mirror of
				https://gitlab.com/freepascal.org/fpc/source.git
				synced 2025-10-31 18:11:55 +01:00 
			
		
		
		
	
		
			
				
	
	
		
			886 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			PHP
		
	
	
	
	
	
			
		
		
	
	
			886 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			PHP
		
	
	
	
	
	
| {
 | |
|     $Id$
 | |
|     This file is part of the Free Pascal run time library.
 | |
|     Copyright (c) 1999-2000 by xxxx
 | |
|     member of the Free Pascal development team
 | |
| 
 | |
|     See the file COPYING.FPC, included in this distribution,
 | |
|     for details about the copyright.
 | |
| 
 | |
|     This program is distributed in the hope that it will be useful,
 | |
|     but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
 | |
| 
 | |
|  **********************************************************************}
 | |
| {*************************************************************************}
 | |
| {  math.inc                                                               }
 | |
| {*************************************************************************}
 | |
| {       Copyright Abandoned, 1987, Fred Fish                              }
 | |
| {                                                                         }
 | |
| {       This previously copyrighted work has been placed into the         }
 | |
| {       public domain by the author (Fred Fish) and may be freely used    }
 | |
| {       for any purpose, private or commercial.  I would appreciate       }
 | |
| {       it, as a courtesy, if this notice is left in all copies and       }
 | |
| {       derivative works.  Thank you, and enjoy...                        }
 | |
| {                                                                         }
 | |
| {       The author makes no warranty of any kind with respect to this     }
 | |
| {       product and explicitly disclaims any implied warranties of        }
 | |
| {       merchantability or fitness for any particular purpose.            }
 | |
| {-------------------------------------------------------------------------}
 | |
| {       Copyright (c) 1992 Odent Jean Philippe                            }
 | |
| {                                                                         }
 | |
| {       The source can be modified as long as my name appears and some    }
 | |
| {       notes explaining the modifications done are included in the file. }
 | |
| {-------------------------------------------------------------------------}
 | |
| {       Copyright (c) 1997 Carl Eric Codere                               }
 | |
| {                                                                         }
 | |
| {       This include implements a template for                            }
 | |
| {       all real (whatever this type maps to) and fixed point standard    }
 | |
| {       rtl routines.                                                     }
 | |
| {       NOTE: Trunc and Int must be implemented depending on the target   }
 | |
| {             for real values.Sqrt must also be implemented for fixed.    }
 | |
| {*************************************************************************}
 | |
| 
 | |
| 
 | |
| 
 | |
| type
 | |
|     TabCoef = array[0..6] of Real;
 | |
| 
 | |
| 
 | |
| const
 | |
|       PIO2   =  1.57079632679489661923;       {  pi/2        }
 | |
|       PIO4   =  7.85398163397448309616E-1;    {  pi/4        }
 | |
|       SQRT2  =  1.41421356237309504880;       {  sqrt(2)     }
 | |
|       SQRTH  =  7.07106781186547524401E-1;    {  sqrt(2)/2   }
 | |
|       LOG2E  =  1.4426950408889634073599;     {  1/log(2)    }
 | |
|       SQ2OPI =  7.9788456080286535587989E-1;  {  sqrt( 2/pi )}
 | |
|       LOGE2  =  6.93147180559945309417E-1;    {  log(2)      }
 | |
|       LOGSQ2 =  3.46573590279972654709E-1;    {  log(2)/2    }
 | |
|       THPIO4 =  2.35619449019234492885;       {  3*pi/4      }
 | |
|       TWOOPI =  6.36619772367581343075535E-1; {  2/pi        }
 | |
|       lossth =  1.073741824e9;
 | |
|       MAXLOG =  8.8029691931113054295988E1;    { log(2**127)  }
 | |
|       MINLOG = -8.872283911167299960540E1;     { log(2**-128) }
 | |
| 
 | |
|       DP1 =   7.85398125648498535156E-1;
 | |
|       DP2 =   3.77489470793079817668E-8;
 | |
|       DP3 =   2.69515142907905952645E-15;
 | |
| 
 | |
| const sincof : TabCoef = (
 | |
|                 1.58962301576546568060E-10,
 | |
|                -2.50507477628578072866E-8,
 | |
|                 2.75573136213857245213E-6,
 | |
|                -1.98412698295895385996E-4,
 | |
|                 8.33333333332211858878E-3,
 | |
|                -1.66666666666666307295E-1, 0);
 | |
|       coscof : TabCoef = (
 | |
|                -1.13585365213876817300E-11,
 | |
|                 2.08757008419747316778E-9,
 | |
|                -2.75573141792967388112E-7,
 | |
|                 2.48015872888517045348E-5,
 | |
|                -1.38888888888730564116E-3,
 | |
|                 4.16666666666665929218E-2, 0);
 | |
| 
 | |
| 
 | |
|     function int(d : real) : real;
 | |
|     { these routine should be implemented all depending on the }
 | |
|     { target processor/operating system.                       }
 | |
|       begin
 | |
|       end;
 | |
| 
 | |
|     function trunc(d : real) : longint;
 | |
|     { these routine should be implemented all depending on the }
 | |
|     { target processor/operating system.                       }
 | |
|     Begin
 | |
|     end;
 | |
| 
 | |
| 
 | |
|     function abs(d : Real) : Real;
 | |
|     begin
 | |
|        if( d < 0.0 ) then
 | |
|          abs := -d
 | |
|       else
 | |
|          abs := d ;
 | |
|     end;
 | |
| 
 | |
| 
 | |
|     function frexp(x:Real; var e:Integer ):Real;
 | |
|     {*  frexp() extracts the exponent from x.  It returns an integer     *}
 | |
|     {*  power of two to expnt and the significand between 0.5 and 1      *}
 | |
|     {*  to y.  Thus  x = y * 2**expn.                                    *}
 | |
|     begin
 | |
|       e :=0;
 | |
|       if (abs(x)<0.5) then
 | |
|        While (abs(x)<0.5) do
 | |
|        begin
 | |
|          x := x*2;
 | |
|          Dec(e);
 | |
|        end
 | |
|       else
 | |
|        While (abs(x)>1) do
 | |
|        begin
 | |
|          x := x/2;
 | |
|          Inc(e);
 | |
|        end;
 | |
|       frexp := x;
 | |
|     end;
 | |
| 
 | |
| 
 | |
|     function ldexp( x: Real; N: Integer):Real;
 | |
|     {* ldexp() multiplies x by 2**n.                                    *}
 | |
|     var r : Real;
 | |
|     begin
 | |
|       R := 1;
 | |
|       if N>0 then
 | |
|          while N>0 do
 | |
|          begin
 | |
|             R:=R*2;
 | |
|             Dec(N);
 | |
|          end
 | |
|       else
 | |
|         while N<0 do
 | |
|         begin
 | |
|            R:=R/2;
 | |
|            Inc(N);
 | |
|         end;
 | |
|       ldexp := x * R;
 | |
|     end;
 | |
| 
 | |
| 
 | |
|     function polevl(var x:Real; var Coef:TabCoef; N:Integer):Real;
 | |
|     {*****************************************************************}
 | |
|     { Evaluate polynomial                                             }
 | |
|     {*****************************************************************}
 | |
|     {                                                                 }
 | |
|     { SYNOPSIS:                                                       }
 | |
|     {                                                                 }
 | |
|     {  int N;                                                         }
 | |
|     {  double x, y, coef[N+1], polevl[];                              }
 | |
|     {                                                                 }
 | |
|     {  y = polevl( x, coef, N );                                      }
 | |
|     {                                                                 }
 | |
|     {  DESCRIPTION:                                                   }
 | |
|     {                                                                 }
 | |
|     {     Evaluates polynomial of degree N:                           }
 | |
|     {                                                                 }
 | |
|     {                       2          N                              }
 | |
|     {   y  =  C  + C x + C x  +...+ C x                               }
 | |
|     {          0    1     2          N                                }
 | |
|     {                                                                 }
 | |
|     {   Coefficients are stored in reverse order:                     }
 | |
|     {                                                                 }
 | |
|     {   coef[0] = C  , ..., coef[N] = C  .                            }
 | |
|     {              N                   0                              }
 | |
|     {                                                                 }
 | |
|     {   The function p1evl() assumes that coef[N] = 1.0 and is        }
 | |
|     {   omitted from the array.  Its calling arguments are            }
 | |
|     {   otherwise the same as polevl().                               }
 | |
|     {                                                                 }
 | |
|     {  SPEED:                                                         }
 | |
|     {                                                                 }
 | |
|     {   In the interest of speed, there are no checks for out         }
 | |
|     {   of bounds arithmetic.  This routine is used by most of        }
 | |
|     {   the functions in the library.  Depending on available         }
 | |
|     {   equipment features, the user may wish to rewrite the          }
 | |
|     {   program in microcode or assembly language.                    }
 | |
|     {*****************************************************************}
 | |
|     var ans : Real;
 | |
|         i   : Integer;
 | |
| 
 | |
|     begin
 | |
|       ans := Coef[0];
 | |
|       for i:=1 to N do
 | |
|         ans := ans * x + Coef[i];
 | |
|       polevl:=ans;
 | |
|     end;
 | |
| 
 | |
| 
 | |
|     function p1evl(var x:Real; var Coef:TabCoef; N:Integer):Real;
 | |
|     {                                                           }
 | |
|     { Evaluate polynomial when coefficient of x  is 1.0.        }
 | |
|     { Otherwise same as polevl.                                 }
 | |
|     {                                                           }
 | |
|     var
 | |
|         ans : Real;
 | |
|         i   : Integer;
 | |
|     begin
 | |
|       ans := x + Coef[0];
 | |
|       for i:=1 to N-1 do
 | |
|         ans := ans * x + Coef[i];
 | |
|       p1evl := ans;
 | |
|     end;
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
|     function sqr(d : Real) : Real;
 | |
|     begin
 | |
|       sqr := d*d;
 | |
|     end;
 | |
| 
 | |
| 
 | |
|     function pi : Real;
 | |
|     begin
 | |
|       pi := 3.1415926535897932385;
 | |
|     end;
 | |
| 
 | |
| 
 | |
|     function sqrt(x:Real):Real;
 | |
|     {*****************************************************************}
 | |
|     { Square root                                                     }
 | |
|     {*****************************************************************}
 | |
|     {                                                                 }
 | |
|     { SYNOPSIS:                                                       }
 | |
|     {                                                                 }
 | |
|     { double x, y, sqrt();                                            }
 | |
|     {                                                                 }
 | |
|     { y = sqrt( x );                                                  }
 | |
|     {                                                                 }
 | |
|     { DESCRIPTION:                                                    }
 | |
|     {                                                                 }
 | |
|     { Returns the square root of x.                                   }
 | |
|     {                                                                 }
 | |
|     { Range reduction involves isolating the power of two of the      }
 | |
|     { argument and using a polynomial approximation to obtain         }
 | |
|     { a rough value for the square root.  Then Heron's iteration      }
 | |
|     { is used three times to converge to an accurate value.           }
 | |
|     {*****************************************************************}
 | |
|     var e   : Integer;
 | |
|         w,z : Real;
 | |
|     begin
 | |
|        if( x <= 0.0 ) then
 | |
|        begin
 | |
|            if( x < 0.0 ) then
 | |
|                RunError(207);
 | |
|            sqrt := 0.0;
 | |
|        end
 | |
|      else
 | |
|        begin
 | |
|           w := x;
 | |
|           { separate exponent and significand }
 | |
|            z := frexp( x, e );
 | |
| 
 | |
|           {  approximate square root of number between 0.5 and 1  }
 | |
|           {  relative error of approximation = 7.47e-3            }
 | |
|           x := 4.173075996388649989089E-1 + 5.9016206709064458299663E-1 * z;
 | |
| 
 | |
|           { adjust for odd powers of 2 }
 | |
|           if odd(e) then
 | |
|              x := x*SQRT2;
 | |
| 
 | |
|           { re-insert exponent }
 | |
|           x := ldexp( x, (e div 2) );
 | |
| 
 | |
|           { Newton iterations: }
 | |
|           x := 0.5*(x + w/x);
 | |
|           x := 0.5*(x + w/x);
 | |
|           x := 0.5*(x + w/x);
 | |
|           x := 0.5*(x + w/x);
 | |
|           x := 0.5*(x + w/x);
 | |
|           x := 0.5*(x + w/x);
 | |
|           sqrt := x;
 | |
|        end;
 | |
|     end;
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
|     function Exp(x:Real):Real;
 | |
|     {*****************************************************************}
 | |
|     { Exponential Function                                            }
 | |
|     {*****************************************************************}
 | |
|     {                                                                 }
 | |
|     { SYNOPSIS:                                                       }
 | |
|     {                                                                 }
 | |
|     { double x, y, exp();                                             }
 | |
|     {                                                                 }
 | |
|     { y = exp( x );                                                   }
 | |
|     {                                                                 }
 | |
|     { DESCRIPTION:                                                    }
 | |
|     {                                                                 }
 | |
|     { Returns e (2.71828...) raised to the x power.                   }
 | |
|     {                                                                 }
 | |
|     { Range reduction is accomplished by separating the argument      }
 | |
|     { into an integer k and fraction f such that                      }
 | |
|     {                                                                 }
 | |
|     {     x    k  f                                                   }
 | |
|     {    e  = 2  e.                                                   }
 | |
|     {                                                                 }
 | |
|     { A Pade' form of degree 2/3 is used to approximate exp(f)- 1     }
 | |
|     { in the basic range [-0.5 ln 2, 0.5 ln 2].                       }
 | |
|     {*****************************************************************}
 | |
|     const  P : TabCoef = (
 | |
|            1.26183092834458542160E-4,
 | |
|            3.02996887658430129200E-2,
 | |
|            1.00000000000000000000E0, 0, 0, 0, 0);
 | |
|            Q : TabCoef = (
 | |
|            3.00227947279887615146E-6,
 | |
|            2.52453653553222894311E-3,
 | |
|            2.27266044198352679519E-1,
 | |
|            2.00000000000000000005E0, 0 ,0 ,0);
 | |
| 
 | |
|            C1 = 6.9335937500000000000E-1;
 | |
|             C2 = 2.1219444005469058277E-4;
 | |
|     var n : Integer;
 | |
|         px, qx, xx : Real;
 | |
|     begin
 | |
|       if( x > MAXLOG) then
 | |
|           RunError(205)
 | |
|       else
 | |
|       if( x < MINLOG ) then
 | |
|       begin
 | |
|         Runerror(205);
 | |
|       end
 | |
|       else
 | |
|       begin
 | |
| 
 | |
|      { Express e**x = e**g 2**n }
 | |
|      {   = e**g e**( n loge(2) ) }
 | |
|      {   = e**( g + n loge(2) )  }
 | |
| 
 | |
|         px := x * LOG2E;
 | |
|         qx := Trunc( px + 0.5 ); { Trunc() truncates toward -infinity. }
 | |
|         n  := Trunc(qx);
 | |
|         x  := x - qx * C1;
 | |
|         x  := x + qx * C2;
 | |
| 
 | |
|       { rational approximation for exponential  }
 | |
|       { of the fractional part: }
 | |
|       { e**x - 1  =  2x P(x**2)/( Q(x**2) - P(x**2) )  }
 | |
|         xx := x * x;
 | |
|         px := x * polevl( xx, P, 2 );
 | |
|         x  :=  px/( polevl( xx, Q, 3 ) - px );
 | |
|         x  := ldexp( x, 1 );
 | |
|         x  :=  x + 1.0;
 | |
|         x  := ldexp( x, n );
 | |
|         Exp := x;
 | |
|       end;
 | |
|     end;
 | |
| 
 | |
| 
 | |
|     function Round(x: Real): longint;
 | |
|      var
 | |
|       fr: Real;
 | |
|       tr: Real;
 | |
|     Begin
 | |
|        fr := Frac(x);
 | |
|        tr := Trunc(x);
 | |
|        if fr > 0.5 then
 | |
|           Round:=Trunc(x)+1
 | |
|        else
 | |
|        if fr < 0.5 then
 | |
|           Round:=Trunc(x)
 | |
|        else { fr = 0.5 }
 | |
|           { check sign to decide ... }
 | |
|           { as in Turbo Pascal...    }
 | |
|           if x >= 0.0 then
 | |
|             Round := Trunc(x)+1
 | |
|           else
 | |
|             Round := Trunc(x);
 | |
|     end;
 | |
| 
 | |
| 
 | |
|     function Ln(x:Real):Real;
 | |
|     {*****************************************************************}
 | |
|     { Natural Logarithm                                               }
 | |
|     {*****************************************************************}
 | |
|     {                                                                 }
 | |
|     { SYNOPSIS:                                                       }
 | |
|     {                                                                 }
 | |
|     { double x, y, log();                                             }
 | |
|     {                                                                 }
 | |
|     { y = ln( x );                                                    }
 | |
|     {                                                                 }
 | |
|     { DESCRIPTION:                                                    }
 | |
|     {                                                                 }
 | |
|     { Returns the base e (2.718...) logarithm of x.                   }
 | |
|     {                                                                 }
 | |
|     { The argument is separated into its exponent and fractional      }
 | |
|     { parts.  If the exponent is between -1 and +1, the logarithm     }
 | |
|     { of the fraction is approximated by                              }
 | |
|     {                                                                 }
 | |
|     {     log(1+x) = x - 0.5 x**2 + x**3 P(x)/Q(x).                   }
 | |
|     {                                                                 }
 | |
|     { Otherwise, setting  z = 2(x-1)/x+1),                            }
 | |
|     {                                                                 }
 | |
|     {     log(x) = z + z**3 P(z)/Q(z).                                }
 | |
|     {                                                                 }
 | |
|     {*****************************************************************}
 | |
|     const  P : TabCoef = (
 | |
|      {  Coefficients for log(1+x) = x - x**2/2 + x**3 P(x)/Q(x)
 | |
|          1/sqrt(2) <= x < sqrt(2) }
 | |
| 
 | |
|            4.58482948458143443514E-5,
 | |
|            4.98531067254050724270E-1,
 | |
|            6.56312093769992875930E0,
 | |
|            2.97877425097986925891E1,
 | |
|            6.06127134467767258030E1,
 | |
|            5.67349287391754285487E1,
 | |
|            1.98892446572874072159E1);
 | |
|        Q : TabCoef = (
 | |
|            1.50314182634250003249E1,
 | |
|            8.27410449222435217021E1,
 | |
|            2.20664384982121929218E2,
 | |
|            3.07254189979530058263E2,
 | |
|            2.14955586696422947765E2,
 | |
|            5.96677339718622216300E1, 0);
 | |
| 
 | |
|      { Coefficients for log(x) = z + z**3 P(z)/Q(z),
 | |
|         where z = 2(x-1)/(x+1)
 | |
|         1/sqrt(2) <= x < sqrt(2)  }
 | |
| 
 | |
|        R : TabCoef = (
 | |
|            -7.89580278884799154124E-1,
 | |
|             1.63866645699558079767E1,
 | |
|            -6.41409952958715622951E1, 0, 0, 0, 0);
 | |
|        S : TabCoef = (
 | |
|            -3.56722798256324312549E1,
 | |
|             3.12093766372244180303E2,
 | |
|            -7.69691943550460008604E2, 0, 0, 0, 0);
 | |
| 
 | |
|     var e : Integer;
 | |
|        z, y : Real;
 | |
| 
 | |
|     Label Ldone;
 | |
|     begin
 | |
|        if( x <= 0.0 ) then
 | |
|           RunError(207);
 | |
|        x := frexp( x, e );
 | |
| 
 | |
|     { logarithm using log(x) = z + z**3 P(z)/Q(z),
 | |
|       where z = 2(x-1)/x+1) }
 | |
| 
 | |
|        if( (e > 2) or (e < -2) ) then
 | |
|        begin
 | |
|          if( x < SQRTH ) then
 | |
|          begin
 | |
|            {  2( 2x-1 )/( 2x+1 ) }
 | |
|           Dec(e, 1);
 | |
|           z := x - 0.5;
 | |
|           y := 0.5 * z + 0.5;
 | |
|          end
 | |
|          else
 | |
|          begin
 | |
|          {   2 (x-1)/(x+1)   }
 | |
|            z := x - 0.5;
 | |
|          z := z - 0.5;
 | |
|          y := 0.5 * x  + 0.5;
 | |
|          end;
 | |
|          x := z / y;
 | |
|          { /* rational form */ }
 | |
|          z := x*x;
 | |
|          z := x + x * ( z * polevl( z, R, 2 ) / p1evl( z, S, 3 ) );
 | |
|          goto ldone;
 | |
|        end;
 | |
| 
 | |
|     { logarithm using log(1+x) = x - .5x**2 + x**3 P(x)/Q(x) }
 | |
| 
 | |
|        if( x < SQRTH ) then
 | |
|        begin
 | |
|          Dec(e, 1);
 | |
|          x := ldexp( x, 1 ) - 1.0; {  2x - 1  }
 | |
|        end
 | |
|        else
 | |
|          x := x - 1.0;
 | |
| 
 | |
|        { rational form  }
 | |
|        z := x*x;
 | |
|        y := x * ( z * polevl( x, P, 6 ) / p1evl( x, Q, 6 ) );
 | |
|        y := y - ldexp( z, -1 );   {  y - 0.5 * z  }
 | |
|        z := x + y;
 | |
| 
 | |
|     ldone:
 | |
|        { recombine with exponent term }
 | |
|        if( e <> 0 ) then
 | |
|        begin
 | |
|          y := e;
 | |
|          z := z - y * 2.121944400546905827679e-4;
 | |
|          z := z + y * 0.693359375;
 | |
|        end;
 | |
| 
 | |
|        Ln:= z;
 | |
|     end;
 | |
| 
 | |
| 
 | |
| 
 | |
|     function Sin(x:Real):Real;
 | |
|     {*****************************************************************}
 | |
|     { Circular Sine                                                   }
 | |
|     {*****************************************************************}
 | |
|     {                                                                 }
 | |
|     { SYNOPSIS:                                                       }
 | |
|     {                                                                 }
 | |
|     { double x, y, sin();                                             }
 | |
|     {                                                                 }
 | |
|     { y = sin( x );                                                   }
 | |
|     {                                                                 }
 | |
|     { DESCRIPTION:                                                    }
 | |
|     {                                                                 }
 | |
|     { Range reduction is into intervals of pi/4.  The reduction       }
 | |
|     { error is nearly eliminated by contriving an extended            }
 | |
|     { precision modular arithmetic.                                   }
 | |
|     {                                                                 }
 | |
|     { Two polynomial approximating functions are employed.            }
 | |
|     { Between 0 and pi/4 the sine is approximated by                  }
 | |
|     {      x  +  x**3 P(x**2).                                        }
 | |
|     { Between pi/4 and pi/2 the cosine is represented as              }
 | |
|     {      1  -  x**2 Q(x**2).                                        }
 | |
|     {*****************************************************************}
 | |
|     var  y, z, zz : Real;
 | |
|          j, sign : Integer;
 | |
| 
 | |
|     begin
 | |
|       { make argument positive but save the sign }
 | |
|       sign := 1;
 | |
|       if( x < 0 ) then
 | |
|       begin
 | |
|          x := -x;
 | |
|          sign := -1;
 | |
|       end;
 | |
| 
 | |
|       { above this value, approximate towards 0 }
 | |
|       if( x > lossth ) then
 | |
|       begin
 | |
|         sin := 0.0;
 | |
|         exit;
 | |
|       end;
 | |
| 
 | |
|       y := Trunc( x/PIO4 ); { integer part of x/PIO4 }
 | |
| 
 | |
|       { strip high bits of integer part to prevent integer overflow }
 | |
|       z := ldexp( y, -4 );
 | |
|       z := Trunc(z);           { integer part of y/8 }
 | |
|       z := y - ldexp( z, 4 );  { y - 16 * (y/16) }
 | |
| 
 | |
|       j := Trunc(z); { convert to integer for tests on the phase angle }
 | |
|       { map zeros to origin }
 | |
|       if odd( j ) then
 | |
|       begin
 | |
|          inc(j);
 | |
|          y := y + 1.0;
 | |
|       end;
 | |
|       j := j and 7; { octant modulo 360 degrees }
 | |
|       { reflect in x axis }
 | |
|       if( j > 3) then
 | |
|       begin
 | |
|         sign := -sign;
 | |
|         dec(j, 4);
 | |
|       end;
 | |
| 
 | |
|       { Extended precision modular arithmetic }
 | |
|       z := ((x - y * DP1) - y * DP2) - y * DP3;
 | |
| 
 | |
|       zz := z * z;
 | |
| 
 | |
|       if( (j=1) or (j=2) ) then
 | |
|         y := 1.0 - ldexp(zz,-1) + zz * zz * polevl( zz, coscof, 5 )
 | |
|       else
 | |
|       { y = z  +  z * (zz * polevl( zz, sincof, 5 )); }
 | |
|         y := z  +  z * z * z * polevl( zz, sincof, 5 );
 | |
| 
 | |
|       if(sign < 0) then
 | |
|       y := -y;
 | |
|       sin := y;
 | |
|     end;
 | |
| 
 | |
| 
 | |
| 
 | |
|     function frac(d : Real) : Real;
 | |
|     begin
 | |
|        frac := d - Int(d);
 | |
|     end;
 | |
| 
 | |
| 
 | |
|     function sqrt(d : fixed) : fixed;
 | |
|       begin
 | |
|       end;
 | |
| 
 | |
| 
 | |
|     function Cos(x:Real):Real;
 | |
|     {*****************************************************************}
 | |
|     { Circular cosine                                                 }
 | |
|     {*****************************************************************}
 | |
|     {                                                                 }
 | |
|     { Circular cosine                                                 }
 | |
|     {                                                                 }
 | |
|     { SYNOPSIS:                                                       }
 | |
|     {                                                                 }
 | |
|     { double x, y, cos();                                             }
 | |
|     {                                                                 }
 | |
|     { y = cos( x );                                                   }
 | |
|     {                                                                 }
 | |
|     { DESCRIPTION:                                                    }
 | |
|     {                                                                 }
 | |
|     { Range reduction is into intervals of pi/4.  The reduction       }
 | |
|     { error is nearly eliminated by contriving an extended            }
 | |
|     { precision modular arithmetic.                                   }
 | |
|     {                                                                 }
 | |
|     { Two polynomial approximating functions are employed.            }
 | |
|     { Between 0 and pi/4 the cosine is approximated by                }
 | |
|     {      1  -  x**2 Q(x**2).                                        }
 | |
|     { Between pi/4 and pi/2 the sine is represented as                }
 | |
|     {      x  +  x**3 P(x**2).                                        }
 | |
|     {*****************************************************************}
 | |
|     var  y, z, zz : Real;
 | |
|          j, sign : Integer;
 | |
|          i : LongInt;
 | |
|     begin
 | |
|     { make argument positive }
 | |
|       sign := 1;
 | |
|       if( x < 0 ) then
 | |
|         x := -x;
 | |
| 
 | |
|       { above this value, round towards zero }
 | |
|       if( x > lossth ) then
 | |
|       begin
 | |
|         cos := 0.0;
 | |
|         exit;
 | |
|       end;
 | |
| 
 | |
|       y := Trunc( x/PIO4 );
 | |
|       z := ldexp( y, -4 );
 | |
|       z := Trunc(z);  { integer part of y/8 }
 | |
|       z := y - ldexp( z, 4 );  { y - 16 * (y/16) }
 | |
| 
 | |
|       { integer and fractional part modulo one octant }
 | |
|       i := Trunc(z);
 | |
|       if odd( i ) then { map zeros to origin }
 | |
|       begin
 | |
|         inc(i);
 | |
|         y := y + 1.0;
 | |
|       end;
 | |
|       j := i and 07;
 | |
|       if( j > 3) then
 | |
|       begin
 | |
|         dec(j,4);
 | |
|         sign := -sign;
 | |
|       end;
 | |
|       if( j > 1 ) then
 | |
|         sign := -sign;
 | |
| 
 | |
|       { Extended precision modular arithmetic  }
 | |
|       z := ((x - y * DP1) - y * DP2) - y * DP3;
 | |
| 
 | |
|       zz := z * z;
 | |
| 
 | |
|       if( (j=1) or (j=2) ) then
 | |
|       { y = z  +  z * (zz * polevl( zz, sincof, 5 )); }
 | |
|         y := z  +  z * z * z * polevl( zz, sincof, 5 )
 | |
|       else
 | |
|         y := 1.0 - ldexp(zz,-1) + zz * zz * polevl( zz, coscof, 5 );
 | |
| 
 | |
|       if(sign < 0) then
 | |
|         y := -y;
 | |
| 
 | |
|       cos := y ;
 | |
|     end;
 | |
| 
 | |
| 
 | |
| 
 | |
|     function ArcTan(x:Real):Real;
 | |
|     {*****************************************************************}
 | |
|     { Inverse circular tangent (arctangent)                           }
 | |
|     {*****************************************************************}
 | |
|     {                                                                 }
 | |
|     { SYNOPSIS:                                                       }
 | |
|     {                                                                 }
 | |
|     { double x, y, atan();                                            }
 | |
|     {                                                                 }
 | |
|     { y = atan( x );                                                  }
 | |
|     {                                                                 }
 | |
|     { DESCRIPTION:                                                    }
 | |
|     {                                                                 }
 | |
|     { Returns radian angle between -pi/2 and +pi/2 whose tangent      }
 | |
|     { is x.                                                           }
 | |
|     {                                                                 }
 | |
|     { Range reduction is from four intervals into the interval        }
 | |
|     { from zero to  tan( pi/8 ).  The approximant uses a rational     }
 | |
|     { function of degree 3/4 of the form x + x**3 P(x)/Q(x).          }
 | |
|     {*****************************************************************}
 | |
|     const P : TabCoef = (
 | |
|           -8.40980878064499716001E-1,
 | |
|           -8.83860837023772394279E0,
 | |
|           -2.18476213081316705724E1,
 | |
|           -1.48307050340438946993E1, 0, 0, 0);
 | |
|           Q : TabCoef = (
 | |
|           1.54974124675307267552E1,
 | |
|           6.27906555762653017263E1,
 | |
|           9.22381329856214406485E1,
 | |
|           4.44921151021319438465E1, 0, 0, 0);
 | |
| 
 | |
|     { tan( 3*pi/8 ) }
 | |
|     T3P8 = 2.41421356237309504880;
 | |
|     { tan( pi/8 )   }
 | |
|     TP8 = 0.41421356237309504880;
 | |
| 
 | |
|     var y,z  : Real;
 | |
|         Sign : Integer;
 | |
| 
 | |
|     begin
 | |
|       { make argument positive and save the sign }
 | |
|       sign := 1;
 | |
|       if( x < 0.0 ) then
 | |
|       begin
 | |
|        sign := -1;
 | |
|        x := -x;
 | |
|       end;
 | |
| 
 | |
|       { range reduction }
 | |
|       if( x > T3P8 ) then
 | |
|       begin
 | |
|         y := PIO2;
 | |
|         x := -( 1.0/x );
 | |
|       end
 | |
|       else if( x > TP8 ) then
 | |
|       begin
 | |
|         y := PIO4;
 | |
|         x := (x-1.0)/(x+1.0);
 | |
|       end
 | |
|       else
 | |
|        y := 0.0;
 | |
| 
 | |
|       { rational form in x**2 }
 | |
| 
 | |
|       z := x * x;
 | |
|       y := y + ( polevl( z, P, 3 ) / p1evl( z, Q, 4 ) ) * z * x + x;
 | |
| 
 | |
|       if( sign < 0 ) then
 | |
|         y := -y;
 | |
|       Arctan := y;
 | |
|     end;
 | |
| 
 | |
| 
 | |
|     function int(d : fixed) : fixed;
 | |
|     {*****************************************************************}
 | |
|     { Returns the integral part of d                                  }
 | |
|     {*****************************************************************}
 | |
|     begin
 | |
|       int:=d and $ffff0000;       { keep only upper bits      }
 | |
|     end;
 | |
| 
 | |
| 
 | |
|     function trunc(d : fixed) : longint;
 | |
|     {*****************************************************************}
 | |
|     { Returns the Truncated integral part of d                        }
 | |
|     {*****************************************************************}
 | |
|     begin
 | |
|       trunc:=longint(integer(d shr 16));   { keep only upper 16 bits  }
 | |
|     end;
 | |
| 
 | |
|     function frac(d : fixed) : fixed;
 | |
|     {*****************************************************************}
 | |
|     { Returns the Fractional part of d                                }
 | |
|     {*****************************************************************}
 | |
|     begin
 | |
|       frac:=d AND $ffff;         { keep only decimal parts - lower 16 bits }
 | |
|     end;
 | |
| 
 | |
|     function abs(d : fixed) : fixed;
 | |
|     {*****************************************************************}
 | |
|     { Returns the Absolute value of d                                 }
 | |
|     {*****************************************************************}
 | |
|     var
 | |
|      w: integer;
 | |
|     begin
 | |
|      w:=integer(d shr 16);
 | |
|      if w < 0 then
 | |
|      begin
 | |
|         w:=-w;                      { invert sign ...              }
 | |
|         d:=d and $ffff;
 | |
|         d:=d or (fixed(w) shl 16);  { add this to fixed number ... }
 | |
|         abs:=d;
 | |
|      end
 | |
|      else
 | |
|         abs:=d;                     { already positive... }
 | |
|     end;
 | |
| 
 | |
| 
 | |
|     function sqr(d : fixed) : fixed;
 | |
|     {*****************************************************************}
 | |
|     { Returns the Absolute squared value of d                         }
 | |
|     {*****************************************************************}
 | |
|     begin
 | |
|             {16-bit precision needed, not 32 =)}
 | |
|        sqr := d*d;
 | |
| {       sqr := (d SHR 8 * d) SHR 8; }
 | |
|     end;
 | |
| 
 | |
| 
 | |
|     function Round(x: fixed): longint;
 | |
|     {*****************************************************************}
 | |
|     { Returns the Rounded value of d as a longint                     }
 | |
|     {*****************************************************************}
 | |
|     var
 | |
|      lowf:integer;
 | |
|      highf:integer;
 | |
|     begin
 | |
|       lowf:=x and $ffff;       { keep decimal part ... }
 | |
|       highf :=integer(x shr 16);
 | |
|       if lowf > 5 then
 | |
|         highf:=highf+1
 | |
|       else
 | |
|       if lowf = 5 then
 | |
|       begin
 | |
|         { here we must check the sign ...       }
 | |
|         { if greater or equal to zero, then     }
 | |
|         { greater value will be found by adding }
 | |
|         { one...                                }
 | |
|          if highf >= 0 then
 | |
|            Highf:=Highf+1;
 | |
|       end;
 | |
|       Round:= longint(highf);
 | |
|     end;
 | |
| 
 | |
|     function power(bas,expo : real) : real;
 | |
|      begin
 | |
|         if bas=0 then
 | |
|           begin
 | |
|             if expo<>0 then
 | |
|               power:=0.0
 | |
|             else
 | |
|               HandleError(207);
 | |
|           end
 | |
|         else if expo=0 then
 | |
|          power:=1
 | |
|         else
 | |
|         { bas < 0 is not allowed }
 | |
|          if bas<0 then
 | |
|           handleerror(207)
 | |
|          else
 | |
|           power:=exp(ln(bas)*expo);
 | |
|      end;
 | |
| 
 | |
|    function power(bas,expo : longint) : longint;
 | |
|      begin
 | |
|         if bas=0 then
 | |
|           begin
 | |
|             if expo<>0 then
 | |
|               power:=0
 | |
|             else
 | |
|               HandleError(207);
 | |
|           end
 | |
|         else if expo=0 then
 | |
|          power:=1
 | |
|         else
 | |
|          begin
 | |
|            if bas<0 then
 | |
|             begin
 | |
|               if odd(expo) then
 | |
|                power:=-round(exp(ln(-bas)*expo))
 | |
|               else
 | |
|                power:=round(exp(ln(-bas)*expo));
 | |
|             end
 | |
|            else
 | |
|             power:=round(exp(ln(bas)*expo));
 | |
|          end;
 | |
|      end;
 | |
| 
 | |
| 
 | |
| {
 | |
|   $Log$
 | |
|   Revision 1.2  2000-07-13 11:33:56  michael
 | |
|   + removed logs
 | |
|  
 | |
| }
 | 
