mirror of
https://gitlab.com/freepascal.org/fpc/source.git
synced 2025-05-17 18:42:32 +02:00
5445 lines
170 KiB
TeX
5445 lines
170 KiB
TeX
% \begin{meta-comment}
|
|
%
|
|
% $Id$
|
|
%
|
|
% Another rewrite of the tabular environment, and maths alignments
|
|
%
|
|
% (c) 1996 Mark Wooding
|
|
%
|
|
%----- Revision history -----------------------------------------------------
|
|
%
|
|
% $Log$
|
|
% Revision 1.1 1998-09-21 10:19:01 michael
|
|
% Initial implementation
|
|
%
|
|
% Revision 1.8 1996/12/09 23:20:42 mdw
|
|
% (\tab@setstrut): Fixed so that it uses \dimen\tw@ for the strut depth,
|
|
% as advertised.
|
|
%
|
|
% Revision 1.7 1996/11/29 21:59:16 mdw
|
|
% Fixed a little formatting mistake in a syntax diagram, and switched over
|
|
% to the new syntax diagram commands on the grounds that they're slightly
|
|
% less messy. Maybe.
|
|
%
|
|
% Revision 1.6 1996/11/19 20:54:33 mdw
|
|
% Entered into RCS
|
|
%
|
|
%
|
|
% \end{meta-comment}
|
|
%
|
|
% \begin{meta-comment} <general public licence>
|
|
%%
|
|
%% mdwtab package -- another rewrite of the tabular environment, etc.
|
|
%% Copyright (c) 1996 Mark Wooding
|
|
%%
|
|
%% This program is free software; you can redistribute it and/or modify
|
|
%% it under the terms of the GNU General Public License as published by
|
|
%% the Free Software Foundation; either version 2 of the License, or
|
|
%% (at your option) any later version.
|
|
%%
|
|
%% This program is distributed in the hope that it will be useful,
|
|
%% but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
%% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
%% GNU General Public License for more details.
|
|
%%
|
|
%% You should have received a copy of the GNU General Public License
|
|
%% along with this program; if not, write to the Free Software
|
|
%% Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
%%
|
|
% \end{meta-comment}
|
|
%
|
|
% \begin{meta-comment} <Package preambles>
|
|
%<+mdwtab>\NeedsTeXFormat{LaTeX2e}
|
|
%<+mdwtab>\ProvidesPackage{mdwtab}
|
|
%<+mdwtab> [1998/04/28 1.9 Table typesetting with style]
|
|
%<+mathenv>\NeedsTeXFormat{LaTeX2e}
|
|
%<+mathenv>\ProvidesPackage{mathenv}
|
|
%<+mathenv> [1998/04/28 1.9 Various maths environments]
|
|
% \end{meta-comment}
|
|
%
|
|
% \CheckSum{2758}
|
|
%% \CharacterTable
|
|
%% {Upper-case \A\B\C\D\E\F\G\H\I\J\K\L\M\N\O\P\Q\R\S\T\U\V\W\X\Y\Z
|
|
%% Lower-case \a\b\c\d\e\f\g\h\i\j\k\l\m\n\o\p\q\r\s\t\u\v\w\x\y\z
|
|
%% Digits \0\1\2\3\4\5\6\7\8\9
|
|
%% Exclamation \! Double quote \" Hash (number) \#
|
|
%% Dollar \$ Percent \% Ampersand \&
|
|
%% Acute accent \' Left paren \( Right paren \)
|
|
%% Asterisk \* Plus \+ Comma \,
|
|
%% Minus \- Point \. Solidus \/
|
|
%% Colon \: Semicolon \; Less than \<
|
|
%% Equals \= Greater than \> Question mark \?
|
|
%% Commercial at \@ Left bracket \[ Backslash \\
|
|
%% Right bracket \] Circumflex \^ Underscore \_
|
|
%% Grave accent \` Left brace \{ Vertical bar \|
|
|
%% Right brace \} Tilde \~}
|
|
%%
|
|
%
|
|
% \begin{meta-comment}
|
|
%
|
|
%<*driver>
|
|
\input{mdwtools}
|
|
\describespackage{mdwtab}
|
|
\describespackage{mathenv}
|
|
\addcontents{lot}{\listoftables}
|
|
\mdwdoc
|
|
%</driver>
|
|
%
|
|
% \end{meta-comment}
|
|
%
|
|
%^^A-------------------------------------------------------------------------
|
|
% \renewcommand{\tabstyle}{\small}
|
|
%
|
|
% \section{User guide}
|
|
%
|
|
%
|
|
% The \package{mdwtab} package contains a reimplementation of the standard
|
|
% \LaTeX\ \env{tabular} and \env{array} environments. This is not just an
|
|
% upgraded version: it's a complete rewrite. It has several advantages over
|
|
% the official \package{array} package (not raw \LaTeX's, which is even less
|
|
% nice), and it's more-or-less compatible. Most of these are rather
|
|
% technical, I'll admit.
|
|
%
|
|
% \begin{itemize}
|
|
%
|
|
% \item The newcolumn system is properly and perfectly integrated into the
|
|
% system. There are now \emph{no} `primitive' column types -- all the
|
|
% standard types are created as user-defined columns.
|
|
%
|
|
% \item You can define entirely different table-like environments using the
|
|
% equipment here. It's still hard work, although less so than before.
|
|
% I'll do an example of this some time.
|
|
%
|
|
% \item Construction of the preamble is generally much tidier. I've used
|
|
% token registers rather than |\edef|, and it's all done very nicely.
|
|
%
|
|
% \item Fine spacing before and after rules (described by DEK as `a mark of
|
|
% quality') is now utterly trivial, since the preamble-generator will
|
|
% store the appropriate information.
|
|
%
|
|
% \item You can use \env{array} in LR and paragraph modes without having
|
|
% to surround it with `|$|' signs.
|
|
%
|
|
% \item Usually you don't want tables in the middle of paragraphs. For these
|
|
% cases, I've provided a simpler way to position the table
|
|
% horizontally.
|
|
%
|
|
% \item Footnotes work properly inside \env{tabular} environments (hoorah!).
|
|
% You can `catch' footnotes using the \env{minipage} environment if
|
|
% you like. (It uses an internal version of the \package{footnote}
|
|
% package to handle footnotes, which doesn't provide extra goodies like
|
|
% the \env{footnote} environment; you'll need to load the full package
|
|
% explicitly to get them.)
|
|
%
|
|
% \item Standard \LaTeX\ tabular environments have a problem with lining up
|
|
% ruled tables. The |\firsthline| command given in the \textit{\LaTeX\
|
|
% Companion} helps a bit, but it's not really good enough, and besides,
|
|
% it doesn't \emph{actually} line the text up right after all. The
|
|
% \package{mdwtab} package does the job properly to begin with, so you
|
|
% don't need to worry.
|
|
%
|
|
% \end{itemize}
|
|
%
|
|
% I've tested the following packages with \package{mdwtab}, and they all
|
|
% work. Some of the contortions required to make them work weren't pleasant,
|
|
% but you don't need to know about them. By a strange coincidence, all the
|
|
% packages were written by David Carlisle. Anyway, here's the list:
|
|
% \begin{itemize}
|
|
% \item The quite nice \package{dcolumn} package.
|
|
% \item The more useful \package{delarray} package.
|
|
% \item The rather spiffy \package{hhline} package.
|
|
% \item The truly wonderful \package{tabularx} package.
|
|
% \item The utterly magnificent \package{longtable} package.
|
|
% \end{itemize}
|
|
%
|
|
% Note that I've looked at \package{supertabular} as well: it won't work, so
|
|
% use \package{longtable} instead, 'cos it's much better.
|
|
%
|
|
%
|
|
% \subsection{The downside}
|
|
%
|
|
% There's no such thing as a free lunch. The \package{mdwtab} environment
|
|
% is not 100\% compatible with the \env{tabular} environment found in
|
|
% \LaTeXe\ or the \package{array} package.
|
|
%
|
|
% The differences between \package{mdwtab} and \LaTeXe's \env{tabular}
|
|
% environment are as follows:
|
|
%
|
|
% \begin{itemize} \synshorts \let\`=\lq
|
|
%
|
|
% \item The vertical spacing in \env{array} environments is different to
|
|
% that in \env{tabular} environments. This produces more attractive
|
|
% results in most mathematical uses of \env{array}s, in the author's
|
|
% opinion. The spacing can be modified by playing with length
|
|
% parameters.
|
|
%
|
|
% \item The presence of horizontal and vertical rules will alter the spacing
|
|
% of the table (so a pair of columns separated by a `|' is wider than
|
|
% a pair with no separation by "\\arrayrulewidth". This does mean that
|
|
% horizontal and vertical rules match up properly -- the usual \LaTeX\
|
|
% environment makes the horizontal rules stop just short of the edge
|
|
% of the table, making an ugly mess (check out the \textit{\LaTeX\
|
|
% book} if you don't believe me -- page~62 provides a good example).
|
|
% The \package{array} package handles rules in the same way as
|
|
% \package{mdwtab}.
|
|
%
|
|
% \setbox0=\hbox{\footnotesize`\\def\\xcs{\\tabskip=\\fill}'}
|
|
% \setbox2=\hbox{\footnotesize`...@{\\span\\xcs}...'}
|
|
% \item In common with the \package{array} package, there are some
|
|
% restrictions on the use of the "\\extracolsep" command in preambles:
|
|
% you may use at most one "\\extracolsep" command in each `@' or `!'
|
|
% expression. Also, you can't say
|
|
% \begin{listing}
|
|
%\newcommand{\xcs}{\extracolsep{\fill}}
|
|
% \end{listing}
|
|
% and then expect something like `...@{\\xcs}...' to actually work --
|
|
% the "\\extracolsep" mustn't be hidden inside any other
|
|
% commands. Because things like `@' expressions aren't expanded at
|
|
% the time, "\\extracolsep" has to be searched and processed
|
|
% \`by hand'.\footnote{^^A
|
|
% All \cs{extracolsep} does is modify the \cs{tabskip} glue, so
|
|
% if you were an evil \TeX\ hacker like me, you could just say
|
|
% \unhbox0\ and put \unhbox2\ in your preamble. That'd work nicely.
|
|
% It also works with the \package{array} package.}
|
|
%
|
|
% \item Control sequences (commands) in a table's preamble aren't expanded
|
|
% before the preamble is read. In fact, commands in the preamble are
|
|
% considered to be column types, and their names are entirely
|
|
% independent of normal \LaTeX\ commands. No column types of this
|
|
% nature have yet been defined\footnote{^^A
|
|
% There used to be an internal \cs{@magic} type used by
|
|
% \env{eqnarray}, but you're not supposed to know about that.
|
|
% Besides, it's not there any more.}
|
|
% but the possibility's always there. Use the "\\newcolumntype" or
|
|
% "\\coldef" commands to define new column types.
|
|
%
|
|
% \item The preamble parsing works in a completely different way. There is
|
|
% a certain amount of compatibility provided, although it's heavily
|
|
% geared towards keeping \package{longtable} happy and probably won't
|
|
% work with other packages.
|
|
%
|
|
% \item Obscure constructs which were allowed by the old preamble parser but
|
|
% violate the syntax shown in the next section (e.g., `|@{}|' to
|
|
% suppress the "\\doublerulesep" space between two vertical rules,
|
|
% described in \textit{The \LaTeX\ Companion} as \`a misuse of the
|
|
% `@{...}' qualifier') are now properly outlawed. You will be given
|
|
% an error message if you attempt to use such a construction.
|
|
%
|
|
% \item The `*' forms (which repeat column types) are now expanded at a
|
|
% different time. Previously, preambles like `c@*{4}{{:}@}{--}c'
|
|
% were considered valid (the example would expand to
|
|
% `c@{:}@{:}@{:}@{:}@{--}c'), because `*'s were expanded before the
|
|
% preamble was actually parsed. In the new system, `*' is treated
|
|
% just like any other preamble character (it just has a rather odd
|
|
% action), and preambles like this will result in an error (and
|
|
% probably a rather confusing one).
|
|
%
|
|
% \end{itemize}
|
|
%
|
|
% There are also several incompatibilities between \package{mdwtab} and
|
|
% \package{array}:
|
|
%
|
|
% \begin{itemize} \synshorts \let\`=\lq
|
|
%
|
|
% \item Because of the way "\\newcolumntype" works in the \package{array}
|
|
% package, a horrid construction like
|
|
% \begin{listing}
|
|
%\newcolumntype{x}{{:}}
|
|
%\begin{tabular}{|c!xc|}
|
|
% \end{listing}
|
|
% is considered to be valid, and is interpreted as `|c!{:}c|'. My
|
|
% reading of pages~54 and~55 of the \textit{\LaTeX\ book} tells me
|
|
% that this sort of thing is forbidden in normal \LaTeX\ commands.
|
|
% The \package{mdwtab} preamble parser now treats column type letters
|
|
% much more like commands with the result that the hacking above won't
|
|
% work any more. The construction above would actually be interpreted
|
|
% as `|c!{x}c|' (i.e., the `x' column type wouldn't be expanded to
|
|
% `{:}' because the parser noticed that it was the argument to the
|
|
% `!' modifier\footnote{^^A
|
|
% This is a direct result of the way \TeX\ treats undelimited
|
|
% arguments. See chapters~5 and~20 of \textit{The \TeX book} for
|
|
% more information about how grouping affects argument reading.}).
|
|
%
|
|
% \item Most of the points above, particularly those relating to the
|
|
% handling of the preamble, also apply to the \package{array} package.
|
|
% it's not such an advance over the \LaTeXe\ version as everyone said
|
|
% it was.
|
|
%
|
|
% \end{itemize}
|
|
%
|
|
%
|
|
% \subsection{Syntax}
|
|
%
|
|
% \DescribeEnv{tabular}
|
|
% \DescribeEnv{tabular*}
|
|
% \DescribeEnv{array}
|
|
% So that everyone knows where I stand, here's a complete syntax for my
|
|
% version of the \env{tabular} environment, and friends
|
|
%
|
|
% \begin{grammar}
|
|
%
|
|
% <tabular-env> ::= \[[
|
|
% "\\begin"
|
|
% \begin{stack}
|
|
% "{tabular}" \\ "{tabular*}" "{" <length> "}" \\
|
|
% "{array}" \\ "{smarray}"
|
|
% \end{stack}
|
|
% \[ "[" <position-arg> "]" \]
|
|
% "{" <preamble> "}" <text>
|
|
% "\\end"
|
|
% \( "{tabular}" \\ "{tabular*}" \\ "{array}" \\ "{smarray}" \)
|
|
% \]]
|
|
%
|
|
% <position-arg> ::= (see below)
|
|
%
|
|
% <preamble> ::= \[[
|
|
% <first-column>
|
|
% \[ \< <column> \> \]
|
|
% \]]
|
|
%
|
|
% <first-column> ::= \[[ \[ <rule> \] <column> \]]
|
|
%
|
|
% <column> ::= \[[
|
|
% \[ <spacing> \] \[ \< <user-pre-text> \> \] <column-type>
|
|
% \[ \< <user-post-text> \> \] \[ <spacing> \] \[ <rule> \]
|
|
% \]]
|
|
%
|
|
% <spacing> ::= \[[ "@" "{" <text> "}" \]]
|
|
%
|
|
% <user-pre-text> ::= \[[ ">" "{" <text> "}" \]]
|
|
%
|
|
% <column-type> ::= \[[
|
|
% \begin{stack}
|
|
% \[ "T" \\ "M" \] \( "l" \\ "c" \\ "r" \) \\
|
|
% \( "p" \\ "m" \\ "b" \) "{" <length> "}" \\
|
|
% "#" "{" <raw-pre-text> "}" "{" <raw-post-text> "}"
|
|
% \end{stack}
|
|
% \]]
|
|
%
|
|
% <user-post-text> ::= \[[ "<" "{" <text> "}" \]]
|
|
%
|
|
% <rule> ::= \[[ \( "|" \\ "!" "{" <text> "}" \) \]]
|
|
%
|
|
% \end{grammar}
|
|
%
|
|
% If you examine the above very carefully, you'll notice a slight deviation
|
|
% from the original -- an |@|-expression \emph{following} a rule is
|
|
% considered to be part of the \emph{next} column, not the current one. This
|
|
% is, I think, an almost insignificant change, and essential for some of the
|
|
% new features. You'll also notice the new |#| column type form, which
|
|
% allows you to define new real column types instead of just modifying
|
|
% existing ones. It's not intended for direct use in preambles -- it's
|
|
% there mainly for the benefit of people who know what they're doing and
|
|
% insist on using |\newcolumntype| anyway.
|
|
%%
|
|
% The actual column types are shown in table~\ref{tbl:columns}.
|
|
%
|
|
% \begin{table}
|
|
% \begin{tabular}[C]{| >{\synshorts} c | m{3in} |} \hlx{hv[1]}
|
|
%
|
|
% \multicolumn{2}{|c|}{\bf Column types} \\ \hlx{v[1]hv}
|
|
% \bf Name & \bf Meaning \\ \hlx{vhv.}
|
|
% "l" & Left aligned text (\env{tabular}) or
|
|
% equation (\env{array}). \\ \hlx{.}
|
|
% "c" & Centred text (\env{tabular}) or
|
|
% equation (\env{array}). \\ \hlx{.}
|
|
% "r" & Right aligned text (\env{tabular}) or
|
|
% equation (\env{array}). \\ \hlx{vhv.}
|
|
% "Ml", "Mc" and "Mr" & Left, centre and right aligned
|
|
% equations.* \\ \hlx{.}
|
|
% "Tl", "Tc" and "Tr" & Left, centre and right aligned
|
|
% text.* \\ \hlx{vhv.}
|
|
% "p{"<width>"}" & Top aligned paragraph with the given
|
|
% width. \\ \hlx{.}
|
|
% "m{"<width>"}" & Vertically centred paragraph with
|
|
% the given width. \\ \hlx{.}
|
|
% "b{"<width>"}" & Bottom aligned paragraph with the
|
|
% given width. \\ \hlx{vhv.}
|
|
% "#{"<pre>"}{"<post>"}" & User defined column type:
|
|
% \<pre> is inserted before the
|
|
% cell entry, \<post> is inserted
|
|
% afterwards.* \\ \hlx{vhhv[1]}
|
|
%
|
|
% \multicolumn{2}{|c|}{\bf Other modifier characters} \\ \hlx{v[1]hv}
|
|
% \bf Name & \bf Meaning \\ \hlx{vhv.}
|
|
% "|" & Inserts a vertical rule between
|
|
% columns. \\ \hlx{.}
|
|
% "!{"<text>"}" & Inserts \<text> between columns,
|
|
% treating it as a vertical rule. \\ \hlx{vhv.}
|
|
% "@{"<text>"}" & Inserts \<text> instead of the
|
|
% usual intercolumn space. \\ \hlx{vhv.}
|
|
% ">{"<text>"}" & Inserts \<text> just before the
|
|
% actual column entry. \\ \hlx{.}
|
|
% "<{"<text>"}" & Inserts \<text> just after the
|
|
% actual column entry. \\ \hlx{vhv.}
|
|
% "*{"<count>"}{"<chars>"}" & Inserts \<count>
|
|
% copies of the \<chars> into the
|
|
% preamble. \\ \hlx{vhs}
|
|
%
|
|
% \multicolumn{2}{@{}l}{* This column type is a new feature}
|
|
% \end{tabular}
|
|
%
|
|
% \caption{\package{array} and \package{tabular} column types and modifiers}
|
|
% \label{tbl:columns}
|
|
% \end{table}
|
|
%
|
|
% Now that's sorted everything out, there shouldn't be any arguments at all
|
|
% about what a column means.
|
|
%
|
|
% The lowercase \<position-arg>s \lit{t}, \lit{c} and \lit{b} do exactly
|
|
% what they did before: control the vertical positioning of the table. The
|
|
% uppercase ones control the \emph{horizontal} positioning -- this is how you
|
|
% create \emph{unboxed} tables. You can only create unboxed tables in
|
|
% paragraph mode.
|
|
%
|
|
% Note that unboxed tables still can't be broken across pages. Use
|
|
% the \package{longtable} package for this, because it already does an
|
|
% excellent job.
|
|
%
|
|
% \DescribeMacro{\tabpause}
|
|
% One thing you can to with unboxed tables, however, is to `interrupt' them,
|
|
% do some normal typesetting, and then continue. This is achieved by the
|
|
% |\tabpause| command: its argument is written out in paragraph mode, and
|
|
% the table is continued after the argument finishes.
|
|
% Note that it isn't a real argument as far as commands like |\verb| are
|
|
% concerned -- they'll work inside |\tabpause| without any problems.
|
|
%
|
|
% \DescribeMacro{\vline}
|
|
% The |\vline| command draws a vertical rule the height of the current table
|
|
% cell (unless the current cell is being typeset in paragraph mode -- it
|
|
% only works in the simple LR-mode table cells, or in \lit{@} or \lit{!}
|
|
% modifiers). It's now been given an optional argument which gives the
|
|
% width of the rule to draw:
|
|
%
|
|
% { \let\tabstyle=\relax
|
|
% \begin{demo}{An example of \cmd\vline}
|
|
%\large
|
|
%\begin{tabular}
|
|
% {| c !{\vline[2pt]} c | c |}
|
|
% \hlx{hv}
|
|
% \bf A & \it B & \sf C \\
|
|
% \hlx{vhv}
|
|
% \bf D & \it E & \sf F \\
|
|
% \hlx{vh}
|
|
%\end{tabular}
|
|
% \end{demo}
|
|
% }
|
|
%
|
|
% \DescribeMacro{smarray}
|
|
% You've probably noticed that there's an unfamiliar environment mentioned
|
|
% in the syntax shown above. The \env{smarray} environment produces a
|
|
% `small' array, with script size cells rather than the normal full text
|
|
% size cells. I've seen examples of this sort of construction\footnote{^^A
|
|
% There's a nasty use of \env{smallmatrix} in the |testmath.tex| file which
|
|
% comes with the \package{amslatex} distribution. It's actually there to
|
|
% simulate a `smallcases' environment, which the \package{mathenv} package
|
|
% includes, based around \env{smarray}.}
|
|
% being implemented by totally unsuitable commands. Someone may find it
|
|
% handy.
|
|
%
|
|
%
|
|
% \subsection{An updated \cs{cline} command}
|
|
%
|
|
% \DescribeMacro{\cline}
|
|
% The standard \LaTeX\ |\cline| command has been updated. As well as just
|
|
% passing a range of columns to draw lines through, you can now pass a comma
|
|
% separated list of column numbers and ranges:
|
|
%
|
|
% \begin{grammar}
|
|
% <cline-cmd> ::= \[[
|
|
% "\\cline" "{" \< <number> \[ "-" <number> \] \\ "," \> "}"
|
|
% \]]
|
|
% \end{grammar}
|
|
%
|
|
% The positioning of the horizontal lines has also been improved a bit, so
|
|
% that they meet up with the vertical lines properly. Displays like the one
|
|
% in the example below don't look good unless this has been done properly.
|
|
%
|
|
% {\let\tabstyle\relax
|
|
% \begin{demo}[w]{A \cs{cline} example}
|
|
%\newcommand{\mc}{\multicolumn{1}}
|
|
%\begin{tabular}[C]{|c|c|c|c|} \cline{2,4}
|
|
% \mc{c|}{one} & two & three & four \\ \hline
|
|
% five & six & seven & \mc{c}{eight} \\ \cline{1,3}
|
|
%\end{tabular}
|
|
% \end{demo}
|
|
% }
|
|
%
|
|
% \subsection{Spacing control}
|
|
%
|
|
% One of the most irritating things about \LaTeX's tables is that there isn't
|
|
% enough space around horizontal rules. Donald Knuth, in \textit{The
|
|
% \TeX book}, describes addition of some extra vertical space here as `a mark
|
|
% of quality', and since \TeX\ was designed to produce `beautiful documents'
|
|
% it seems a shame that \LaTeX\ doesn't allow this to be done nicely. Well,
|
|
% it does now.
|
|
%
|
|
% \DescribeMacro{\vgap}
|
|
% The extra vertical space is added using a command |\vgap|, with the
|
|
% following syntax:
|
|
%
|
|
% \begin{grammar}
|
|
%
|
|
% <vgap-cmd> ::= \[[
|
|
% "\\vgap" \[ "[" <which-cols> "]" \] "{" <length> "}"
|
|
% \]]
|
|
%
|
|
% <which-cols> ::= \[[ \< <number> \[ "-" <number> \] \\ "," \> \]]
|
|
%
|
|
% \end{grammar}
|
|
%
|
|
% This command must appear either immediately after the beginning of the
|
|
% table or immediately after the |\\| which ends a row. (Actually, there are
|
|
% other commands which also have this requirement -- you can specify a
|
|
% collection of them wherever you're allowed to give any one.) It adds some
|
|
% vertical space (the amount is given by the \<length>) to the table,
|
|
% making sure that the vertical rules of the table are extended correctly.
|
|
%
|
|
% The |\vgap| command relies on information stored while your table preamble
|
|
% is being examined. However, it's possible that you might not want some
|
|
% of the rules drawn (e.g., if you've used |\multicolumn|). The optional
|
|
% \<which-cols> argument allows you to specify which rules are \emph{not}
|
|
% to be drawn. You can specify either single column numbers or ranges. The
|
|
% rule at the very left hand side is given the number~0; the rules at the
|
|
% end of column~$n$ are numbered~$n$. It's easy really.
|
|
%
|
|
% \DescribeMacro{\hlx}
|
|
% Using |\vgap| is all very well, but it's a bit cumbersome, and takes up a
|
|
% lot of typing, especially when combined with |\hline| commands. The |\hlx|
|
|
% command tries to tidy things.
|
|
%
|
|
% The syntax is simple:
|
|
% \begin{grammar}
|
|
%
|
|
% <hlx-cmd> ::= \[[
|
|
% "\\hlx" "{"
|
|
% \begin{rep}
|
|
% \begin{stack}
|
|
% "h" \\
|
|
% \tok{"v["<which-cols>"]["<length>"]"} \\
|
|
% \tok{"s["<length>"]"} \\
|
|
% \tok{"c{"<which-cols>"}"} \\
|
|
% "b" \\
|
|
% \tok{"/["<number>"]"} \\
|
|
% "."
|
|
% \end{stack}
|
|
% \end{rep}
|
|
% "}"
|
|
% \]]
|
|
%
|
|
% \end{grammar}
|
|
% The argument works a bit like a table preamble, really. Each letter is a
|
|
% command. The following are supported:
|
|
%
|
|
% \begin{description}
|
|
%
|
|
% \item [\lit*{h}] Works just like |\hline|. If you put two adjacent to each
|
|
% other, a gap will be put between them.
|
|
%
|
|
% \item [\lit*{v[}\<which-cols>\lit*{][}\<length>\lit*{]}] Works
|
|
% like \syntax{"\\vgap["<which-cols>"]{"<length>"}"}. If the
|
|
% \<length> is omitted, the value of |\doublerulesep| is used.
|
|
% This usually looks right.
|
|
%
|
|
% \item [\lit*{s[}\<length>\lit*{]}] Leaves a vertical gap with the
|
|
% given size. If you omit the \<length> then |\doublerulesep| is
|
|
% used. This is usually right.
|
|
%
|
|
% \item [\lit*{c\char`\{}\<which-cols>\lit*{\char`\}}] Works just like
|
|
% |\cline|.
|
|
%
|
|
% \item [\lit*{b}] Inserts a backspace the width of a rule. This is useful
|
|
% when doing \package{longtable}s.
|
|
%
|
|
% \item [\lit*{/[}\<number>\lit*{]}] Allows a page break in a table. Don't
|
|
% use this except in a \env{longtable} environment. The \<number>
|
|
% works exactly the same as it does in the |\pagebreak| command,
|
|
% except that the default is 0, which just permits a break without
|
|
% forcing it.
|
|
%
|
|
% \item [\lit*{.}] (That's a dot) Starts the next row of the table. No
|
|
% more characters may follow the dot, and no |\hline|, |\hlx|, |\vgap|
|
|
% or |\multicolumn| commands may be used after it. You don't have to
|
|
% include it, and most of the time it's totally useless. It can be
|
|
% handy for some macros, though. I used it in (and in fact added it
|
|
% especially for) the table of column types.
|
|
%
|
|
% \end{description}
|
|
%
|
|
% An example of the use of |\hlx| is given, so you can see what's going on.
|
|
%
|
|
% \begin{figure}
|
|
% \let\tabstyle\relax
|
|
% \begin{demo}[w]{Beautiful table example}
|
|
%\newcommand{\zerowidth}[1]{\hbox to 0pt{\hss#1\hss}}
|
|
%\setlength{\tabcolsep}{1.5em}
|
|
%\begin{tabular}[C]{| r | c | r |} \hlx{hv[1,2]}
|
|
% \multicolumn{3}{|c|}{\bf AT\&T Common Stock} \\ \hlx{v[1,2]hv}
|
|
% \multicolumn{1}{|c|}{\zerowidth{\bf Year}} &
|
|
% \multicolumn{1}{c|}{\zerowidth{\bf Price}} &
|
|
% \multicolumn{1}{c|}{\zerowidth{\bf Dividend}} \\ \hlx{vhv}
|
|
% 1971 & 41--54 & \$2.60 \\
|
|
% 2 & 41--54 & 2.70 \\
|
|
% 3 & 46--55 & 2.87 \\
|
|
% 4 & 40--53 & 3.24 \\
|
|
% 5 & 45--52 & 3.40 \\
|
|
% 6 & 51--59 & .95\rlap{*} \\ \hlx{vhs}
|
|
% \multicolumn{3}{@{}l}{* (first quarter only)}
|
|
%\end{tabular}
|
|
% \end{demo}
|
|
% \end{figure}
|
|
%
|
|
%
|
|
% \subsection{Creating beautiful long tables}
|
|
%
|
|
% You can use the |\vgap| and |\hlx| commands with David Carlisle's
|
|
% stunning \package{longtable} package. However, there are some things you
|
|
% should be away of to ensure that your tables always come out looking
|
|
% lovely.
|
|
%
|
|
% The \package{longtable} package will break a table at an |\hline| command,
|
|
% leaving a rule at the bottom of the page and another at the top of the
|
|
% next page. This means that a constructions like |\hlx{vhv}| will be
|
|
% broken into something like |\hlx{vh}| at the bottom of the page and
|
|
% |\hlx{hv}| at the top of the next. You need to design the table headers
|
|
% and footers with this in mind.
|
|
%
|
|
% However, there appears to be a slight problem:\footnote
|
|
% {You might very well call it a bug. I couldn't possibly comment.}
|
|
% if the footer starts with an |\hline|, and a page is broken at an |\hline|,
|
|
% then you get an extra thick rule at the bottom of the page. This is a bit
|
|
% of a problem, because if the rule isn't there in the footer and you get
|
|
% a break between two rows \emph{without} a rule between them, then the page
|
|
% looks very odd.
|
|
%
|
|
% If you want to do ruled longtables, I'd recommend that you proceed as
|
|
% follows:
|
|
% \begin{itemize}
|
|
% \item End header sections with an |\hlx{vh}|.
|
|
% \item Begin footer sections with an |\hlx{bh}|.
|
|
% \item Begin the main table with |\hlx{v}|.
|
|
% \item Insert |\hlx{vhv}| commands in the main table body as usual.
|
|
% \end{itemize}
|
|
% If \package{longtable} gets modified appropriately, the use of the \lit{b}
|
|
% command won't be necessary.
|
|
%
|
|
% Here's an example of the sort of thing you'd type.
|
|
%
|
|
% \begin{listinglist} \listingsize
|
|
% \verb"\begin{longtable}[c]{|c|l|} \hlx{hv}" \\
|
|
% \verb"\bf Heading & \bf Also heading \\ \hlx{vh}" \\
|
|
% \verb"\endhead" \\
|
|
% \verb"\hlx{bh}" \\
|
|
% \verb"\endfoot" \\
|
|
% \verb"\hlx{v}" \\
|
|
% \verb"First main & table line \\ \hlx{vhv}" \\
|
|
% \verb"Lots of text & like this \\ \hlx{vhv}" \\
|
|
% \null\quad\vdots \\
|
|
% \verb"Lots of text & like this \\ \hlx{vhv}" \\
|
|
% \verb"Last main & table line \\ \hlx{vh}" \\
|
|
% \verb"\end{longtable}"
|
|
% \end{listinglist}
|
|
%
|
|
%
|
|
% \subsection{Rules and vertical positioning}
|
|
%
|
|
% In the \LaTeXe\ and \package{array.sty} versions of \env{tabular}, you run
|
|
% into problems if you try to use ruled tables together with the \lit{[t]} or
|
|
% \lit{[b]} position specifiers -- the top or bottom rule ends up being
|
|
% nicely lined up with the text baseline, giving you an effect which is
|
|
% nothing like the one you expected. The \textit{\LaTeX\ Companion} gives
|
|
% two commands |\firsthline| and |\lasthline| which are supposed to help with
|
|
% this problem. (These commands have since migrated into the \package{array}
|
|
% package.) Unfortunately, |\firsthline| doesn't do its job properly --
|
|
% it gets the text position wrong by exactly the width of the table rules.
|
|
%
|
|
% The \package{mdwtab} package makes all of this automatic. It gets the
|
|
% baseline positions exactly right, whether or not you use rules. Earlier
|
|
% versions of this package required that you play with a length parameter
|
|
% called |\rulefudge|; this is no longer necessary (or even possible -- the
|
|
% length parameter no longer exists). The package now correctly compensates
|
|
% for all sorts of rules and |\vgap|s at the top and bottom of a table and
|
|
% it gets the positioning right all by itself. You've never had it so good.
|
|
%
|
|
%
|
|
% \subsection{User serviceable parts}
|
|
%
|
|
% There are a lot of parameters which you can modify in order to make arrays
|
|
% and tables look nicer. They are all listed in table~\ref{tbl:config}.
|
|
%
|
|
% \begin{table}
|
|
% \begin{tabular}[C]{| l | m{3in} |} \hlx{hv}
|
|
% \bf Parameter & \bf Meaning \\ \hlx{vhv}
|
|
% |\tabstyle| & A command executed at the beginning of
|
|
% a \env{tabular} or \env{tabular$*$}
|
|
% environment. By default does nothing.
|
|
% Change using |\renewcommand|. \\ \hlx{vhv}
|
|
% |\extrarowheight| & A length added to the height of every
|
|
% row, used to stop table rules
|
|
% overprinting ascenders. Default 0\,pt.
|
|
% Usage is deprecated now: use |\hlx|
|
|
% instead. \\ \hlx{vhv}
|
|
% |\tabextrasep| & Extra space added between rows in a
|
|
% \env{tabular} or \env{tabular$*$}
|
|
% environment (added \emph{before} any
|
|
% following |\hline|). Default 0\,pt. \\
|
|
% |\arrayextrasep| & Analogous to |\tabextrasep|, but for
|
|
% \env{array} environments. Default
|
|
% 1\,jot (3\,pt). \\
|
|
% |\smarrayextrasep| & Analogous to |\tabextrasep|, but for
|
|
% \env{smarray} environments. Default
|
|
% 1\,pt. \\ \hlx{vhv}
|
|
% |\tabcolsep| & Space added by default on each side of
|
|
% a table cell (unless suppressed by an
|
|
% \lit{@}-expression) in \env{tabular}
|
|
% environments. Default is defined by
|
|
% your document class. \\
|
|
% |\arraycolsep| & Analogous to |\tabcolsep|, but for
|
|
% \env{array} environments. Default is
|
|
% defined by your document class. \\
|
|
% |\smarraycolsep| & Analogous to |\tabcolsep|, but for
|
|
% \env{smarray} environments. Default
|
|
% is 3\,pt. \\ \hlx{vhv}
|
|
% |\arrayrulewidth| & The width of horizontal and vertical
|
|
% rules in tables. \\
|
|
% |\doublerulesep| & Space added between two adjacent
|
|
% vertical or horizontal rules. Also
|
|
% used by |\hlx{v}|. \\ \hlx{vhv}
|
|
% |\arraystretch| & Command containing a factor to
|
|
% multiply the default row height.
|
|
% Default is defined by your document
|
|
% class (usually 1). \\ \hlx{vh}
|
|
% \end{tabular}
|
|
%
|
|
% \caption{Parameters for configuring table environments}
|
|
% \label{tbl:config}
|
|
%
|
|
% \end{table}
|
|
%
|
|
%
|
|
% \subsection{Defining column types}
|
|
%
|
|
% \DescribeMacro{\newcolumntype}
|
|
% The easy way to define new column types is using |\newcolumntype|. It
|
|
% works in more or less the same way as |\newcommand|:
|
|
%
|
|
% \begin{grammar}
|
|
%
|
|
% <new-col-type-cmd> ::= \[[
|
|
% "\\newcolumntype"
|
|
% "{" <column-name> "}"
|
|
% \[ "[" <num-args> "]" \]
|
|
% \[ "[" <default-arg> "]" \]
|
|
% "{" <first-column> \[ \< <column> \> \] "}"
|
|
% \]]
|
|
%
|
|
% \end{grammar}
|
|
%
|
|
% (The \env{array.sty} implementation doesn't accept the \<default-arg>
|
|
% argument. I've no idea why not, 'cos it was very easy to implement.)
|
|
%
|
|
% \DescribeMacro{\colset}
|
|
% This implementation allows you to define lots of different sets of columns.
|
|
% You can change the current set using the |\colset| declaration:
|
|
% \begin{grammar}
|
|
% <colset-cmd> ::= \[[ "\\colset" "{" <set-name> "}" \]]
|
|
% \end{grammar}
|
|
% This leaves a problem, though: at any particular moment, the current
|
|
% column set could be anything, since other macros and packages can change
|
|
% it.
|
|
%
|
|
% \DescribeMacro{\colpush}
|
|
% \DescribeMacro{\colpop}
|
|
% What actually happens is that a stack of column sets is maintained. The
|
|
% |\colset| command just replaces the item at the top of the stack. The
|
|
% command |\colpush| pushes its argument onto the top of the stack, making
|
|
% it the new current set. The corresponding |\colpop| macro (which doesn't
|
|
% take any arguments) removes the top item from the stack, reinstating the
|
|
% previous current column set.
|
|
%
|
|
% \begin{grammar}
|
|
% <colpush-cmd> ::= \[[ "\\colpush" "{" <set-name> "}" \]]
|
|
% <colpop-cmd> ::= \[[ "\\colpop" \]]
|
|
% \end{grammar}
|
|
%
|
|
% The macros which manipulate the column set stack work \emph{locally}.
|
|
% The contents of the stack are saved when you open a new group.
|
|
%
|
|
% To make sure everyone behaves themselves properly, these are the rules for
|
|
% using the column set stack:
|
|
%
|
|
% \begin{itemize}
|
|
%
|
|
% \item Packages defining column types must ensure that they preserve the
|
|
% current column set. Either they must push their own column type
|
|
% and pop it off when they're finished defining columns, or they must
|
|
% avoid changing the stack at all, and use the optional arguments to
|
|
% |\coldef| and |\collet|.
|
|
%
|
|
% \item Packages must not assume that any particular column set is current
|
|
% unless they have made sure of it themselves.
|
|
%
|
|
% \item Packages must ensure that they pop exactly as much as they push.
|
|
% There isn't much policing of this (perhaps there should be more),
|
|
% so authors are encouraged to behave responsibly.
|
|
%
|
|
% \item Packages must change the current column set (using |\colset|) when
|
|
% they start up their table environment. This will be restored when
|
|
% the environment closes.
|
|
%
|
|
% \end{itemize}
|
|
%
|
|
% \DescribeMacro{\coldef}
|
|
% |\newcolumntype| is probably enough for most purposes. However, Real
|
|
% \TeX nicians, and people writing new table-generating environments, require
|
|
% something lower-level.
|
|
%
|
|
% \begin{grammar}
|
|
% <coldef-cmd> ::= \[[
|
|
% "\\coldef"
|
|
% \[ "[" <set-name> "]" \]
|
|
% <col-name> <arg-template> "{" <replacement-text> "}"
|
|
% \]]
|
|
% \end{grammar}
|
|
%
|
|
% Note that this defines a column type in the current colset. It works
|
|
% almost exactly the same way as \TeX's primitive |\def|. There is a
|
|
% potential gotcha here: a |\tab@mkpream| token is inserted at the end of
|
|
% your replacement text. If you need to read an optional argument or
|
|
% something, you'll need to gobble this token before you carry on. The
|
|
% |\@firstoftwo| macro could be handy here:
|
|
% \begin{listing}
|
|
%\coldef x{\@firstoftwo{\@ifnextchar[\@xcolumn@i\@xcolumn@ii}}}
|
|
% \end{listing}
|
|
% This isn't a terribly pretty state of affairs, and I ought to do something
|
|
% about it. I've not seen any use for an optional argument yet, though.
|
|
% Note that if you do gobble the |\tab@mkpream|, it's your responsibility to
|
|
% insert another one at the very end of your macro's expansion (so that
|
|
% further preamble characters can be read).
|
|
%
|
|
% The replacement text is inserted directly. It's normal to insert preamble
|
|
% elements here. There are several to choose from:
|
|
%
|
|
% \begin{description}
|
|
%
|
|
% \item [Column items] provide the main `meat' of a column. You insert a
|
|
% column element by saying
|
|
% \syntax{"\\tabcoltype{"<pre-text>"}{"<post-text>"}"}.
|
|
% The user's text gets inserted between these two. (So do user pre-
|
|
% and post-texts. Bear this in mind.)
|
|
%
|
|
% \item [User pre-text items] work like the \lit{>} preamble command. You
|
|
% use the \syntax{"\\tabuserpretype{"<text>"}"} command to insert it.
|
|
% User pre-texts are written in \emph{reverse} order between the
|
|
% pre-text of the column item and the text from the table cell.
|
|
%
|
|
% \item [User post-text items] work like the \lit{<} preamble command. You
|
|
% use the \syntax{"\\tabuserposttype{"<text>"}"} command to insert it.
|
|
% Like user pre-texts, user post-texts are written in reverse order,
|
|
% between the table cell text and the column item post-text.
|
|
%
|
|
% \item [Space items] work like the \lit{@} preamble command. They're
|
|
% inserted with the \syntax{"\\tabspctype{"<text>"}"} command.
|
|
%
|
|
% \item [Rule items] work like the `\verb"|"' and \lit{!} commands. You
|
|
% insert them with the \syntax{"\\tabruletype{"<text>"}"} command.
|
|
% Note that the text is inserted by |\vgap| too, so it should contain
|
|
% things which adjust their vertical size nicely. If you really need
|
|
% to, you can test |\iftab@vgap| to see if you're in a |\vgap|.
|
|
%
|
|
% \end{description}
|
|
%
|
|
% \DescribeMacro{\collet}
|
|
% As well as defining columns, you can copy definitions (rather like |\let|
|
|
% allows you to copy macros). The syntax is like this:
|
|
%
|
|
% \begin{grammar}
|
|
%
|
|
% <collet-cmd> ::= \[[
|
|
% \[ "[" <set-name> "]" \] <col-name> \[ "=" \] \[ "[" <set-name> "]" \]
|
|
% <col-name>
|
|
% \]]
|
|
%
|
|
% \end{grammar}
|
|
%
|
|
% (In other words, you can copy defintions from other column sets.)
|
|
%
|
|
%
|
|
% \subsection{Defining new table-generating environments}
|
|
%
|
|
% Quite a few routines are provided specifically to help you to define new
|
|
% environments which do alignment in a nice way.
|
|
%
|
|
% \subsubsection{Reading preambles}
|
|
%
|
|
% The main tricky bit in doing table-like environments is parsing preambles.
|
|
% No longer.
|
|
%
|
|
% \DescribeMacro{\tab@readpreamble}
|
|
% \DescribeMacro{\tab@doreadpream}
|
|
% The main parser routine is called |\tab@doreadpream|. Given a user
|
|
% preamble string as an argument, it will build an |\halign| preamble to
|
|
% return to you. However, the preamble produced won't be complete. This is
|
|
% because you can actually make multiple calls to |\tab@doreadpream| with
|
|
% bits of user preambles. The |\newcolumntype| system uses this mechanism,
|
|
% as does the \lit{*} (repeating) modifier. When there really is no more
|
|
% preamble to read, you need to \emph{commit} the heldover tokens to the
|
|
% output. The |\tab@readpreamble| routine will do this for you -- given a
|
|
% user preamble, it builds a complete output from it.
|
|
%
|
|
% A token register |\tab@preamble| is used to store the generated preamble.
|
|
% Before starting, you must iniitialise this token list to whatever you want.
|
|
% There's another token register, |\tab@shortline|, which is used to store
|
|
% tokens used by |\vgap|. For each column in the table, the list contains
|
|
% an |\omit| (to override the standard preamble) and an |\hfil| space taking
|
|
% up most of the column. Finally, for each rule item in the user preamble,
|
|
% the shortline list contains an entry of the form:
|
|
% \begin{quote} \synshorts
|
|
% "\\tab@ckr{"<column-number>"}{"<rule-text>"}"
|
|
% \end{quote}
|
|
% This is used to decide whether to print the rule or an empty thing of the
|
|
% same width. You probably ought to know that the very first column does
|
|
% \emph{not} have a leading |\omit| -- this is supplied by |\vgap| so that
|
|
% it can then look for optional arguments.
|
|
%
|
|
% \DescribeMacro{\tab@initread}
|
|
% As well as initialising |\tab@preamble| and emptying |\tab@shortline|,
|
|
% there are several other operations required to initialise a preamble read.
|
|
% These are all performed by the |\tab@initread| macro, although you may want
|
|
% to change some of the values for your specific application. For reference,
|
|
% the actions performed are:
|
|
% \begin{itemize}
|
|
% \item initialising the parser state by setting $|\tab@state| =
|
|
% |\tab@startstate|$;
|
|
% \item clearing the token lists |\tab@preamble| and |\tab@shortlist|;
|
|
% \item initialising the macros |\tab@tabtext|, |\tab@midtext|, and
|
|
% |\tab@multicol| to their default values of `|&|',
|
|
% `|\ignorespaces#\unskip|' and the empty token list respectively.^^A
|
|
% \footnote{^^A
|
|
% These are macros rather than token lists to avoid hogging all
|
|
% the token list registers. Actually, the package only allocates
|
|
% two, although it does use almost all of the temporary registers as
|
|
% well. Also, there's a lie: \cs{unskip} is too hamfisted to remove
|
|
% trailing spaces properly; I really use a macro called
|
|
% \cs{@maybe@unskip}}
|
|
% \item clearing the internal token list registers |\tab@pretext|,
|
|
% |tab@userpretext| and |\tab@posttext|;
|
|
% \item clearing the column counter |\tab@columns| to zero;
|
|
% \item clearing the action performed when a new column is started (by making
|
|
% the |\tab@looped| macro equal to |\relax|; this is used to make
|
|
% |\multicolumn| macro raise an error if you try to do more than one
|
|
% column); and
|
|
% \item setting up some other switches used by the parser (|\iftab@rule|,
|
|
% |\iftab@initrule| and |\iftab@firstcol|, all of which are set to be
|
|
% |true|).
|
|
% \end{itemize}
|
|
%
|
|
% The macro |\tab@multicol| is used by the |\multicolumn| command to insert
|
|
% any necessary items (e.g., struts) before the actual column text. If you
|
|
% set this to something non-empty, you should probably consider adding a
|
|
% call to the macro to the beginning of |\tab@preamble|.
|
|
%
|
|
% When parsing is finally done, the count register |\tab@columns| contains
|
|
% the number of columns in the alignment. Don't corrupt this value, because
|
|
% it's used for handling |\hline| commands.
|
|
%
|
|
% \subsubsection{Starting new lines}
|
|
%
|
|
% The other messy bit required by table environments is the newline command
|
|
% |\\|. There are nasty complications involved with starting new lines, some
|
|
% of which can be handled by this package, and some on which I can only give
|
|
% advice.
|
|
%
|
|
% \DescribeMacro{\tab@cr}
|
|
% The optional arguments and star-forms etc. can be read fairly painlessly
|
|
% using the |\tab@cr| command:
|
|
%
|
|
% \begin{grammar}
|
|
% <tabcr-cmd> ::= \[[
|
|
% "\\tab@cr" <command> "{" <non-star-text> "}" "{" <star-text> "}"
|
|
% \]]
|
|
% \end{grammar}
|
|
%
|
|
% This will call your \<command> with two arguments. The first is the
|
|
% contents of the optional argument, or `|\z@|' if there wasn't one. The
|
|
% second is either \<star-text> or \<non-star-text> depending on
|
|
% whether the user wrote the $*$-form or not.
|
|
%
|
|
% Somewhere in your \<command>, you'll have to use the |\cr| primitive to
|
|
% end the table row. After you've done this, you \emph{must} ensure that you
|
|
% don't do anything that gets past \TeX's mouth without protecting it --
|
|
% otherwise |\hline| and co.\ won't work. I usually wrap things up in a
|
|
% |\noalign| to protect them, although there are other methods. Maybe.
|
|
%
|
|
% You might like to have a look at the \env{eqnarray} implementation provided
|
|
% to see how all this gets put into practice.
|
|
%
|
|
%
|
|
% \subsection{The \env{mathenv} package alignment environments}
|
|
%
|
|
% The \env{mathenv} package provides several environments for aligning
|
|
% equations in various ways. They're mainly provided as a demonstration of
|
|
% the table handling macros in \package{mdwtab}, so don't expect great
|
|
% things. If you want truly beautiful mathematics, use
|
|
% \package{amsmath}.\footnote{^^A
|
|
% Particularly since nice commands like \cmd\over\ are being reactivated
|
|
% in a later release of \package{amsmath}.}
|
|
% However, the various environments do nest in an approximately useful way.
|
|
% I also think that the \env{matrix} and \env{script} environments provided
|
|
% here give better results than their \package{amsmath} equivalents, and
|
|
% they are certainly more versatile.
|
|
%
|
|
% \subsubsection{The new \env{eqnarray} environment}
|
|
%
|
|
% \DescribeEnv{eqnarray}
|
|
% \DescribeEnv{eqnarray*}
|
|
% As an example of the new column defining features, and because the original
|
|
% isn't terribly good, I've included a rewritten version of the
|
|
% \env{eqnarray} environment. The new implementation closes the gap between
|
|
% \env{eqnarray} and \AmSTeX\ alignment features. It's in a separate,
|
|
% package called \package{mathenv}, to avoid wasting your memory.
|
|
%
|
|
% \begin{grammar}
|
|
%
|
|
% <eqnarray-env> ::= \[[
|
|
% <begin-eqnarray> \< <row> \\ "\\\\" \> <end-eqnarray>
|
|
% \]]
|
|
%
|
|
% <begin-eqnarray> ::= \[[
|
|
% "\\begin" \( "{eqnarray}" \\ "{eqnarray*}" \)
|
|
% \[ "[" \< <eqa-column> \> "]" \]
|
|
% \]]
|
|
%
|
|
% <eqa-column> ::= \[[
|
|
% \[ "q" \\ ":" \]
|
|
% \[ \< ">" "{" <pre-text> "}" \> \]
|
|
% \begin{stack}
|
|
% \[ "T" \] \( "r" \\ "c" \\ "l" \) \\
|
|
% "L" \\
|
|
% "x"
|
|
% \end{stack}
|
|
% \[ \< "<" "{" <post-text> "}" \> \]
|
|
% \]]
|
|
%
|
|
% <end-eqnarray> ::= \[[
|
|
% "\\end" \begin{stack} "{eqnarray}" \\ "{eqnarray*}" \end{stack}
|
|
% \]]
|
|
%
|
|
% \end{grammar}
|
|
%
|
|
% Descriptions of the various column types are given in
|
|
% table~\ref{tbl:eqnarray}.
|
|
%
|
|
% \begin{table}
|
|
% \begin{tabular}[C]{| >{\synshorts} c | m{3in} |} \hlx{hv[1]}
|
|
%
|
|
% \multicolumn{2}{|c|}{\bf Column types} \\ \hlx{v[1]hv}
|
|
% \bf Name & \bf Meaning \\ \hlx{vhv.}
|
|
% "l" & Left aligned piece of equation. \\ \hlx{.}
|
|
% "c" & Centred piece of equation. \\ \hlx{.}
|
|
% "x" & Centred or flush-left whole equation
|
|
% (depending on \textsf{fleqn} option). \\ \hlx{.}
|
|
% "r" & Right aligned piece of equation. \\ \hlx{vhv.}
|
|
% "L" & Left aligned piece of equation whose
|
|
% width is considered to be 2\,em. \\ \hlx{vhv.}
|
|
% "Tl", "Tc" and "Tr" & Left, centre and right aligned
|
|
% text. \\ \hlx{vhhv[1]}
|
|
%
|
|
% \multicolumn{2}{|c|}{\bf Other modifier characters} \\ \hlx{v[1]hv}
|
|
% \bf Name & \bf Meaning \\ \hlx{vhv.}
|
|
% ":" & Leaves a big gap between equations.
|
|
% By default, the `chunks' separated by
|
|
% \lit{:}s are equally spaced on the
|
|
% line. \\ \hlx{.}
|
|
% "q" & Inserts 1\,em of space \\ \hlx{vhv.}
|
|
% ">{"<text>"}" & Inserts \<text> just before the
|
|
% actual column entry. \\ \hlx{.}
|
|
% "<{"<text>"}" & Inserts \<text> just after the
|
|
% actual column entry. \\ \hlx{vhv.}
|
|
% "*{"<count>"}{"<chars>"}" & Inserts \<count>
|
|
% copies of the \<chars> into the
|
|
% preamble. \\ \hlx{vh}
|
|
% \end{tabular}
|
|
%
|
|
% \caption{\package{eqnarray} column types and modifiers}
|
|
% \label{tbl:eqnarray}
|
|
% \end{table}
|
|
%
|
|
% The default preamble, if you don't supply one of your own, is \lit{rcl}.
|
|
% Most of the time, \lit{rl} is sufficient, although compatibility is more
|
|
% important to me.
|
|
%
|
|
% By default, there is no space between columns, which makes formul\ae\ in an
|
|
% \env{eqnarray} environment look just like formul\ae\ typeset on their own,
|
|
% except that things get aligned in columns. This is where the default
|
|
% \env{eqnarray} falls down: it leaves |\arraycolsep| space between each
|
|
% column making the thing look horrible.
|
|
%
|
|
% An example would be good here, I think. This one's from exercise 22.9 of
|
|
% the \textit{\TeX book}.
|
|
%
|
|
% \begin{demo}[w]{Simultaneous equations}
|
|
%\begin{eqnarray}[*3{rc}rl]
|
|
% 10w & + & 3x & + & 3y & + & 18z & = 1 \\
|
|
% 6w & - & 17x & & & - & 5z & = 2
|
|
%\end{eqnarray}
|
|
% \end{demo}
|
|
%
|
|
% Choosing a more up-to-date example, here's some examples from the
|
|
% \textit{\LaTeX\ Companion}.
|
|
%
|
|
% \begin{demo}[w]{Lots of equations}
|
|
%\begin{eqnarray}[rl:rl:lq]
|
|
% V_i &= v_i - q_i v_j, & X_i &= x_i - q_i x_j, &
|
|
% U_i = u_i, \qquad \mbox{for $i \ne j$} \\
|
|
% V_j &= v_j, & X_j &= x_j &
|
|
% U_j u_j + \sum_{i \ne j} q_i u_i. \label{eq:A}
|
|
%\end{eqnarray}
|
|
% \end{demo}
|
|
%
|
|
% \begin{figure}
|
|
% \begin{demo}[w]{Plain text column and \cs{tabpause}}
|
|
%\begin{eqnarray}[rlqqTl]
|
|
% x &= y & by (\ref{eq:A}) \\
|
|
% x' &= y' & by definition \\
|
|
%\tabpause{and}
|
|
% x + x' &= y + y' & by Axiom~1
|
|
%\end{eqnarray}
|
|
% \end{demo}
|
|
% \end{figure}
|
|
%
|
|
% The new features also mean that you don't need to mess about with
|
|
% |\lefteqn| any more. This is handled by the \lit{L} column type:
|
|
%
|
|
% \begin{demo}{Splitting example}
|
|
%\begin{eqnarray*}[Ll]
|
|
% w+x+y+z = \\
|
|
% & a+b+c+d+e+ \\
|
|
% & f+g+h+i+j
|
|
%\end{eqnarray*}
|
|
% \end{demo}
|
|
%
|
|
% Finally, just to prove that the spacing's right at last, here's another one
|
|
% from the \textit{Companion}.
|
|
%
|
|
% \begin{demo}{Spacing demonstration}
|
|
%\begin{equation}
|
|
% x^2 + y^2 = z^2
|
|
%\end{equation}
|
|
%\begin{eqnarray}[rl]
|
|
% x^2 + y^2 &= z^2 \\
|
|
% y^2 &< z^2
|
|
%\end{eqnarray}
|
|
% \end{demo}
|
|
%
|
|
% Well, that was easy enough. Now on to numbering. As you've noticed, the
|
|
% equations above are numbered. You can use the \env{eqnarray$*$}
|
|
% environment to turn off the numbering in the whole environment, or say
|
|
% |\nonumber| on a line to suppress numbering of that one in particular.
|
|
%
|
|
% \DescribeMacro{\eqnumber}
|
|
% More excitingly, you can say |\eqnumber| to enable numbering for a
|
|
% particular equation, or \syntax{"\\eqnumber["<text>"]"} to choose what to
|
|
% show instead of the line number. This works for both starred and unstarred
|
|
% versions of the environment. Now |\nonumber| becomes merely a synonym for
|
|
% `|\eqnumber[]|'.
|
|
%
|
|
% A note for cheats: you can use the sparkly new \env{eqnarray} for simple
|
|
% equations by specifying \lit{x} as the column description. Who needs
|
|
% \AmSTeX?\ |;-)|
|
|
%
|
|
% \DescribeEnv{eqlines}
|
|
% \DescribeEnv{eqlines*}
|
|
% In fact, there's a separate environment \env{eqlines}, which is equivalent
|
|
% to \env{eqnarray} with a single \lit{x} column; the result is that you can
|
|
% insert a collection of displayed equations separated by |\\| commands. If
|
|
% you don't like numbering, use \env{eqlines$*$} insead.
|
|
%
|
|
% \subsubsection{The \env{eqnalign} environment}
|
|
%
|
|
% \DescribeEnv{eqnalign}
|
|
% There's a new environment, \env{eqnalign}, which does almost the same
|
|
% thing as \env{eqnarray} but not quite. It doesn't do equation numbers,
|
|
% and it wraps its contents up in a box. The result of this is that:
|
|
%
|
|
% \begin{itemize}
|
|
%
|
|
% \item You can use \env{eqnalign} for just a part of a formula.
|
|
% The \env{eqnarray} environment must take up the whole display.
|
|
%
|
|
% \item You can use \env{eqnalign} within \env{eqnarray} for extra fine
|
|
% alignment of subsidiary bits.
|
|
%
|
|
% \item You can break off from doing an \env{eqnarray} using the |\tabpause|
|
|
% command. You can't use |\tabpause| inside
|
|
% \env{eqnalign}.\footnote{^^A
|
|
% Well, technically speaking there's nothing to stop you. However,
|
|
% the results won't be pretty.}
|
|
%
|
|
% \end{itemize}
|
|
%
|
|
% The \env{eqnalign} environment works like this:
|
|
%
|
|
% \begin{grammar}
|
|
%
|
|
% <eqnalign-env> ::= \[[
|
|
% <begin-eqnalign> <contents> <end-eqnalign>
|
|
% \]]
|
|
%
|
|
% <begin-eqnalign> ::= \[[
|
|
% "\\begin" "{eqnalign}"
|
|
% \[ "[" \< <eqa-column> \> "]" \]
|
|
% \[ "[" \( "t" \\ "c" \\ "b" \) "]" \]
|
|
% \]]
|
|
%
|
|
% <end-eqnalign> ::= \[[ "\\end" "{eqnalign}" \]]
|
|
%
|
|
% \end{grammar}
|
|
%
|
|
% As the syntax suggests, the preamble for the \env{eqnalign} environment
|
|
% works exactly the same way as for \env{eqnarray}. Example time: another
|
|
% one from the \textit{\TeX book}.
|
|
%
|
|
% \begin{figure}
|
|
% \begin{demo}[w]{Example of \env{eqnalign}}
|
|
%\[
|
|
% \left\{ \begin{eqnalign}[rl]
|
|
% \alpha &= f(z) \\ \beta &= f(z^2) \\
|
|
% \gamma &= f(z^3)
|
|
% \end{eqnalign} \right\}
|
|
% \qquad
|
|
% \left\{ \begin{eqnalign}[rl]
|
|
% x &= \alpha^2 - \beta \\ y &= 2\gamma
|
|
% \end{eqnalign} \right\}.
|
|
%\]
|
|
% \end{demo}
|
|
% \end{figure}
|
|
%
|
|
% \DescribeMacro{\multicolumn}
|
|
% The |\multicolumn| command works correctly in both the \env{eqnarray} and
|
|
% \env{eqnalign} environments, although you should bear in mind that you
|
|
% should give \env{eqnarray} column types, not \env{array} ones.
|
|
%
|
|
% \subsubsection{A note on spacing in alignment environments}
|
|
%
|
|
% Most of the time, equations in \env{eqnarray} and \env{eqnalign}
|
|
% environments will be beautiful. However, there are some things you should
|
|
% bear in mind when you produce beautiful equations.
|
|
%
|
|
% The main problem with spacing is making sure that binary relations and
|
|
% binary operators have the correct amount of space on each side of them.
|
|
% The alignment environments insert `hidden' objects at the ends of table
|
|
% cells to assist with the spacing: \lit{l} column types have a hidden object
|
|
% on the left, \lit{r} types have a hidden object on the right, and \lit{c}
|
|
% types have a hidden object on \emph{both} ends. These hidden objects add
|
|
% the correct space when there's a binary operator or relation next to them.
|
|
% If some other sort of object is lurking there, no space is added. So far,
|
|
% so good.
|
|
%
|
|
% The only problem comes when you have something like this:
|
|
%
|
|
% \begin{demo}{How not to do an \env{eqnarray}}
|
|
%\begin{eqnarray*}[rcl]
|
|
% x + y & = & 12 \\
|
|
% 2x - 5y & = & -6
|
|
%\end{eqnarray*}
|
|
% \end{demo}
|
|
%
|
|
% The `$-$' sign in the second equation has been treated as a binary operator
|
|
% when really it should be a unary prefix operator, but \TeX\ isn't clever
|
|
% enough to know the difference. (Can you see the difference in the spacing
|
|
% between $-6$~and~${}-6$?) There are two possible solutions to the
|
|
% problem. You could wrap the `|-6|' up in a group (`|{-6}|'), or just the
|
|
% $-$ sign (`|{-}6|'). A better plan, though, is to get rid of the middle
|
|
% column altogether:
|
|
%
|
|
% \begin{demo}{How to do an \env{eqnarray}}
|
|
%\begin{eqnarray*}[rl]
|
|
% x + y & = 12 \\
|
|
% 2x - 5y & = -6
|
|
%\end{eqnarray*}
|
|
% \end{demo}
|
|
%
|
|
% Since the things in the middle column were the same width, it's not
|
|
% actually doing any good. Also, now that \TeX\ can see that the thing on
|
|
% the left of the `$-$' sign is a relation (the `$=$' sign), it will space
|
|
% the formula correctly.
|
|
%
|
|
% In this case, it might be even better to add some extra columns, and line
|
|
% up the $x$ and $y$ terms in the left hand side:
|
|
%
|
|
% \begin{demo}{Extra beautiful \env{eqnarray}}
|
|
%\begin{eqnarray*}[rrl]
|
|
% x + & y & = 12 \\
|
|
% 2x - & 5y & = -6
|
|
%\end{eqnarray*}
|
|
% \end{demo}
|
|
%
|
|
% ^^A Some hacking now to display box sizes.
|
|
%
|
|
% {
|
|
% \catcode`p=12 \catcode`t=12
|
|
% \gdef\magni#1pt{#1}
|
|
% }
|
|
%
|
|
% \newcommand{\widthof}[1]{^^A
|
|
% \settowidth{\dimen0 }{#1}^^A
|
|
% \expandafter\magni\the\dimen0\,pt^^A
|
|
% }
|
|
%
|
|
% ^^A The text below makes an assumption which looks correct to me (I asked
|
|
% ^^A TeX, and it agreed with me), although in case anything changes, I want
|
|
% ^^A to be informed.
|
|
%
|
|
% \sbox0{$+$} \sbox2{$-$} \ifdim\wd0=\wd2\else%
|
|
% \errmessage{Assertion failed: `+' and `-' are different widths!}
|
|
% \fi
|
|
%
|
|
% There's no need to put the `$+$' and `$-$' operators in their own column
|
|
% here, because they're both \widthof{$+$} wide, even though they don't
|
|
% look it.
|
|
%
|
|
% \subsubsection{Configuring the alignment environments}
|
|
%
|
|
% There are a collection of parameters you can use to make the equation
|
|
% alignment environments (\env{eqnarray} and \env{eqnalign}) look the way
|
|
% you like them. These are all shown in table~\ref{tbl:eqnparms}.
|
|
%
|
|
% \begin{table}
|
|
% \begin{tabular}[C]{| l | p{3in} |} \hlx{hv}
|
|
% \bf Parameter & \bf Use \\ \hlx{vhv}
|
|
% |\eqaopenskip| & Length put on the left of an
|
|
% \env{eqnarray} environment. By
|
|
% default, this is |\@centering| (to
|
|
% centre the alignment) or |\mathindent|
|
|
% (to left align) depending on whether
|
|
% you're using the \textsf{fleqn}
|
|
% document class option. \\
|
|
% |\eqacloseskip| & Length put on the right of an
|
|
% \env{eqnarray} environment. By
|
|
% default, this is |\@centering|, to
|
|
% align the environment correctly. \\ \hlx{vhv}
|
|
% |\eqacolskip| & Space added by the \lit{:} column
|
|
% modifier. This should be a rubber
|
|
% length, although it only stretches in
|
|
% \env{eqnarray}, not in \env{eqnalign}.
|
|
% The default value is 1\smallf1/2\,em
|
|
% with 1000\,pt of stretch. \\
|
|
% |\eqainskip| & Space added at each side of a normal
|
|
% column. By default this is 0\,pt. \\ \hlx{vhv}
|
|
% |\eqastyle| & The maths style used in the alignment.
|
|
% By default, this is |\textstyle|,
|
|
% and you probably won't want to change
|
|
% it. \\ \hlx{vh}
|
|
% \end{tabular}
|
|
%
|
|
% \caption{Parameters for the \env{eqnarray} and \env{eqnalign} environments}
|
|
% \label{tbl:eqnparms}
|
|
% \end{table}
|
|
%
|
|
%
|
|
% \subsection{Other multiline equations}
|
|
%
|
|
% Sometimes there's no sensible alignment point for splitting equations. The
|
|
% normal thing to do under these circumstances is to put the first line way
|
|
% over to the left of the page, and the last line over to the right. (If
|
|
% there are more lines, I imagine we put them in the middle.)
|
|
%
|
|
% \DescribeEnv{spliteqn}
|
|
% \DescribeEnv{spliteqn*}
|
|
% The \env{spliteqn} environment allows you to do such splitting of
|
|
% equations. Rather than tediously describe it, I'll just give an example,
|
|
% because it's really easy. The $*$-version works the same, except it
|
|
% doesn't put an equation number in.
|
|
%
|
|
% \begin{figure}
|
|
% \begin{demo}[w]{A split equation}
|
|
%\begin{spliteqn}
|
|
% \sum_{1\le j\le n}
|
|
% \frac {1} { (x_j - x_1) \ldots (x_j - x_{j-1})
|
|
% (x - x_j) (x_j - x_{j+1}) \ldots (x_j - x_n) }
|
|
% \\
|
|
% = \frac {1} { (x - x_1) \ldots (x - x_n) }.
|
|
%\end{spliteqn}
|
|
% \end{demo}
|
|
% \end{figure}
|
|
%
|
|
% \DescribeEnv{subsplit}
|
|
% If you have a very badly behaved equation, you might want to split a part
|
|
% of it (say, a bit of a fraction), particularly if you're doing things in
|
|
% narrow columns.
|
|
%
|
|
% \begin{figure}
|
|
% \begin{demo}[w]{A \env{subsplit} environment}
|
|
%\begin{equation}
|
|
% \frac{
|
|
% \begin{subsplit}
|
|
% q^{\frac{1}{2} n(n+1)}(ea; q^2)_\infty (eq/a; q^2)_\infty \\
|
|
% (caq/e; q^2)_\infty (cq^2/ae; q^2)_\infty
|
|
% \end{subsplit}
|
|
% }{
|
|
% (e; q)_\infty (cq/e; q)_\infty
|
|
% }
|
|
%\end{equation}
|
|
% \end{demo}
|
|
% \end{figure}
|
|
%
|
|
% \subsection{Matrices}
|
|
%
|
|
% Also included in the \package{mathenv} package is a collection of things
|
|
% for typesetting matrices. The standard \env{array} doesn't (in my opinion)
|
|
% provide the right sort of spacing for matrices. \PlainTeX\ provides some
|
|
% quite nice matrix handling macros, but they don't work in the appropriate
|
|
% \LaTeX\ way.
|
|
%
|
|
% \textbf{Warning:} These definitions will make old versions of
|
|
% \package{plain.sty} unhappy; newer versions correctly restore the
|
|
% Plain~\TeX\ macros |\matrix| and |\pmatrix|.
|
|
%
|
|
% \DescribeEnv{matrix}
|
|
% The simple way to do matrices is with the \env{matrix} environment.
|
|
%
|
|
% \begin{grammar}
|
|
%
|
|
% <matrix-env> ::= \[[ <begin-matrix> <contents> <end-matrix> \]]
|
|
%
|
|
% <begin-matrix> ::= \[[ "\\begin{matrix}" \[ "[" <matrix-cols> "]" \] \]]
|
|
%
|
|
% <matrix-cols> ::= \[[
|
|
% \< \[ "[" \] \[ "T" \] \( "l" \\ "c" \\ "r" \) \>
|
|
% \]]
|
|
%
|
|
% <end-matrix> ::= \[[ "\\end{stack}" \]]
|
|
%
|
|
% \end{grammar}
|
|
%
|
|
% The \lit{l}, \lit{c} and \lit{r} columns are fairly obvious -- they align
|
|
% their contents in the appropriate way. The \lit{[} character is more
|
|
% complicated. It means `repeat the remaining column types forever', so a
|
|
% preamble of \lit{cc[lr} means `two centred columns, then alternating left-
|
|
% and right-aligned columns for as often as needed'. The default preamble,
|
|
% if you don't specify one, is \lit{[c} -- `any number of centred columns'.
|
|
%
|
|
% \DescribeMacro{\multicolumn}
|
|
% The |\multicolumn| command works correctly in matrices, although you should
|
|
% bear in mind that you should give \env{matrix} column types, not
|
|
% \env{array} ones.
|
|
%
|
|
% \DescribeEnv{pmatrix}
|
|
% The standard \env{matrix} environment doesn't put any delimiters around the
|
|
% matrix. You can use the standard |\left| and |\right| commands, although
|
|
% this is a bit nasty. The \env{pmatrix} environment will put parentheses
|
|
% around the matrix it creates; it's otherwise exactly the same as
|
|
% \env{matrix}.
|
|
%
|
|
% \DescribeEnv{dmatrix}
|
|
% A \env{dmatrix} environment is also provided. It takes two extra
|
|
% arguments: the left and right delimiter characters (without |\left| or
|
|
% |\right|).
|
|
%
|
|
% \begin{figure}
|
|
% \begin{demo}[w]{Various \env{matrix} environments}
|
|
%\[ \begin{matrix} 1 & 0 \\ 0 & -1 \end{matrix} \quad
|
|
% \begin{pmatrix}
|
|
% \cos\theta & \sin\theta \\
|
|
% -\sin\theta & \cos\theta
|
|
% \end{pmatrix} \quad
|
|
% \begin{dmatrix}[] 0 & -i \\ i & 0 \end{dmatrix}
|
|
%\]
|
|
% \end{demo}
|
|
% \end{figure}
|
|
%
|
|
% \DescribeEnv{smatrix}
|
|
% Normal matrices always come out the same size; they don't change size
|
|
% according to the surrounding context (unfortunately). However, it can be
|
|
% occasionally useful to put matrices in running text, so you can talk about
|
|
% $A$ being $\bigl( \begin{smatrix} a & b \\ b & c \end{smatrix} \bigr)$
|
|
% being its own transpose (i.e., $A = A^T$). This is accomplished using the
|
|
% \env{smatrix} (the `s' stands for `small' -- I thought that `smallmatrix'
|
|
% was too big to type inline). As well as inline text, the \env{smatrix}
|
|
% can be useful in displays, if the matrix is deep in a subformula. I can't
|
|
% think of any examples offhand, though.
|
|
%
|
|
% \DescribeEnv{spmatrix}
|
|
% \DescribeEnv{sdmatrix}
|
|
% The \env{smatrix} environment doesn't supply any delimiters, like
|
|
% \env{matrix}. There are \env{spmatrix} and \env{sdmatrix} environments
|
|
% which do, though. Note that delimiters have a tendency to get too big and
|
|
% mess up the line spacing -- I had to use explicitly |\big| delimiters
|
|
% in the above example.
|
|
%
|
|
% \DescribeEnv{pmatrix*}
|
|
% \DescribeEnv{spmatrix*}
|
|
% \DescribeEnv{sdmatrix*}
|
|
% All the small matrix environments have starred versions, which are more
|
|
% suitable for use in displays, since they have more space between the rows.
|
|
% They're intended for typesetting really big matrices in displays.
|
|
%
|
|
% \DescribeMacro{\ddots}
|
|
% \DescribeMacro{\vdots}
|
|
% The standard |\vdots| and |\ddots| commands don't produce anything at all
|
|
% nice in small matrices, so this package redefines them so that they scale
|
|
% properly to smaller sizes.
|
|
%
|
|
% \DescribeEnv{genmatrix}
|
|
% Actually, all these environments are special cases of one: \env{genmatrix}.
|
|
% This takes oodles of arguments:
|
|
% \begin{quote} \synshorts
|
|
% "\\begin{genmatrix}{"<matrix-style>"}{"<outer-style>"}" \\
|
|
% \null \qquad "{"<spacing>"}{"<left-delim>"}{"<right-delim>"}" \\
|
|
% \null \quad\vdots \\
|
|
% "\\end{genmatrix}"
|
|
% \end{quote}
|
|
% The two `style' arguments should be things like |\textstyle| or
|
|
% |\scriptstyle|; the first, \<matrix-style>, is the style to use for the
|
|
% matrix elements, and the second, \<outer-style>, is the style to assume
|
|
% for the surrounding text (this affects the spacing within the matrix; it
|
|
% should usually be the same as \<matrix-style>). The \<spacing> is inserted
|
|
% between the matrix and the delimiters, on each side of the matrix. It's
|
|
% usually `|\,|' in full-size matrices, and blank for small ones. The
|
|
% delimiters are inserted around the matrices, and sized appropriately.
|
|
%
|
|
% \DescribeEnv{newmatrix}
|
|
% You can create your own matrix environments if you like, using the
|
|
% |\newmatrix| command. It takes two arguments, although they're a bit
|
|
% odd. The first is the name of the environment, and the second contains
|
|
% the arguments to pass to \env{genmatrix}. For example, the \env{pmatrix}
|
|
% environment was defined by saying
|
|
%
|
|
% \begin{listing}
|
|
%\newmatrix{pmatrix}{{\textstyle}{\textstyle}{\,}{(}{)}}
|
|
% \end{listing}
|
|
%
|
|
% If you don't pass all three arguments, then you end up requiring the
|
|
% user to specify the remaining ones. This is how \env{dmatrix} works.
|
|
%
|
|
% \DescribeEnv{script}
|
|
% Finally, although it's not really a matrix, stacked super- and subscripts
|
|
% follow much the same sorts of spacing rules. The \env{script} environment
|
|
% allows you to do this sort of thing very easily. It essentially provides
|
|
% a `matrix' with the right sort of spacing. The default preamble string is
|
|
% \lit{c}, giving you centred scripts, although you can say
|
|
% |\begin{script}[l]| for left-aligned scripts, which is better if the
|
|
% script is being placed to the right of its operator. If you're really
|
|
% odd, you can have more than one column.
|
|
%
|
|
% \begin{demo}{Example of \env{script}}
|
|
%\[ \mathop{{\sum}'}_{x \in A}
|
|
% f(x)
|
|
% \stackrel{\mathrm{def}}{=}
|
|
% \sum_{\begin{script}
|
|
% x \in A \\ x \ne 0
|
|
% \end{script}} f(x)
|
|
%\]
|
|
% \end{demo}
|
|
%
|
|
%
|
|
% \subsection{Other \package{mathenv} environments}
|
|
%
|
|
% The \package{mathenv} package contains some other environments which may
|
|
% be useful, based on the enhanced \env{tabular} and \env{array}
|
|
% environments.
|
|
%
|
|
% \DescribeEnv{cases}
|
|
% The \env{cases} environment lets you say things like the following:
|
|
%
|
|
% \begin{demo}[w]{Example of \env{cases}}
|
|
%\[ P_{r-j} = \begin{cases}
|
|
% 0 & if $r-j$ is odd \\
|
|
% r!\,(-1)^{(r-j)/2} & if $r-j$ is even
|
|
% \end{cases}
|
|
%\]
|
|
% \end{demo}
|
|
%
|
|
% The spacing required for this is a bit messy, so providing an environment
|
|
% for it is quite handy.
|
|
%
|
|
% \DescribeEnv{smcases}
|
|
% The \env{smcases} environment works the same way as \env{cases}, but with
|
|
% scriptsize lettering.
|
|
%
|
|
% \implementation
|
|
%
|
|
%
|
|
%^^A-------------------------------------------------------------------------
|
|
% \section{Implementation of table handling}
|
|
%
|
|
%
|
|
% Here we go. It starts horrid and gets worse. However, it does stay nicer
|
|
% than the original, IMHO.
|
|
%
|
|
% \begin{macrocode}
|
|
%<*mdwtab>
|
|
% \end{macrocode}
|
|
%
|
|
%
|
|
% \subsection{Registers, switches and things}
|
|
%
|
|
% We need lots of these. It's great fun.
|
|
%
|
|
% The two count registers are simple enough:
|
|
%
|
|
% \begin{description}
|
|
% \item [\cs{tab@state}] contains the current parser state. Since we
|
|
% probably won't be parsing preambles recursively, this is a global
|
|
% variable.
|
|
% \item [\cs{tab@columns}] contains the number of the current column.
|
|
% \item [\cs{tab@hlstate}] contains the state required for hline management.
|
|
% \end{description}
|
|
%
|
|
% \begin{macrocode}
|
|
\newcount\tab@state
|
|
\newcount\tab@columns
|
|
% \end{macrocode}
|
|
%
|
|
% We need \emph{lots} of token registers. Fortunately, most of them are only
|
|
% used during parsing. We'll use \PlainTeX's scratch tokens for this. Note
|
|
% that |\toks\tw@| isn't used here. It, and |\toks@|, are free for use by
|
|
% column commands.
|
|
%
|
|
% \begin{macrocode}
|
|
\newtoks\tab@preamble
|
|
\newtoks\tab@shortline
|
|
\toksdef\tab@pretext 4
|
|
\toksdef\tab@posttext 6
|
|
\toksdef\tab@userpretext 8
|
|
% \end{macrocode}
|
|
%
|
|
% The dimens are fairly straightforward. The inclusion of |\col@sep| is a
|
|
% sacrifice to compatibility -- judicious use of |\let| in \package{array}
|
|
% would have saved a register.
|
|
%
|
|
% \begin{macrocode}
|
|
\newdimen\extrarowheight
|
|
\newdimen\tabextrasep
|
|
\newdimen\arrayextrasep
|
|
\newdimen\smarraycolsep
|
|
\newdimen\smarrayextrasep
|
|
\newdimen\tab@width
|
|
\newdimen\col@sep
|
|
\newdimen\tab@endheight
|
|
% \end{macrocode}
|
|
%
|
|
% Some skip registers too. Phew.
|
|
%
|
|
% \begin{macrocode}
|
|
\newskip\tab@leftskip
|
|
\newskip\tab@rightskip
|
|
% \end{macrocode}
|
|
%
|
|
% And some switches. The first three are for the parser.
|
|
%
|
|
% \begin{macrocode}
|
|
\newif\iftab@firstcol
|
|
\newif\iftab@initrule
|
|
\newif\iftab@rule
|
|
\newif\iftab@vgap
|
|
% \end{macrocode}
|
|
%
|
|
% Now assign some default values to new dimen parameters. These definitions
|
|
% are essentially the equivalent of an |\openup 1\jot| in \env{array}, but
|
|
% not in \env{tabular}. This looks nice, I think.
|
|
%
|
|
% \begin{macrocode}
|
|
\tabextrasep\z@
|
|
\arrayextrasep\jot
|
|
\smarraycolsep\thr@@\p@
|
|
\smarrayextrasep\z@
|
|
% \end{macrocode}
|
|
%
|
|
% Set some things up for alien table environments.
|
|
%
|
|
% \begin{macrocode}
|
|
\let\tab@extrasep\tabextrasep
|
|
\let\tab@penalty\relax
|
|
% \end{macrocode}
|
|
%
|
|
%
|
|
% \subsection{Some little details}
|
|
%
|
|
% \begin{macro}{\@maybe@unskip}
|
|
%
|
|
% This macro solves a little problem. In an alignment (and in other places)
|
|
% it's desirable to suppress trailing space. The usual method, to say
|
|
% |\unskip|, is a little hamfisted, because it removes perfectly reasonable
|
|
% aligning spaces like |\hfil|s. While as a package writer I can deal with
|
|
% this sort of thing by saying |\kern\z@| in appropriate places, it can
|
|
% annoy users who are trying to use |\hfill| to override alignment in funny
|
|
% places.
|
|
%
|
|
% My current solution seems to be acceptable. I'll remove the natural width
|
|
% of the last glue item, so that it can still stretch and shrink if
|
|
% necessary. The implementation makes use of the fact that multiplying
|
|
% a \<skip> by a \<number> kills off the stretch. (Bug fix: don't do this
|
|
% when we're in vertical mode.)
|
|
%
|
|
% \begin{macrocode}
|
|
\def\@maybe@unskip{\ifhmode\hskip\m@ne\lastskip\relax\fi}
|
|
% \end{macrocode}
|
|
%
|
|
% \end{macro}
|
|
%
|
|
% \begin{macro}{\q@delim}
|
|
%
|
|
% Finally, for the sake of niceness, here's a delimiter token I can use
|
|
% for various things. It's a `quark', for what it's worth (i.e., it expands
|
|
% to itself) although I'm not really sure why this is a good thing. As far
|
|
% as I'm concerned, it's important that it has a unique meaning (i.e., that
|
|
% it won't be |\ifx|-equal to other things, or something undefined) and that
|
|
% it won't be used where I don't expect it to be used. \TeX\ will loop
|
|
% horridly if it tries to expand this, so I don't think that quarks are
|
|
% wonderfully clever thing to use. (Maybe it should really expand to
|
|
% something like `\syntax{<quark>"."}', which will rapdly fill \TeX's memory
|
|
% if it gets accidentally expanded. Still, I'll leave it as it is until
|
|
% such time as I understand the idea more.)
|
|
%
|
|
% \begin{macrocode}
|
|
\def\q@delim{\q@delim}
|
|
% \end{macrocode}
|
|
%
|
|
% \end{macro}
|
|
%
|
|
%
|
|
% \subsection{Parser states}
|
|
%
|
|
% Now we start on the parser. It's really simple, deep down. We progress
|
|
% from state to state, extracing tokens from the preamble and building
|
|
% command names from them. Each command calls one of the element-building
|
|
% routines, which works out which state it should be in. We go through each
|
|
% of the states in between (see later) doing default things for the ones we
|
|
% missed out.
|
|
%
|
|
% Anyway, here's some symbolic names for the states. It makes my life
|
|
% easier.
|
|
%
|
|
% \begin{macrocode}
|
|
\chardef\tab@startstate 0
|
|
\chardef\tab@loopstate 1
|
|
\chardef\tab@rulestate 1
|
|
\chardef\tab@prespcstate 2
|
|
\chardef\tab@prestate 3
|
|
\chardef\tab@colstate 4
|
|
\chardef\tab@poststate 5
|
|
\chardef\tab@postspcstate 6
|
|
\chardef\tab@limitstate 7
|
|
% \end{macrocode}
|
|
%
|
|
%
|
|
% \subsection{Adding things to token lists}
|
|
%
|
|
% Define some macros for adding stuff to the beginning and end of token
|
|
% lists. This is really easy, actually. Here we go.
|
|
%
|
|
% \begin{macrocode}
|
|
\def\tab@append#1#2{#1\expandafter{\the#1#2}}
|
|
\def\tab@prepend#1#2{%
|
|
\toks@{#2}#1\expandafter{\the\expandafter\toks@\the#1}%
|
|
}
|
|
% \end{macrocode}%
|
|
%
|
|
%
|
|
% \subsection{Committing a column to the preamble}
|
|
%
|
|
% Each time we pass the `rule' state, we `commit' the tokens we've gathered
|
|
% so far to the main preamble token list. This is how we do it. Note the
|
|
% icky use of |\expandafter|.
|
|
%
|
|
% \begin{macrocode}
|
|
\def\tab@commit{%
|
|
% \end{macrocode}
|
|
%
|
|
% If this isn't the first column, then we need to put in a column separator.
|
|
%
|
|
% \begin{macrocode}
|
|
\iftab@firstcol\else%
|
|
\expandafter\tab@append\expandafter\tab@preamble%
|
|
\expandafter{\tab@tabtext}%
|
|
\fi%
|
|
% \end{macrocode}
|
|
%
|
|
% Now we spill the token registers into the main list in a funny order (which
|
|
% is why we're doing it in this strange way in the first place.
|
|
%
|
|
% \begin{macrocode}
|
|
\toks@\expandafter{\tab@midtext}%
|
|
\tab@preamble\expandafter{%
|
|
\the\expandafter\tab@preamble%
|
|
\the\expandafter\tab@pretext%
|
|
\the\expandafter\tab@userpretext%
|
|
\the\expandafter\toks@%
|
|
\the\tab@posttext%
|
|
}%
|
|
% \end{macrocode}
|
|
%
|
|
% Now reset token lists and things for the next go round.
|
|
%
|
|
% \begin{macrocode}
|
|
\tab@firstcolfalse%
|
|
\tab@pretext{}%
|
|
\tab@userpretext{}%
|
|
\tab@posttext{}%
|
|
}
|
|
% \end{macrocode}
|
|
%
|
|
%
|
|
% \subsection{Playing with parser states}
|
|
%
|
|
% \begin{macro}{\tab@setstate}
|
|
%
|
|
% This is how we set new states. The algorithm is fairly simple, really.
|
|
%
|
|
% ^^A Let's see how good my TeX really is... ;-)
|
|
% ^^A Actually, it doesn't seem to have worked out too badly. Maybe I should
|
|
% ^^A write a package to do this automatically. It's rather tricky, though.
|
|
%
|
|
% \def\qq{\mbox{\quad}}
|
|
% \sbox{0}{\itshape\textunderscore}\def\_{\usebox{0}}
|
|
%
|
|
% \begin{quote}
|
|
% {\bf while} $\it tab\_state \ne s$ {\bf do} \\
|
|
% \qq $\mathit{tab\_state = tab\_state}+1$; \\
|
|
% \qq {\bf if} $\it tab\_state = tab\_limitState$ {\bf then}
|
|
% $\it tab\_state=tab\_loopState$; \\
|
|
% \qq {\bf if} $\it tab\_state = tab\_preSpcState$ {\bf then} \\
|
|
% \qq \qq {\bf if} $\it tab\_initRule$ {\bf then} \\
|
|
% \qq \qq \qq $\it tab\_initRule = {\bf false}$; \\
|
|
% \qq \qq {\bf else} \\
|
|
% \qq \qq \qq {\bf if} $\it tab\_inMultiCol$ {\bf then moan}; \\
|
|
% \qq \qq \qq $\it commit$; \\
|
|
% \qq \qq \qq $\it append(tab\_shortLine,\hbox{`|&\omit|')}$; \\
|
|
% \qq \qq {\bf end\,if}; \\
|
|
% \qq {\bf end\,if}; \\
|
|
% \qq {\bf if} $\it tab\_state \ne s$ {\bf then}
|
|
% $\it do\_default(tab\_state)$; \\
|
|
% {\bf end\,while};
|
|
% \end{quote}
|
|
%
|
|
% First we decide if there's anything to do. If so, we call another macro to
|
|
% do it for us.
|
|
%
|
|
% \begin{macrocode}
|
|
\def\tab@setstate#1{%
|
|
\ifnum#1=\tab@state\else%
|
|
\def\@tempa{\tab@setstate@i{#1}}%
|
|
\@tempa%
|
|
\fi%
|
|
}
|
|
% \end{macrocode}
|
|
%
|
|
% This is where the fun is. First we bump the state by one, and loop back
|
|
% if we fall off the end.
|
|
%
|
|
% \begin{macrocode}
|
|
\def\tab@setstate@i#1{%
|
|
\global\advance\tab@state\@ne%
|
|
\ifnum\tab@state>\tab@limitstate%
|
|
\global\tab@state\tab@loopstate%
|
|
\fi%
|
|
% \end{macrocode}
|
|
%
|
|
% Now, if we've just passed the ruleoff state, we commit the current text
|
|
% \emph{unless} this was the strange initial rule at the very beginning. We
|
|
% provide a little hook here so that |\multicolumn| can moan if you try and
|
|
% give more than one column there. We also add another tab/omit pair to the
|
|
% list we use for |\vgap|.
|
|
%
|
|
% \begin{macrocode}
|
|
\ifnum\tab@state=\tab@prespcstate%
|
|
\iftab@initrule%
|
|
\tab@initrulefalse%
|
|
\else%
|
|
\tab@looped%
|
|
\tab@commit%
|
|
\tab@append\tab@shortline{&\omit}%
|
|
\fi%
|
|
\fi%
|
|
% \end{macrocode}
|
|
%
|
|
% Now we decide whether to go round again. If not, we do the default thing
|
|
% for this state. This is mainly here so that we can put the |\tabcolsep| or
|
|
% whatever in if the user didn't give an \lit{@} expression.
|
|
%
|
|
% \begin{macrocode}
|
|
\ifnum#1=\tab@state%
|
|
\let\@tempa\relax%
|
|
\else%
|
|
\csname tab@default@\number\tab@state\endcsname%
|
|
\fi%
|
|
\@tempa%
|
|
}
|
|
% \end{macrocode}
|
|
%
|
|
% \end{macro}
|
|
%
|
|
% Now we set up the default actions for the various states.
|
|
%
|
|
% In state~2 (pre-space) we add in the default gap if either we didn't have
|
|
% an \lit{@} expression in the post-space state or there was an explicit
|
|
% intervening rule.
|
|
%
|
|
% \begin{macrocode}
|
|
\@namedef{tab@default@2}{%
|
|
\iftab@rule%
|
|
\tab@append\tab@pretext{\hskip\col@sep}%
|
|
\fi%
|
|
}
|
|
% \end{macrocode}
|
|
%
|
|
% If the user omits the column type, we insert an `l'-type column and moan
|
|
% a lot.
|
|
%
|
|
% \begin{macrocode}
|
|
\@namedef{tab@default@4}{%
|
|
\tab@err@misscol%
|
|
\tab@append\tab@pretext{\tab@bgroup\relax}%
|
|
\tab@append\tab@posttext{\relax\tab@egroup\hfil}%
|
|
\tab@append\tab@shortline{\hfil}%
|
|
\advance\tab@columns\@ne%
|
|
}
|
|
% \end{macrocode}
|
|
%
|
|
% Finally we deal with the post-space state. We set a marker so that we
|
|
% put in the default space in the pre-space state later too.
|
|
%
|
|
% \begin{macrocode}
|
|
\@namedef{tab@default@6}{%
|
|
\tab@append\tab@posttext{\hskip\col@sep}%
|
|
\tab@ruletrue%
|
|
}
|
|
% \end{macrocode}
|
|
%
|
|
%
|
|
% \subsection{Declaring token types}
|
|
%
|
|
% \begin{macro}{\tab@extracol}
|
|
%
|
|
% Before we start, we need to handle |\extracolsep|. This is a right pain,
|
|
% because the original version of \env{tabular} worked on total expansion,
|
|
% which is a Bad Thing. On the other hand, turning |\extracolsep| into a
|
|
% |\tabskip| is also a major pain.
|
|
%
|
|
% \begin{macrocode}
|
|
\def\tab@extracol#1#2{\tab@extracol@i#1#2\extracolsep{}\extracolsep\end}
|
|
\def\tab@extracol@i#1#2\extracolsep#3#4\extracolsep#5\end{%
|
|
\ifx @#3@%
|
|
\def\@tempa{#1{#2}}%
|
|
\else%
|
|
\def\@tempa{#1{#2\tabskip#3\relax#4}}%
|
|
\fi%
|
|
\@tempa%
|
|
}
|
|
% \end{macrocode}
|
|
%
|
|
% \end{macro}
|
|
%
|
|
% This is where we do the work for inserting preamble elements.
|
|
%
|
|
% \begin{macro}{\tabruletype}
|
|
%
|
|
% Inserting rules is interesting, because we have to decide where to put
|
|
% them. If this is the funny initial rule, it goes in the pre-text list,
|
|
% otherwise it goes in the post-text list. We work out what to do first
|
|
% thing:
|
|
%
|
|
% \begin{macrocode}
|
|
\def\tabruletype#1{\tab@extracol\tabruletype@i{#1}}%
|
|
\def\tabruletype@i#1{%
|
|
\iftab@initrule%
|
|
\let\tab@tok\tab@pretext%
|
|
\else%
|
|
\let\tab@tok\tab@posttext%
|
|
\fi%
|
|
% \end{macrocode}
|
|
%
|
|
% Now if we're already in the rule state, we must have just done a rule.
|
|
% This means we must put in the |\doublerulesep| space, both here and in the
|
|
% shortline list. Otherwise we just stick the rule in.
|
|
%
|
|
% This is complicated, because |\vgap| needs to be able to remove some bits
|
|
% of rule. We pass each one to a macro |\tab@ckr|, together with the column
|
|
% number, which is carefully bumped at the right times, and this macro will
|
|
% vet the rules and output the appropriate ones. There's lots of extreme
|
|
% |\expandafter| nastiness as a result. Amazingly, this actually works.
|
|
%
|
|
% \begin{macrocode}
|
|
\ifnum\tab@state=\tab@rulestate%
|
|
\tab@append\tab@tok{\hskip\doublerulesep\begingroup#1\endgroup}%
|
|
\expandafter\tab@append\expandafter\tab@shortline\expandafter{%
|
|
\expandafter\hskip\expandafter\doublerulesep%
|
|
\expandafter\tab@ckr\expandafter{\the\tab@columns}%
|
|
{\begingroup#1\endgroup}%
|
|
}%
|
|
\else%
|
|
\tab@setstate\tab@rulestate%
|
|
\tab@append\tab@tok{\begingroup#1\endgroup}%
|
|
\expandafter\tab@append\expandafter\tab@shortline\expandafter{%
|
|
\expandafter\tab@ckr\expandafter{\the\tab@columns}%
|
|
{\begingroup#1\endgroup}%
|
|
}%
|
|
\fi%
|
|
% \end{macrocode}
|
|
%
|
|
% Finally, we say there was a rule here, so that default space gets put in
|
|
% after this. Otherwise we lose lots of generality.
|
|
%
|
|
% \begin{macrocode}
|
|
\tab@ruletrue%
|
|
}
|
|
% \end{macrocode}
|
|
%
|
|
% \end{macro}
|
|
%
|
|
% \begin{macro}{\tabspctype}
|
|
%
|
|
% We need to work out which space-state we should be in. Then we just put
|
|
% the text in. Easy, really.
|
|
%
|
|
% \begin{macrocode}
|
|
\def\tabspctype#1{\tab@extracol\tabspctype@i{#1}}%
|
|
\def\tabspctype@i#1{%
|
|
\tab@rulefalse%
|
|
\ifnum\tab@state>\tab@prespcstate%
|
|
\tab@setstate\tab@postspcstate%
|
|
\let\tab@tok\tab@posttext%
|
|
\else%
|
|
\tab@setstate\tab@prespcstate%
|
|
\let\tab@tok\tab@pretext%
|
|
\fi%
|
|
\tab@append\tab@tok{\begingroup#1\endgroup}%
|
|
}
|
|
% \end{macrocode}
|
|
%
|
|
% \end{macro}
|
|
%
|
|
% \begin{macro}{\tabcoltype}
|
|
%
|
|
% If we're already in the column state, we bump the state and loop round
|
|
% again, to get all the appropriate default behaviour. We bump the column
|
|
% counter, and add the bits of text we were given to appropriate token lists.
|
|
% We also add the |\hfil| glue to the shortline list, to space out the rules
|
|
% properly.
|
|
%
|
|
% \begin{macrocode}
|
|
\def\tabcoltype#1#2{%
|
|
\ifnum\tab@state=\tab@colstate%
|
|
\global\advance\tab@state\@ne%
|
|
\fi%
|
|
\advance\tab@columns\@ne%
|
|
\tab@setstate\tab@colstate%
|
|
\tab@append\tab@pretext{#1}%
|
|
\tab@append\tab@posttext{#2}%
|
|
\tab@append\tab@shortline{\hfil}%
|
|
}
|
|
% \end{macrocode}
|
|
%
|
|
% \end{macro}
|
|
%
|
|
% \begin{macro}{\tabuserpretype}
|
|
% \begin{macro}{\tabuserposttype}
|
|
%
|
|
% These are both utterly trivial.
|
|
%
|
|
% \begin{macrocode}
|
|
\def\tabuserpretype#1{%
|
|
\tab@setstate\tab@prestate%
|
|
\tab@prepend\tab@userpretext{#1}%
|
|
}
|
|
% \end{macrocode}
|
|
%
|
|
% \begin{macrocode}
|
|
\def\tabuserposttype#1{%
|
|
\tab@setstate\tab@poststate%
|
|
\tab@prepend\tab@posttext{#1}%
|
|
}
|
|
% \end{macrocode}
|
|
%
|
|
% \end{macro}
|
|
% \end{macro}
|
|
%
|
|
%
|
|
% \subsection{The colset stack}
|
|
%
|
|
% Let's start with something fairly easy. We'll keep a stack of column sets
|
|
% so that users don't get confused by package authors changing the current
|
|
% column set. This is fairly easy, really.
|
|
%
|
|
% \begin{macro}{\tab@push}
|
|
% \begin{macro}{\tab@pop}
|
|
% \begin{macro}{\tab@head}
|
|
%
|
|
% These are the stack management routines. The only important thing to note
|
|
% is that |\tab@head| must take place \emph{only} in \TeX's mouth, so we can
|
|
% use it in |\csname|\dots|\endcsname| constructions.
|
|
%
|
|
% \begin{macrocode}
|
|
\def\tab@push#1#2{%
|
|
\toks@{{#2}}%
|
|
\expandafter\def\expandafter#1\expandafter{\the\expandafter\toks@#1}%
|
|
}
|
|
\def\tab@pop#1{\expandafter\def\expandafter#1\expandafter{\@gobble#1}}
|
|
\def\tab@head#1{\expandafter\tab@head@i#1\relax}
|
|
\def\tab@head@i#1#2\relax{#1}
|
|
% \end{macrocode}
|
|
%
|
|
% \end{macro}
|
|
% \end{macro}
|
|
% \end{macro}
|
|
%
|
|
% \begin{macro}{\colset}
|
|
% \begin{macro}{\colpush}
|
|
% \begin{macro}{\colpop}
|
|
%
|
|
% Now we can define the user macros.
|
|
%
|
|
% \begin{macrocode}
|
|
\def\tab@colstack{{tabular}}
|
|
\def\colset{\colpop\colpush}
|
|
\def\colpush{\tab@push\tab@colstack}
|
|
\def\colpop{\tab@pop\tab@colstack}
|
|
% \end{macrocode}
|
|
%
|
|
% \end{macro}
|
|
% \end{macro}
|
|
% \end{macro}
|
|
%
|
|
% \begin{macro}{\tab@colset}
|
|
%
|
|
% Now we define a shortcut for reading the top item off the stack.
|
|
%
|
|
% \begin{macrocode}
|
|
\def\tab@colset{\tab@head\tab@colstack}
|
|
% \end{macrocode}
|
|
%
|
|
% \end{macro}
|
|
%
|
|
%
|
|
% \subsection{The main parser routine}
|
|
%
|
|
% \begin{macro}{\tab@initread}
|
|
%
|
|
% This macro sets up lots of variables to their normal states prior to
|
|
% parsing a preamble. Some things may need changing, but not many.
|
|
%
|
|
% \begin{macrocode}
|
|
\def\tab@initread{%
|
|
% \end{macrocode}
|
|
%
|
|
% First, reset the parser state to the start state.
|
|
%
|
|
% \begin{macrocode}
|
|
\global\tab@state\tab@startstate%
|
|
% \end{macrocode}
|
|
%
|
|
% We clear the token lists to sensible values, mostly. The midtext macro
|
|
% contains what to put in the very middle of each template -- |\multicolumn|
|
|
% will insert its argument here.
|
|
%
|
|
% \begin{macrocode}
|
|
\tab@preamble{}%
|
|
\tab@shortline{}%
|
|
\def\tab@tabtext{&}%
|
|
\def\tab@midtext{\ignorespaces####\@maybe@unskip}%
|
|
\tab@pretext{}%
|
|
\tab@userpretext{}%
|
|
\tab@posttext{}%
|
|
\let\tab@multicol\@empty%
|
|
\def\tab@startpause{\penalty\postdisplaypenalty\medskip}%
|
|
\def\tab@endpause{\penalty\predisplaypenalty\medskip}%
|
|
% \end{macrocode}
|
|
%
|
|
% Finally, reset the column counter, don't raise errors when we loop, and set
|
|
% some parser flags to their appropriate values.
|
|
%
|
|
% \begin{macrocode}
|
|
\tab@columns\z@%
|
|
\let\tab@looped\relax%
|
|
\tab@ruletrue%
|
|
\tab@initruletrue%
|
|
\tab@firstcoltrue%
|
|
}
|
|
% \end{macrocode}
|
|
%
|
|
% \end{macro}
|
|
%
|
|
% \begin{macro}{\tab@readpreamble}
|
|
%
|
|
% This is the main macro for preamble handling. Actually, all it does is
|
|
% gobble its argument's leading brace and call another macro, but it does it
|
|
% with style.
|
|
%
|
|
% \begin{macrocode}
|
|
\def\tab@readpreamble#1{%
|
|
\tab@doreadpream{#1}%
|
|
\iftab@initrule\global\tab@state\tab@prespcstate\fi%
|
|
\tab@setstate\tab@rulestate%
|
|
\tab@commit%
|
|
}
|
|
% \end{macrocode}
|
|
%
|
|
% \end{macro}
|
|
%
|
|
% \begin{macro}{\tab@doreadpream}
|
|
%
|
|
% The preamble is in an argument. Previous versions used a nasty trick using
|
|
% |\let| and |\afterassignment|. Now we use an explicit end token, to allow
|
|
% dodgy column type handlers to scoop up the remaining preamble tokens
|
|
% and process them. Not that anyone would want to do that, oh no (see
|
|
% the \lit{[} type in the \env{eqnarray} environment |;-)|).
|
|
%
|
|
% \begin{macrocode}
|
|
\def\tab@doreadpream#1{\tab@mkpreamble#1\q@delim}
|
|
% \end{macrocode}
|
|
%
|
|
% \end{macro}
|
|
%
|
|
% \begin{macro}{\tab@mkpreamble}
|
|
%
|
|
% This is the main parser routine. It takes each token in turn, scrutinises
|
|
% it carefully, and does the appropriate thing with it.
|
|
%
|
|
% The preamble was given as an argument to |\tab@doreadpream|, and that has
|
|
% helpfully stripped off the initial |{| character. We need to pick off the
|
|
% next token (whatever it is) so we can examine it. We'll use |\futurelet|
|
|
% so we can detect groups and things in funny places.
|
|
%
|
|
% \begin{macrocode}
|
|
\def\tab@mkpreamble{\futurelet\@let@token\tab@mkpreamble@i}
|
|
% \end{macrocode}
|
|
%
|
|
% If we find a space token, we'll go off and do something a bit special,
|
|
% since spaces are sort of hard to handle. Otherwise we'll do it in the old
|
|
% fashioned way.
|
|
%
|
|
% \begin{macrocode}
|
|
\def\tab@mkpreamble@i{%
|
|
\ifx\@let@token\@sptoken%
|
|
\expandafter\tab@mkpreamble@spc%
|
|
\else%
|
|
\expandafter\tab@mkpreamble@ii%
|
|
\fi%
|
|
}
|
|
% \end{macrocode}
|
|
%
|
|
% If we find a |\@@endpreamble| token, that's it and we're finished. We just
|
|
% gobble it and return. Otherwise, if it's an open group character, we'll
|
|
% complain because someone's probably tried to put an argument in the wrong
|
|
% place. Finally, if none of the other things apply, we'll deal with the
|
|
% character below.
|
|
%
|
|
% \begin{macrocode}
|
|
\def\tab@mkpreamble@ii{%
|
|
\ifx\@let@token\q@delim%
|
|
\def\@tempa{\let\@let@token}%
|
|
\else%
|
|
\ifcat\bgroup\noexpand\@let@token%
|
|
\tab@err@oddgroup%
|
|
\def\@tempa##1{\tab@mkpreamble}%
|
|
\else%
|
|
\let\@tempa\tab@mkpreamble@iii%
|
|
\fi%
|
|
\fi%
|
|
\@tempa%
|
|
}
|
|
% \end{macrocode}
|
|
%
|
|
% Handle a character. This involves checking to see if it's actually
|
|
% defined, and then doing it. Doing things this way means we won't get
|
|
% stranded in mid-preamble unless a package author has blown it.
|
|
%
|
|
% \begin{macrocode}
|
|
\def\tab@mkpreamble@iii#1{%
|
|
\@ifundefined{\tab@colset!col.\string#1}{%
|
|
\tab@err@undef{#1}\tab@mkpreamble%
|
|
}{%
|
|
\@nameuse{\tab@colset!col.\string#1}%
|
|
}%
|
|
}
|
|
% \end{macrocode}
|
|
%
|
|
% If we get given a space character, we'll look up the command name as
|
|
% before. If no-one's defined the column type we'll just skip it silently,
|
|
% which lets users do pretty formatting if they like.
|
|
%
|
|
% \begin{macrocode}
|
|
\@namedef{tab@mkpreamble@spc} {%
|
|
\@ifundefined{\tab@colset!col. }{%
|
|
\tab@mkpreamble%
|
|
}{%
|
|
\@nameuse{\tab@colset!col. }%
|
|
}%
|
|
}
|
|
% \end{macrocode}
|
|
%
|
|
% \end{macro}
|
|
%
|
|
% \begin{macro}{\coldef}
|
|
%
|
|
% Here's how to define column types the nice way. Some dexterity is required
|
|
% to make everything work right, but it's simple really.
|
|
%
|
|
% \begin{macrocode}
|
|
\def\coldef{\@ifnextchar[\coldef@i{\coldef@i[\tab@colset]}}
|
|
\def\coldef@i[#1]#2#3#{\coldef@ii[#1]{#2}{#3}}
|
|
\def\coldef@ii[#1]#2#3#4{%
|
|
\expandafter\def\csname#1!col.\string#2\endcsname#3{%
|
|
#4\tab@mkpreamble%
|
|
}%
|
|
}
|
|
% \end{macrocode}
|
|
%
|
|
% \end{macro}
|
|
%
|
|
% \begin{macro}{\collet}
|
|
%
|
|
% We'd like to let people copy column types from other places. This is how
|
|
% to do it.
|
|
%
|
|
% \begin{macrocode}
|
|
\def\collet{\@ifnextchar[\collet@i{\collet@i[\tab@colset]}}
|
|
\def\collet@i[#1]#2{%
|
|
\@ifnextchar=%
|
|
{\collet@ii[#1]{#2}}%
|
|
{\collet@ii[#1]{#2}=}%
|
|
}
|
|
\def\collet@ii[#1]#2={%
|
|
\@ifnextchar[%
|
|
{\collet@iii[#1]{#2}}%
|
|
{\collet@iii[#1]{#2}[\tab@colset]}%
|
|
}
|
|
\def\collet@iii[#1]#2[#3]#4{%
|
|
\expandafter\let\csname#1!col.\string#2\expandafter\endcsname%
|
|
\csname#3!col.\string#4\endcsname%
|
|
}
|
|
% \end{macrocode}
|
|
%
|
|
% \end{macro}
|
|
%
|
|
% \begin{macro}{\newcolumntype}
|
|
%
|
|
% We just bundle the text off to |\newcommand| and expect it to cope. It
|
|
% ought to. The column type code inserts the user's tokens directly, rather
|
|
% than calling |\tab@doreadpream| recursively. The magic control sequence
|
|
% is the one looked up by the parser.
|
|
%
|
|
% There's some additional magic here for compatiblity with the obscure way
|
|
% that \package{array} works.
|
|
%
|
|
% \begin{macrocode}
|
|
\def\newcolumntype#1{\@ifnextchar[{\nct@i{#1}}{\nct@i#1[0]}}
|
|
\def\nct@i#1[#2]{\@ifnextchar[{\nct@ii{#1}[#2]}{\nct@iii{#1}{[#2]}}}
|
|
\def\nct@ii#1[#2][#3]{\nct@iii{#1}{[#2][#3]}}
|
|
\def\nct@iii#1#2#3{%
|
|
\expandafter\let\csname\tab@colset!col.\string#1\endcsname\relax%
|
|
\expandafter\newcommand\csname\tab@colset!col.\string#1\endcsname#2{%
|
|
\tab@deepmagic{#1}%
|
|
\tab@mkpreamble%
|
|
#3%
|
|
}%
|
|
}
|
|
% \end{macrocode}
|
|
%
|
|
% Now for some hacking for compatibility with \package{tabularx}.
|
|
%
|
|
% \begin{macrocode}
|
|
\def\newcol@#1[#2]{\nct@iii{#1}{[#2]}}
|
|
% \end{macrocode}
|
|
%
|
|
% And now some more. This is seriously deep magic. Hence the name.
|
|
%
|
|
% \begin{macrocode}
|
|
\def\tab@deepmagic#1{%
|
|
\csname NC@rewrite@\string#1\endcsname\NC@find\tab@@magic@@%
|
|
}
|
|
\def\NC@find#1\tab@@magic@@{}
|
|
% \end{macrocode}
|
|
%
|
|
% \end{macro}
|
|
%
|
|
%
|
|
% \subsection{Standard column types}
|
|
%
|
|
% First, make sure we're setting up the right columns. This also sets the
|
|
% default for the user. Other packages must not use the |\colset| command
|
|
% for defining columns -- they should use the stack operations defined above.
|
|
%
|
|
% \begin{macrocode}
|
|
\colset{tabular}
|
|
% \end{macrocode}
|
|
%
|
|
% Now do the simple alignment types. These are fairly simple. The
|
|
% mysterious kern in the \lit{l} type is to stop the |\col@sep| glue from
|
|
% vanishing due to the |\unskip| inserted by the standard |\tab@midtext| if
|
|
% the column contains no text. (Thanks for spotting this bug go to that
|
|
% nice Mr~Carlisle.)
|
|
%
|
|
% \begin{macrocode}
|
|
\coldef l{\tabcoltype{\kern\z@\tab@bgroup}{\tab@egroup\hfil}}
|
|
\coldef c{\tabcoltype{\hfil\tab@bgroup}{\tab@egroup\hfil}}
|
|
\coldef r{\tabcoltype{\hfil\tab@bgroup}{\tab@egroup}}
|
|
% \end{macrocode}
|
|
%
|
|
% Some extensions now. These are explicitly teextual or mathematical
|
|
% columns. Can be useful if you're providing column types for other people.
|
|
% I've inserted a kern here for exactly the same reason as for the \lit{l}
|
|
% column type above.
|
|
%
|
|
% \begin{macrocode}
|
|
\coldef T#1{\tab@aligncol{#1}{\tab@btext}{\tab@etext}}
|
|
\coldef M#1{\tab@aligncol{#1}{\tab@bmaths}{\tab@emaths}}
|
|
\def\tab@aligncol#1#2#3{%
|
|
\if#1l\tabcoltype{\kern\z@#2}{#3\hfil}\fi%
|
|
\if#1c\tabcoltype{\hfil#2}{#3\hfil}\fi%
|
|
\if#1r\tabcoltype{\hfil#2}{#3}\fi%
|
|
}
|
|
% \end{macrocode}
|
|
%
|
|
% Now for the default rules.
|
|
%
|
|
% \begin{macrocode}
|
|
\coldef |{\tabruletype{\vrule\@width\arrayrulewidth}}
|
|
\coldef !#1{\tabruletype{#1}}
|
|
% \end{macrocode}
|
|
%
|
|
% Deal with \lit{@} expressions.
|
|
%
|
|
% \begin{macrocode}
|
|
\coldef @#1{\tabspctype{#1}}
|
|
% \end{macrocode}
|
|
%
|
|
% And the paragraph types. I've added things to handle footnotes here.
|
|
%
|
|
% \begin{macrocode}
|
|
\coldef p#1{\tabcoltype%
|
|
{\savenotes\vtop\tab@bpar{#1}}%
|
|
{\tab@epar\spewnotes\hfil}}
|
|
\coldef m#1{\tabcoltype%
|
|
{\savenotes$\vcenter\tab@bpar{#1}}%
|
|
{\tab@epar$\spewnotes\hfil}}
|
|
\coldef b#1{\tabcoltype%
|
|
{\savenotes\vbox\tab@bpar{#1}}%
|
|
{\tab@epar\spewnotes\hfil}}
|
|
% \end{macrocode}
|
|
%
|
|
% Phew. Only a few more left now. The user text ones.
|
|
%
|
|
% \begin{macrocode}
|
|
\coldef >#1{\tabuserpretype{#1}}
|
|
\coldef <#1{\tabuserposttype{#1}}
|
|
% \end{macrocode}
|
|
%
|
|
% The strange column type.
|
|
%
|
|
% \begin{macrocode}
|
|
\coldef ##1#2{\tabcoltype{#1}{#2}}
|
|
% \end{macrocode}
|
|
%
|
|
% And \lit{*}, which repeats a preamble spec. This is really easy, and not
|
|
% at all like the original one.
|
|
%
|
|
% \begin{macrocode}
|
|
\coldef *#1#2{%
|
|
\count@#1%
|
|
\loop\ifnum\count@>0\relax%
|
|
\tab@doreadpream{#2}%
|
|
\advance\count@\m@ne%
|
|
\repeat%
|
|
}
|
|
% \end{macrocode}
|
|
%
|
|
%
|
|
% \subsection{Paragraph handling}
|
|
%
|
|
% First of all, starting new paragraphs: the vbox token is already there, and
|
|
% we have the width as an argument.
|
|
%
|
|
% \begin{macro}{\tab@bpar}
|
|
%
|
|
% There are some gymnastics to do here to support lists which form the
|
|
% complete text of the parbox. One of the odd things I'll do here is to
|
|
% not insert a strut on the first line: instead, I'll put the text into a
|
|
% box register so that I can inspect it later. So that I have access to
|
|
% the height of the first line, I'll use a |\vtop| -- I can get at the
|
|
% final depth by using |\prevdepth|, so this seems to be the most general
|
|
% solution.
|
|
%
|
|
% \begin{macrocode}
|
|
\def\tab@bpar#1{%
|
|
\bgroup%
|
|
\hsize#1\relax%
|
|
\@arrayparboxrestore%
|
|
\setbox\z@\vtop\bgroup
|
|
\global\@minipagetrue%
|
|
\everypar{%
|
|
\global\@minipagefalse%
|
|
\everypar{}%
|
|
}%
|
|
}
|
|
% \end{macrocode}
|
|
%
|
|
% \end{macro}
|
|
%
|
|
% \begin{macro}{\tab@epar}
|
|
%
|
|
% To end the paragraph, close the box. That sounds easy, doesn't it?
|
|
% I need to space out the top and bottom of the box so that it looks as if
|
|
% struts have been applied.
|
|
%
|
|
% \begin{macrocode}
|
|
\def\tab@epar{%
|
|
% \end{macrocode}
|
|
%
|
|
% Anyway, I should end the current paragraph if I'm still in horizontal
|
|
% mode. A simple |\par| will do this nicely. I'll also remove any trailing
|
|
% vertical glue (which may be left there by a list environment), because
|
|
% things will look very strange otherwise.
|
|
%
|
|
% \begin{macrocode}
|
|
\ifhmode\@maybe@unskip\par\fi%
|
|
\unskip%
|
|
% \end{macrocode}
|
|
%
|
|
% Now I'll look at the depth of the last box: if it's less deep than my
|
|
% special strut, I'll cunningly backpedal by a bit, and add a box with the
|
|
% appropriate depth. Since this will lie on the previous baseline, it won't
|
|
% alter the effective height of the box. There's a snag here. |\prevdepth|
|
|
% may be wrong for example if the last thing inserted was a rule, or the
|
|
% box is just empty. Check for this specially. (Thanks to Rowland for
|
|
% spotting this.)
|
|
%
|
|
% \begin{macrocode}
|
|
\ifdim\prevdepth>-\@m\p@\ifdim\prevdepth<\dp\@arstrutbox%
|
|
\kern-\prevdepth%
|
|
\nointerlineskip%
|
|
\vtop to\dp\@arstrutbox{}%
|
|
\fi\fi%
|
|
% \end{macrocode}
|
|
%
|
|
% I've finished the bottom of the box now: I'll close it, and start work on
|
|
% the top again.
|
|
%
|
|
% \begin{macrocode}
|
|
\egroup%
|
|
% \end{macrocode}
|
|
%
|
|
% For top-alignment to work, the first item in the box must be another box.
|
|
% (This is why I couldn't just set |\prevdepth| at the beginning.) If the
|
|
% box isn't high enough, I'll add a box of the right height and then kern
|
|
% backwards so that the `real' first box ends up in the right place.
|
|
%
|
|
% \begin{macrocode}
|
|
\ifdim\ht\z@<\ht\@arstrutbox%
|
|
\vbox to\ht\@arstrutbox{}%
|
|
\kern-\ht\z@%
|
|
\fi%
|
|
\unvbox\z@%
|
|
\egroup%
|
|
}
|
|
% \end{macrocode}
|
|
%
|
|
% \end{macro}
|
|
%
|
|
%
|
|
% \subsection{Gentle persuasion}
|
|
%
|
|
% To persuade \package{longtable} to work, we emulate some features of
|
|
% the \package{array} way of doing things. It's a shame, but we have to do
|
|
% it, because \package{longtable} came first.
|
|
%
|
|
% Note the horribleness with the grouping here. In order to get everything
|
|
% expanded at the right time, |\@preamble| just replaces itself with the (not
|
|
% expanded!) preamble string, using |\the|. This means that the preamble
|
|
% string must be visible in the group just above us. Now,
|
|
% \package{longtable} (and \package{array} for that matter) does
|
|
% |\@mkpreamble| immediately after opening a new group. So all we need to do
|
|
% is close that group, do our stuff, and reopen the group again. (Evil
|
|
% laughter\dots)
|
|
%
|
|
% \begin{macrocode}
|
|
\def\@mkpream#1{%
|
|
\endgroup%
|
|
\colset{tabular}%
|
|
\tab@initread%
|
|
\def\tab@multicol{\@arstrut}%
|
|
\tab@preamble{\tab@multicol}%
|
|
\def\tab@midtext{\ignorespaces\@sharp\@sharp\@maybe@unskip}%
|
|
\tab@readpreamble{#1}%
|
|
\gdef\@preamble{\the\tab@preamble}%
|
|
\let\tab@bgroup\begingroup%
|
|
\let\tab@egroup\endgroup%
|
|
\begingroup%
|
|
}
|
|
% \end{macrocode}
|
|
%
|
|
%
|
|
% \subsection{Debugging}
|
|
%
|
|
% This macro just parses a preamble and displays it on the terminal. It
|
|
% means I can see whether the thing's working.
|
|
%
|
|
% \begin{macrocode}
|
|
\def\showpream#1{%
|
|
\tab@initread%
|
|
\tab@readpreamble{#1}%
|
|
\showthe\tab@preamble%
|
|
\showthe\tab@shortline%
|
|
}
|
|
% \end{macrocode}
|
|
%
|
|
% A quick macro for showing column types.
|
|
%
|
|
% \begin{macrocode}
|
|
\def\showcol#1{%
|
|
\expandafter\show\csname\tab@colset!col.\string#1\endcsname%
|
|
}
|
|
% \end{macrocode}
|
|
%
|
|
%
|
|
% \subsection{The \env{tabular} and \env{array} environments}
|
|
%
|
|
% This is where we define the actual environments which users play with.
|
|
%
|
|
% \subsubsection{The environment routines}
|
|
%
|
|
% The real work is done in the |\@array| macro later. We just set up lots
|
|
% (and I mean \emph{lots}) of parameters first, and then call |\@array|.
|
|
%
|
|
% \begin{macro}{\tab@array}
|
|
%
|
|
% The |\tab@array| macro does most of the common array things.
|
|
%
|
|
% \begin{macrocode}
|
|
\def\tab@array{%
|
|
\tab@width\z@%
|
|
\let\tab@bgroup\tab@bmaths%
|
|
\let\tab@egroup\tab@emaths%
|
|
\@tabarray%
|
|
}
|
|
% \end{macrocode}
|
|
%
|
|
% \end{macro}
|
|
%
|
|
% \begin{macro}{\tab@btext}
|
|
% \begin{macro}{\tab@bmaths}
|
|
% \begin{macro}{\tab@etext}
|
|
% \begin{macro}{\tab@emaths}
|
|
%
|
|
% These macros contain appropriate things to use when typesetting
|
|
% text or maths macros. They're all trivial. They're here only for
|
|
% later modification by funny things like the \env{smarray} environment.
|
|
%
|
|
% \begin{macrocode}
|
|
\def\tab@btext{\begingroup}
|
|
\def\tab@bmaths{$}
|
|
\def\tab@etext{\endgroup}
|
|
\def\tab@emaths{\m@th$}
|
|
% \end{macrocode}
|
|
%
|
|
% \end{macro}
|
|
% \end{macro}
|
|
% \end{macro}
|
|
% \end{macro}
|
|
%
|
|
% \begin{environment}{array}
|
|
%
|
|
% Now for the \env{array} environment. The `|$|' signs act as a group, so we
|
|
% don't need to do extra grouping this time. Closing the environment is
|
|
% easy.
|
|
%
|
|
% \begin{macrocode}
|
|
\def\array{%
|
|
\col@sep\arraycolsep%
|
|
\let\tab@extrasep\arrayextrasep%
|
|
\tab@normalstrut%
|
|
\tab@array%
|
|
}
|
|
\def\endarray{%
|
|
\crcr%
|
|
\egroup%
|
|
\tab@right%
|
|
\tab@restorehlstate%
|
|
}
|
|
% \end{macrocode}
|
|
%
|
|
% \end{environment}
|
|
%
|
|
% \begin{environment}{smarray}
|
|
%
|
|
% Now for something a little different. The \env{smarray} environment
|
|
% gives you an array with lots of small text.
|
|
%
|
|
% \begin{macrocode}
|
|
\def\smarray{%
|
|
\extrarowheight\z@%
|
|
\col@sep\smarraycolsep%
|
|
\let\tab@extrasep\smarrayextrasep%
|
|
\def\tab@bmaths{$\scriptstyle}%
|
|
\def\tab@btext{\begingroup\scriptsize}%
|
|
\setbox\z@\hbox{\scriptsize\strut}%
|
|
\dimen@\ht\z@\dimen\tw@\dp\z@\tab@setstrut%
|
|
\tab@array%
|
|
}
|
|
\let\endsmarray\endarray
|
|
% \end{macrocode}
|
|
%
|
|
% \end{environment}
|
|
%
|
|
% \begin{macro}{\tabstyle}
|
|
%
|
|
% This is a little hook that document designers can use to modify the
|
|
% appearance of tables throughout a document. For example, I've set it to
|
|
% make the text size |\small| in all tables in this document. Macro writers
|
|
% shouldn't try to use it as a hook for their own evilness, though. I've
|
|
% used |\providecommand| to avoid nobbling an existing definition.
|
|
%
|
|
% \begin{macrocode}
|
|
\providecommand\tabstyle{}
|
|
% \end{macrocode}
|
|
%
|
|
% \end{macro}
|
|
%
|
|
% \begin{macro}{\@tabular}
|
|
%
|
|
% The two \env{tabular} environments share lots of common code, so we
|
|
% separate that out. (This needs to be done better.) All we really do here
|
|
% is set up the |\tab@bgroup| and |\tab@egroup| to localise things properly,
|
|
% and then go.
|
|
%
|
|
% \begin{macrocode}
|
|
\def\@tabular#1{%
|
|
\tabstyle%
|
|
\tab@width#1%
|
|
\let\tab@bgroup\tab@btext%
|
|
\let\tab@egroup\tab@etext%
|
|
\col@sep\tabcolsep%
|
|
\let\tab@extrasep\tabextrasep%
|
|
\tab@normalstrut%
|
|
\@tabarray%
|
|
}
|
|
% \end{macrocode}
|
|
%
|
|
% \end{macro}
|
|
%
|
|
% \begin{environment}{tabular}
|
|
% \begin{environment}{tabular*}
|
|
%
|
|
% These environments just call a macro which does all the common stuff.
|
|
%
|
|
% \begin{macrocode}
|
|
\def\tabular{\@tabular\z@}
|
|
\expandafter\let\csname tabular*\endcsname\@tabular
|
|
\let\endtabular\endarray
|
|
\expandafter\let\csname endtabular*\endcsname\endarray
|
|
% \end{macrocode}
|
|
%
|
|
% \end{environment}
|
|
% \end{environment}
|
|
%
|
|
% \subsubsection{Setting the strut height}
|
|
%
|
|
% \begin{macro}{\tab@setstrut}
|
|
%
|
|
% We use a magical strut, called |\@arstrut|, which keeps the table from
|
|
% collapsing around our heads. This is where we set it up.
|
|
%
|
|
% It bases the array strut size on the given values of |\dimen@| and
|
|
% |\dimen\tw@|, amended by various appropriate fiddle values added in by
|
|
% various people.
|
|
%
|
|
% \begin{macrocode}
|
|
\def\tab@setstrut{%
|
|
\setbox\@arstrutbox\hbox{%
|
|
\vrule%
|
|
\@height\arraystretch\dimen@%
|
|
\@depth\arraystretch\dimen\tw@%
|
|
\@width\z@%
|
|
}%
|
|
}
|
|
% \end{macrocode}
|
|
%
|
|
% \end{macro}
|
|
%
|
|
% \begin{macro}{\tab@normalstrut}
|
|
%
|
|
% This sets the strut the normal way, from the size of |\strutbox|.
|
|
%
|
|
% \begin{macrocode}
|
|
\def\tab@normalstrut{%
|
|
\dimen@\ht\strutbox\advance\dimen@\extrarowheight%
|
|
\dimen\tw@\dp\strutbox%
|
|
\tab@setstrut%
|
|
}
|
|
% \end{macrocode}
|
|
%
|
|
% \end{macro}
|
|
%
|
|
% \subsubsection{Setting up the alignment}
|
|
%
|
|
% The following bits are mainly for other packages to hook themselves onto.
|
|
%
|
|
% \begin{macrocode}
|
|
\let\@arrayleft\relax%
|
|
\let\@arrayright\relax%
|
|
% \end{macrocode}
|
|
%
|
|
% \begin{macrocode}
|
|
\def\@tabarray{%
|
|
\let\@arrayleft\relax%
|
|
\let\@arrayright\relax%
|
|
\@ifnextchar[\@array{\@array[c]}%
|
|
}
|
|
% \end{macrocode}
|
|
%
|
|
% \begin{macro}{\@array}
|
|
%
|
|
% The |\@array| macro does most of the real work for the environments. The
|
|
% first job is to set up the row strut, which keeps the table rows at the
|
|
% right height. We just take the normal strut box, and extend its height by
|
|
% the |\extrarowheight| length parameter.
|
|
%
|
|
% \begin{macrocode}
|
|
\def\@array[#1]#2{%
|
|
% \end{macrocode}
|
|
%
|
|
% Sort out the hline state variable. We'll store the old value in a
|
|
% control sequence to avoid wasting any more count registers.
|
|
%
|
|
% \begin{macrocode}
|
|
\edef\tab@restorehlstate{%
|
|
\global\tab@endheight\the\tab@endheight%
|
|
\gdef\noexpand\tab@hlstate{\tab@hlstate}%
|
|
}%
|
|
\def\tab@hlstate{n}%
|
|
% \end{macrocode}
|
|
%
|
|
% Now we read the preamble. All the clever things we've already done are
|
|
% terribly useful here.
|
|
%
|
|
% The |\tab@setcr| sets up |\\| to be a newline even if users have changed it
|
|
% using something like |\raggedright|.
|
|
%
|
|
% \begin{macrocode}
|
|
\colset{tabular}%
|
|
\tab@initread%
|
|
\def\tab@midtext{\tab@setcr\ignorespaces####\@maybe@unskip}%
|
|
\def\tab@multicol{\@arstrut\tab@startrow}%
|
|
\tab@preamble{\tab@multicol\tabskip\z@skip}%
|
|
\tab@readpreamble{#2}%
|
|
% \end{macrocode}
|
|
%
|
|
% Set up the default tabskip glue. This is easy: there isn't any.
|
|
%
|
|
% \begin{macrocode}
|
|
\tab@leftskip\z@skip%
|
|
\tab@rightskip\z@skip%
|
|
% \end{macrocode}
|
|
%
|
|
% Now set up the positioning of the table. This is put into a separate macro
|
|
% because it's rather complicated.
|
|
%
|
|
% \begin{macrocode}
|
|
\tab@setposn{#1}%
|
|
% \end{macrocode}
|
|
%
|
|
% Now work out how to start the alignment.
|
|
%
|
|
% \begin{macrocode}
|
|
\ifdim\tab@width=\z@%
|
|
\def\tab@halign{}%
|
|
\else%
|
|
\def\tab@halign{to\tab@width}%
|
|
\fi%
|
|
% \end{macrocode}
|
|
%
|
|
% Finally, do all the normal things we need to do before an alignment. Note
|
|
% that we define |\tabularnewline| first, then set |\\| from that (using
|
|
% |\tab@setcr|). Since |\\| is reset in the |\tab@midtext| of every table
|
|
% cell, it becomes secondary to |\tabularnewline|. Doing things this way
|
|
% avoids the problems with declarations like |\raggedright| which redefine
|
|
% |\\| in their own (usually rather strange) way, so you don't need to mess
|
|
% about with things like the |\PreserveBackslash| command given in the
|
|
% \textit{\LaTeX\ Companion}.
|
|
%
|
|
% \begin{macrocode}
|
|
\lineskip\z@\baselineskip\z@%
|
|
\m@th%
|
|
\def\tabularnewline{\tab@arraycr\tab@penalty}%
|
|
\tab@setcr%
|
|
\let\par\@empty%
|
|
\everycr{}\tabskip\tab@leftskip%
|
|
\tab@left\halign\tab@halign\expandafter\bgroup%
|
|
\the\tab@preamble\tabskip\tab@rightskip\cr%
|
|
}
|
|
% \end{macrocode}
|
|
%
|
|
% \end{macro}
|
|
%
|
|
% You've no doubt noticed the |\tab@left| and |\tab@right| macros above.
|
|
% These are set up here and elsewhere to allow other things to gain control
|
|
% at various points of the table (they include and take the place of the
|
|
% |\@arrayleft| and |\@arrayright| hooks in \package{array}, put in for
|
|
% \package{delarray}'s use.
|
|
%
|
|
% \subsubsection{Positioning the table}
|
|
%
|
|
% \begin{macro}{\tab@setposn}
|
|
%
|
|
% This macro sets everything up for the table's positioning. It's rather
|
|
% long, but not all that complicated. Honest.
|
|
%
|
|
% First, we set up some defaults (for centring). If anything goes wrong, we
|
|
% just do the centring things.
|
|
%
|
|
% \begin{macrocode}
|
|
\def\tab@setposn#1{%
|
|
\def\tab@left{%
|
|
\savenotes%
|
|
\leavevmode\hbox\bgroup$\@arrayleft\vcenter\bgroup%
|
|
}%
|
|
\def\tab@right{%
|
|
\egroup%
|
|
\m@th\@arrayright$\egroup%
|
|
\spewnotes%
|
|
}%
|
|
\global\tab@endheight\z@%
|
|
% \end{macrocode}
|
|
%
|
|
% For the standard positioning things, we just do appropriate boxing things.
|
|
% Note that the dollar signs are important, since \package{delarray} might
|
|
% want to put its delimiters in here.
|
|
%
|
|
% The |\if@tempswa| switch it used to decide if we're doing an unboxed
|
|
% tabular. We'll set it if we find an unbox-type position code, and then
|
|
% check that everything's OK for this.
|
|
%
|
|
% \begin{macrocode}
|
|
\@tempswafalse%
|
|
\let\tab@penalty\relax%
|
|
\if#1t%
|
|
\def\tab@left{%
|
|
\savenotes%
|
|
\leavevmode\setbox\z@\hbox\bgroup$\@arrayleft\vtop\bgroup%
|
|
}%
|
|
\def\tab@right{%
|
|
\egroup%
|
|
\m@th\@arrayright$\egroup%
|
|
\tab@raisebase%
|
|
\spewnotes%
|
|
}%
|
|
\gdef\tab@hlstate{t}%
|
|
\global\tab@endheight\ht\@arstrutbox%
|
|
\else\if#1b%
|
|
\def\tab@left{%
|
|
\savenotes%
|
|
\leavevmode\setbox\z@\hbox\bgroup$\@arrayleft\vbox\bgroup%
|
|
}%
|
|
\def\tab@right{%
|
|
\egroup%
|
|
\m@th\@arrayright$\egroup%
|
|
\tab@lowerbase%
|
|
\spewnotes%
|
|
}%
|
|
\gdef\tab@hlstate{b}%
|
|
\else%
|
|
\if#1L\@tempswatrue\fi%
|
|
\if#1C\@tempswatrue\fi%
|
|
\if#1R\@tempswatrue\fi%
|
|
\fi\fi%
|
|
% \end{macrocode}
|
|
%
|
|
% Now for some tests to make sure we're allowed to do the unboxing. We text
|
|
% for |\@arrayleft| being defined, because people trying to hook us won't
|
|
% understand unboxed tabulars.
|
|
%
|
|
% \begin{macrocode}
|
|
\if@tempswa\ifhmode%
|
|
\ifinner\tab@err@unbrh\@tempswafalse\else\par\fi%
|
|
\fi\fi%
|
|
\if@tempswa\ifmmode\tab@err@unbmm\@tempswafalse\fi\fi%
|
|
\if@tempswa\ifx\@arrayleft\relax\else%
|
|
\tab@err@unbext\@tempswafalse%
|
|
\fi\fi%
|
|
% \end{macrocode}
|
|
%
|
|
% Finally, if we're still doing an unboxed alignment, we need to sort out the
|
|
% spacing. We know that no-one's tried to hook on to the environment, so we
|
|
% clear |\tab@left| and |\tab@right|.
|
|
%
|
|
% \begin{macrocode}
|
|
\if@tempswa%
|
|
\def\tab@left{\vskip\parskip\medskip}%
|
|
\def\tab@right{\par\@endpetrue\global\@ignoretrue}%
|
|
% \end{macrocode}
|
|
%
|
|
% Now we need to sort out the alignment. The only way we can do this is by
|
|
% playing with tabskip glue. There are two possiblities:
|
|
%
|
|
% \begin{itemize}
|
|
%
|
|
% \item If this is a straight \env{tabular} or an \env{array}, we just use
|
|
% infinite glue. This is reasonable, I think.
|
|
%
|
|
% \item If we have a width for the table, we calculate the fixed values of
|
|
% glue on either side. This is fairly easy, and forces the table to
|
|
% the required width.
|
|
%
|
|
% \end{itemize}
|
|
%
|
|
% First, set up the left and right glues to represent the prevailing
|
|
% margins set up by \env{list} environments. I think this is the right
|
|
% thing to do.
|
|
%
|
|
% \begin{macrocode}
|
|
\tab@leftskip\@totalleftmargin%
|
|
\tab@rightskip\hsize%
|
|
\advance\tab@rightskip-\linewidth%
|
|
\advance\tab@rightskip-\@totalleftmargin%
|
|
% \end{macrocode}
|
|
%
|
|
% First of all, deal with the simple case. I'm using 10000\,fill glue here,
|
|
% in an attempt to suppress |\extracolsep| glue from making the table the
|
|
% wrong width. It can always use filll glue if it really needs to, though.
|
|
%
|
|
% \begin{macrocode}
|
|
\ifdim\tab@width=\z@%
|
|
\if#1L\else\advance\tab@leftskip\z@\@plus10000fill\fi%
|
|
\if#1R\else\advance\tab@rightskip\z@\@plus10000fill\fi%
|
|
% \end{macrocode}
|
|
%
|
|
% Now for the fun bit. This isn't too hard really. The extra space I must
|
|
% add around the table adds up to $|\linewidth| - |\tab@width|$. I just
|
|
% need to add this onto the appropriate sides of the table.
|
|
%
|
|
% \begin{macrocode}
|
|
\else%
|
|
\dimen@\linewidth%
|
|
\advance\dimen@-\tab@width%
|
|
\if#1L\advance\tab@rightskip\dimen@\fi%
|
|
\if#1R\advance\tab@leftskip\dimen@\fi%
|
|
\if#1C%
|
|
\advance\tab@leftskip.5\dimen@%
|
|
\advance\tab@rightskip.5\dimen@%
|
|
\fi%
|
|
\fi%
|
|
% \end{macrocode}
|
|
%
|
|
% Don't allow page breaks. David Carlisle's wonderful \env{longtable}
|
|
% package does page breaks far better than I could possibly do here, and
|
|
% we're compatible with it (wahey!).
|
|
%
|
|
% \begin{macrocode}
|
|
\def\tab@penalty{\penalty\@M}%
|
|
% \end{macrocode}
|
|
%
|
|
% Finally, set the new width of the table, and leave.
|
|
%
|
|
% \begin{macrocode}
|
|
\tab@width\hsize%
|
|
\fi%
|
|
}
|
|
% \end{macrocode}
|
|
%
|
|
% \end{macro}
|
|
%
|
|
% \subsubsection{Handling tops and bottoms}
|
|
%
|
|
% This is how the tops and bottoms of tables are made to line up with the
|
|
% text on the same line, in the presence of arbitrary rules and space. The
|
|
% old method, based on the way the \package{array} package worked, wasn't
|
|
% terribly good. This new version copes much better with almost anything
|
|
% that gets thrown at it.
|
|
%
|
|
% I'll keep a state in a macro (|\tab@hlstate|), which tells me what I'm
|
|
% meant to be doing. The possible values are \lit{n}, which means I don't
|
|
% have to do anything, \lit{t}, which means that I'm meant to be handling
|
|
% top-aligned tables, and \lit{b}, which means that I'm meant to be lining
|
|
% up the bottom. There are several other `substates' which have various
|
|
% magic meanings.
|
|
%
|
|
% \begin{macrocode}
|
|
\def\tab@hlstate{n}
|
|
% \end{macrocode}
|
|
%
|
|
% When all's said and done, I extract the box containing the table, and
|
|
% play with the height and depth to try and make it correct.
|
|
%
|
|
% \begin{macro}{\tab@addruleheight}
|
|
%
|
|
% This macro is called by `inter-row' things to add their height to our
|
|
% dimen register.
|
|
%
|
|
% Only do this if the state indicates that it's sensible.
|
|
%
|
|
% \begin{macrocode}
|
|
\def\tab@addruleheight#1{%
|
|
\if\tab@hlstate n\else%
|
|
\global\advance\tab@endheight#1\relax%
|
|
\fi%
|
|
}
|
|
% \end{macrocode}
|
|
%
|
|
% \end{macro}
|
|
%
|
|
% \begin{macro}{\tab@startrow}
|
|
%
|
|
% This is called at the start of a row, from within the array preamble.
|
|
% Currently, this assumes that the rows aren't bigger than their struts:
|
|
% this is reasonable, although slightly limiting, and it could be done better
|
|
% if I was willing to rip the alignment apart and put it back together
|
|
% again.
|
|
%
|
|
% \begin{macrocode}
|
|
\def\tab@startrow{%
|
|
\if\tab@hlstate t%
|
|
\gdef\tab@hlstate{n}%
|
|
\else\if\tab@hlstate b%
|
|
\global\tab@endheight\dp\@arstrutbox%
|
|
\fi\fi%
|
|
}
|
|
% \end{macrocode}
|
|
%
|
|
% \end{macro}
|
|
%
|
|
% \begin{macro}{\tab@raisebase}
|
|
%
|
|
% This macro is called at the end of it all, to set the height and depth
|
|
% of the box correctly. It sets the height to |\tab@endheight|, and the
|
|
% depth to everything else. The box is in |\box|~0 currently.
|
|
%
|
|
% \begin{macrocode}
|
|
\def\tab@raisebase{%
|
|
\global\advance\tab@endheight-\ht\z@%
|
|
\raise\tab@endheight\box\z@%
|
|
}
|
|
% \end{macrocode}
|
|
%
|
|
% \end{macro}
|
|
%
|
|
% \begin{macro}{\tab@lowerbase}
|
|
%
|
|
% And, for symmetry's sake, here's how to set the bottom properly instead.
|
|
%
|
|
% \begin{macrocode}
|
|
\def\tab@lowerbase{%
|
|
\global\advance\tab@endheight-\dp\z@%
|
|
\lower\tab@endheight\box\z@%
|
|
}
|
|
% \end{macrocode}
|
|
%
|
|
% \end{macro}
|
|
%
|
|
%
|
|
% \subsection{Breaking tables into bits}
|
|
%
|
|
% Unboxed tables have a wonderful advantage over boxed ones: you can stop
|
|
% halfway through and do something else for a bit. Here's how:
|
|
%
|
|
% \begin{macro}{\tabpause}
|
|
%
|
|
% I'd like to avoid forbidding catcode changes here. I'll use |\doafter|
|
|
% now I've got it, to ensure that colour handling and things occur
|
|
% \emph{inside} the |\noalign| (otherwise they'll mess up the alignment
|
|
% very seriously).
|
|
%
|
|
% We have to be careful here to ensure that everything works correctly within
|
|
% lists. (The \package{amsmath} package had this problem in its
|
|
% |\intertext| macro, so I'm not alone here.)
|
|
%
|
|
% \begin{macrocode}
|
|
\def\tabpause#{%
|
|
\noalign{\ifnum0=`}\fi%
|
|
\@parboxrestore%
|
|
\tab@startpause%
|
|
\vskip-\parskip%
|
|
\parshape\@ne\@totalleftmargin\linewidth%
|
|
\noindent%
|
|
\doafter\tabpause@i%
|
|
}
|
|
\def\tabpause@i{%
|
|
\nobreak%
|
|
\tab@endpause%
|
|
\ifnum0=`{\fi}%
|
|
}
|
|
% \end{macrocode}
|
|
%
|
|
% \end{macro}
|
|
%
|
|
%
|
|
% \subsection{The wonderful world of \cmd\multicolumn}
|
|
%
|
|
% \begin{macro}{\multicolumn}
|
|
%
|
|
% This is actually fantasitcally easy. Watch and learn. Make sure you
|
|
% notice the |\long|s here: remember that some table cells can contain
|
|
% paragraphs, so it seems sensible to allow |\par| into the argument.
|
|
% (As far as I know, most other |\multicolumn| commands don't do this,
|
|
% which seems a little silly. Then again, I forgot to do it the first
|
|
% time around.)
|
|
%
|
|
% \begin{macrocode}
|
|
\long\def\multicolumn#1#2#3{%
|
|
\multispan{#1}%
|
|
\begingroup%
|
|
\tab@multicol%
|
|
\tab@initread%
|
|
\tab@preamble{}%
|
|
\long\def\tab@midtext{#3}%
|
|
\let\tab@looped\tab@err@multi%
|
|
\tab@readpreamble{#2}%
|
|
\the\tab@preamble%
|
|
\endgroup%
|
|
\ignorespaces%
|
|
}
|
|
% \end{macrocode}
|
|
%
|
|
% \end{macro}
|
|
%
|
|
%
|
|
% \subsection{Interlude: range lists}
|
|
%
|
|
% For processing arguments to |\vgap| and |\cline|, we need to be able to
|
|
% do things with lists of column ranges. To save space, and to make my
|
|
% fingers do less typing, here's some routines which do range handling.
|
|
%
|
|
% \begin{macro}{\ranges}
|
|
%
|
|
% Given a macro name and a comma separated list of ranges and simple numbers,
|
|
% this macro will call the macro giving it each range in the list in turn.
|
|
% Single numbers~$n$ will be turned into ranges $n$--$n$.
|
|
%
|
|
% The first job is to read the macro to do (which may already have some
|
|
% arguments attached to it). We'll also start a group to make sure that
|
|
% our changes to temp registers don't affect anyone else.
|
|
%
|
|
% There's a space before the delimiting |\q@delim| to stop numbers being
|
|
% parsed to far and expanding our quark (which will stop \TeX\ dead in its
|
|
% tracks). Since we use |\@ifnextchar| to look ahead, spaces in range lists
|
|
% are perfectly all right.
|
|
%
|
|
% \begin{macrocode}
|
|
\def\ranges#1#2{%
|
|
\gdef\ranges@temp{#1}%
|
|
\begingroup%
|
|
\ranges@i#2 \q@delim%
|
|
}
|
|
% \end{macrocode}
|
|
%
|
|
%
|
|
% We're at the beginning of the list. We expect either the closing marker
|
|
% (if this is an empty list) or a number, which we can scoop up into a
|
|
% scratch register.
|
|
%
|
|
% \begin{macrocode}
|
|
\def\ranges@i{%
|
|
\@ifnextchar\q@delim\ranges@done{\afterassignment\ranges@ii\count@}%
|
|
}
|
|
% \end{macrocode}
|
|
%
|
|
% We've read the first number in the range. If there's another number, we'll
|
|
% expect a `|-|' sign to be next. If there is no `|-|', call the user's code
|
|
% with the number duplicated and then do the rest of the list.
|
|
%
|
|
% \begin{macrocode}
|
|
\def\ranges@ii{%
|
|
\@ifnextchar-\ranges@iii{\ranges@do\count@\count@\ranges@v}%
|
|
}
|
|
% \end{macrocode}
|
|
%
|
|
% Now we strip the `|-|' off and read the other number into a temporary
|
|
% register.
|
|
%
|
|
% \begin{macrocode}
|
|
\def\ranges@iii-{\afterassignment\ranges@iv\@tempcnta}
|
|
% \end{macrocode}
|
|
%
|
|
% We have both ends of the range now, so call the user's code, passing it
|
|
% both ends of the range.
|
|
%
|
|
% \begin{macrocode}
|
|
\def\ranges@iv{\ranges@do\count@\@tempcnta\ranges@v}
|
|
% \end{macrocode}
|
|
%
|
|
% We've finished doing an item now. If we have a `|,|' next, then start
|
|
% over with the next item. Otherwise, if we're at the end of the list,
|
|
% we can end happily. Finally, if we're totally confused, raise an
|
|
% error.
|
|
%
|
|
% \begin{macrocode}
|
|
\def\ranges@v{%
|
|
\@ifnextchar,%
|
|
\ranges@vi%
|
|
{%
|
|
\@ifnextchar\q@delim%
|
|
\ranges@done%
|
|
{\tab@err@range\ranges@vi,}%
|
|
}%
|
|
}
|
|
% \end{macrocode}
|
|
%
|
|
% We had a comma, so gobble it, read the next number, and go round again.
|
|
%
|
|
% \begin{macrocode}
|
|
\def\ranges@vi,{\afterassignment\ranges@ii\count@}
|
|
% \end{macrocode}
|
|
%
|
|
% Here's how we call the user's code, now. We close the group, so that the
|
|
% user's code doesn't have to do global things to remember its results, and
|
|
% we expand the two range ends from their count registers. We also ensure
|
|
% that the range is the right way round.
|
|
%
|
|
% \begin{macrocode}
|
|
\def\ranges@do#1#2{%
|
|
\ifnum#1>#2\else%
|
|
\expandafter\endgroup%
|
|
\expandafter\ranges@temp%
|
|
\expandafter{%
|
|
\the\expandafter#1%
|
|
\expandafter}%
|
|
\expandafter{%
|
|
\the#2%
|
|
}%
|
|
\begingroup%
|
|
\fi%
|
|
}
|
|
% \end{macrocode}
|
|
%
|
|
% And finishing the scan is really easy. We close the group after gobbling
|
|
% the close token.
|
|
%
|
|
% \begin{macrocode}
|
|
\def\ranges@done\q@delim{\endgroup}
|
|
% \end{macrocode}
|
|
%
|
|
% \end{macro}
|
|
%
|
|
% \begin{macro}{\ifinrange}
|
|
%
|
|
% Something a little more useful, now. |\ifinrange| takes four arguments:
|
|
% a number, a range list (as above), and two token lists which I'll call
|
|
% \emph{then} and \emph{else}. If the number is in the list, I'll do
|
|
% \emph{then}, otherwise I'll do \emph{else}.
|
|
%
|
|
% \begin{macrocode}
|
|
\def\ifinrange#1#2{%
|
|
\@tempswafalse%
|
|
\count@#1%
|
|
\ranges\ifinrange@i{#2}%
|
|
\if@tempswa%
|
|
\expandafter\@firstoftwo%
|
|
\else%
|
|
\expandafter\@secondoftwo%
|
|
\fi%
|
|
}
|
|
\def\ifinrange@i#1#2{%
|
|
\ifnum\count@<#1 \else\ifnum\count@>#2 \else\@tempswatrue\fi\fi%
|
|
}
|
|
% \end{macrocode}
|
|
%
|
|
% \end{macro}
|
|
%
|
|
%
|
|
% \subsection{Horizontal rules OK}
|
|
%
|
|
% This is where all the gubbins for |\vgap| and friends is kept, lest it
|
|
% contaminate fairly clean bits of code found elsewhere.
|
|
%
|
|
% \subsubsection{Drawing horizontal rules}
|
|
%
|
|
% \begin{macro}{\hline}
|
|
%
|
|
% Note the funny use of |\noalign| to allow \TeX\ stomach ops like
|
|
% |\futurelet| without starting a new table row. This lets us see if there's
|
|
% another |\hline| coming up, so we can see if we need to insert extra
|
|
% vertical space.
|
|
%
|
|
% \begin{macrocode}
|
|
\def\hline{%
|
|
\tab@dohline%
|
|
\noalign{\ifnum0=`}\fi%
|
|
\tab@penalty%
|
|
\futurelet\@let@token\hline@i%
|
|
}
|
|
% \end{macrocode}
|
|
%
|
|
% We check here for another |\hline| command, and insert glue if there is.
|
|
% This looks terrible, though, and |\hlx{hvh}| is much nicer. Still\dots
|
|
%
|
|
% \begin{macrocode}
|
|
\def\hline@i{%
|
|
\ifx\@let@token\hline%
|
|
\vskip\doublerulesep%
|
|
\tab@addruleheight\doublerulesep%
|
|
\fi%
|
|
\ifnum0=`{\fi}%
|
|
}
|
|
% \end{macrocode}
|
|
%
|
|
% \end{macro}
|
|
%
|
|
% \begin{macro}{\tab@dohline}
|
|
%
|
|
% This is where hlines actually get drawn.
|
|
% Drawing lines is more awkward than it used to be, particularly in unboxed
|
|
% tables. It used to be a case simply of saying |\noalign{\hrule}|.
|
|
% However, since unboxed tables are actually much wider than they look, this
|
|
% would make the rules stretch right across the page and look generally
|
|
% horrible.
|
|
%
|
|
% The solution is simple: we basically do a dirty big |\cline|.
|
|
%
|
|
% \begin{macrocode}
|
|
\def\tab@dohline{%
|
|
\multispan{\tab@columns}%
|
|
\leaders\hrule\@height\arrayrulewidth\hfil%
|
|
\tab@addruleheight\arrayrulewidth%
|
|
\cr%
|
|
}
|
|
% \end{macrocode}
|
|
%
|
|
% \end{macro}
|
|
%
|
|
% \subsubsection{Vertical rules}
|
|
%
|
|
% I couldn't fit these in anywhere else, so they'll have to go here. I'll
|
|
% provide a new optional argument which specifies the width of the rule; this
|
|
% gets rid of the problem described in the \emph{Companion}, where to get
|
|
% an unusually wide vertical rule, you have to play with things like
|
|
% \syntax{"\\vrule width" <dimen>} which really isn't too nice.
|
|
%
|
|
% \begin{macro}{\vline}
|
|
%
|
|
% The new |\vline| has an optional argument which gives the width of the
|
|
% rule. The |\relax| stops \TeX\ trying to parse a \<rule-specification> for
|
|
% too long, in case someone says something like `|\vline depthcharges|' or
|
|
% something equally unlikely.
|
|
%
|
|
% \begin{macrocode}
|
|
\renewcommand\vline[1][\arrayrulewidth]{\vrule\@width#1\relax}
|
|
% \end{macrocode}
|
|
%
|
|
% \end{macro}
|
|
%
|
|
% \subsubsection{Drawing bits of lines}
|
|
%
|
|
% Just for a bit of fun, here's an extended version of |\cline| which takes
|
|
% a list of columns to draw lines under, rather than just a single range.
|
|
%
|
|
% \begin{macro}{\cline}
|
|
%
|
|
% Not a single line of code written yet, and we already have a dilemma on
|
|
% our hands. Multiple consecutive |\cline| commands are meant to draw
|
|
% on the same vertical bit of table. But horizontal lines are meant to have
|
|
% thickness now. Oh, well [sigh], we'll skip back on it after all.
|
|
%
|
|
% Now the problem remains how best to do the job. The way I see it, there
|
|
% are three possibilities:
|
|
%
|
|
% \begin{itemize}
|
|
%
|
|
% \item We can start a table row, and then for each column of the table
|
|
% (as recorded in |\tab@columns|) we look to see if that column is
|
|
% listed in the range list and if so draw the rule. This requires
|
|
% lots of scanning of the range list.
|
|
%
|
|
% \item We can take each range in the list, and draw rules appropriately,
|
|
% just like the old |\cline| used to do, and starting a new table row
|
|
% for each.
|
|
%
|
|
% \item We can start a table row, and then for each range remember where we
|
|
% stopped drawing the last row, move to the start of the new one, and
|
|
% draw it. If we start moving backwards, we close the current row
|
|
% and open a new one.
|
|
%
|
|
% \end{itemize}
|
|
%
|
|
% The last option looks the most efficient, and the most difficult. This
|
|
% is therefore what I shall do |;-)|.
|
|
%
|
|
% The first thing to do is to add in a little negative space, and start a
|
|
% table row (omitting the first item). Then scan the range list, and finally
|
|
% close the table row and add some negative space again.
|
|
%
|
|
% We need a global count register to keep track of where we are. Mixing
|
|
% local and global assignments causes all sorts of tragedy, so I shall hijack
|
|
% |\tab@state|.
|
|
%
|
|
% \begin{macrocode}
|
|
\def\cline#1{%
|
|
\noalign{\kern-.5\arrayrulewidth\tab@penalty}%
|
|
\omit%
|
|
\global\tab@state\@ne%
|
|
\ranges\cline@i{#1}%
|
|
\cr%
|
|
\noalign{\kern-.5\arrayrulewidth\tab@penalty}%
|
|
}
|
|
% \end{macrocode}
|
|
%
|
|
% Now for the tricky bit. When we're given a range, we look to see if the
|
|
% first number is less than |\tab@state|. If so, we quickly close the
|
|
% current row, kern backwards and start again with an |\omit| and reset
|
|
% |\tab@state| to 1, and try again.
|
|
%
|
|
% \begin{macrocode}
|
|
\def\cline@i#1#2{%
|
|
\ifnum#1<\tab@state\relax%
|
|
\tab@@cr%
|
|
\noalign{\kern-\arrayrulewidth\tab@penalty}%
|
|
\omit%
|
|
\global\tab@state\@ne%
|
|
\fi%
|
|
% \end{macrocode}
|
|
%
|
|
% We are now either at or in front of the column position required. If
|
|
% we're too far back, we must |\hfil&\omit| our way over to the correct%
|
|
% column.
|
|
%
|
|
% \begin{macrocode}
|
|
\@whilenum\tab@state<#1\do{%
|
|
\hfil\tab@@tab@omit%
|
|
\global\advance\tab@state\@ne%
|
|
}%
|
|
% \end{macrocode}
|
|
%
|
|
% We've found the start correctly. We must deal with a tiny problem now:
|
|
% if this is not the first table cell, the left hand vertical rule is in the
|
|
% column to the left, so our horizontal rule won't match up properly. So
|
|
% we skip back by a bit to compensate. If there isn't actually a vertical
|
|
% rule to line up with, no-one will notice, because the rules are so thin.
|
|
% This adds a little touch of quality to the whole thing, which is after all
|
|
% the point of this whole exercise.
|
|
%
|
|
% \begin{macrocode}
|
|
\ifnum\tab@state>\@ne%
|
|
\kern-\arrayrulewidth%
|
|
\fi%
|
|
% \end{macrocode}
|
|
%
|
|
% Now we must stretch this table cell to the correct width.
|
|
%
|
|
% \begin{macrocode}
|
|
\@whilenum\tab@state<#2\do{%
|
|
\tab@@span@omit%
|
|
\global\advance\tab@state\@ne%
|
|
}%
|
|
% \end{macrocode}
|
|
%
|
|
% We're ready. Draw the rule. Note that this is |\hfill| glue, just in case
|
|
% we start putting in |\hfil| glue when we step onto the next cell.
|
|
%
|
|
% \begin{macrocode}
|
|
\leaders\hrule\@height\arrayrulewidth\hfill%
|
|
}
|
|
% \end{macrocode}
|
|
%
|
|
% Some alignment primitives are hidden inside macros so they don't get seen
|
|
% at the wrong time. This is what they look like:
|
|
%
|
|
% \begin{macrocode}
|
|
\def\tab@@cr{\cr}
|
|
\def\tab@@tab@omit{&\omit}
|
|
\def\tab@@span@omit{\span\omit}
|
|
% \end{macrocode}
|
|
%
|
|
% \end{macro}
|
|
%
|
|
% \subsubsection{Drawing short table rows}
|
|
%
|
|
% Before I start on a description of more code, I think I'll briefly discuss
|
|
% my reasons for leaving the |\vgap| command in its current state. There's a
|
|
% reasonable case for introducing an interface between |\vgap| and
|
|
% |\multicolumn|, to avoid all the tedious messing about with column
|
|
% ranges. There are good reasons why I'm not going to do this:
|
|
%
|
|
% \begin{itemize}
|
|
%
|
|
% \item It's very difficult to do: it requires either postprocessing of
|
|
% the table or delaying processing of each row until I know exactly
|
|
% what's in it; a |\multicolumn| in a row should be able to affect
|
|
% a |\vgap| before the row, which gets very nasty. This package is
|
|
% probably far too large already, and adding more complexity and
|
|
% running the risk of exhausting \TeX's frustratingly finite capacity
|
|
% for the sake of relieving the user of a fairly trivial job doesn't
|
|
% seem worthwhile.
|
|
%
|
|
% \item Perhaps more importantly, there are perfectly valid occasions when
|
|
% it's useful to have the current vgap behaviour. For example, the
|
|
% \texttt{MIX} word layout diagrams found in \emph{The Art of
|
|
% Computer Programming} use the little `stub lines' to show where
|
|
% data items cross byte boundaries:
|
|
%
|
|
% ^^A This actually looks terrifyingly similar to the original.
|
|
% ^^A The leading @{} is there to stop the table looking off-centre,
|
|
% ^^A because there's no left hand rule telling you where the table
|
|
% ^^A starts, like there is on the right, just the \tabcolsep glue.
|
|
%
|
|
% \begingroup
|
|
% \newcommand{\wide}[2]{\multicolumn{#1}{c|}{\ttfamily #2}}
|
|
% \begin{tabular}[C]{@{} r @{\qquad} | Mc | *{5}{c|}} \hlx{c{2-7} v}
|
|
% empty & - & 1 & 0 & 0 & 0 & 0 \\ \hlx{v c{2-7} v}
|
|
% occupied & + & \wide{2}{LINK} & \wide{3}{KEY} \\ \hlx{v c{2-7}}
|
|
% \end{tabular}
|
|
% \endgroup
|
|
%
|
|
% \end{itemize}
|
|
%
|
|
% That's my excuses out of the way; now I'll press on with the actual
|
|
% programming.
|
|
%
|
|
% \begin{macro}{\tab@checkrule}
|
|
%
|
|
% We have a range list in |\tab@xcols| and a number as an argument. If we
|
|
% find the number in the list, wejust space out the following group,
|
|
% otherwise we let it be.
|
|
%
|
|
% \begin{macrocode}
|
|
\def\tab@checkrule#1{%
|
|
\count@#1\relax%
|
|
\expandafter\ifinrange%
|
|
\expandafter\count@%
|
|
\expandafter{\tab@xcols}%
|
|
{\tab@checkrule@i}%
|
|
{}%
|
|
}
|
|
\def\tab@checkrule@i#1{\setbox\z@\hbox{#1}\hb@xt@\wd\z@{}}
|
|
% \end{macrocode}
|
|
%
|
|
% \end{macro}
|
|
%
|
|
% \begin{macro}{\vgap}
|
|
%
|
|
% We must tread carefully here. A single misplaced stomach operation can
|
|
% cause error messages. We therefore start with an |\omit| so we can search
|
|
% for optional arguments.
|
|
%
|
|
% So that |\hlx| can get control after |\vgap| has finished, we provide a
|
|
% hook called |\vgap@after| which is expanded after |\vgap| has finished.
|
|
% Here we make it work like |\@empty|, which expands to nothing. (Note that
|
|
% |\relax| will start a new table row, so we can't use that.) There are
|
|
% some penalty items here to stick the |\vgap| row to the text row and
|
|
% |\hline| that are adjacent to it. The \package{longtable} package will
|
|
% split an |\hline| in half, so this is the correct thing to do.
|
|
%
|
|
% \begin{macrocode}
|
|
\def\vgap{%
|
|
\noalign{\nobreak}%
|
|
\omit%
|
|
\global\let\vgap@after\@empty%
|
|
\iffalse{\fi\ifnum0=`}\fi%
|
|
\@ifnextchar[\vgap@i\vgap@simple%
|
|
}
|
|
% \end{macrocode}
|
|
%
|
|
% We set up two different sorts of |\vgap| -- a simple one which allows all
|
|
% rules to be passed through, and a specific one which carefully vets each
|
|
% one (and is therefore slower). We decide which to so based on the presence
|
|
% of an optional argument.
|
|
%
|
|
% The optional argument handler just passes its argument to an interface
|
|
% routine which is used by |\hlx|.
|
|
%
|
|
% \begin{macrocode}
|
|
\def\vgap@i[#1]{\vgap@spec{#1}}
|
|
% \end{macrocode}
|
|
%
|
|
% Now we handle specified columns. Since we're in an omitted table cell, we
|
|
% must set things up globally. Assign the column spec to a macro, and set up
|
|
% vetting by the routine above. Then just go and do the job.
|
|
%
|
|
% \begin{macrocode}
|
|
\def\vgap@spec#1#2{%
|
|
\gdef\tab@xcols{#1}%
|
|
\global\let\tab@ckr\tab@checkrule%
|
|
\vgap@do{#2}%
|
|
}
|
|
% \end{macrocode}
|
|
%
|
|
% Handle all columns. Just gobble the column number for each rule, and let
|
|
% the drawing pass unharmed. Easy.
|
|
%
|
|
% \begin{macrocode}
|
|
\def\vgap@simple#1{%
|
|
\global\let\tab@ckr\@gobble%
|
|
\vgap@do{#1}%
|
|
}
|
|
% \end{macrocode}
|
|
%
|
|
% This is where stuff actually gets done. We set the |\vgap| flag on while
|
|
% we do the short row. Then just expand the token list we built while
|
|
% scanning the preamble.
|
|
%
|
|
% Note that the flag is cleared at the end of the last column, to allow other
|
|
% funny things like |\noalign| and |\omit| before a new row is started.
|
|
%
|
|
% \begin{macrocode}
|
|
\def\vgap@do#1{%
|
|
\ifnum0=`{}\fi%
|
|
\global\tab@vgaptrue%
|
|
\the\tab@shortline%
|
|
\vrule\@height#1\@width\z@%
|
|
\global\tab@vgapfalse
|
|
\tab@addruleheight{#1}%
|
|
\cr%
|
|
\noalign{\nobreak}%
|
|
\vgap@after%
|
|
}
|
|
% \end{macrocode}
|
|
%
|
|
% \end{macro}
|
|
%
|
|
% \subsubsection{Prettifying syntax}
|
|
%
|
|
% \begin{macro}{\hlx}
|
|
%
|
|
% This is like a poor cousin to the preamble parser. The whole loop is
|
|
% carefully written to take place \emph{only} in \TeX's mouth, so the
|
|
% alignment handling bits half way down the gullet don't see any of this.
|
|
%
|
|
% First, pass the string to another routine.
|
|
%
|
|
% \begin{macrocode}
|
|
\def\hlx#1{\hlx@loop#1\q@delim}
|
|
% \end{macrocode}
|
|
%
|
|
% Now peel off a token, and dispatch using |\csname|. We handle
|
|
% undefinedness of the command in a fairly messy way, although it probably
|
|
% works. Maybe.
|
|
%
|
|
% \begin{macrocode}
|
|
\def\hlx@loop#1{%
|
|
\ifx#1\q@delim\else%
|
|
\@ifundefined{hlx@cmd@\string#1}{%
|
|
\expandafter\hlx@loop%
|
|
}{%
|
|
\csname hlx@cmd@\string#1\expandafter\endcsname%
|
|
}%
|
|
\fi%
|
|
}
|
|
% \end{macrocode}
|
|
%
|
|
% \end{macro}
|
|
%
|
|
% \begin{macro}{\hlxdef}
|
|
%
|
|
% New |\hlx| commands can be defined using |\hlxdef|. This is a simple
|
|
% abbreviation.
|
|
%
|
|
% \begin{macrocode}
|
|
\def\hlxdef#1{\@namedef{hlx@cmd@#1}}
|
|
% \end{macrocode}
|
|
%
|
|
% \end{macro}
|
|
%
|
|
% \begin{macro}{\hlx h}
|
|
%
|
|
% Handle an \lit{h} character. Just do an |\hline| and return to the loop.
|
|
% We look ahead to see if there's another \lit{h} coming up, and if so
|
|
% insert two |\hline| commands. This strange (and inefficient) behaviour
|
|
% keeps packages which redefine |\hline| happy.
|
|
%
|
|
% \begin{macrocode}
|
|
\hlxdef h#1{%
|
|
\noalign{%
|
|
\ifx#1h%
|
|
\def\@tempa{\hline\hline\hlx@loop}%
|
|
\else%
|
|
\def\@tempa{\hline\hlx@loop#1}%
|
|
\fi%
|
|
\expandafter
|
|
}%
|
|
\@tempa%
|
|
}
|
|
% \end{macrocode}
|
|
%
|
|
% \end{macro}
|
|
%
|
|
% \begin{macro}{\hlx b}
|
|
%
|
|
% The \lit{b} character does a nifty backspace, for \package{longtable}'s
|
|
% benefit.
|
|
%
|
|
% \begin{macrocode}
|
|
\hlxdef b{\noalign{\kern-\arrayrulewidth}\hlx@loop}
|
|
% \end{macrocode}
|
|
%
|
|
% \end{macro}
|
|
%
|
|
% \begin{macro}{\hlx /}
|
|
%
|
|
% The `"/"' character allows a page break at the current position.
|
|
%
|
|
% \begin{macrocode}
|
|
\hlxdef /{%
|
|
\noalign{\ifnum0=`}\fi%
|
|
\@ifnextchar[\hlx@cmd@break@i{\hlx@cmd@break@i[0]}%
|
|
}
|
|
\def\hlx@cmd@break@i[#1]{\ifnum0=`{\fi}\pagebreak[0]\hlx@loop}
|
|
% \end{macrocode}
|
|
%
|
|
% \end{macro}
|
|
%
|
|
% \begin{macro}{\hlx v}
|
|
%
|
|
% Handle a \lit{v} character. This is rather like the |\vgap| code above,
|
|
% although there are syntactic differences.
|
|
%
|
|
% \begin{macrocode}
|
|
\hlxdef v{%
|
|
\noalign{\nobreak}%
|
|
\omit%
|
|
\iffalse{\fi\ifnum0=`}\fi%
|
|
\global\let\vgap@after\hlx@loop%
|
|
\@ifnextchar[\hlx@vgap@i{\hlx@vgap@ii\vgap@simple}%
|
|
}
|
|
\def\hlx@vgap@i[#1]{%
|
|
\ifx!#1!%
|
|
\def\@tempa{\hlx@vgap@ii\vgap@simple}%
|
|
\else%
|
|
\def\@tempa{\hlx@vgap@ii{\vgap@spec{#1}}}%
|
|
\fi%
|
|
\@tempa%
|
|
}
|
|
\def\hlx@vgap@ii#1{%
|
|
\@ifnextchar[{\hlx@vgap@iii{#1}}{\hlx@vgap@iii{#1}[\doublerulesep]}%
|
|
}
|
|
\def\hlx@vgap@iii#1[#2]{#1{#2}}
|
|
% \end{macrocode}
|
|
%
|
|
% \end{macro}
|
|
%
|
|
% \begin{macro}{\hlx s}
|
|
%
|
|
% Allow the user to leave a small gap using the \lit{s} command.
|
|
%
|
|
% \begin{macrocode}
|
|
\hlxdef s{%
|
|
\noalign{\ifnum0=`}\fi%
|
|
\nobreak%
|
|
\@ifnextchar[\hlx@space@i{\hlx@space@i[\doublerulesep]}%
|
|
}
|
|
\def\hlx@space@i[#1]{%
|
|
\vskip#1%
|
|
\tab@addruleheight{#1}%
|
|
\ifnum0=`{\fi}%
|
|
\hlx@loop%
|
|
}
|
|
% \end{macrocode}
|
|
%
|
|
% \end{macro}
|
|
%
|
|
% \begin{macro}{\hlx c}
|
|
%
|
|
% We might as well allow a \lit{c} command to do a |\cline|.
|
|
%
|
|
% \begin{macrocode}
|
|
\hlxdef c#1{\cline{#1}\hlx@loop}
|
|
% \end{macrocode}
|
|
%
|
|
% \end{macro}
|
|
%
|
|
% \begin{macro}{\hlx .}
|
|
%
|
|
% The \lit{.} character forces a start of the new column. There's a little
|
|
% problem here. Since the \lit{.} character starts the next column, we need
|
|
% to gobble any spaces following the |\hlx| command before the cell contents
|
|
% actually starts. Unfortunately, |\ignorespaces| will start the column for
|
|
% us, so we can't put it in always. We'll handle it here, then. We'll take
|
|
% the rest of the `preamble' string, and warn if it's not empty. Then we'll
|
|
% |\ignorespaces| -- this will start the column for us, so we don't need to
|
|
% |\relax| any more.
|
|
%
|
|
% \begin{macrocode}
|
|
\hlxdef .#1\q@delim{%
|
|
\ifx @#1@\else%
|
|
\PackageWarning{mdwtab}{%
|
|
Ignoring \protect\hlx\space command characters following a
|
|
`.'\MessageBreak command%
|
|
}%
|
|
\fi%
|
|
\ignorespaces%
|
|
}
|
|
% \end{macrocode}
|
|
%
|
|
% \end{macro}
|
|
%
|
|
%
|
|
% \subsection{Starting new table rows}
|
|
%
|
|
% We take a break from careful mouthery at last, and start playing with
|
|
% newlines. The standard one allows pagebreaks in unboxed tables, which
|
|
% isn't really too desirable.
|
|
%
|
|
% Anyway, we'll try to make this macro rather more reusable than the standard
|
|
% one. Here goes.
|
|
%
|
|
% \begin{macro}{\@arraycr}
|
|
%
|
|
% We pass lots of information to a main parser macro, and expect it to cope.
|
|
%
|
|
% \begin{macrocode}
|
|
\def\@arraycr{\tab@arraycr{}}
|
|
\def\tab@arraycr#1{\tab@cr{\tab@tabcr{#1}}{}{}}
|
|
% \end{macrocode}
|
|
%
|
|
% Now to actually do the work. |\tab@cr| passes us the skip size, and the
|
|
% appropriate one of the two arguments given above (both of which are empty)
|
|
% depending on the presence of the $*$.
|
|
%
|
|
% \begin{macrocode}
|
|
\def\tab@tabcr#1#2{%
|
|
% \end{macrocode}
|
|
%
|
|
% If the total height I need to add between rows (from the optional argument
|
|
% and the `extrasep' parameter) is greater than zero, I'll handle this by
|
|
% extending the strut slightly. I'm not actually sure whether this is the
|
|
% right thing to do, to be honest, although it's easier than trying to
|
|
% to an automatic |\vgap|, because I need to know which columns to skip.
|
|
% If the space is less than zero, I'll just insert the vertical space with
|
|
% in a |\noalign|.
|
|
%
|
|
% First, to calculate how much space needs adding.
|
|
%
|
|
% \begin{macrocode}
|
|
\dimen@#2%
|
|
\advance\dimen@\tab@extrasep%
|
|
% \end{macrocode}
|
|
%
|
|
% If the height is greater than zero, I need to play with the strut. I must
|
|
% bear in mind that the current table cell (which I'm still in, remember)
|
|
% may be in vertical mode, and I may or may not be in a paragraph.
|
|
%
|
|
% If I am in vertical mode, I'll backpedal to the previous box and put the
|
|
% strut in an hbox superimposed on the previous baseline. Otherwise, I can
|
|
% just put the strut at the end of the text. (This works in either LR
|
|
% or paragraph mode as long as I'm not between paragraphs.) Again, Rowland's
|
|
% empty cell bug strikes. (See |\tab@epar| for details.)
|
|
%
|
|
% \begin{macrocode}
|
|
\ifdim\dimen@>\z@%
|
|
\ifvmode%
|
|
\unskip\ifdim\prevdepth>-\@m\p@\kern-\prevdepth\fi%
|
|
\nointerlineskip\expandafter\hbox%
|
|
\else%
|
|
\@maybe@unskip\expandafter\@firstofone%
|
|
\fi%
|
|
{\advance\dimen@\dp\@arstrutbox\vrule\@depth\dimen@\@width\z@}%
|
|
\fi%
|
|
% \end{macrocode}
|
|
%
|
|
% This table cell works as a group (which is annoying here). I'll copy the
|
|
% interrow gap into a global register so that I can use it in the |\noalign|.
|
|
%
|
|
% \begin{macrocode}
|
|
\global\dimen\@ne\dimen@%
|
|
\cr%
|
|
\noalign{%
|
|
#1%
|
|
\ifdim\dimen\@ne<\z@\vskip\dimen\@ne\relax\fi%
|
|
}%
|
|
\@gobble%
|
|
}
|
|
% \end{macrocode}
|
|
%
|
|
% \end{macro}
|
|
%
|
|
% \begin{macro}{\tab@setcr}
|
|
%
|
|
% To set the |\\| command correctly in each table cell, we make it a part of
|
|
% the preamble (in |\tab@midtext|) to call this routine. It's easy -- just
|
|
% saves the preamble from being huge.
|
|
%
|
|
% \begin{macrocode}
|
|
\def\tab@setcr{\let\\\tabularnewline}
|
|
% \end{macrocode}
|
|
%
|
|
% \end{macro}
|
|
%
|
|
% \begin{macro}{\tab@cr}
|
|
%
|
|
% Now we do the parsing work. This is fun. Note the revenge of the funny
|
|
% braces here. Nothing to worry about, honest. The tricky bit is to keep
|
|
% track of which arguments are which. (Thanks to David Carlisle for pointing
|
|
% out that I'd missed out the |\relax| here.)
|
|
%
|
|
% \begin{macrocode}
|
|
\def\tab@cr#1#2#3{%
|
|
\relax%
|
|
\iffalse{\fi\ifnum0=`}\fi%
|
|
\@ifstar{\tab@cr@i{#1}{#3}}{\tab@cr@i{#1}{#2}}%
|
|
}
|
|
\def\tab@cr@i#1#2{%
|
|
\@ifnextchar[{\tab@cr@ii{#1}{#2}}{\tab@cr@ii{#1}{#2}[\z@]}%
|
|
}
|
|
\def\tab@cr@ii#1#2[#3]{%
|
|
\ifnum0=`{}\fi%
|
|
#1{#3}{#2}%
|
|
}
|
|
% \end{macrocode}
|
|
%
|
|
% \end{macro}
|
|
%
|
|
%
|
|
% \subsection{Gratuitous grotesquery}
|
|
%
|
|
% So far we've had an easy-ish ride (or should that be \emph{queasy}?). Now
|
|
% for something unexplainably evil. We convince \LaTeX\ that it's loaded the
|
|
% \package{array} package, so that packages which need it think they've got
|
|
% it.
|
|
%
|
|
% The bogus date is the same as the date for the \package{array} package I've
|
|
% got here -- this will raise a warning if Frank updates his package which
|
|
% should filter back to me telling me that there's something I need to
|
|
% know about.
|
|
%
|
|
% The messing with |\xdef| and the funny parsing ought to insert the current
|
|
% \package{mdwtab} version and date into the fake \package{array} version
|
|
% string, giving a visible clue to the user that this isn't the real
|
|
% \package{array} package.
|
|
%
|
|
% \begin{macrocode}
|
|
\begingroup
|
|
\catcode`.=11
|
|
\def\@tempa#1 #2 #3\@@{#1 #2}
|
|
\xdef\ver@array.sty
|
|
{1995/11/19 [mdwtab.sty \expandafter\@tempa\ver@mdwtab.sty\@@]}
|
|
\endgroup
|
|
% \end{macrocode}
|
|
%
|
|
%
|
|
% \subsection{Error messages}
|
|
%
|
|
% I've put all the error messages together, where I can find them, translate
|
|
% them or whatever.
|
|
%
|
|
% First, some token-space saving (which also saves my fingers):
|
|
%
|
|
% \begin{macrocode}
|
|
\def\tab@error{\PackageError{mdwtab}}
|
|
% \end{macrocode}
|
|
%
|
|
% Now do the error messages.
|
|
%
|
|
% \begin{macrocode}
|
|
\def\tab@err@misscol{%
|
|
\tab@error{Missing column type}{%
|
|
I'm lost. I was expecting something describing^^J%
|
|
the type of the current column, but you seem to^^J%
|
|
have missed it out. I've inserted a type `l'^^J%
|
|
column here in the hope that this makes sense.%
|
|
}%
|
|
}
|
|
% \end{macrocode}
|
|
%
|
|
% \begin{macrocode}
|
|
\def\tab@err@oddgroup{%
|
|
\tab@error{Misplaced group in table preamble}{%
|
|
I've found an open brace character in your preamble^^J%
|
|
when I was expecting a specifier character. I'm^^J%
|
|
going to gobble the whole group and carry on as if^^J%
|
|
I'd never seen it.%
|
|
}%
|
|
}
|
|
% \end{macrocode}
|
|
%
|
|
% \begin{macrocode}
|
|
\def\tab@err@undef#1{%
|
|
\tab@error{Unknown `\tab@colset' preamble character `\string#1'}{%
|
|
I don't understand what you meant by typing this^^J%
|
|
character. Anyway, I'll ignore it this time around.^^J%
|
|
Just don't you do it again.%
|
|
}%
|
|
}
|
|
% \end{macrocode}
|
|
%
|
|
% \begin{macrocode}
|
|
\def\tab@err@unbrh{%
|
|
\tab@error{Can't use unboxed tabular in LR mode}{%
|
|
You've asked for a tabular or array environment with^^J%
|
|
`L', `C' or `R' as the position specifier, but you're^^J%
|
|
in LR (restricted horizontal) mode, so it won't work.^^J%
|
|
I'll assume you really meant `c' and soldier on.%
|
|
}%
|
|
}
|
|
% \end{macrocode}
|
|
%
|
|
% \begin{macrocode}
|
|
\def\tab@err@unbmm{%
|
|
\tab@error{Can't use unboxed tabular in maths mode}{%
|
|
You've asked for a tabular or array environment with^^J%
|
|
`L', `C' or `R' as the position specifier, but you're^^J%
|
|
in maths mode, so it won't work. I'll pretend that^^J%
|
|
you really typed `c', and that this is all a bad dream.%
|
|
}%
|
|
}
|
|
% \end{macrocode}
|
|
%
|
|
% \begin{macrocode}
|
|
\def\tab@err@unbext{%
|
|
\tab@error{Can't extend unboxed tabulars}{%
|
|
You're trying to use kludgy extensions (e.g.,^^J%
|
|
`delarray') on an array or tabular with `L', `C'^^J%
|
|
or `R' as the position specifier. I'll assume you^^J%
|
|
subconsciously wanted a `c' type all along.%
|
|
}%
|
|
}
|
|
% \end{macrocode}
|
|
%
|
|
% \begin{macrocode}
|
|
\def\tab@err@multi{%
|
|
\tab@error{More than one column in a \protect\multicolumn}{%
|
|
You've put more than one column into a \string\multicolumn^^J%
|
|
descriptor. It won't work. I have no idea what^^J%
|
|
will happen, although it won't be pleasant. Hold^^J%
|
|
on tight now...%
|
|
}%
|
|
}
|
|
% \end{macrocode}
|
|
%
|
|
% \begin{macrocode}
|
|
\def\tab@err@range{%
|
|
\tab@error{Expected `,' or `<end>' in range list}{%
|
|
I was expecting either the end of the range list,^^J%
|
|
or a comma, followed by another range. I've^^J%
|
|
inserted a comma to try and get me back on track.^^J%
|
|
Good luck.%
|
|
}%
|
|
}
|
|
% \end{macrocode}
|
|
%
|
|
% That's it. No more. Move along please.
|
|
%
|
|
% \begin{macrocode}
|
|
%</mdwtab>
|
|
% \end{macrocode}
|
|
%
|
|
%
|
|
%^^A-------------------------------------------------------------------------
|
|
% \section{Implementation of \package{mathenv}}
|
|
%
|
|
%
|
|
% This is in a separate package, mainly to avoid wasting people's memory.
|
|
%
|
|
% \begin{macrocode}
|
|
%<*mathenv>
|
|
% \end{macrocode}
|
|
%
|
|
%
|
|
% \subsection{Options handling}
|
|
%
|
|
% We need to be able to cope with \textsf{fleqn} and \textsf{leqno} options.
|
|
% This will adjust our magic modified \env{eqnarray} environment
|
|
% appropriately.
|
|
%
|
|
% \begin{macrocode}
|
|
\newif\if@fleqn
|
|
\newif\if@leqno
|
|
\DeclareOption{fleqn}{\@fleqntrue}
|
|
\DeclareOption{leqno}{\@leqnotrue}
|
|
\ProcessOptions
|
|
% \end{macrocode}
|
|
%
|
|
% We use the \package{mdwtab} package for all its nice table handling things.
|
|
% (Oh, and to inflict it on users who want to do nice equations and don't
|
|
% care about our tables.)
|
|
%
|
|
% \begin{macrocode}
|
|
\RequirePackage{mdwtab}
|
|
% \end{macrocode}
|
|
%
|
|
%
|
|
% \subsection{Some useful registers}
|
|
%
|
|
% The old \LaTeX\ version puts the equation numbers in by keeping a count of
|
|
% where it is in the alignment. Since I don't know how may columns there are
|
|
% going to be, I'll just use a switch in the preamble to tell me to stop
|
|
% tabbing.
|
|
%
|
|
% \begin{macrocode}
|
|
\newif\if@eqalast
|
|
% \end{macrocode}
|
|
%
|
|
% Now define some useful length parameters. First allocate them:
|
|
%
|
|
% \begin{macrocode}
|
|
\newskip\eqaopenskip
|
|
\newskip\eqacloseskip
|
|
\newskip\eqacolskip
|
|
\newskip\eqainskip
|
|
\newskip\splitleft
|
|
\newskip\splitright
|
|
% \end{macrocode}
|
|
%
|
|
% Now assign some default values. Users can play with these if they really
|
|
% want although I can't see the point myself.
|
|
%
|
|
% \begin{macrocode}
|
|
\AtBeginDocument{%
|
|
\eqacloseskip\@centering%
|
|
\eqacolskip1.5em\@plus\@m\p@
|
|
\eqainskip\z@%
|
|
\if@fleqn%
|
|
\eqaopenskip\mathindent%
|
|
\splitleft\mathindent\relax%
|
|
\splitright\mathindent\@minus\mathindent\relax%
|
|
\else%
|
|
\eqaopenskip\@centering%
|
|
\splitleft2.5em\@minus2.5em%
|
|
\splitright\splitleft%
|
|
\fi%
|
|
\relax%
|
|
}
|
|
% \end{macrocode}
|
|
%
|
|
%
|
|
% \subsection{A little display handling}
|
|
%
|
|
% I'm probably going a little far here, and invading territory already
|
|
% claimed by the \package{amsmath} stuff (and done a good deal better than
|
|
% I can be bothered to do), but just for completeness, this is how we handle
|
|
% attempts to put displays inside other displays without screwing up the
|
|
% spacing.
|
|
%
|
|
% \begin{macro}{\dsp@startouter}
|
|
%
|
|
% This is how we start an outermost display. It's fairly easy really. We
|
|
% make |\dsp@start| start an inner display, and make |\dsp@end| close the
|
|
% outer display.
|
|
%
|
|
% \begin{macrocode}
|
|
\def\dsp@startouter{%
|
|
\let\dsp@end\dsp@endouter%
|
|
$$%
|
|
}
|
|
% \end{macrocode}
|
|
%
|
|
% \end{macro}
|
|
%
|
|
% \begin{macro}{\dsp@endouter}
|
|
%
|
|
% Ending the outer display is utterly trivial.
|
|
%
|
|
% \begin{macrocode}
|
|
\def\dsp@endouter{$$}
|
|
% \end{macrocode}
|
|
%
|
|
% \end{macro}
|
|
%
|
|
% \begin{macro}{\dsp@startinner}
|
|
%
|
|
% Starting inner displays is done in a vbox (actually I choose |\vbox| or
|
|
% |\vtop| depending on the setting of \textsf{leqno} to put the equation
|
|
% number the right way round).
|
|
%
|
|
% \begin{macrocode}
|
|
\def\dsp@startinner{%
|
|
\let\dsp@end\dsp@endinner%
|
|
\if@fleqn\kern-\mathindent\fi%
|
|
\if@leqno\vtop\else\vtop\fi\bgroup%
|
|
}
|
|
% \end{macrocode}
|
|
%
|
|
% \end{macro}
|
|
%
|
|
% \begin{macro}{\dsp@endinner}
|
|
%
|
|
% Ending an inner display is also really easy.
|
|
%
|
|
% \begin{macrocode}
|
|
\def\dsp@endinner{\egroup}
|
|
% \end{macrocode}
|
|
%
|
|
% \end{macro}
|
|
%
|
|
% \begin{macro}{\dsp@start}
|
|
%
|
|
% This is what other bits of code uses to start displays. It's one of the
|
|
% start macros up above, and outer by default.
|
|
%
|
|
% \begin{macrocode}
|
|
\def\dsp@start{%
|
|
\ifmmode%
|
|
\ifinner\mth@err@mdsp\fi%
|
|
\expandafter\dsp@startinner%
|
|
\else%
|
|
\ifhmode\ifinner\mth@err@hdsp\fi\fi%
|
|
\expandafter\dsp@startouter%
|
|
\fi%
|
|
}
|
|
% \end{macrocode}
|
|
%
|
|
% \end{macro}
|
|
%
|
|
% \begin{macro}{\dsp@tabpause}
|
|
%
|
|
% This sets up the correct pre- and postambles for the |\tabpause| macro in
|
|
% maths displays. This is fairly simple stuff.
|
|
%
|
|
% \begin{macrocode}
|
|
\def\dsp@tabpause{%
|
|
\def\tab@startpause%
|
|
{\penalty\postdisplaypenalty\vskip\belowdisplayskip}%
|
|
\def\tab@endpause%
|
|
{\penalty\predisplaypenalty\vskip\abovedisplayskip}%
|
|
}
|
|
% \end{macrocode}
|
|
%
|
|
% \end{macro}
|
|
%
|
|
%
|
|
% \subsection{The \env{eqnarray} environment}
|
|
%
|
|
% We allow the user to play with the style if this is really wanted. I dunno
|
|
% why, really. Maybe someone wants very small alignments.
|
|
%
|
|
% \begin{macrocode}
|
|
\let\eqastyle\displaystyle
|
|
% \end{macrocode}
|
|
%
|
|
% \subsubsection{The main environments}
|
|
%
|
|
% \begin{environment}{eqnarray}
|
|
% \begin{environment}{eqnarray*}
|
|
%
|
|
% We define the toplevel commands here. They just add in default arguments
|
|
% and then call |\@eqnarray| with a preamble string. We handle equation
|
|
% numbers by setting up a default (|\eqa@defnumber|) which is put into
|
|
% the final column. At the beginning of each row, we globally |\let|
|
|
% |\eqa@number| equal to |\eqa@defnumber|. The |\eqnumber| macro just
|
|
% changes |\eqa@number| as required. Since |\eqa@number| is changed globally
|
|
% we must save it in this environment.
|
|
%
|
|
% First, we must sort out the optional arguments and things. This is really
|
|
% easy. The only difference between the starred and non-starred environments
|
|
% is the default definition of |\eqa@defnumber|.
|
|
%
|
|
% \begin{macrocode}
|
|
\def\eqnarray{%
|
|
\eqnarray@i\eqa@eqcount%
|
|
}
|
|
\@namedef{eqnarray*}{\eqnarray@i{}}
|
|
\def\eqnarray@i#1{\@ifnextchar[{\eqnarray@ii{#1}}{\eqnarray@ii{#1}[rcl]}}
|
|
% \end{macrocode}
|
|
%
|
|
% Right. Now for the real work. The first argument is the default numbering
|
|
% tokens; the second is the preamble string.
|
|
%
|
|
% \begin{macrocode}
|
|
\def\eqnarray@ii#1[#2]{%
|
|
% \end{macrocode}
|
|
%
|
|
% Set up the equation counter and labels correctly.
|
|
%
|
|
% \medskip\par\noindent|\begin{rant}|\par
|
|
% The hacking with |\@currentlabel| is here because (in the author's opinion)
|
|
% \LaTeX's |\refstepcounter| macro is broken. It's currently defined as
|
|
% \begin{listing}
|
|
%\def\refstepcounter#1{%
|
|
% \stepcounter{#1}%
|
|
% \protected@edef\@currentlabel%
|
|
% {\csname p@#1\endcsname\csname the#1\endcsname}%
|
|
%}
|
|
% \end{listing}
|
|
% which means that the current label gets `frozen' as soon as you do the
|
|
% counter step. By redefining the macro as
|
|
% \begin{listing}
|
|
%\def\refstepcounter#1{%
|
|
% \stepcounter{#1}%
|
|
% \edef\@currentlabel{%
|
|
% \expandafter\noexpand\csname p@#1\endcsname%
|
|
% \expandafter\noexpand\csname the#1\endcsname%
|
|
% }%
|
|
%}
|
|
% \end{listing}
|
|
% these sorts of problems would be avoided, without any loss of functionality
|
|
% or compatibility that I can see.
|
|
% \par\noindent|\end{rant}|\par
|
|
%
|
|
% \begin{macrocode}
|
|
\stepcounter{equation}%
|
|
\def\@currentlabel{\p@equation\theequation}%
|
|
% \end{macrocode}
|
|
%
|
|
% The next step is to set up the numbering. I must save the old numbering
|
|
% so I can restore it later (once in the alignment, I must assign these
|
|
% things globally).
|
|
%
|
|
% \begin{macrocode}
|
|
\let\eqa@oldnumber\eqa@number%
|
|
\def\eqa@defnumber{#1}%
|
|
\global\let\eqa@number\eqa@defnumber%
|
|
% \end{macrocode}
|
|
%
|
|
% The |\if@eqalastfalse| switch is false everywhere except when we're in the
|
|
% final column.
|
|
%
|
|
% \begin{macrocode}
|
|
\@eqalastfalse%
|
|
% \end{macrocode}
|
|
%
|
|
% Remove the |\mathsurround| kerning, since it will look very odd inside
|
|
% the display. We have our own spacing parameters for configuring these
|
|
% things, so |\mathsurround| is unnecessary.
|
|
%
|
|
% \begin{macrocode}
|
|
\m@th%
|
|
% \end{macrocode}
|
|
%
|
|
% Time to parse the preamble string now. I must choose the correct column
|
|
% set, initialise the preamble parser and set up the various macros. The%
|
|
% extra `|@{\tabskip\eqacloseskip}|' item sets up the tabskip glue to centre
|
|
% the alignment properly.
|
|
%
|
|
% \begin{macrocode}
|
|
\colset{eqnarray}%
|
|
\tab@initread%
|
|
\def\tab@tabtext{&\tabskip\z@skip}%
|
|
\tab@preamble{\tabskip\z@skip}%
|
|
\tab@readpreamble{#2@{\tabskip\eqacloseskip}}%
|
|
\dsp@tabpause%
|
|
% \end{macrocode}
|
|
%
|
|
% Now for some final setting up. The column separation is set from the
|
|
% user's parameter, the |\everycr| tokens are cleared, and I set up the
|
|
% newline command appropriately.
|
|
%
|
|
% \begin{macrocode}
|
|
\col@sep.5\eqainskip%
|
|
\everycr{}%
|
|
\let\\\@eqncr%
|
|
% \end{macrocode}
|
|
%
|
|
% Now start a maths display and do the alignment. Set up the left hand
|
|
% tabskip glue to centre the alignment, and do the actual alignment.
|
|
% The preamble used is mainly that generated from the user's string, although
|
|
% the stuff at the end is how we set up the equation number -- it repeats
|
|
% appropriately so we can always find it.
|
|
%
|
|
% \begin{macrocode}
|
|
\dsp@start%
|
|
\tabskip\eqaopenskip%
|
|
\halign to\displaywidth\expandafter\bgroup%
|
|
\the\tab@preamble%
|
|
&&\eqa@lastcol\hb@xt@\z@{\hss##}\tabskip\z@\cr%
|
|
}
|
|
% \end{macrocode}
|
|
%
|
|
% Now for the end of the environment. This is really easy. Set the final
|
|
% equation number, close the |\halign|, tidy up the equation counter (it's
|
|
% been stepped once too many times) and close the display.
|
|
%
|
|
% \begin{macrocode}
|
|
\def\endeqnarray{%
|
|
\eqa@eqnum%
|
|
\egroup%
|
|
\dsp@end%
|
|
\global\let\eqa@number\eqa@oldnumber%
|
|
\global\@ignoretrue%
|
|
\global\advance\c@equation\m@ne%
|
|
}
|
|
\expandafter\let\csname endeqnarray*\endcsname\endeqnarray
|
|
% \end{macrocode}
|
|
%
|
|
% \end{environment}
|
|
% \end{environment}
|
|
%
|
|
% Now we can define the column types.
|
|
%
|
|
% \begin{macrocode}
|
|
\colpush{eqnarray}
|
|
% \end{macrocode}
|
|
%
|
|
% Note the positioning of ord atoms in the stuff below. This will space out
|
|
% relations and binops correctly when they occur at the edges of columns, and
|
|
% won't affect ord atoms at the edges, because ords pack closely.
|
|
%
|
|
% First the easy onces. Just stick |\hfil| in the right places and
|
|
% everything will be all right.
|
|
%
|
|
% \begin{macrocode}
|
|
\coldef r{\tabcoltype{\hfil$\eqastyle}{{}$}}
|
|
\coldef c{\tabcoltype{\hfil$\eqastyle{}}{{}$\hfil}}
|
|
\coldef l{\tabcoltype{$\eqastyle{}}{$\hfil}}
|
|
\coldef x{\tabcoltype{\if@fleqn\else\hfil\fi$\eqastyle}{$\hfil}}
|
|
% \end{macrocode}
|
|
%
|
|
% Now for the textual ones. This is also fairly easy.
|
|
%
|
|
% \begin{macrocode}
|
|
\collet T [tabular]T
|
|
% \end{macrocode}
|
|
%
|
|
% Sort of split types of equations. I mustn't use |\rlap| here, or
|
|
% everything goes wrong -- |\\| doesn't get noticed by \TeX\ in the same way
|
|
% as |\cr| does.
|
|
%
|
|
% \begin{macrocode}
|
|
\coldef L{\tabcoltype{\hb@xt@2em\bgroup$\eqastyle}{$\hss\egroup}}
|
|
% \end{macrocode}
|
|
%
|
|
% The \lit{:} column type is fairly simple.
|
|
%
|
|
% \begin{macrocode}
|
|
\coldef :{\tabspctype{\tabskip\eqacolskip}}
|
|
\coldef q{\tabspctype{\quad}}
|
|
% \end{macrocode}
|
|
%
|
|
% The other column types just insert given text in an appropriate way.
|
|
%
|
|
% \begin{macrocode}
|
|
\collet > [tabular]>
|
|
\collet < [tabular]<
|
|
\collet * [tabular]*
|
|
\collet @ [tabular]@
|
|
% \end{macrocode}
|
|
%
|
|
% Finally, the magical `|\magic|' column type, which sets the equation
|
|
% number. We set up the |\tabskip| glue properly, tab on, and set the flag
|
|
% which marks the final column. The |\eqa@lastcol| command is there to
|
|
% raise an error if the user tabs over to this column. I'll temporarily
|
|
% redefine it to |\@eqalasttrue| when I enter this column legitimately.
|
|
% The extra magical bits here will make the final column repeat, so that we
|
|
% can find it if necessary. Well is this column type named.
|
|
%
|
|
% That's it. We can return to normal now.
|
|
%
|
|
% \begin{macrocode}
|
|
\colpop
|
|
% \end{macrocode}
|
|
%
|
|
% \subsubsection{Newline codes}
|
|
%
|
|
% Newline sequences (|\\|) get turned into calls of |\@eqncr|. The job is
|
|
% fairly simple, really.
|
|
%
|
|
% \begin{macrocode}
|
|
\def\@eqncr{\tab@cr\eqacr@i\interdisplaylinepenalty\@M}%
|
|
\def\eqacr@i#1#2{%
|
|
\eqa@eqnum%
|
|
\noalign{\penalty#2\vskip\jot\vskip#1}%
|
|
}
|
|
% \end{macrocode}
|
|
%
|
|
% \subsubsection{Setting equation numbers}
|
|
%
|
|
% \begin{macro}{\eqa@eqpos}
|
|
%
|
|
% Before we start, we need to generalise the flush-left number handling bits.
|
|
% The macro |\eqa@eqpos| will put its argument in the right place.
|
|
%
|
|
% \begin{macrocode}
|
|
\if@leqno
|
|
\def\eqa@eqpos#1{%
|
|
\hb@xt@.01\p@{}\rlap{\normalfont\normalcolor\hskip-\displaywidth#1}%
|
|
}
|
|
\else
|
|
\def\eqa@eqpos#1{\normalfont\normalcolor#1}
|
|
\fi
|
|
% \end{macrocode}
|
|
%
|
|
% \end{macro}
|
|
%
|
|
% \begin{macro}{\eqa@eqnum}
|
|
%
|
|
% Here we typeset an equation number in roughly the right place. First I'll
|
|
% redefine |\eqa@lastcol| so that it tells me I'm in the right place, and
|
|
% start a loop to find that place.
|
|
%
|
|
% \begin{macrocode}
|
|
\def\eqa@eqnum{%
|
|
\global\let\eqa@lastcol\@eqalasttrue%
|
|
\eqa@eqnum@i%
|
|
}
|
|
% \end{macrocode}
|
|
%
|
|
% Now for the loop. The |\relax| here is absolutely vital -- it starts the
|
|
% table column, inserting useful tokens like `|\eqa@lastcol|' which tell
|
|
% me where I am in the alignment. Then, if I've reached the end, I can
|
|
% typeset the equation number; otherwise I go off into another macro and
|
|
% step on to the next column.
|
|
%
|
|
% \begin{macrocode}
|
|
\def\eqa@eqnum@i{%
|
|
\relax%
|
|
\if@eqalast%
|
|
\expandafter\eqa@eqnum@ii%
|
|
\else%
|
|
\expandafter\eqa@eqnum@iii%
|
|
\fi%
|
|
}
|
|
\def\eqa@eqnum@ii{%
|
|
\eqa@eqpos\eqa@number%
|
|
\global\let\eqa@number\eqa@defnumber%
|
|
\global\let\eqa@lastcol\eqa@@lastcol%
|
|
\cr%
|
|
}
|
|
\def\eqa@eqnum@iii{&\eqa@eqnum@i}
|
|
% \end{macrocode}
|
|
%
|
|
% \end{macro}
|
|
%
|
|
% \begin{macro}{\eqa@lastcol}
|
|
%
|
|
% This is used as a marker for the final column in an \env{eqnarray}
|
|
% environment. By default it informs the user that they've been very
|
|
% silly and swallows the contents of the column. I'll redefine it to
|
|
% something more useful at appropriate times, and then turn it back again.
|
|
%
|
|
% \begin{macrocode}
|
|
\def\eqa@@lastcol{\mth@err@number\setbox\z@}
|
|
\let\eqa@lastcol\eqa@@lastcol
|
|
% \end{macrocode}
|
|
%
|
|
% \end{macro}
|
|
%
|
|
% \subsubsection{Numbering control}
|
|
%
|
|
% \begin{macro}{\eqnumber}
|
|
%
|
|
% The |\eqnumber| command sets the equation number on the current equation.
|
|
% This is really easy, actually.
|
|
%
|
|
% \begin{macrocode}
|
|
\newcommand\eqnumber[1][\eqa@eqcount]{\gdef\eqa@number{#1}}
|
|
% \end{macrocode}
|
|
%
|
|
% \end{macro}
|
|
%
|
|
% \begin{macro}{\eqa@eqcount}
|
|
%
|
|
% This is how a standard equation number is set, stepping the counter and
|
|
% all. It's really easy and obvious.
|
|
%
|
|
% \begin{macrocode}
|
|
\def\eqa@eqcount{(\theequation)\global\advance\c@equation\@ne}
|
|
% \end{macrocode}
|
|
%
|
|
% \end{macro}
|
|
%
|
|
% \begin{macro}{\nonumber}
|
|
%
|
|
% The \LaTeX\ |\nonumber| command could be defined by saying
|
|
% \begin{listing}
|
|
%\renewcommand{\nonumber}{\eqnumber[]}
|
|
% \end{listing}
|
|
% but I'll be slightly more efficient and redefine |\eqa@number| directly.
|
|
%
|
|
% \begin{macrocode}
|
|
\def\nonumber{\global\let\eqa@number\@empty}
|
|
% \end{macrocode}
|
|
%
|
|
% \end{macro}
|
|
%
|
|
% \subsubsection{The \env{eqnalign} environment}
|
|
%
|
|
% As a sort of companion to \env{eqnarray}, here's an environment which does
|
|
% similar things inside a box, rather than taking up the whole display width.
|
|
% It uses the same column types that we've already created, so there should
|
|
% be no problems.
|
|
%
|
|
% \begin{environment}{eqnalign}
|
|
%
|
|
% First, sort out some simple things like optional arguments.
|
|
%
|
|
% \begin{macrocode}
|
|
\def\eqnalign{\@ifnextchar[\eqnalign@i{\eqnalign@i[rcl]}}
|
|
\def\eqnalign@i[#1]{%
|
|
\@ifnextchar[{\eqnalign@ii{#1}}{\eqnalign@ii{#1}[c]}%
|
|
}
|
|
% \end{macrocode}
|
|
%
|
|
% Now we actually do the environment. This is fairly easy, actually.
|
|
%
|
|
% \begin{macrocode}
|
|
\def\eqnalign@ii#1[#2]{%
|
|
\let\\\eqn@cr%
|
|
\colset{eqnarray}%
|
|
\tab@initread%
|
|
\def\tab@tabtext{&\tabskip\z@skip}%
|
|
\tabskip\z@skip%
|
|
\col@sep.5\eqainskip%
|
|
\tab@readpreamble{#1}%
|
|
\everycr{}%
|
|
\if#2t\vtop\else%
|
|
\if#2b\vbox\else%
|
|
\vcenter%
|
|
\fi%
|
|
\fi%
|
|
\bgroup%
|
|
\halign\expandafter\bgroup\the\tab@preamble\cr%
|
|
}
|
|
% \end{macrocode}
|
|
%
|
|
% Finishing the environment is even simpler.
|
|
%
|
|
% \begin{macrocode}
|
|
\def\endeqnalign{%
|
|
\crcr%
|
|
\egroup%
|
|
\egroup%
|
|
}
|
|
% \end{macrocode}
|
|
%
|
|
% \end{environment}
|
|
%
|
|
% \begin{macro}{\eqn@cr}
|
|
%
|
|
% Newlines are really easy here.
|
|
%
|
|
% \begin{macrocode}
|
|
\def\eqn@cr{\tab@cr\eqn@cr@i{}{}}
|
|
\def\eqn@cr@i#1{\cr\noalign{\vskip\jot\vskip#1}\@gobble}
|
|
% \end{macrocode}
|
|
%
|
|
% \end{macro}
|
|
%
|
|
%
|
|
% \subsection{Simple multiline equations}
|
|
%
|
|
% As a sort of example and abbreviation, here's a multiline display
|
|
% environment which just centres everything.
|
|
%
|
|
% \begin{environment}{eqlines}
|
|
%
|
|
% We just get |\eqnarray| to do everything for us. This is really easy.
|
|
%
|
|
% \begin{macrocode}
|
|
\def\eqlines{\eqnarray[x]}
|
|
\let\endeqlines\endeqnarray
|
|
% \end{macrocode}
|
|
%
|
|
% \end{environment}
|
|
%
|
|
% \begin{environment}{eqlines*}
|
|
%
|
|
% There's a $*$ version which omits numbers. This is easy too. Lots of
|
|
% hacking with expansion here to try and reduce the number of tokens being
|
|
% used. Is it worth it?
|
|
%
|
|
% \begin{macrocode}
|
|
\expandafter\edef\csname eqlines*\endcsname{%
|
|
\expandafter\noexpand\csname eqnarray*\endcsname[x]%
|
|
}
|
|
\expandafter\let\csname endeqlines*\expandafter\endcsname
|
|
\csname endeqnarray*\endcsname
|
|
% \end{macrocode}
|
|
%
|
|
% \end{environment}
|
|
%
|
|
%
|
|
% \subsection{Split equations}
|
|
%
|
|
% Based on an idea from \textit{The \TeX book}, we provide some simple
|
|
% environments for doing split equations. These's plenty of scope for
|
|
% improvement here, though.
|
|
%
|
|
% \begin{environment}{spliteqn}
|
|
% \begin{environment}{spliteqn*}
|
|
%
|
|
% The only difference between these two is that the $*$-version doesn't put
|
|
% in an equation number by default (although this behaviour can be
|
|
% changed by |\eqnumber|).
|
|
%
|
|
% The fun here mainly concerns putting in the equation number at the right
|
|
% place -- for |leqno| users, we need to put the number on the first line;
|
|
% otherwise we put it on the last line.
|
|
%
|
|
% The way we handle this is to have two macros, |\\| (which clearly does
|
|
% all the user line breaks) and |\seq@lastcr| which is used at the end of
|
|
% the environment to wrap everything up. The |\seq@eqnocr| macro puts an
|
|
% equation number on the current line and then does a normal |\\|. It also
|
|
% resets |\\| and |\seq@lastcr| so that they don't try to put another
|
|
% equation number in. This must be done globally, although anyone who tries
|
|
% to nest maths displays will get what they deserve.
|
|
%
|
|
% For the non-$*$ environment, then, we need to step the equation counter,
|
|
% and set |\\| to |\seq@cr| or |\seq@eqnocr| as appropriate for the setting
|
|
% of the |leqno| flag -- |\seq@lastcr| always gets set to put an equation
|
|
% number in (because it will be reset if the number actually gets done
|
|
% earlier -- this catches stupid users trying to put a single row into
|
|
% a split environment).
|
|
%
|
|
% \begin{macrocode}
|
|
\def\spliteqn{%
|
|
\let\eqa@oldnumber\eqa@number%
|
|
\global\let\eqa@number\eqa@eqcount%
|
|
\spliteqn@i%
|
|
}
|
|
% \end{macrocode}
|
|
%
|
|
% For the $*$ variant, we don't need to bother with equation numbering, so
|
|
% this is really easy.
|
|
%
|
|
% \begin{macrocode}
|
|
\@namedef{spliteqn*}{%
|
|
\let\eqa@oldnumber\eqa@number%
|
|
\gdef\eqa@number{}%
|
|
\spliteqn@i%
|
|
}
|
|
% \end{macrocode}
|
|
%
|
|
% Ending the environments is easy. Most of the stuff here will be described
|
|
% later.
|
|
%
|
|
% \begin{macrocode}
|
|
\def\endspliteqn{%
|
|
\hfilneg\seq@lastcr%
|
|
\egroup%
|
|
\dsp@end%
|
|
\global\let\eqa@number\eqa@oldnumber%
|
|
\global\advance\c@equation\m@ne%
|
|
}
|
|
\expandafter\let\csname endspliteqn*\endcsname\endspliteqn
|
|
% \end{macrocode}
|
|
%
|
|
% \end{environment}
|
|
% \end{environment}
|
|
%
|
|
% \begin{macro}{\spliteqn@i}
|
|
%
|
|
% Here we handle the full display splits. Start a maths display, and make
|
|
% each row of the alignment take up the full display width.
|
|
%
|
|
% The macro |\seq@dosplit| does most of the real work for us -- setting up
|
|
% the alignment and so forth. The template column is interesting. There
|
|
% are two items glue on both sides of the actual text:
|
|
%
|
|
% \begin{itemize}
|
|
%
|
|
% \item Some glue which can shrink. This keeps the display from the edges
|
|
% of the page unless we get a really wide item.
|
|
%
|
|
% \item An |\hfil| to do the alignment. By default, this centres the
|
|
% equations. On the first line, however, we put a leading |\hfilneg|
|
|
% which cancels the first |\hfil|, making the first row left aligned.
|
|
% Similarly, at the end, we put an |\hfilneg| after the last equation
|
|
% to right align the last line.
|
|
%
|
|
% \end{itemize}
|
|
%
|
|
% We pass this information on as an argument. It's easy really.
|
|
%
|
|
% \begin{macrocode}
|
|
\def\spliteqn@i{%
|
|
% \end{macrocode}
|
|
%
|
|
% First, set up equation numbering properly. See my rant about
|
|
% |\refstepcounter| above.
|
|
%
|
|
% \begin{macrocode}
|
|
\stepcounter{equation}%
|
|
\def\@currentlabel{\p@equation\theequation}%
|
|
% \end{macrocode}
|
|
%
|
|
% Right; now to sort out the numbering and newline handling. If the number's
|
|
% meant to be on the first line (for \textsf{leqno} users), then it gets
|
|
% typeset on the first like; otherwise we just do a normal newline on
|
|
% all lines except the first. Once |\seq@eqnocr| has done its stuff, it
|
|
% redefines all the newline handling not to insert another number.
|
|
%
|
|
% \begin{macrocode}
|
|
\if@leqno%
|
|
\global\let\seq@docr\seq@eqnocr%
|
|
\else%
|
|
\global\let\seq@docr\seq@cr%
|
|
\fi%
|
|
\global\let\seq@lastcr\seq@eqnocr%
|
|
% \end{macrocode}
|
|
%
|
|
% For my next trick, I'll do some display handling -- start a (possibly
|
|
% nested) maths display, set up the |\tabpause| macro appropriately, and
|
|
% set the newline command to do the right thing.
|
|
%
|
|
% \begin{macrocode}
|
|
\dsp@start%
|
|
\dsp@tabpause%
|
|
\def\\{\seq@docr}%
|
|
% \end{macrocode}
|
|
%
|
|
% Finally, call another macro to do the remaining bits of setting up.
|
|
%
|
|
% \begin{macrocode}
|
|
\seq@dosplit%
|
|
{\hb@xt@\displaywidth{%
|
|
\hskip\splitleft\hfil$\displaystyle##$%
|
|
\hfil\hskip\splitright}}%
|
|
{\hfilneg}%
|
|
}
|
|
% \end{macrocode}
|
|
%
|
|
% \end{macro}
|
|
%
|
|
% \begin{environment}{subsplit}
|
|
%
|
|
% For doing splits in the middle of equations, we provide a similar
|
|
% environment. Here, we make |\\| just start a new line. We also use
|
|
% a |\vcenter| rather than a full maths display. The glue items are also
|
|
% a bit different: we use plain double-quads on each side of the item, and
|
|
% we need to remove them by hand at the extremeties of the environment.
|
|
%
|
|
% \begin{macrocode}
|
|
\def\subsplit{%
|
|
\let\\\seq@cr%
|
|
\vcenter\bgroup%
|
|
\seq@dosplit{\hfil\qquad$##$\qquad\hfil}{\hfilneg\hskip-2em}%
|
|
}
|
|
% \end{macrocode}
|
|
%
|
|
% Ending the environment is fairly easy. We remove the final glue item,
|
|
% and close the alignment and the vbox.
|
|
%
|
|
% \begin{macrocode}
|
|
\def\endsubsplit{%
|
|
\hfilneg\hskip-2em\cr%
|
|
\egroup\egroup%
|
|
}
|
|
% \end{macrocode}
|
|
%
|
|
% \end{environment}
|
|
%
|
|
% \begin{macro}{\seq@dosplit}
|
|
%
|
|
% Here we do most of the real work. Actually, since the preamble is passed
|
|
% in as an argument, most of the work is already done. The only thing to
|
|
% really note is the template for subsequent columns. To stop users putting
|
|
% in extra columns (which is where we put the equation number) we raise an
|
|
% error and discard the input in a scratch box register. This template is
|
|
% repeated infinitely so as to allow us to put the equation number in nicely.
|
|
% However, the final negative glue item won't work properly, so the equation
|
|
% will look awful.
|
|
%
|
|
% \begin{macrocode}
|
|
\def\seq@dosplit#1#2{%
|
|
\halign\bgroup%
|
|
#1&&\mth@err@number\setbox\z@\hbox{##}\cr%
|
|
#2\relax%
|
|
}
|
|
% \end{macrocode}
|
|
%
|
|
% \end{macro}
|
|
%
|
|
% \begin{macro}{\seq@eqnocr}
|
|
%
|
|
% Here's how we set equation numbers. Since the column provided raises
|
|
% errors as soon as a token finds its way into it, we start with a |&\omit|.
|
|
% Then we just put the equation number in a zero-width box. Finally, we
|
|
% reset the newline commands to avoid putting in more than one equation
|
|
% number, and do normal newline things.
|
|
%
|
|
% \begin{macrocode}
|
|
\def\seq@eqnocr{%
|
|
&\omit%
|
|
\hb@xt@\z@{\hss\eqa@eqpos\eqa@number}%
|
|
\global\let\seq@docr\seq@cr%
|
|
\global\let\seq@lastcr\seq@cr%
|
|
\seq@cr%
|
|
}
|
|
% \end{macrocode}
|
|
%
|
|
% \end{macro}
|
|
%
|
|
% \begin{macro}{\seq@cr}
|
|
%
|
|
% Newlines are very easy. We add a |\jot| of extra space, since this is
|
|
% a nice thing to do.
|
|
%
|
|
% \begin{macrocode}
|
|
\def\seq@cr{\tab@cr\seq@cr@i\interdisplaylinepenalty\@M}
|
|
\def\seq@cr@i#1#2{\cr\noalign{\penalty#2\vskip\jot\vskip#1}}
|
|
% \end{macrocode}
|
|
%
|
|
% \end{macro}
|
|
%
|
|
%
|
|
% \subsection{Matrix handling}
|
|
%
|
|
% There's been a complete and total overhaul of the spacing calculations
|
|
% for matrices here. The vertical spacing now bears an uncanny similarity
|
|
% to the rules \TeX\ uses to space out |\atop|-like fractions, the difference
|
|
% being that you can have more than one column in a matrix. This has the
|
|
% interesting side-effect that we get an \package{amsmath}-style
|
|
% sub/superscript environment almost free of charge with the matrix handling
|
|
% (it just ends up being a script-size single-column matrix).
|
|
%
|
|
% What is rather gratifying is that our \env{matrix} environment looks
|
|
% rather nicer than \package{amsmath}'s (which is based directly on
|
|
% \env{array}, giving it nasty restrictions on the numbers of columns and
|
|
% so on); in particular, the version here gives the `correct' result for
|
|
% Knuth's exercise~18.42 (which states categorically that a |\smallskip|
|
|
% should be placed between the rows of the big matrix).
|
|
%
|
|
% The reason the interrow space doesn't come out in the AMS version is
|
|
% that \env{array} inserts extra vertical space by extending the depth of
|
|
% the final row using a strut: the big matrix already extends deeper than
|
|
% this, so the strut doesn't make any difference. If the space was added
|
|
% by |\hlx{s[\smallskipamount]}| instead of the |\\| command, things would
|
|
% be different.
|
|
%
|
|
% \begin{figure}
|
|
%
|
|
% ^^A This is essentially what amsmath (version 1.2b) does. The real
|
|
% ^^A implementation requires a counter MaxMatrixCols, and has fewer braces:
|
|
% ^^A that's all the difference. Oh, and I turn off \arrayextrasep here,
|
|
% ^^A since amsmath doesn't expect it to be there (accurate emulation, see?)
|
|
% ^^A and I've used \hspace instead of \hskip since everything else is
|
|
% ^^A `proper' LaTeX stuff.
|
|
%
|
|
% \newenvironment{ams-pmatrix}{^^A
|
|
% \setlength{\arrayextrasep}{0pt}^^A
|
|
% \left(^^A
|
|
% \hspace{-\arraycolsep}^^A
|
|
% \begin{array}{*{10}{c}}^^A
|
|
% }{^^A
|
|
% \end{array}^^A
|
|
% \hspace{-\arraycolsep}^^A
|
|
% \right)^^A
|
|
% }
|
|
%
|
|
% \begin{demo}{Exercise 18.42 from \emph{The \TeX book}}
|
|
%\newcommand{\domatrix}[1]{
|
|
% \def\mat##1
|
|
% {\begin{#1}##1\end{#1}}
|
|
% \[ \begin{#1}
|
|
% \mat{a & b \\ c & d} &
|
|
% \mat{e & f \\ g & h}
|
|
% \\[\smallskipamount]
|
|
% 0 &
|
|
% \mat{i & j \\ k & l}
|
|
% \end{#1}
|
|
% \]
|
|
%}
|
|
%\domatrix{pmatrix}
|
|
%\domatrix{ams-pmatrix}
|
|
% \end{demo}
|
|
%
|
|
% \end{figure}
|
|
%
|
|
% \begin{environment}{genmatrix}
|
|
%
|
|
% The first job is to store my maths style and font away, because I'll be
|
|
% needing it lots later.
|
|
%
|
|
% \begin{macrocode}
|
|
\def\genmatrix#1#2#3#4#5{%
|
|
\let\mat@style#1%
|
|
\ifx#2\scriptstyle%
|
|
\let\mat@font\scriptfont%
|
|
\else\ifx#2\scriptscriptstyle%
|
|
\let\mat@font\scriptscriptfont%
|
|
\else%
|
|
\let\mat@font\textfont%
|
|
\fi\fi%
|
|
% \end{macrocode}
|
|
%
|
|
% Now to cope with inserted text. This is easy.
|
|
%
|
|
% \begin{macrocode}
|
|
\ifx\mat@style\scriptstyle%
|
|
\let\mat@textsize\scriptsize%
|
|
\else\ifx\mat@style\scriptscriptstyle%
|
|
\let\mat@textsize\scriptscriptsize%
|
|
\else%
|
|
\let\mat@textsize\relax%
|
|
\fi\fi%
|
|
% \end{macrocode}
|
|
%
|
|
% Now for some fun. I'll remember how to start and end the matrix in a
|
|
% couple of macros |\mat@left| and |\mat@right|. I haven't yet worked out
|
|
% exactly what needs to be in |\mat@right| yet, though, so I'll build that
|
|
% up in a scratch token list while I'm making my mind up.
|
|
%
|
|
% Initially, I want to open a group (to trap the style changes), set the
|
|
% maths style (to get the right spacing), insert the left delimiter, insert
|
|
% some spacing around the matrix, and start a centred box. The ending just
|
|
% closes all the groups and delimiters I opened.
|
|
%
|
|
% \begin{macrocode}
|
|
\def\mat@left{\bgroup\mat@style\left#4#3\vcenter\bgroup}%
|
|
\toks@{\egroup#3\right#5\egroup}%
|
|
% \end{macrocode}
|
|
%
|
|
% Now comes a slightly trickier bit. If the maths style is script or
|
|
% scriptscript, then I need to raise the box by a little bit to make it look
|
|
% really good. The right amount is somewhere around \smallf 3/4\,pt, I
|
|
% think, so that's what I'll use.
|
|
%
|
|
% \begin{macrocode}
|
|
\@tempswatrue%
|
|
\ifx\mat@style\displaystyle\else\ifx\mat@style\textstyle\else%
|
|
\@tempswafalse%
|
|
\setbox\z@\hbox\bgroup$%
|
|
\toks@\expandafter{\the\toks@$\m@th\egroup\raise.75\p@\box\z@}%
|
|
\fi\fi%
|
|
% \end{macrocode}
|
|
%
|
|
% If I'm not in maths mode right now, then I should enter maths mode, and
|
|
% remember to leave it later.
|
|
%
|
|
% \begin{macrocode}
|
|
\if@tempswa\ifmmode\else%
|
|
$\m@th%
|
|
\toks@\expandafter{\the\toks@$}%
|
|
\fi\fi%
|
|
% \end{macrocode}
|
|
%
|
|
% Now I've sorted out how to end the environment properly, so I can set up
|
|
% the macro, using |\edef|.
|
|
%
|
|
% \begin{macrocode}
|
|
\edef\mat@right{\the\toks@}%
|
|
% \end{macrocode}
|
|
%
|
|
% Now see if there's an optional argument. If not, create lots of centred
|
|
% columns.
|
|
%
|
|
% \begin{macrocode}
|
|
\@ifnextchar[\genmatrix@i{\genmatrix@i[[c]}%
|
|
}
|
|
% \end{macrocode}
|
|
%
|
|
% Now to sort out everything else.
|
|
%
|
|
% \begin{macrocode}
|
|
\def\genmatrix@i[#1]{%
|
|
% \end{macrocode}
|
|
%
|
|
% Some initial setting up: choose the correct column set, and set up some
|
|
% variables for reading the preamble.
|
|
%
|
|
% \begin{macrocode}
|
|
\colset{matrix}%
|
|
\tab@initread%
|
|
% \end{macrocode}
|
|
%
|
|
% Now comes some of the tricky stuff. The space between columns should be
|
|
% 12\,mu (by trial and error). We put the space in a box so we can measure
|
|
% it in the correct mathstyle.
|
|
%
|
|
% \begin{macrocode}
|
|
\setbox\z@\hbox{$\mat@style\mskip12mu$}%
|
|
\edef\tab@tabtext{&\kern\the\wd\z@}%
|
|
\tab@readpreamble{#1}%
|
|
% \end{macrocode}
|
|
%
|
|
% Now we need to decide how to space out the rows. The code here is based
|
|
% on the information in appendix~G of \emph{The \TeX book}: I think it'd be
|
|
% nice if my matrices were spaced out in the same way as normal fractions
|
|
% (particularly |\choose|y things). The standard |\baselineskip| and
|
|
% |\lineskip| parameters come in really handy here.
|
|
%
|
|
% The parameters vary according to the size of the text, so I need to see
|
|
% if we have scriptsize or less, or not. The tricky |\if| sorts this out.
|
|
%
|
|
% \begin{macrocode}
|
|
\if1\ifx\mat@style\scriptstyle1\else%
|
|
\ifx\mat@style\scriptscriptstyle1\else0\fi\fi%
|
|
\baselineskip\fontdimen10\mat@font\tw@%
|
|
\advance\baselineskip\fontdimen12\mat@font\tw@%
|
|
\lineskip\thr@@\fontdimen8\mat@font\thr@@%
|
|
\else%
|
|
\baselineskip\fontdimen8\mat@font\tw@%
|
|
\advance\baselineskip\fontdimen11\mat@font\tw@%
|
|
\lineskip7\fontdimen8\mat@font\thr@@%
|
|
\fi%
|
|
\lineskiplimit\lineskip%
|
|
% \end{macrocode}
|
|
%
|
|
% Now actually set up for the alignment. Assign |\\| to the correct value.
|
|
% Set up the |\tabskip|. Do the appropriate |\mat@left| thing set up above.
|
|
% And then start the alignment.
|
|
%
|
|
% \begin{macrocode}
|
|
\let\\\mat@cr%
|
|
\tabskip\z@skip%
|
|
\col@sep\z@%
|
|
\mat@left%
|
|
\halign\expandafter\bgroup\the\tab@preamble\tabskip\z@skip\cr%
|
|
% \end{macrocode}
|
|
%
|
|
% Now for a little hack to make the spacing consistent between matrices of
|
|
% the same height. This comes directly from \PlainTeX. This appears to
|
|
% make the spacing \emph{exactly} the same as the \TeX\ primites, oddly
|
|
% enough.
|
|
%
|
|
% \begin{macrocode}
|
|
\ifx\mat@font\textfont%
|
|
\omit$\mat@style\mathstrut$\cr\noalign{\kern-\baselineskip}%
|
|
\fi%
|
|
}
|
|
% \end{macrocode}
|
|
%
|
|
% Finishing the environment is really easy. We do the spacing hack again
|
|
% at the bottom, close the alignment and then tidy whatever we started in
|
|
% |\mat@left|.
|
|
%
|
|
% \begin{macrocode}
|
|
\def\endgenmatrix{%
|
|
\crcr%
|
|
\ifx\mat@font\textfont%
|
|
\omit$\mat@style\mathstrut$\cr\noalign{\kern-\baselineskip}%
|
|
\fi%
|
|
\egroup%
|
|
\mat@right%
|
|
}
|
|
% \end{macrocode}
|
|
%
|
|
% \end{environment}
|
|
%
|
|
% \begin{macro}{\mat@cr}
|
|
%
|
|
% Newlines are really easy. The $*$-form means nothing here, so we ignore
|
|
% it.
|
|
%
|
|
% \begin{macrocode}
|
|
\def\mat@cr{\tab@cr\mat@cr@i{}{}}
|
|
\def\mat@cr@i#1{\cr\noalign{\vskip#1}\@gobble}
|
|
% \end{macrocode}
|
|
%
|
|
% \end{macro}
|
|
%
|
|
% \begin{macro}{\newmatrix}
|
|
%
|
|
% This is how we define new matrix environments. It's simple fun with
|
|
% |\csname| and |\expandafter|.
|
|
%
|
|
% \begin{macrocode}
|
|
\def\newmatrix#1#2{%
|
|
\@namedef{#1}{\genmatrix#2}%
|
|
\expandafter\let\csname end#1\endcsname\endgenmatrix%
|
|
}
|
|
% \end{macrocode}
|
|
%
|
|
% \end{macro}
|
|
%
|
|
% \begin{environment}{matrix}
|
|
% \begin{environment}{pmatrix}
|
|
% \begin{environment}{dmatrix}
|
|
% \begin{environment}{smatrix}
|
|
% \begin{environment}{spmatrix}
|
|
% \begin{environment}{sdmatrix}
|
|
% \begin{environment}{smatrix*}
|
|
% \begin{environment}{spmatrix*}
|
|
% \begin{environment}{sdmatrix*}
|
|
%
|
|
% Now we define all the other environments we promised. This is easy.
|
|
%
|
|
% \begin{macrocode}
|
|
\newmatrix{matrix}{{\textstyle}{\textstyle}{\,}{.}{.}}
|
|
\newmatrix{pmatrix}{{\textstyle}{\textstyle}{\,}{(}{)}}
|
|
\newmatrix{dmatrix}{{\textstyle}{\textstyle}{\,}}
|
|
\newmatrix{smatrix}{{\scriptstyle}{\scriptstyle}{}{.}{.}}
|
|
\newmatrix{spmatrix}{{\scriptstyle}{\scriptstyle}{}{(}{)}}
|
|
\newmatrix{sdmatrix}{{\scriptstyle}{\scriptstyle}{}}
|
|
\newmatrix{smatrix*}{{\scriptstyle}{\textstyle}{}{.}{.}}
|
|
\newmatrix{spmatrix*}{{\scriptstyle}{\textstyle}{}{(}{)}}
|
|
\newmatrix{sdmatrix*}{{\scriptstyle}{\textstyle}{}}
|
|
% \end{macrocode}
|
|
%
|
|
% \end{environment}
|
|
% \end{environment}
|
|
% \end{environment}
|
|
% \end{environment}
|
|
% \end{environment}
|
|
% \end{environment}
|
|
% \end{environment}
|
|
% \end{environment}
|
|
% \end{environment}
|
|
%
|
|
% \begin{environment}{script}
|
|
%
|
|
% Now for superscripts and subscripts. This is fairly easy, because I
|
|
% took so much care over the matrix handling.
|
|
%
|
|
% \begin{macrocode}
|
|
\def\script{%
|
|
\let\mat@style\scriptstyle%
|
|
\def\mat@left{\vcenter\bgroup}%
|
|
\def\mat@right{\egroup}%
|
|
\let\mat@font\scriptfont%
|
|
\let\mat@textsize\scriptsize%
|
|
\@ifnextchar[\genmatrix@i{\genmatrix@i[c]}%
|
|
}
|
|
\let\endscript\endgenmatrix
|
|
% \end{macrocode}
|
|
%
|
|
% \end{environment}
|
|
%
|
|
% Now define the column types.
|
|
%
|
|
% \begin{macrocode}
|
|
\colpush{matrix}
|
|
\coldef l{\tabcoltype{\kern\z@$\mat@style}{\m@th$\hfil}}
|
|
\coldef c{\tabcoltype{\hfil$\mat@style}{\m@th$\hfil}}
|
|
\coldef r{\tabcoltype{\hfil$\mat@style}{\m@th$}}
|
|
\coldef T#1{\tab@aligncol{#1}{\begingroup\mat@textsize}{\endgroup}}
|
|
% \end{macrocode}
|
|
%
|
|
% The repeating type is more awkward. Things will go wrong if this is
|
|
% given before the first column, so we must do a whole repeat by hand. We
|
|
% can tell if we haven't contributed a column yet, since |\tab@column| will
|
|
% be zero. Otherwise, we fiddle the parser state to start a new column, and
|
|
% insert the |&| character to make \TeX\ repeat the preamble.
|
|
%
|
|
% \begin{macrocode}
|
|
\coldef {[}{%
|
|
\@firstoftwo{%
|
|
\ifnum\tab@columns=\z@%
|
|
\def\@tempa##1\q@delim{%
|
|
\tab@mkpreamble##1[##1\q@delim%
|
|
}%
|
|
\expandafter\@tempa%
|
|
\else%
|
|
\tab@setstate\tab@prestate%
|
|
\tab@append\tab@preamble{&}%
|
|
\expandafter\tab@mkpreamble%
|
|
\fi%
|
|
}%
|
|
}
|
|
% \end{macrocode}
|
|
%
|
|
% We're done defining columns now.
|
|
%
|
|
% \begin{macrocode}
|
|
\colpop
|
|
% \end{macrocode}
|
|
%
|
|
%
|
|
% \subsection{Dots\dots}
|
|
%
|
|
% Nothing whatsoever to do with alignments, although vertical and diagonal
|
|
% dots in small matrices look really silly. The following hacky definitions
|
|
% work rather better.
|
|
%
|
|
% \begin{macro}{\mdw@dots}
|
|
%
|
|
% First of all, here's some definitions common to both of the dots macros.
|
|
% The macro takes as an argument the actual code to draw the dots, passing
|
|
% it the scaled size of a point in the scratch register |\dimen@|; the
|
|
% register |\box 0| is set to contain a dot of the appropriate size.
|
|
%
|
|
% \begin{macrocode}
|
|
\def\mdw@dots#1{\ensuremath{\mathpalette\mdw@dots@i{#1}}}
|
|
\def\mdw@dots@i#1#2{%
|
|
\setbox\z@\hbox{$#1\mskip1.8mu$}%
|
|
\dimen@\wd\z@%
|
|
\setbox\z@\hbox{$#1.$}%
|
|
#2%
|
|
}
|
|
% \end{macrocode}
|
|
%
|
|
% \end{macro}
|
|
%
|
|
% \begin{macro}{\vdots}
|
|
%
|
|
% I'll start with the easy one. This is a simple translation of the original
|
|
% implementation.
|
|
%
|
|
% \begin{macrocode}
|
|
\def\vdots{%
|
|
\mdw@dots{\vbox{%
|
|
\baselineskip4\dimen@%
|
|
\lineskiplimit\z@%
|
|
\kern6\dimen@%
|
|
\copy\z@\copy\z@\box\z@%
|
|
}}%
|
|
}
|
|
% \end{macrocode}
|
|
%
|
|
% \end{macro}
|
|
%
|
|
% \begin{macro}{\ddots}
|
|
%
|
|
% And I'll end with the other easy one\dots
|
|
%
|
|
% \begin{macrocode}
|
|
\def\ddots{%
|
|
\mdw@dots{\mathinner{%
|
|
\mkern1mu%
|
|
\raise7\dimen@\vbox{\kern7\dimen@\copy\z@}%
|
|
\mkern2mu%
|
|
\raise4\dimen@\copy\z@%
|
|
\mkern2mu%
|
|
\raise\dimen@\box\z@%
|
|
\mkern1mu%
|
|
}}%
|
|
}
|
|
% \end{macrocode}
|
|
%
|
|
% \end{macro}
|
|
%
|
|
%
|
|
% \subsection{Lucky dip}
|
|
%
|
|
% Time to round off with some trivial environments, just to show how easy
|
|
% this stuff is.
|
|
%
|
|
% \begin{environment}{cases}
|
|
% \begin{environment}{smcases}
|
|
%
|
|
% These are totally and utterly trivial.
|
|
%
|
|
% \begin{macrocode}
|
|
\def\cases{\left\{\,\array{@{}lTl@{}}}
|
|
\def\endcases{\endarray\,\right.}
|
|
\def\smcases{\left\{\smarray{@{}lTl@{}}}
|
|
\def\endsmcases{\endsmarray\,\right.}
|
|
% \end{macrocode}
|
|
%
|
|
% \end{environment}
|
|
% \end{environment}
|
|
%
|
|
% \subsection{Error messages}
|
|
%
|
|
% Some token saving:
|
|
%
|
|
% \begin{macrocode}
|
|
\def\mth@error{\PackageError{mathenv}}
|
|
% \end{macrocode}
|
|
%
|
|
% Now for the error messages.
|
|
%
|
|
% \begin{macrocode}
|
|
\def\mth@err@number{%
|
|
\mth@error{Too many `&' characters found}{%
|
|
You've put too many `&' characters in an alignment^^J%
|
|
environment (like `eqnarray' or `spliteqn') and wandered^^J%
|
|
into trouble. I've gobbled the contents of that column^^J%
|
|
and hopefully I can recover fairly easily.%
|
|
}%
|
|
}
|
|
% \end{macrocode}
|
|
%
|
|
% \begin{macrocode}
|
|
\def\mth@err@mdsp{%
|
|
\mth@error{Can't do displays in nondisplay maths mode}{%
|
|
You're trying to start a display environment, but you're^^J%
|
|
in nondisplay maths mode. The display will appear but^^J%
|
|
don't blame me when it looks horrible.%
|
|
}%
|
|
}
|
|
% \end{macrocode}
|
|
%
|
|
% \begin{macrocode}
|
|
\def\mth@err@hdsp{%
|
|
\mth@error{Can't do displays in LR mode}{%
|
|
You're trying to start a display environment, but you're^^J%
|
|
in LR (restricted horizontal) mode. Everything will go^^J%
|
|
totally wrong, so your best bet is to type `X', fix the^^J%
|
|
mistake and start again.%
|
|
}%
|
|
}
|
|
% \end{macrocode}
|
|
%
|
|
% \vskip\parskip\vbox{ ^^A The best way I could find of keeping this lot
|
|
% ^^A together, I'm afraid.
|
|
% That's all there is. Byebye.
|
|
%
|
|
% \begin{macrocode}
|
|
%</mathenv>
|
|
% \end{macrocode}
|
|
% \nopagebreak
|
|
%
|
|
% \hfill Mark Wooding, \today
|
|
% }
|
|
%
|
|
% \Finale
|
|
%
|
|
\endinput
|