
The routine compares two ansistrings, and returns 0 if both are equal, 1 if
|
|
\textsf{s1} is greater then \textsf{s2}, otherwise it returns --1.
|
|
\Parameters
|
|
Both pointers must point to ansistrings.
|
|
\end{functionl}
|
|
|
|
\subsubsection{FPC{\_}ANSISTR{\_}INCR{\_}REF }
|
|
\label{subsubsec:mylabel41}
|
|
|
|
\begin{procedurel}{AnsiStr{\_}Incr{\_}Ref}{ansistrincrref}
|
|
\Declaration
|
|
procedure AnsiStr{\_}Incr{\_}Ref (var s : Pointer);
|
|
\Description
|
|
This routine simply increments the ANSI string reference count, which is
|
|
used for garbage collection of ANSI strings.
|
|
\Parameters
|
|
s = pointer to the ansi string (including the header structure)
|
|
\end{procedurel}
|
|
|
|
\subsubsection{FPC{\_}ANSISTR{\_}DECR{\_}REF }
|
|
\label{subsubsec:mylabel42}
|
|
|
|
\begin{procedurel}{AnsiStr{\_}Decr{\_}Ref}{ansistrdecrref}
|
|
\Declaration
|
|
procedure AnsiStr{\_}Decr{\_}Ref (Var S : Pointer);
|
|
\Parameters
|
|
s = pointer to the ansi string (including the header structure)
|
|
\Algorithm
|
|
Decreases the internal reference count of this non constant ansistring; If
|
|
the reference count is zero, the string is deallocated from the
|
|
heap.
|
|
\end{procedurel}
|
|
|
|
\subsubsection{FPC{\_}ANSISTR{\_}ASSIGN }
|
|
\label{subsubsec:mylabel43}
|
|
|
|
\begin{functionl}{AnsiStr{\_}Assign}{ansistrassign}
|
|
\Declaration
|
|
Procedure AnsiStr{\_}Assign (var s1 : Pointer;s2 : Pointer);
|
|
\Parameters
|
|
s1 = address of ANSI string to be assigned to \par
|
|
s2 = address of ANSI string which will be assigned
|
|
\Algorithm
|
|
Assigns S2 to S1 (S1:=S2), also by the time decreasing the reference count
|
|
to S1 (it is no longer used by this variable).
|
|
\end{functionl}
|
|
|
|
\subsubsection{FPC{\_}PCHAR{\_}TO{\_}SHORTSTR}
|
|
\label{subsubsec:mylabel44}
|
|
|
|
\begin{function}{StrPas}
|
|
\Declaration
|
|
Function StrPas(p:pChar):ShortString;
|
|
\Description
|
|
Copies and converts a null-terminated string (pchar) to a shortstring with
|
|
length checking.
|
|
\Parameters
|
|
p = pointer to null terminated string to copy
|
|
\Notes
|
|
Length checking is performed. Verifies also p=nil, and if so sets the
|
|
shortstring length to zero. Called by the type conversion generated code of
|
|
code generator.
|
|
\Algorithm
|
|
\begin{lstlisting}{}
|
|
if p=nil then
|
|
string length =0
|
|
else
|
|
string length =string length(p)
|
|
if string length>255 then
|
|
string length = 255
|
|
if string length>0 then
|
|
Copy all characters of pchar array to string (except length byte)
|
|
\end{lstlisting}
|
|
\end{function}
|
|
|
|
\subsubsection{FPC{\_}SHORTSTR{\_}TO{\_}ANSISTR}
|
|
\label{subsubsec:mylabel45}
|
|
|
|
\begin{functionl}{FPC{\_}ShortStr{\_}To{\_}AnsiStr}{fpcshortstrtoansistr}
|
|
\Notes
|
|
Called by the type conversion generated code of code generator.
|
|
\end{functionl}
|
|
|
|
\subsubsection{FPC{\_}STR{\_}TO{\_}CHARARRAY}
|
|
\label{subsubsec:mylabel46}
|
|
|
|
\begin{procedurel}{Str{\_}To{\_}CharArray}{strtochararray}
|
|
\Declaration
|
|
procedure Str{\_}To{\_}CharArray(StrTyp, ArraySize: Longint; src,dest: pChar);
|
|
\Description
|
|
Converts a string to a character array (currently supports both shortstring and ansistring types). Length checking is performed, and copies up to \textsf{arraysize} elements to dest.
|
|
\Parameters
|
|
strtyp = Indicates the conversion type to do (0 = shortstring, 1 =
|
|
ansistring, 2 = longstring, 3 = widestring) \\
|
|
arraysize = size of the destination array \par
|
|
src = pointer to source string \par
|
|
dest = pointer to character array
|
|
\Notes
|
|
Called by the type conversion generated code of code generator when
|
|
converting a string to an array of char. If the size of the string is less
|
|
then the size of the array, the rest of the array is filled with zeros.
|
|
\end{procedurel}
|
|
|
|
\subsubsection{FPC{\_}CHARARRAY{\_}TO{\_}SHORTSTR}
|
|
\label{subsubsec:mylabel47}
|
|
|
|
\begin{function}{StrCharArray}
|
|
\Declaration
|
|
Function StrCharArray(p:pChar; l : Longint):ShortString;
|
|
\Description
|
|
Copies a character array to a shortstring with length checking (upto 255
|
|
characters are copied)
|
|
\Parameters
|
|
p = Character array pointer \par
|
|
l = size of the array
|
|
\Notes
|
|
Called by the type conversion generated code of code generator when
|
|
converting an array of char to a shortstring.
|
|
\Algorithm
|
|
\begin{lstlisting}{}
|
|
if size of array >= 256 then
|
|
length of string =255
|
|
else
|
|
if size of array < 0 then
|
|
length of string = 0
|
|
else
|
|
length of string = size of array
|
|
Copy all characters from array to shortstring
|
|
\end{lstlisting}
|
|
\end{function}
|
|
|
|
\subsubsection{FPC{\_}CHARARRAY{\_}TO{\_}ANSISTR}
|
|
\label{subsubsec:mylabel48}
|
|
|
|
\begin{functionl}{Fpc{\_}Chararray{\_}To{\_}AnsiStr}{chararraytoansistr}
|
|
\Notes
|
|
Called by the type conversion generated code of code generator when converting an array of char to an ansistring.
|
|
\end{functionl}
|
|
|
|
\subsubsection{FPC{\_}CHAR{\_}TO{\_}ANSISTR}
|
|
\label{subsubsec:mylabel49}
|
|
|
|
\begin{functionl}{Fpc{\_}Char{\_}To{\_}AnsiStr}{fpcchartoansistr}
|
|
\Notes
|
|
Called by the type conversion generated code of code generator when
|
|
converting a char to an ansistring.
|
|
\end{functionl}
|
|
|
|
\subsubsection{FPC{\_}PCHAR{\_}TO{\_}ANSISTR}
|
|
\label{subsubsec:mylabel50}
|
|
|
|
\begin{functionl}{Fpc{\_}pChar{\_}To{\_}AnsiStr}{fpcpchartoansistr}
|
|
\Notes
|
|
Called by the type conversion generated code of code generator when
|
|
converting a pchar to an ansistring.
|
|
\end{functionl}
|
|
|
|
|
|
\subsection{Compiler runtime checking}
|
|
\label{subsec:compiler}
|
|
|
|
\subsubsection{FPC{\_}STACKCHECK}
|
|
\label{subsubsec:mylabel51}
|
|
|
|
\begin{procedurel}{Int{\_}StackCheck}{intstackcheck}
|
|
\Declaration
|
|
procedure int{\_}stackcheck (stack{\_}size:longint);
|
|
\Description
|
|
This routine is used to check if there will be a stack overflow when trying
|
|
to allocate stack space from the operating system. The routine must preserve
|
|
all registers. In the case the stack limit is reached, the routine calls the
|
|
appropriate error handler.
|
|
\Parameters
|
|
stack{\_}size = The amount of stack we wish to allocate
|
|
\Notes
|
|
Inserted in the entry code of a routine in the {\{}{\$}S+{\}} state by the code generator
|
|
\Algorithm
|
|
\begin{lstlisting}{}
|
|
if ((StackPointer - stack_size) < System.StackLimit) then
|
|
Throw a Runtime error with error code 202 (stack overflow)
|
|
\end{lstlisting}
|
|
\end{procedurel}
|
|
|
|
\subsubsection{FPC{\_}RANGEERROR}
|
|
\label{subsubsec:mylabel52}
|
|
|
|
\begin{procedurel}{Int{\_}RangeError}{intrangerror}
|
|
\Declaration
|
|
procedure Int{\_}RangeError;
|
|
\Description
|
|
This routine is called when a range check error is detected when executing
|
|
the compiled code. This usually simply calls the default error handler, with
|
|
the correct runtime error code to produce.
|
|
\Parameters
|
|
Inserted in code generator when a Runtime error 201 {\{}{\$}R+{\}} should be
|
|
generated
|
|
\end{procedurel}
|
|
|
|
\subsubsection{FPC{\_}BOUNDCHECK}
|
|
\label{subsubsec:mylabel53}
|
|
|
|
\begin{procedurel}{Int{\_}BoundCheck}{intboundcheck}
|
|
\Declaration
|
|
procedure Int{\_}BoundCheck(l : Longint; Range : Pointer);
|
|
\Description
|
|
This routine is called at runtime in {\$}R+ mode to check if accessing
|
|
indexes in a string or array is out of bounds. In this case, the default
|
|
error handler is called, with the correct runtime error code to produce.
|
|
\Parameters
|
|
l = Index we need to check \par
|
|
range = pointer to a structure containing the minimum and maximum allowed
|
|
indexes (points to two 32-bit signed values which are the limits of the
|
|
array to verify).
|
|
\Notes
|
|
Inserted in the generated code after assignments, and array indexing to
|
|
verify if the result of operands is within range (in the {\{}{\$}R+{\}}
|
|
state)
|
|
\end{procedurel}
|
|
|
|
\subsubsection{FPC{\_}OVERFLOW}
|
|
\label{subsubsec:mylabel54}
|
|
|
|
\begin{procedurel}{Int{\_}OverFlow}{intoverflow}
|
|
\Declaration
|
|
procedure Int{\_}OverFlow;
|
|
\Description
|
|
This routine is called when an overflow is detected when executing the
|
|
compiled code. This usually simply calls the default error handler, with the
|
|
correct runtime error code to produce.
|
|
\Parameters
|
|
Inserted in code generator when a Runtime error 215 {\{}{\$}Q+{\}} should be
|
|
generated.
|
|
\end{procedurel}
|
|
|
|
\subsubsection{FPC{\_}CHECK{\_}OBJECT}
|
|
\label{subsubsec:mylabel55}
|
|
|
|
\begin{procedurel}{Int{\_}Check{\_}Object}{intcheckobject}
|
|
\Declaration
|
|
procedure Int{\_}Check{\_}Object(vmt : Pointer);
|
|
\Description
|
|
This routine is called at runtime in the {\$}R+ state each time a virtual
|
|
method is called. It verifies that the object constructor has been called
|
|
first to build the VMT of the object, otherwise it throws an Runtime error 210.
|
|
\Parameters
|
|
vmt = Current value of the SELF register
|
|
\Notes
|
|
Call inserted by the code generator before calling the virtual method. This
|
|
routine should save / restore all used registers.
|
|
\Algorithm
|
|
\begin{lstlisting}{}
|
|
if vmt = nil or size of method table =0 then
|
|
Throw a Runtime error with error code 210 (object not initialized)
|
|
\end{lstlisting}
|
|
\end{procedurel}
|
|
|
|
\subsubsection{FPC{\_}CHECK{\_}OBJECT{\_}EXT}
|
|
\label{subsubsec:mylabel56}
|
|
|
|
\begin{procedurel}{Int{\_}Check{\_}Object{\_}Ext}{intcheckobjectext}
|
|
\Declaration
|
|
procedure Int{\_}Check{\_}Object{\_}Ext(vmt, expvmt : pointer);
|
|
\Description
|
|
This routine is called at runtime when extended object checking is enabled (on the command line) and a virtual method is called. It verifies that the object constructor has been called first to build the VMT of the object, otherwise it throws an Runtime error 210, and furthermore it check that the object is actually a descendant of the parent object, otherwise it returns a Runtime error 220.
|
|
\Parameters
|
|
vmt = Current value of the SELF register \par
|
|
expvmt = Pointer to TRUE object definition
|
|
\Notes
|
|
Call inserted by the code generator before calling the virtual method. \par
|
|
This routine should save / restore all used registers.
|
|
\Algorithm
|
|
\begin{lstlisting}{}
|
|
if vmt = nil or size of method table =0 then
|
|
Throw a Runtime error with error code 210 (object not initialized)
|
|
Repeat
|
|
If SELF (VMT) <> VMT Address (expvmt) Then
|
|
Get Parent VMT Address
|
|
Else
|
|
Exit;
|
|
until no more ent;
|
|
Throw a Runtime error with error code 220 (Incorrect object reference)
|
|
\end{lstlisting}
|
|
\end{procedurel}
|
|
|
|
\subsubsection{FPC{\_}IO{\_}CHECK}
|
|
\label{subsubsec:mylabel57}
|
|
|
|
\begin{procedurel}{Int{\_}IOCheck}{intiocheck}
|
|
\Declaration
|
|
procedure Int{\_}IOCheck(addr : longint);
|
|
\Description
|
|
This routine is called after an I/O operation to verify the success of the
|
|
operation when the code is compiled in the {\$}I+ state.
|
|
\Parameters
|
|
addr = currently unused
|
|
\Algorithm
|
|
Check last I/O was successful, if not call error handler.
|
|
\end{procedurel}
|
|
|
|
\subsubsection{FPC{\_}HANDLEERROR}
|
|
\label{subsubsec:mylabel58}
|
|
|
|
\begin{procedure}{HandleError}
|
|
\Declaration
|
|
procedure HandleError (Errno : longint);
|
|
\Description
|
|
This routine should be called to generate a runtime error either from one of
|
|
the system unit routines or the code generator.
|
|
\Parameters
|
|
Errno = Runtime error to generate
|
|
\Notes
|
|
This routine calls the appropriate existing error handler with the specified
|
|
error code.
|
|
\Algorithm
|
|
\end{procedure}
|
|
|
|
\subsubsection{FPC{\_}ASSERT}
|
|
\label{subsubsec:mylabel59}
|
|
|
|
\begin{procedurel}{Int{\_}Assert}{intassert}
|
|
\Declaration
|
|
procedure Int{\_}Assert(Const Msg,FName:Shortstring;LineNo,ErrorAddr:Longint);
|
|
\Description
|
|
This routine is called by the code generator in an assert statement. When
|
|
the assertion fails, this routine is called.
|
|
\Parameters
|
|
msg = string to print \par
|
|
Fname = Current filename of source \par
|
|
LineNo = Current line number of source \par
|
|
ErrorAddr = Address of assertion failure
|
|
\end{procedurel}
|
|
|
|
\subsection{Exception handling}
|
|
\label{subsec:exception}
|
|
|
|
\subsubsection{FPC{\_}RAISEEXCEPTION}
|
|
\label{subsubsec:mylabel60}
|
|
|
|
\begin{function}{RaiseExcept}
|
|
\Declaration
|
|
function RaiseExcept (Obj : Tobject; AnAddr,AFrame : Pointer) : Tobject;
|
|
\Description
|
|
Called by the code generator in the raise statement to raise an exception.
|
|
\Parameters
|
|
Obj = Instance of class exception handler \par
|
|
AnAddr = Address of exception \par
|
|
Aframe = Exception frame address
|
|
\Notes
|
|
REGISTERS NOT SAVED???????????
|
|
\end{function}
|
|
|
|
\subsubsection{FPC{\_}PUSHEXCEPTADDR}
|
|
\label{subsubsec:mylabel61}
|
|
|
|
\begin{function}{PushExceptAddr}
|
|
\Declaration
|
|
function PushExceptAddr (Ft: Longint): PJmp{\_}buf ;
|
|
\Description
|
|
This routine should be called to save the current caller context to be used
|
|
for exception handling, usually called in the context where ANSI strings are
|
|
used (they can raise exceptions), or in a try..finally or on statements to
|
|
save the current context.
|
|
\Parameters
|
|
Ft = Indicates the frame type on the stack (1= Exception frame or 2=Finalize
|
|
frame)
|
|
\Algorithm
|
|
Adds this item to the linked list of stack frame context information saved.
|
|
Allocates a buffer for the jump statement and returns it.
|
|
\end{function}
|
|
|
|
\subsubsection{FPC{\_}RERAISE}
|
|
\label{subsubsec:mylabel62}
|
|
|
|
\begin{procedure}{ReRaise}
|
|
\Declaration
|
|
procedure ReRaise;
|
|
\Notes
|
|
REGISTERS NOT SAVED???????????
|
|
\end{procedure}
|
|
|
|
\subsubsection{FPC{\_}POPOBJECTSTACK}
|
|
\label{subsubsec:mylabel63}
|
|
|
|
\begin{function}{PopObjectStack}
|
|
\Declaration
|
|
function PopObjectStack : TObject;
|
|
\Description
|
|
This is called by the code generator when an exception occurs, it is used to
|
|
retrieve the exception handler object from the context information.
|
|
\Notes
|
|
REGISTERS NOT SAVED???????????
|
|
\end{function}
|
|
|
|
\subsubsection{FPC{\_}POPSECONDOBJECTSTACK}
|
|
\label{subsubsec:mylabel64}
|
|
|
|
\begin{function}{PopSecondObjectStack}
|
|
\Declaration
|
|
function PopSecondObjectStack : TObject;
|
|
\Description
|
|
This is called by the code generator when a double exception occurs, it is
|
|
used to retrieve the second exception handler object from the context
|
|
information.
|
|
\Notes
|
|
REGISTERS NOT SAVED???????????
|
|
\end{function}
|
|
|
|
\subsubsection{FPC{\_}DESTROYEXCEPTION}
|
|
\label{subsubsec:mylabel65}
|
|
|
|
\begin{procedure}{DestroyException}
|
|
\Declaration
|
|
Procedure DestroyException(o : TObject);
|
|
\Description
|
|
This routine is called by the code generator after the exception handling
|
|
code is complete to destroy the exception object.
|
|
\Parameters
|
|
o = Exception handler object reference
|
|
\Notes
|
|
REGISTERS NOT SAVED?????????????
|
|
\end{procedure}
|
|
|
|
\subsubsection{FPC{\_}POPADDRSTACK}
|
|
\label{subsubsec:mylabel66}
|
|
|
|
\begin{procedure}{PopAddrStack}
|
|
\Declaration
|
|
procedure PopAddrStack;
|
|
\Description
|
|
Called by the code generator in the finally part of a try statement to
|
|
restore the stackframe and dispose of all the saved context information.
|
|
\Notes
|
|
REGISTERS NOT SAVED??????????
|
|
\end{procedure}
|
|
|
|
\subsubsection{FPC{\_}CATCHES}
|
|
\label{subsubsec:mylabel67}
|
|
|
|
\begin{function}{Catches}
|
|
\Declaration
|
|
function Catches(Objtype : TExceptObjectClass) : TObject;
|
|
\Description
|
|
This routine is called by the code generator to get the exception handler
|
|
object. ?????????????????
|
|
\Parameters
|
|
ObjType = The exception type class
|
|
\Notes
|
|
REGISTERS NOT SAVED??????????
|
|
\end{function}
|
|
|
|
\subsubsection{FPC{\_}GETRESOURCESTRING}
|
|
\label{subsubsec:mylabel68}
|
|
|
|
\begin{function}{GetResourceString}
|
|
\Declaration
|
|
function GetResourceString(Const TheTable: TResourceStringTable;Index : longint) : AnsiString;
|
|
\Description
|
|
Called by code generator when a reference to a resource string is made. This
|
|
routine loads the correct string from the resource string section and
|
|
returns the found string (or `' if not found).
|
|
\Parameters
|
|
TheTable = pointer to the resource string table \par
|
|
Index = Index in the resource string table.
|
|
\end{function}
|
|
|
|
\subsection{Runtime type information}
|
|
\label{subsec:runtime}
|
|
|
|
\subsubsection{FPC{\_}DO{\_}IS}
|
|
\label{subsubsec:mylabel69}
|
|
|
|
\begin{functionl}{Int{\_}Do{\_}Is}{intdois}
|
|
\Declaration
|
|
Function Int{\_}Do{\_}Is(AClass : TClass;AObject : TObject) : Boolean;
|
|
\Description
|
|
If \textsf{aclass} is of type \textsf{aobject}, returns TRUE otherwise
|
|
returns FALSE.
|
|
\Parameters
|
|
aclass = class type reference \par
|
|
aobject = Object instance to compare against
|
|
\Notes
|
|
This is called by the code generator when the \textsf{is} operator is used.
|
|
\Algorithm
|
|
\end{functionl}
|
|
|
|
\subsubsection{FPC{\_}DO{\_}AS}
|
|
\label{subsubsec:mylabel70}
|
|
|
|
\begin{procedurel}{Int{\_}Do{\_}As}{intdoas}
|
|
\Declaration
|
|
Procedure Int{\_}Do{\_}As(AClass : TClass;AObject : TObject)
|
|
\Description
|
|
Typecasts \textsf{aclass} as \textsf{aobject}, with dynamic type checking.
|
|
If the object is not from the correct type class, a runtime error 219 is
|
|
generated. Called by the code generator for the \textsf{as} statement.
|
|
\Parameters
|
|
aclass = Class to typecast to \par
|
|
aobject = Object to typecast
|
|
\end{procedurel}
|
|
|
|
\subsubsection{FPC{\_}INITIALIZE }
|
|
\label{subsubsec:mylabel71}
|
|
|
|
\begin{procedure}{Initialize}
|
|
\Declaration
|
|
Procedure Initialize (Data,TypeInfo : Pointer);
|
|
\Description
|
|
\Parameters
|
|
data = pointer to the data to initialize \par
|
|
typeinfo = pointer to the type information for this data
|
|
\Notes
|
|
This routine should save / restore all used registers.
|
|
\Algorithm
|
|
Initializes the class data for runtime typed values
|
|
\end{procedure}
|
|
|
|
\subsubsection{FPC{\_}FINALIZE}
|
|
\label{subsubsec:mylabel72}
|
|
|
|
\begin{procedure}{Finalize}
|
|
\Declaration
|
|
procedure Finalize (Data,TypeInfo: Pointer);
|
|
\Description
|
|
Called by code generator if and only if the reference to finalize <> nil.
|
|
\Parameters
|
|
data = point to the data to finalize \par
|
|
typeinfo = Pointer to the type information of this data
|
|
\Notes
|
|
This routine should save / restore all used registers. Finalizes and frees
|
|
the heap class data for runtime typed values (decrements the reference
|
|
count)
|
|
\end{procedure}
|
|
|
|
\subsubsection{FPC{\_}ADDREF}
|
|
\label{subsubsec:mylabel73}
|
|
|
|
\begin{procedure}{AddRef}
|
|
\Declaration
|
|
Procedure AddRef (Data,TypeInfo : Pointer);
|
|
\Description
|
|
Called by the code generator for class parameters (property support) of type
|
|
const or value in parameters, to increment the reference count of ANSI
|
|
strings.
|
|
\Notes
|
|
This routine should save / restore all used registers. This routine can be
|
|
called recursively with a very deep nesting level, an assembler
|
|
implementation in suggested.
|
|
\end{procedure}
|
|
|
|
\subsubsection{FPC{\_}DECREF}
|
|
\label{subsubsec:mylabel74}
|
|
|
|
\begin{procedure}{DecRef}
|
|
\Declaration
|
|
Procedure DecRef (Data, TypeInfo : Pointer);
|
|
\Description
|
|
Called by the code generator for class parameters (property support) of type
|
|
const or value parameters, to decrement the reference count. of ANSI
|
|
strings.
|
|
\Parameters
|
|
\Notes
|
|
This routine should save / restore all used registers. This routine can be
|
|
called recursively with a very deep nesting level, an assembler
|
|
implementation in suggested.
|
|
\end{procedure}
|
|
|
|
\subsection{Memory related}
|
|
\label{subsec:memory}
|
|
|
|
\subsubsection{FPC{\_}GETMEM}
|
|
\label{subsubsec:mylabel75}
|
|
|
|
\begin{procedure}{GetMem}
|
|
\Declaration
|
|
procedure GetMem(Var p:Pointer;Size:Longint);
|
|
\end{procedure}
|
|
|
|
\subsubsection{FPC{\_}FREEMEM}
|
|
\label{subsubsec:mylabel76}
|
|
|
|
\begin{procedure}{FreeMem}
|
|
\Declaration
|
|
Procedure FreeMem(Var P:Pointer;Size:Longint);
|
|
\end{procedure}
|
|
|
|
\subsubsection{FPC{\_}CHECKPOINTER}
|
|
\label{subsubsec:mylabel77}
|
|
|
|
\begin{function}{CheckPointer}
|
|
\Declaration
|
|
Procedure CheckPointer(p : Pointer);
|
|
\Description
|
|
Called by the code generator when a pointer is referenced in heap debug
|
|
mode. Verifies that the pointer actually points in the heap area.
|
|
\Parameters
|
|
p = pointer to check
|
|
\Notes
|
|
This routine should save /restore all used registers.
|
|
\end{function}
|
|
|
|
\subsubsection{FPC{\_}DO{\_}EXIT}
|
|
\label{subsubsec:mylabel78}
|
|
|
|
\begin{procedurel}{Do{\_}Exit}{doexit}
|
|
\Declaration
|
|
procedure Do{\_}Exit;
|
|
\Description
|
|
Called by code generator at the end of the program entry point.
|
|
\Notes
|
|
Called to terminate the program
|
|
\Algorithm
|
|
Call all unit exit handlers. \par
|
|
Finalize all units which have a finalization section \par
|
|
Print runtime error in case of error\par
|
|
Call OS-dependant system{\_}exit routine
|
|
\end{procedurel}
|
|
|
|
\subsubsection{FPC{\_}ABSTRACTERROR}
|
|
\label{subsubsec:mylabel79}
|
|
|
|
\begin{function}{AbstractError}
|
|
\Declaration
|
|
procedure AbstractError;
|
|
\Description
|
|
The code generator allocates a VMT entry equal to this routine address when
|
|
a method of a class is declared as being abstract. This routine simply calls
|
|
the default error handler.
|
|
\Algorithm
|
|
Throw a Runtime error with error code 211 (Abstract call)
|
|
\end{function}
|
|
|
|
\subsubsection{FPC{\_}INITIALIZEUNITS}
|
|
\label{subsubsec:mylabel80}
|
|
|
|
\begin{function}{InitializeUnits}
|
|
\Declaration
|
|
\Description
|
|
Called by the code generator in the main program, this is only available if
|
|
an \textsf{initialization} section exists in one of the units used by the
|
|
program.
|
|
\end{function}
|
|
|
|
\subsubsection{FPC{\_}NEW{\_}CLASS (assembler)}
|
|
\label{subsubsec:mylabel81}
|
|
|
|
\begin{procedurel}{int{\_}new{\_}class}{intnewclass}
|
|
\Description
|
|
This routine will call the TObject.InitInstance() routine to
|
|
instantiate a class (Delphi-styled class) and allocate the memory for all
|
|
fields of the class.
|
|
|
|
On entry the self{\_}register should be valid, and should point either to
|
|
nil, for a non-initialized class, or to the current instance of the class.
|
|
The first parameter on the top of the stack should be a pointer to the VMT
|
|
table for this class(????).
|
|
\end{procedurel}
|
|
|
|
\subsubsection{FPC{\_}HELP{\_}DESTRUCTOR}
|
|
\label{subsubsec:mylabel82}
|
|
|
|
Could be implemented in ASM directly with register parameter passing.
|
|
|
|
\begin{procedurel}{Int{\_}Help{\_}Destructor}{inthelpdestructor}
|
|
\Declaration
|
|
Procedure Int{\_}Help{\_}Destructor(Var {\_}Self : Pointer; Vmt : Pointer; Vmt{\_}Pos : Cardinal);
|
|
\Description
|
|
Frees the memory allocated for the object fields, and if the object had a
|
|
VMT field, sets it to nil.
|
|
\Parameters
|
|
self = pointer to the object field image in memory \par
|
|
vmt = pointer to the the actual vmt table (used to get the size of the object) \par
|
|
vmt{\_}pos = offset in the object field image to the vmt pointer field
|
|
\Notes
|
|
This routine should / save restore all used registers.
|
|
\Algorithm
|
|
\begin{lstlisting}{}
|
|
if self = nil then
|
|
exit
|
|
set VMT field in object field image ,if present, to nil
|
|
Free the allocated heap memory for the field objects
|
|
set Self = nil
|
|
\end{lstlisting}
|
|
\end{procedurel}
|
|
|
|
\subsubsection{FPC{\_}HELP{\_}CONSTRUCTOR}
|
|
\label{subsubsec:mylabel83}
|
|
|
|
Could be implemented in ASM directly with register parameter passing.
|
|
|
|
\begin{functionl}{Int{\_}Help{\_}Constructor}{inthelpconstructor}
|
|
\Declaration
|
|
function Int{\_}Help{\_}Constructor(Var {\_}self : Pointer; Var VMT : Pointer; Vmt{\_}Pos : Cardinal):Pointer;
|
|
\Description
|
|
Allocates the memory for an object's field, and fills the object fields with
|
|
zeros. Returns the newly allocated self{\_}pointer
|
|
\Parameters
|
|
self = pointer to the object field image in memory \par
|
|
vmt = pointer to the the actual vmt table (used to get the size of the object) \par
|
|
vmt{\_}pos = offset in the object field image to the vmt pointer field
|
|
\Notes
|
|
The self{\_}pointer register should be set appropriately by the code
|
|
generator to the allocated memory (self parameter)
|
|
\Algorithm
|
|
Self = Allocate Memory block for object fields \par
|
|
Fill the object field image with zeros\par
|
|
Set the VMT field in allocated object to VMT pointer
|
|
\end{functionl}
|
|
|
|
\subsubsection{FPC{\_}HELP{\_}FAIL{\_}CLASS}
|
|
\label{subsubsec:mylabel84}
|
|
|
|
\begin{functionl}{Help{\_}Fail{\_}Class}{inthelpfileclass}
|
|
\Description
|
|
Inserted by code generator after constructor call. If the constructor failed
|
|
to allocate the memory for its fields, this routine will be called.
|
|
\end{functionl}
|
|
|
|
\subsubsection{FPC{\_}HELP{\_}FAIL}
|
|
\label{subsubsec:mylabel85}
|
|
|
|
\begin{functionl}{Help{\_}Fail}{HelpFail}
|
|
\Description
|
|
Inserted by code generator after constructor call. If the constructor failed
|
|
to allocate the memory for its fields, this routine will be called.
|
|
\end{functionl}
|
|
|
|
\subsection{Set handling}
|
|
\label{subsec:mylabel10}
|
|
|
|
\subsubsection{FPC{\_}SET{\_}COMP{\_}SETS}
|
|
\label{subsubsec:mylabel86}
|
|
|
|
\begin{functionl}{Do{\_}Comp{\_}Sets}{docompsets}
|
|
\Declaration
|
|
function Do{\_}Comp{\_}Sets(Set1,Set2 : Pointer): Boolean;
|
|
\Description
|
|
This routine compares if set1 and set2 are exactly equal and returns 1 if
|
|
so, otherwise it returns false.
|
|
\Parameters
|
|
set1 = Pointer to 32 byte set to compare \par
|
|
set2 = Pointer to 32 byte set to compare
|
|
\Notes
|
|
Both pointers must point to normal sets.
|
|
\end{functionl}
|
|
|
|
\subsubsection{FPC{\_}SET{\_}CONTAINS{\_}SET}
|
|
\label{subsubsec:mylabel87}
|
|
|
|
\begin{procedurel}{Do{\_}Contains{\_}Sets}{docontainssets}
|
|
\Declaration
|
|
Procedure Do{\_}Contains{\_}Sets(Set1,Set2 : Pointer): Boolean;
|
|
\Description
|
|
Returns 1 if set2 contains set1 (That is all elements of set2 are in set1).
|
|
\Parameters
|
|
set1 = Pointer to 32 byte set to verify \par
|
|
set2 = Pointer to 32 byte set to verify
|
|
\Notes
|
|
Both pointers must point to normal sets.
|
|
\end{procedurel}
|
|
|
|
\subsubsection{FPC{\_}SET{\_}CREATE{\_}ELEMENT}
|
|
\label{subsubsec:mylabel88}
|
|
|
|
\begin{procedurel}{Do{\_}Create{\_}Element}{docreateelement}
|
|
\Declaration
|
|
procedure Do{\_}Create{\_}Element(p : Pointer; b : Byte);
|
|
\Description
|
|
Create a new normal set in the area pointed to by \textsf{p} and add the
|
|
element value \textsf{b} in that set.
|
|
\Parameters
|
|
p = pointer to area where the 32 byte set will be created \par
|
|
b = bit value within that set which must be set
|
|
\Notes
|
|
This works on normal sets only.
|
|
\Algorithm
|
|
Zero the area pointed to by p \par
|
|
Set the bit number b to 1
|
|
\end{procedurel}
|
|
|
|
\subsubsection{FPC{\_}SET{\_}SET{\_}RANGE}
|
|
\label{subsubsec:mylabel89}
|
|
|
|
\begin{procedurel}{Do{\_}Set{\_}Range}{dosetrange}
|
|
\Declaration
|
|
Procedure Do{\_}Set{\_}Range(P : Pointer;l,h : Byte);
|
|
\Description
|
|
Sets the bit values within the \textsf{l} and \textsf{h }bit ranges in the
|
|
normal set pointed to by \textsf{p}
|
|
\Parameters
|
|
p = pointer to area where the 32 bytes of the set will be updated \par
|
|
l = low bit number value to set \par
|
|
h = high bit number value to set
|
|
\Notes
|
|
This works on normal sets only.
|
|
\Algorithm
|
|
Set all bit numbers from l to h in set p
|
|
\end{procedurel}
|
|
|
|
\subsubsection{FPC{\_}SET{\_}SET{\_}BYTE}
|
|
\label{subsubsec:mylabel90}
|
|
|
|
\begin{procedurel}{Do{\_}Set{\_}Byte}{dosetbyte}
|
|
\Declaration
|
|
procedure Do{\_}Set{\_}Byte(P : Pointer;B : byte);
|
|
\Description
|
|
Add the element \textsf{b} in the normal set pointed to by \textsf{p}
|
|
\Parameters
|
|
p = pointer to 32 byte set \par
|
|
b = bit number to set
|
|
\Notes
|
|
This works on normal sets only. The intel 80386 version of the compiler does
|
|
not save the used registers, therefore, in that case, it must be done in the
|
|
routine itself.
|
|
\Algorithm
|
|
Set bit number b in p
|
|
\end{procedurel}
|
|
|
|
\subsubsection{FPC{\_}SET{\_}SUB{\_}SETS}
|
|
\label{subsubsec:mylabel91}
|
|
|
|
\begin{procedurel}{Do{\_}Sub{\_}Sets}{dosubsets}
|
|
\Declaration
|
|
Procedure Do{\_}Sub{\_}Sets(Set1,Set2,Dest:Pointer);
|
|
\Description
|
|
Calculate the difference between \textsf{set1} and \textsf{set2}, setting
|
|
the result in \textsf{dest}.
|
|
\Parameters
|
|
set1 = pointer to 32 byte set \par
|
|
set2 = pointer to 32 byte set \par
|
|
dest = pointer to 32 byte set which will receive the result
|
|
\Notes
|
|
This works on normal sets only.
|
|
\Algorithm
|
|
\begin{lstlisting}{}
|
|
For each bit in the set do
|
|
dest bit = set1 bit AND NOT set2 bit
|
|
\end{lstlisting}
|
|
\end{procedurel}
|
|
|
|
\subsubsection{FPC{\_}SET{\_}MUL{\_}SETS}
|
|
\label{subsubsec:mylabel92}
|
|
|
|
\begin{procedurel}{Do{\_}Mul{\_}Sets}{domulsets}
|
|
\Declaration
|
|
procedure Do{\_}Mul{\_}Sets(Set1,Set2,Dest:Pointer);
|
|
\Description
|
|
Calculate the multiplication between \textsf{set1} and \textsf{set2},
|
|
setting the result in \textsf{dest}.
|
|
\Parameters
|
|
set1 = pointer to 32 byte set \par
|
|
set2 = pointer to 32 byte set \par
|
|
dest = pointer to 32 byte set which will receive the result
|
|
\Notes
|
|
This works on normal sets only.
|
|
\Algorithm
|
|
\begin{lstlisting}{}
|
|
For each bit in the set do
|
|
dest bit = set1 bit AND set2 bit
|
|
\end{lstlisting}
|
|
\end{procedurel}
|
|
|
|
\subsubsection{FPC{\_}SET{\_}SYMDIF{\_}SETS}
|
|
\label{subsubsec:mylabel93}
|
|
|
|
\begin{procedurel}{Do{\_}Symdif{\_}Sets}{dosymdifssets}
|
|
\Declaration
|
|
Procedure Do{\_}Symdif{\_}Sets(Set1,Set2,Dest:Pointer);
|
|
\Description
|
|
Calculate the symmetric between \textsf{set1} and \textsf{set2}, setting the
|
|
result in \textsf{dest}.
|
|
\Parameters
|
|
set1 = pointer to 32 byte set \par
|
|
set2 = pointer to 32 byte set \par
|
|
dest = pointer to 32 byte set which will receive the result
|
|
\Notes
|
|
This works on normal sets only.
|
|
\Algorithm
|
|
\begin{lstlisting}{}
|
|
For each bit in the set do
|
|
dest bit = set1 bit XOR set2 bit
|
|
\end{lstlisting}
|
|
\end{procedurel}
|
|
|
|
\subsubsection{FPC{\_}SET{\_}ADD{\_}SETS}
|
|
\label{subsubsec:mylabel94}
|
|
|
|
\begin{procedurel}{Do{\_}Add{\_}Sets}{doaddsets}
|
|
\Declaration
|
|
procedure Do{\_}Add{\_}Sets(Set1,Set2,Dest : Pointer);
|
|
\Description
|
|
Calculate the addition between \textsf{set1} and \textsf{set2}, setting the
|
|
result in \textsf{dest}.
|
|
\Parameters
|
|
set1 = pointer to 32 byte set \par
|
|
set2 = pointer to 32 byte set \par
|
|
dest = pointer to 32 byte set which will receive the result
|
|
\Notes
|
|
This works on normal sets only.
|
|
\Algorithm
|
|
\begin{lstlisting}{}
|
|
For each bit in the set do
|
|
dest bit = set1 bit OR set2 bit
|
|
\end{lstlisting}
|
|
\end{procedurel}
|
|
|
|
\subsubsection{FPC{\_}SET{\_}LOAD{\_}SMALL}
|
|
\label{subsubsec:mylabel95}
|
|
|
|
\begin{procedurel}{Do{\_}Load{\_}Small}{doloadsmall}
|
|
\Declaration
|
|
Procedure Do{\_}Load{\_}Small(P : Pointer;L:Longint);
|
|
\Description
|
|
Load a small set into a 32-byte normal set.
|
|
\Parameters
|
|
p = pointer to 32 byte set \par
|
|
l = value of the small set
|
|
\Notes
|
|
Called by code generator (type conversion) from small set to large set.
|
|
Apart from the first 32 bits of the 32 byte set, other bits are not
|
|
modified.
|
|
\Algorithm
|
|
\begin{lstlisting}{}
|
|
For n = bit 0 to bit 31 of l do
|
|
p bit n = l bit n
|
|
\end{lstlisting}
|
|
\end{procedurel}
|
|
|
|
\subsubsection{FPC{\_}SET{\_}UNSET{\_}BYTE}
|
|
\label{subsubsec:mylabel96}
|
|
|
|
\begin{procedurel}{Do{\_}Unset{\_}Byte}{dounsetbyte}
|
|
\Declaration
|
|
Procedure Do{\_}Unset{\_}Byte(P : Pointer;B : Byte);
|
|
\Description
|
|
Called by code generator to exclude element b from a big 32-byte set pointed
|
|
to by p.
|
|
\Parameters
|
|
p = pointer to 32 byte set \par b = element number to exclude
|
|
\Notes
|
|
The intel 80386 version of the compiler does not save the used registers,
|
|
therefore, in that case, it must be done in the routine itself.
|
|
\Algorithm
|
|
Clear bit number b in p
|
|
\end{procedurel}
|
|
|
|
\subsubsection{FPC{\_}SET{\_}IN{\_}BYTE}
|
|
\label{subsubsec:mylabel97}
|
|
|
|
\begin{functionl}{Do{\_}In{\_}Byte}{doinbyte}
|
|
\Declaration
|
|
Function Do{\_}In{\_}Byte(P : Pointer;B : Byte):boolean;
|
|
\Description
|
|
Called by code generator to verify the existence of an element in a set.
|
|
Returns TRUE if b is in the set pointed to by p, otherwise returns FALSE.
|
|
\Parameters
|
|
p = pointer to 32 byte set \par b = element number to verify
|
|
\Notes
|
|
This routine should save / restore all used registers.
|
|
\Algorithm
|
|
Clear bit number b in p
|
|
\end{functionl}
|
|
|
|
\subsection{Optional internal routines}
|
|
\label{subsec:optional}
|
|
|
|
These routines are dependant on the target architecture. They are present in
|
|
software if the hardware does not support these features.
|
|
|
|
They could be implemented in assembler directly with register parameter
|
|
passing.
|
|
|
|
\subsubsection{FPC{\_}MUL{\_}INT64}
|
|
\label{subsubsec:mylabel98}
|
|
|
|
\begin{function}{MulInt64}
|
|
\Declaration
|
|
function MulInt64(f1,f2 : Int64;CheckOverflow : LongBool) : Int64;
|
|
\Description
|
|
Called by the code generator to multiply two int64 values, when the hardware
|
|
does not support this type of operation. The value returned is the result of
|
|
the multiplication.
|
|
\Parameters
|
|
f1 = first operand \par
|
|
f2 = second operand \par
|
|
checkoverflow = TRUE if overflow checking should be done
|
|
\end{function}
|
|
|
|
\subsubsection{FPC{\_}DIV{\_}INT64}
|
|
\label{subsubsec:mylabel99}
|
|
|
|
\begin{function}{DivInt64}
|
|
\Declaration
|
|
function DivInt64(n,z : Int64) : Int64;
|
|
\Description
|
|
Called by the code generator to get the division two int64 values, when the
|
|
hardware does not support this type of operation. The value returned is the
|
|
result of the division.
|
|
\Parameters
|
|
n =numerator \par
|
|
z = denominator
|
|
\end{function}
|
|
|
|
\subsubsection{FPC{\_}MOD{\_}INT64}
|
|
\label{subsubsec:mylabel100}
|
|
|
|
\begin{function}{ModInt64}
|
|
\Declaration
|
|
function ModInt64(n,z : Int64) : Int64;
|
|
\Description
|
|
Called by the code generator to get the modulo two int64 values, when the
|
|
architecture does not support this type of operation. The value returned is
|
|
the result of the modulo.
|
|
\Parameters
|
|
n = numerator \par
|
|
z = denominator
|
|
\end{function}
|
|
|
|
\subsubsection{FPC{\_}SHL{\_}INT64}
|
|
\label{subsubsec:mylabel101}
|
|
|
|
\begin{function}{ShlInt64}
|
|
\Declaration
|
|
Function ShlInt64(Cnt : Longint; Low, High: Longint): Int64;
|
|
\Description
|
|
Called by the code generator to shift left a 64-bit integer by the specified
|
|
amount cnt, when this is not directly supported by the hardware. Returns the
|
|
shifted value.
|
|
\Parameters
|
|
low,high = value to shift (low / high 32-bit value) \par
|
|
cnt = shift count
|
|
\end{function}
|
|
|
|
\subsubsection{FPC{\_}SHR{\_}INT64}
|
|
\label{subsubsec:mylabel102}
|
|
|
|
\begin{function}{ShrInt64}
|
|
\Declaration
|
|
function ShrInt64(Cnt : Longint; Low, High: Longint): Int64;
|
|
\Description
|
|
Called by the code generator to shift left a 64-bit integer by the specified
|
|
amount cnt, when this is not directly supported by the hardware. Returns the
|
|
shifted value.
|
|
\Parameters
|
|
low,high = value to shift (low/high 32-bit values) \par
|
|
cnt = shift count
|
|
\end{function}
|
|
|
|
\subsubsection{FPC{\_}MUL{\_}LONGINT}
|
|
\label{subsubsec:mylabel103}
|
|
|
|
\begin{function}{MulLong}
|
|
\Declaration
|
|
Function MulLong: Longint;
|
|
\Description
|
|
Called by the code generator to multiply two longint values, when the hardware does not support this type of operation. The value returned is the result of the multiplication.
|
|
\Parameters
|
|
Parameters are passed in registers.
|
|
\Notes
|
|
This routine should save / restore all used registers.
|
|
\end{function}
|
|
|
|
\subsubsection{FPC{\_}REM{\_}LONGINT}
|
|
\label{subsubsec:mylabel104}
|
|
|
|
\begin{function}{RemLong}
|
|
\Declaration
|
|
Function RemLong: Longint;
|
|
\Description
|
|
Called by the code generator to get the modulo two longint values, when the
|
|
hardware does not support this type of operation. The value returned is the
|
|
result of the modulo.
|
|
\Parameters
|
|
Parameters are passed in registers.
|
|
\Notes
|
|
This routine should save / restore all used registers.
|
|
\end{function}
|
|
|
|
\subsubsection{FPC{\_}DIV{\_}LONGINT}
|
|
\label{subsubsec:mylabel105}
|
|
|
|
\begin{function}{DivLong}
|
|
\Declaration
|
|
Function DivLong: Longint;
|
|
\Description
|
|
Called by the code generator to get the division two longint values, when
|
|
the hardware does not support this type of operation. The value returned is
|
|
the result of the division.
|
|
\Parameters
|
|
Parameters are passed in registers.
|
|
\Notes
|
|
This routine should save / restore all used registers.
|
|
\end{function}
|
|
|
|
\subsubsection{FPC{\_}MUL{\_}LONGINT}
|
|
\label{subsubsec:mylabel106}
|
|
|
|
\begin{function}{MulCardinal}
|
|
\Declaration
|
|
Function MulCardinal: Cardinal;
|
|
\Description
|
|
Called by the code generator to multiply two cardinal values, when the
|
|
hardware does not support this type of operation. The value returned is the
|
|
result of the multiplication.
|
|
\Parameters
|
|
Parameters are passed in registers.
|
|
\Notes
|
|
This routine should save / restore all used registers.
|
|
\end{function}
|
|
|
|
\subsubsection{FPC{\_}REM{\_}CARDINAL}
|
|
\label{subsubsec:mylabel107}
|
|
|
|
\begin{function}{RemCardinal}
|
|
\Declaration
|
|
Function RemCardinal : Cardinal;
|
|
\Description
|
|
Called by the code generator to get the modulo two cardinal values, when the
|
|
hardware does not support this type of operation. The value returned is the
|
|
result of the modulo.
|
|
\Parameters
|
|
Parameters are passed in registers.
|
|
\Notes
|
|
This routine should save / restore all used registers.
|
|
\end{function}
|
|
|
|
\subsubsection{FPC{\_}DIV{\_}CARDINAL}
|
|
\label{subsubsec:mylabel108}
|
|
|
|
\begin{function}{DivCardinal}
|
|
\Declaration
|
|
Function DivCardinal: Cardinal;
|
|
\Description
|
|
Called by the code generator to get the division two cardinal values, when
|
|
the hardware does not support this type of operation. The value returned is
|
|
the result of the division.
|
|
\Parameters
|
|
Parameters are passed in registers.
|
|
\Notes
|
|
This routine should save / restore all used registers.
|
|
\end{function}
|
|
|
|
\subsubsection{FPC{\_}LONG{\_}TO{\_}SINGLE}
|
|
\label{subsubsec:mylabel109}
|
|
|
|
\begin{function}{LongSingle}
|
|
\Declaration
|
|
Function LongSingle: Single;
|
|
\Description
|
|
Called by the code generator to convert a longint to a single IEEE floating
|
|
point value.
|
|
\Parameters
|
|
Parameters are passed in registers
|
|
\Notes
|
|
This routine should save / restore all used registers.
|
|
\end{function}
|
|
|
|
FPC{\_}ADD{\_}SINGLE
|
|
|
|
FPC{\_}SUB{\_}SINGLE
|
|
|
|
FPC{\_}MUL{\_}SINGLE
|
|
|
|
FPC{\_}REM{\_}SINGLE
|
|
|
|
FPC{\_}DIV{\_}SINGLE
|
|
|
|
FPC{\_}CMP{\_}SINGLE
|
|
|
|
FPC{\_}SINGLE{\_}TO{\_}LONGINT
|
|
|
|
\section{Optimizing your code}
|
|
\label{sec:optimizing}
|
|
|
|
\subsection{Simple types}
|
|
\label{subsec:simple}
|
|
|
|
Use the most simple types, when defining and declaring variables, they
|
|
require less overhead. Classes, and complex string types (ansi strings and
|
|
wide strings) posess runtime type information, as well as more overhead for
|
|
operating on them then simple types such as shortstring and simple ordinal
|
|
types.
|
|
|
|
\subsection{constant duplicate merging}
|
|
\label{subsec:constant}
|
|
|
|
When duplicates of constant strings, sets or floating point values are found
|
|
in the code, they are replaced by only once instance of the same string, set
|
|
or floating point constant which reduces the size of the final executable.
|
|
|
|
\subsection{inline routines}
|
|
\label{subsec:inline}
|
|
|
|
The following routines of the system unit are directly inlined by the
|
|
compiler, and generate more efficient code:
|
|
|
|
\begin{longtable}{|l|l|}
|
|
\hline
|
|
Prototype& Definition and notes \\
|
|
\hline
|
|
\endhead
|
|
\hline
|
|
\endfoot
|
|
\textsf{function pi : extended;}& \\
|
|
\textsf{function abs(d : extended) : extended;}& \\
|
|
\textsf{function sqr(d : extended) : extended;}& \\
|
|
\textsf{function sqrt(d : extended) : extended;}& \\
|
|
\textsf{function arctan(d : extended) : extended;}& \\
|
|
\textsf{function ln(d : extended) : extended;}& \\
|
|
\textsf{function sin(d : extended) : extended;}& \\
|
|
\textsf{function cos(d : extended) : extended;}& \\
|
|
\textsf{function ord(X): longint;}&
|
|
Changes node type to be type compatible \\
|
|
\textsf{function lo(X) : byte or word;}&
|
|
Generates 2-3 instruction sequence inline \\
|
|
\textsf{function hi(X) : byte or word;}&
|
|
Generates 2-3 instruction sequence inline \\
|
|
\textsf{function chr(b : byte) : Char;}&
|
|
Changes node type to be type compatible \\
|
|
\textsf{function Length(s : string) : byte;}&
|
|
Generate 2-3 instruction sequence \\
|
|
\textsf{function Length(c : char) : byte;}&
|
|
Generates 1 instruction sequence (appx.) \\
|
|
\textsf{procedure Reset(var f : TypedFile);}&
|
|
Calls FPC{\_}RESET{\_}TYPED \\
|
|
\textsf{procedure rewrite(var f : TypedFile);}&
|
|
Calls FPC{\_}REWRITE{\_}TYPED \\
|
|
\textsf{procedure settextbuf(var F : Text; var Buf);}&
|
|
Calls SetTextBuf of runtime library \\
|
|
\textsf{procedure writen;}&
|
|
Calls FPC{\_}WRITE{\_}XXXX routines \\
|
|
\textsf{procedure writeln;}&
|
|
Calls FPC{\_}WRITE{\_}XXXX routines \\
|
|
\textsf{procedure read;}&
|
|
Calls FPC{\_}READ{\_}XXXX routines \\
|
|
\textsf{procedure readln;}&
|
|
Calls FPC{\_}READ{\_}XXXX routines \\
|
|
\textsf{procedure concat;}&
|
|
Generates a TREE NODES of type addn \\
|
|
\textsf{function assigned(var p): boolean;}&
|
|
Generates 1-2 instruction sequence inline \\
|
|
\textsf{procedure str(X :[Width [:Decimals]]; var S);}& \\
|
|
\textsf{}& \\
|
|
\textsf{function sizeof(X): longint;}&
|
|
Generates 2-3 instruction sequence inline \\
|
|
\textsf{function typeof(X): pointer;}&
|
|
Generates 2-3 instruction sequence inline \\
|
|
\textsf{procedure val(S;var V; var Code: integer);}& \\
|
|
\textsf{function seg(X): longint;}& \\
|
|
\textsf{function High(X)}&
|
|
Generates a TREE NODE of type ordconstn \\
|
|
\textsf{function Low(X)}&
|
|
Generates a TREE NODE of type ordconstn \\
|
|
\textsf{function pred(x)}&
|
|
Generates 2-3 instruction sequence inline \\
|
|
\textsf{function succ(X)}&
|
|
Generates 2-3 instruction sequence inline \\
|
|
\textsf{procedure inc(var X [ ; N: longint]);}&
|
|
Generate 2-3 instruction sequence inline \\
|
|
\textsf{procedure dec(var X [; N:longint]);}&
|
|
Generate 2-3 instruction sequence inline \\
|
|
\textsf{procedure include(var s: set of T; I: T);}& \\
|
|
\textsf{procedure exclude(var S : set of T; I: T);}& \\
|
|
\textsf{procedure assert(expr : Boolean);}&
|
|
Calls routine FPC{\_}ASSERT if the assert fails.\\
|
|
\textsf{function addr(X): pointer;}&
|
|
Generates a TREE NODE of type addrn \\
|
|
\textsf{function typeInfo(typeIdent): pointer;}&
|
|
Generates 1 instruction sequence inline \\
|
|
\end{longtable}
|
|
|
|
\subsection{temporary memory allocation reuse}
|
|
\label{subsec:mylabel11}
|
|
|
|
When routines are very complex , they may require temporary allocated space
|
|
on the stack to store intermediate results. The temporary memory space can
|
|
be reused for several different operations if other space is required on the
|
|
stack.
|
|
|
|
\section{Appendix A}
|
|
\label{sec:appendix}
|
|
|
|
This appendix describes the temporary defines when compiling software under
|
|
the compiler:
|
|
|
|
The following defines are defined in FreePascal for v1.0.x, but they will be
|
|
removed in future versions, they are used for debugging purposes only:
|
|
|
|
\begin{itemize}
|
|
\item INT64
|
|
\item HASRESOURCESTRINGS
|
|
\item NEWVMTOFFSET
|
|
\item HASINTERNMATH
|
|
\item SYSTEMVARREC
|
|
\item INCLUDEOK
|
|
\item NEWMM
|
|
\item HASWIDECHAR
|
|
\item INT64FUNCRESOK
|
|
\item CORRECTFLDCW
|
|
\item ENHANCEDRAISE
|
|
\item PACKENUMFIXED
|
|
\end{itemize}
|
|
|
|
NOTE: Currently, the only possible stack alignment are either 2 or 4 if the
|
|
target operating system pushes parameters on the stack directly in assembler
|
|
(because for example if pushing a long value on the stack while the required
|
|
stack alignment is 8 will give out wrong access to data in the actual
|
|
routine -- the offset will be wrong).
|
|
|
|
\printindex
|
|
\end{document}
|
|
|