fpc/compiler/x86/aasmcpu.pas
2003-09-24 21:15:49 +00:00

2445 lines
82 KiB
ObjectPascal

{
$Id$
Copyright (c) 1998-2002 by Florian Klaempfl and Peter Vreman
Contains the abstract assembler implementation for the i386
* Portions of this code was inspired by the NASM sources
The Netwide Assembler is Copyright (c) 1996 Simon Tatham and
Julian Hall. All rights reserved.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
****************************************************************************
}
unit aasmcpu;
{$i fpcdefs.inc}
interface
uses
cclasses,globals,verbose,
cginfo,cpuinfo,cpubase,
symppu,symtype,symsym,
aasmbase,aasmtai;
const
{ "mov reg,reg" source operand number }
O_MOV_SOURCE = 0;
{ "mov reg,reg" destination operand number }
O_MOV_DEST = 1;
{ Operand types }
OT_NONE = $00000000;
OT_BITS8 = $00000001; { size, and other attributes, of the operand }
OT_BITS16 = $00000002;
OT_BITS32 = $00000004;
OT_BITS64 = $00000008; { FPU only }
OT_BITS80 = $00000010;
OT_FAR = $00000020; { this means 16:16 or 16:32, like in CALL/JMP }
OT_NEAR = $00000040;
OT_SHORT = $00000080;
OT_SIZE_MASK = $000000FF; { all the size attributes }
OT_NON_SIZE = longint(not OT_SIZE_MASK);
OT_SIGNED = $00000100; { the operand need to be signed -128-127 }
OT_TO = $00000200; { operand is followed by a colon }
{ reverse effect in FADD, FSUB &c }
OT_COLON = $00000400;
OT_REGISTER = $00001000;
OT_IMMEDIATE = $00002000;
OT_IMM8 = $00002001;
OT_IMM16 = $00002002;
OT_IMM32 = $00002004;
OT_IMM64 = $00002008;
OT_IMM80 = $00002010;
OT_REGMEM = $00200000; { for r/m, ie EA, operands }
OT_REGNORM = $00201000; { 'normal' reg, qualifies as EA }
OT_REG8 = $00201001;
OT_REG16 = $00201002;
OT_REG32 = $00201004;
OT_REG64 = $00201008;
OT_MMXREG = $00201008; { MMX registers }
OT_XMMREG = $00201010; { Katmai registers }
OT_MEMORY = $00204000; { register number in 'basereg' }
OT_MEM8 = $00204001;
OT_MEM16 = $00204002;
OT_MEM32 = $00204004;
OT_MEM64 = $00204008;
OT_MEM80 = $00204010;
OT_FPUREG = $01000000; { floating point stack registers }
OT_FPU0 = $01000800; { FPU stack register zero }
OT_REG_SMASK = $00070000; { special register operands: these may be treated differently }
{ a mask for the following }
OT_REG_ACCUM = $00211000; { FUNCTION_RETURN_REG: AL, AX or EAX }
OT_REG_AL = $00211001; { REG_ACCUM | BITSxx }
OT_REG_AX = $00211002; { ditto }
OT_REG_EAX = $00211004; { and again }
{$ifdef x86_64}
OT_REG_RAX = $00211008;
{$endif x86_64}
OT_REG_COUNT = $00221000; { counter: CL, CX or ECX }
OT_REG_CL = $00221001; { REG_COUNT | BITSxx }
OT_REG_CX = $00221002; { ditto }
OT_REG_ECX = $00221004; { another one }
{$ifdef x86_64}
OT_REG_RCX = $00221008;
{$endif x86_64}
OT_REG_DX = $00241002;
OT_REG_EDX = $00241004;
OT_REG_SREG = $00081002; { any segment register }
OT_REG_CS = $01081002; { CS }
OT_REG_DESS = $02081002; { DS, ES, SS (non-CS 86 registers) }
OT_REG_FSGS = $04081002; { FS, GS (386 extended registers) }
OT_REG_CDT = $00101004; { CRn, DRn and TRn }
OT_REG_CREG = $08101004; { CRn }
OT_REG_CR4 = $08101404; { CR4 (Pentium only) }
OT_REG_DREG = $10101004; { DRn }
OT_REG_TREG = $20101004; { TRn }
OT_MEM_OFFS = $00604000; { special type of EA }
{ simple [address] offset }
OT_ONENESS = $00800000; { special type of immediate operand }
{ so UNITY == IMMEDIATE | ONENESS }
OT_UNITY = $00802000; { for shift/rotate instructions }
{ Size of the instruction table converted by nasmconv.pas }
{$ifdef x86_64}
instabentries = {$i x86_64no.inc}
{$else x86_64}
instabentries = {$i i386nop.inc}
{$endif x86_64}
maxinfolen = 8;
type
TOperandOrder = (op_intel,op_att);
tinsentry=packed record
opcode : tasmop;
ops : byte;
optypes : array[0..2] of longint;
code : array[0..maxinfolen] of char;
flags : longint;
end;
pinsentry=^tinsentry;
{ alignment for operator }
tai_align = class(tai_align_abstract)
reg : tregister;
constructor create(b:byte);
constructor create_op(b: byte; _op: byte);
function calculatefillbuf(var buf : tfillbuffer):pchar;override;
end;
taicpu = class(taicpu_abstract)
opsize : topsize;
constructor op_none(op : tasmop;_size : topsize);
constructor op_reg(op : tasmop;_size : topsize;_op1 : tregister);
constructor op_const(op : tasmop;_size : topsize;_op1 : aword);
constructor op_ref(op : tasmop;_size : topsize;const _op1 : treference);
constructor op_reg_reg(op : tasmop;_size : topsize;_op1,_op2 : tregister);
constructor op_reg_ref(op : tasmop;_size : topsize;_op1 : tregister;const _op2 : treference);
constructor op_reg_const(op:tasmop; _size: topsize; _op1: tregister; _op2: aword);
constructor op_const_reg(op : tasmop;_size : topsize;_op1 : aword;_op2 : tregister);
constructor op_const_const(op : tasmop;_size : topsize;_op1,_op2 : aword);
constructor op_const_ref(op : tasmop;_size : topsize;_op1 : aword;const _op2 : treference);
constructor op_ref_reg(op : tasmop;_size : topsize;const _op1 : treference;_op2 : tregister);
constructor op_reg_reg_reg(op : tasmop;_size : topsize;_op1,_op2,_op3 : tregister);
constructor op_const_reg_reg(op : tasmop;_size : topsize;_op1 : aword;_op2 : tregister;_op3 : tregister);
constructor op_const_ref_reg(op : tasmop;_size : topsize;_op1 : aword;const _op2 : treference;_op3 : tregister);
constructor op_reg_reg_ref(op : tasmop;_size : topsize;_op1,_op2 : tregister; const _op3 : treference);
constructor op_const_reg_ref(op : tasmop;_size : topsize;_op1 : aword;_op2 : tregister;const _op3 : treference);
{ this is for Jmp instructions }
constructor op_cond_sym(op : tasmop;cond:TAsmCond;_size : topsize;_op1 : tasmsymbol);
constructor op_sym(op : tasmop;_size : topsize;_op1 : tasmsymbol);
constructor op_sym_ofs(op : tasmop;_size : topsize;_op1 : tasmsymbol;_op1ofs:longint);
constructor op_sym_ofs_reg(op : tasmop;_size : topsize;_op1 : tasmsymbol;_op1ofs:longint;_op2 : tregister);
constructor op_sym_ofs_ref(op : tasmop;_size : topsize;_op1 : tasmsymbol;_op1ofs:longint;const _op2 : treference);
procedure changeopsize(siz:topsize);
function GetString:string;
procedure CheckNonCommutativeOpcodes;
private
FOperandOrder : TOperandOrder;
procedure init(_size : topsize); { this need to be called by all constructor }
{$ifndef NOAG386BIN}
public
{ the next will reset all instructions that can change in pass 2 }
procedure ResetPass1;
procedure ResetPass2;
function CheckIfValid:boolean;
function Pass1(offset:longint):longint;virtual;
procedure Pass2(sec:TAsmObjectdata);virtual;
procedure SetOperandOrder(order:TOperandOrder);
function is_nop:boolean;override;
function is_move:boolean;override;
function spill_registers(list:Taasmoutput;
rgget:Trggetproc;
rgunget:Trgungetproc;
r:Tsuperregisterset;
var unusedregsint:Tsuperregisterset;
const spilltemplist:Tspill_temp_list):boolean;override;
protected
procedure ppuloadoper(ppufile:tcompilerppufile;var o:toper);override;
procedure ppuwriteoper(ppufile:tcompilerppufile;const o:toper);override;
procedure ppuderefoper(var o:toper);override;
private
{ next fields are filled in pass1, so pass2 is faster }
insentry : PInsEntry;
insoffset,
inssize : longint;
LastInsOffset : longint; { need to be public to be reset }
function InsEnd:longint;
procedure create_ot;
function Matches(p:PInsEntry):longint;
function calcsize(p:PInsEntry):longint;
procedure gencode(sec:TAsmObjectData);
function NeedAddrPrefix(opidx:byte):boolean;
procedure Swapoperands;
function FindInsentry:boolean;
{$endif NOAG386BIN}
end;
procedure InitAsm;
procedure DoneAsm;
implementation
uses
cutils,
itx86att;
{*****************************************************************************
Instruction table
*****************************************************************************}
const
{Instruction flags }
IF_NONE = $00000000;
IF_SM = $00000001; { size match first two operands }
IF_SM2 = $00000002;
IF_SB = $00000004; { unsized operands can't be non-byte }
IF_SW = $00000008; { unsized operands can't be non-word }
IF_SD = $00000010; { unsized operands can't be nondword }
IF_AR0 = $00000020; { SB, SW, SD applies to argument 0 }
IF_AR1 = $00000040; { SB, SW, SD applies to argument 1 }
IF_AR2 = $00000060; { SB, SW, SD applies to argument 2 }
IF_ARMASK = $00000060; { mask for unsized argument spec }
IF_PRIV = $00000100; { it's a privileged instruction }
IF_SMM = $00000200; { it's only valid in SMM }
IF_PROT = $00000400; { it's protected mode only }
IF_UNDOC = $00001000; { it's an undocumented instruction }
IF_FPU = $00002000; { it's an FPU instruction }
IF_MMX = $00004000; { it's an MMX instruction }
{ it's a 3DNow! instruction }
IF_3DNOW = $00008000;
{ it's a SSE (KNI, MMX2) instruction }
IF_SSE = $00010000;
{ SSE2 instructions }
IF_SSE2 = $00020000;
{ SSE3 instructions }
IF_SSE3 = $00040000;
{ the mask for processor types }
{IF_PMASK = longint($FF000000);}
{ the mask for disassembly "prefer" }
{IF_PFMASK = longint($F001FF00);}
IF_8086 = $00000000; { 8086 instruction }
IF_186 = $01000000; { 186+ instruction }
IF_286 = $02000000; { 286+ instruction }
IF_386 = $03000000; { 386+ instruction }
IF_486 = $04000000; { 486+ instruction }
IF_PENT = $05000000; { Pentium instruction }
IF_P6 = $06000000; { P6 instruction }
IF_KATMAI = $07000000; { Katmai instructions }
{ Willamette instructions }
IF_WILLAMETTE = $08000000;
{ Prescott instructions }
IF_PRESCOTT = $09000000;
IF_CYRIX = $10000000; { Cyrix-specific instruction }
IF_AMD = $20000000; { AMD-specific instruction }
{ added flags }
IF_PRE = $40000000; { it's a prefix instruction }
IF_PASS2 = longint($80000000); { if the instruction can change in a second pass }
type
TInsTabCache=array[TasmOp] of longint;
PInsTabCache=^TInsTabCache;
const
{$ifdef x86_64}
InsTab:array[0..instabentries-1] of TInsEntry={$i x86_64ta.inc}
{$else x86_64}
InsTab:array[0..instabentries-1] of TInsEntry={$i i386tab.inc}
{$endif x86_64}
var
InsTabCache : PInsTabCache;
const
{$ifdef x86_64}
{ Intel style operands ! }
opsize_2_type:array[0..2,topsize] of longint=(
(OT_NONE,
OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS16,OT_BITS32,OT_BITS32,OT_BITS64,OT_BITS64,OT_BITS64,
OT_BITS16,OT_BITS32,OT_BITS64,
OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_BITS64,OT_BITS64,OT_NONE,
OT_NEAR,OT_FAR,OT_SHORT
),
(OT_NONE,
OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS8,OT_BITS8,OT_BITS16,OT_BITS8,OT_BITS16,OT_BITS32,
OT_BITS16,OT_BITS32,OT_BITS64,
OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_BITS64,OT_BITS64,OT_NONE,
OT_NEAR,OT_FAR,OT_SHORT
),
(OT_NONE,
OT_BITS8,OT_BITS16,OT_BITS32,OT_NONE,OT_NONE,OT_NONE,OT_NONE,OT_NONE,OT_NONE,
OT_BITS16,OT_BITS32,OT_BITS64,
OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_BITS64,OT_BITS64,OT_NONE,
OT_NEAR,OT_FAR,OT_SHORT
)
);
reg_ot_table : array[tregisterindex] of longint = (
{$i r8664ot.inc}
);
{$else x86_64}
{ Intel style operands ! }
opsize_2_type:array[0..2,topsize] of longint=(
(OT_NONE,
OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS16,OT_BITS32,OT_BITS32,
OT_BITS16,OT_BITS32,OT_BITS64,
OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_BITS64,OT_BITS64,OT_NONE,
OT_NEAR,OT_FAR,OT_SHORT
),
(OT_NONE,
OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS8,OT_BITS8,OT_BITS16,
OT_BITS16,OT_BITS32,OT_BITS64,
OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_BITS64,OT_BITS64,OT_NONE,
OT_NEAR,OT_FAR,OT_SHORT
),
(OT_NONE,
OT_BITS8,OT_BITS16,OT_BITS32,OT_NONE,OT_NONE,OT_NONE,
OT_BITS16,OT_BITS32,OT_BITS64,
OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_BITS64,OT_BITS64,OT_NONE,
OT_NEAR,OT_FAR,OT_SHORT
)
);
reg_ot_table : array[tregisterindex] of longint = (
{$i r386ot.inc}
);
{$endif x86_64}
subreg2type:array[tsubregister] of longint = (
OT_NONE,OT_REG8,OT_REG8,OT_REG16,OT_REG32,OT_REG64
);
{****************************************************************************
TAI_ALIGN
****************************************************************************}
constructor tai_align.create(b: byte);
begin
inherited create(b);
reg:=NR_ECX;
end;
constructor tai_align.create_op(b: byte; _op: byte);
begin
inherited create_op(b,_op);
reg:=NR_NO;
end;
function tai_align.calculatefillbuf(var buf : tfillbuffer):pchar;
const
alignarray:array[0..5] of string[8]=(
#$8D#$B4#$26#$00#$00#$00#$00,
#$8D#$B6#$00#$00#$00#$00,
#$8D#$74#$26#$00,
#$8D#$76#$00,
#$89#$F6,
#$90
);
var
bufptr : pchar;
j : longint;
begin
inherited calculatefillbuf(buf);
if not use_op then
begin
bufptr:=pchar(@buf);
while (fillsize>0) do
begin
for j:=0 to 5 do
if (fillsize>=length(alignarray[j])) then
break;
move(alignarray[j][1],bufptr^,length(alignarray[j]));
inc(bufptr,length(alignarray[j]));
dec(fillsize,length(alignarray[j]));
end;
end;
calculatefillbuf:=pchar(@buf);
end;
{*****************************************************************************
Taicpu Constructors
*****************************************************************************}
procedure taicpu.changeopsize(siz:topsize);
begin
opsize:=siz;
end;
procedure taicpu.init(_size : topsize);
begin
{ default order is att }
FOperandOrder:=op_att;
segprefix:=NR_NO;
opsize:=_size;
{$ifndef NOAG386BIN}
insentry:=nil;
LastInsOffset:=-1;
InsOffset:=0;
InsSize:=0;
{$endif}
end;
constructor taicpu.op_none(op : tasmop;_size : topsize);
begin
inherited create(op);
init(_size);
end;
constructor taicpu.op_reg(op : tasmop;_size : topsize;_op1 : tregister);
begin
inherited create(op);
init(_size);
ops:=1;
loadreg(0,_op1);
end;
constructor taicpu.op_const(op : tasmop;_size : topsize;_op1 : aword);
begin
inherited create(op);
init(_size);
ops:=1;
loadconst(0,_op1);
end;
constructor taicpu.op_ref(op : tasmop;_size : topsize;const _op1 : treference);
begin
inherited create(op);
init(_size);
ops:=1;
loadref(0,_op1);
end;
constructor taicpu.op_reg_reg(op : tasmop;_size : topsize;_op1,_op2 : tregister);
begin
inherited create(op);
init(_size);
ops:=2;
loadreg(0,_op1);
loadreg(1,_op2);
end;
constructor taicpu.op_reg_const(op:tasmop; _size: topsize; _op1: tregister; _op2: aword);
begin
inherited create(op);
init(_size);
ops:=2;
loadreg(0,_op1);
loadconst(1,_op2);
end;
constructor taicpu.op_reg_ref(op : tasmop;_size : topsize;_op1 : tregister;const _op2 : treference);
begin
inherited create(op);
init(_size);
ops:=2;
loadreg(0,_op1);
loadref(1,_op2);
end;
constructor taicpu.op_const_reg(op : tasmop;_size : topsize;_op1 : aword;_op2 : tregister);
begin
inherited create(op);
init(_size);
ops:=2;
loadconst(0,_op1);
loadreg(1,_op2);
end;
constructor taicpu.op_const_const(op : tasmop;_size : topsize;_op1,_op2 : aword);
begin
inherited create(op);
init(_size);
ops:=2;
loadconst(0,_op1);
loadconst(1,_op2);
end;
constructor taicpu.op_const_ref(op : tasmop;_size : topsize;_op1 : aword;const _op2 : treference);
begin
inherited create(op);
init(_size);
ops:=2;
loadconst(0,_op1);
loadref(1,_op2);
end;
constructor taicpu.op_ref_reg(op : tasmop;_size : topsize;const _op1 : treference;_op2 : tregister);
begin
inherited create(op);
init(_size);
ops:=2;
loadref(0,_op1);
loadreg(1,_op2);
end;
constructor taicpu.op_reg_reg_reg(op : tasmop;_size : topsize;_op1,_op2,_op3 : tregister);
begin
inherited create(op);
init(_size);
ops:=3;
loadreg(0,_op1);
loadreg(1,_op2);
loadreg(2,_op3);
end;
constructor taicpu.op_const_reg_reg(op : tasmop;_size : topsize;_op1 : aword;_op2 : tregister;_op3 : tregister);
begin
inherited create(op);
init(_size);
ops:=3;
loadconst(0,_op1);
loadreg(1,_op2);
loadreg(2,_op3);
end;
constructor taicpu.op_reg_reg_ref(op : tasmop;_size : topsize;_op1,_op2 : tregister;const _op3 : treference);
begin
inherited create(op);
init(_size);
ops:=3;
loadreg(0,_op1);
loadreg(1,_op2);
loadref(2,_op3);
end;
constructor taicpu.op_const_ref_reg(op : tasmop;_size : topsize;_op1 : aword;const _op2 : treference;_op3 : tregister);
begin
inherited create(op);
init(_size);
ops:=3;
loadconst(0,_op1);
loadref(1,_op2);
loadreg(2,_op3);
end;
constructor taicpu.op_const_reg_ref(op : tasmop;_size : topsize;_op1 : aword;_op2 : tregister;const _op3 : treference);
begin
inherited create(op);
init(_size);
ops:=3;
loadconst(0,_op1);
loadreg(1,_op2);
loadref(2,_op3);
end;
constructor taicpu.op_cond_sym(op : tasmop;cond:TAsmCond;_size : topsize;_op1 : tasmsymbol);
begin
inherited create(op);
init(_size);
condition:=cond;
ops:=1;
loadsymbol(0,_op1,0);
end;
constructor taicpu.op_sym(op : tasmop;_size : topsize;_op1 : tasmsymbol);
begin
inherited create(op);
init(_size);
ops:=1;
loadsymbol(0,_op1,0);
end;
constructor taicpu.op_sym_ofs(op : tasmop;_size : topsize;_op1 : tasmsymbol;_op1ofs:longint);
begin
inherited create(op);
init(_size);
ops:=1;
loadsymbol(0,_op1,_op1ofs);
end;
constructor taicpu.op_sym_ofs_reg(op : tasmop;_size : topsize;_op1 : tasmsymbol;_op1ofs:longint;_op2 : tregister);
begin
inherited create(op);
init(_size);
ops:=2;
loadsymbol(0,_op1,_op1ofs);
loadreg(1,_op2);
end;
constructor taicpu.op_sym_ofs_ref(op : tasmop;_size : topsize;_op1 : tasmsymbol;_op1ofs:longint;const _op2 : treference);
begin
inherited create(op);
init(_size);
ops:=2;
loadsymbol(0,_op1,_op1ofs);
loadref(1,_op2);
end;
function taicpu.GetString:string;
var
i : longint;
s : string;
addsize : boolean;
begin
s:='['+std_op2str[opcode];
for i:=1to ops do
begin
if i=1 then
s:=s+' '
else
s:=s+',';
{ type }
addsize:=false;
if (oper[i-1].ot and OT_XMMREG)=OT_XMMREG then
s:=s+'xmmreg'
else
if (oper[i-1].ot and OT_MMXREG)=OT_MMXREG then
s:=s+'mmxreg'
else
if (oper[i-1].ot and OT_FPUREG)=OT_FPUREG then
s:=s+'fpureg'
else
if (oper[i-1].ot and OT_REGISTER)=OT_REGISTER then
begin
s:=s+'reg';
addsize:=true;
end
else
if (oper[i-1].ot and OT_IMMEDIATE)=OT_IMMEDIATE then
begin
s:=s+'imm';
addsize:=true;
end
else
if (oper[i-1].ot and OT_MEMORY)=OT_MEMORY then
begin
s:=s+'mem';
addsize:=true;
end
else
s:=s+'???';
{ size }
if addsize then
begin
if (oper[i-1].ot and OT_BITS8)<>0 then
s:=s+'8'
else
if (oper[i-1].ot and OT_BITS16)<>0 then
s:=s+'16'
else
if (oper[i-1].ot and OT_BITS32)<>0 then
s:=s+'32'
else
s:=s+'??';
{ signed }
if (oper[i-1].ot and OT_SIGNED)<>0 then
s:=s+'s';
end;
end;
GetString:=s+']';
end;
procedure taicpu.Swapoperands;
var
p : TOper;
begin
{ Fix the operands which are in AT&T style and we need them in Intel style }
case ops of
2 : begin
{ 0,1 -> 1,0 }
p:=oper[0];
oper[0]:=oper[1];
oper[1]:=p;
end;
3 : begin
{ 0,1,2 -> 2,1,0 }
p:=oper[0];
oper[0]:=oper[2];
oper[2]:=p;
end;
end;
end;
procedure taicpu.SetOperandOrder(order:TOperandOrder);
begin
if FOperandOrder<>order then
begin
Swapoperands;
FOperandOrder:=order;
end;
end;
procedure taicpu.ppuloadoper(ppufile:tcompilerppufile;var o:toper);
begin
o.typ:=toptype(ppufile.getbyte);
o.ot:=ppufile.getlongint;
case o.typ of
top_reg :
ppufile.getdata(o.reg,sizeof(Tregister));
top_ref :
begin
new(o.ref);
ppufile.getdata(o.ref^.segment,sizeof(Tregister));
ppufile.getdata(o.ref^.base,sizeof(Tregister));
ppufile.getdata(o.ref^.index,sizeof(Tregister));
o.ref^.scalefactor:=ppufile.getbyte;
o.ref^.offset:=ppufile.getlongint;
o.ref^.symbol:=ppufile.getasmsymbol;
end;
top_const :
o.val:=aword(ppufile.getlongint);
top_symbol :
begin
o.sym:=ppufile.getasmsymbol;
o.symofs:=ppufile.getlongint;
end;
top_local :
begin
ppufile.getderef(o.localsymderef);
o.localsymofs:=ppufile.getlongint;
end;
end;
end;
procedure taicpu.ppuwriteoper(ppufile:tcompilerppufile;const o:toper);
begin
ppufile.putbyte(byte(o.typ));
ppufile.putlongint(o.ot);
case o.typ of
top_reg :
ppufile.putdata(o.reg,sizeof(Tregister));
top_ref :
begin
ppufile.putdata(o.ref^.segment,sizeof(Tregister));
ppufile.putdata(o.ref^.base,sizeof(Tregister));
ppufile.putdata(o.ref^.index,sizeof(Tregister));
ppufile.putbyte(o.ref^.scalefactor);
ppufile.putlongint(o.ref^.offset);
ppufile.putasmsymbol(o.ref^.symbol);
end;
top_const :
ppufile.putlongint(longint(o.val));
top_symbol :
begin
ppufile.putasmsymbol(o.sym);
ppufile.putlongint(longint(o.symofs));
end;
top_local :
begin
ppufile.putderef(tvarsym(o.localsym),o.localsymderef);
ppufile.putlongint(longint(o.localsymofs));
end;
end;
end;
procedure taicpu.ppuderefoper(var o:toper);
begin
case o.typ of
top_ref :
begin
if assigned(o.ref^.symbol) then
objectlibrary.derefasmsymbol(o.ref^.symbol);
end;
top_symbol :
objectlibrary.derefasmsymbol(o.sym);
top_local :
o.localsym:=tvarsym(o.localsymderef.resolve);
end;
end;
procedure taicpu.CheckNonCommutativeOpcodes;
begin
{ we need ATT order }
SetOperandOrder(op_att);
if (
(ops=2) and
(oper[0].typ=top_reg) and
(oper[1].typ=top_reg) and
{ if the first is ST and the second is also a register
it is necessarily ST1 .. ST7 }
((oper[0].reg=NR_ST) or
(oper[0].reg=NR_ST0))
) or
{ ((ops=1) and
(oper[0].typ=top_reg) and
(oper[0].reg in [R_ST1..R_ST7])) or}
(ops=0) then
begin
if opcode=A_FSUBR then
opcode:=A_FSUB
else if opcode=A_FSUB then
opcode:=A_FSUBR
else if opcode=A_FDIVR then
opcode:=A_FDIV
else if opcode=A_FDIV then
opcode:=A_FDIVR
else if opcode=A_FSUBRP then
opcode:=A_FSUBP
else if opcode=A_FSUBP then
opcode:=A_FSUBRP
else if opcode=A_FDIVRP then
opcode:=A_FDIVP
else if opcode=A_FDIVP then
opcode:=A_FDIVRP;
end;
if (
(ops=1) and
(oper[0].typ=top_reg) and
(getregtype(oper[0].reg)=R_FPUREGISTER) and
(oper[0].reg<>NR_ST)
) then
begin
if opcode=A_FSUBRP then
opcode:=A_FSUBP
else if opcode=A_FSUBP then
opcode:=A_FSUBRP
else if opcode=A_FDIVRP then
opcode:=A_FDIVP
else if opcode=A_FDIVP then
opcode:=A_FDIVRP;
end;
end;
{*****************************************************************************
Assembler
*****************************************************************************}
{$ifndef NOAG386BIN}
type
ea=packed record
sib_present : boolean;
bytes : byte;
size : byte;
modrm : byte;
sib : byte;
end;
procedure taicpu.create_ot;
{
this function will also fix some other fields which only needs to be once
}
var
i,l,relsize : longint;
begin
if ops=0 then
exit;
{ update oper[].ot field }
for i:=0 to ops-1 do
with oper[i] do
begin
case typ of
top_reg :
begin
ot:=reg_ot_table[findreg_by_number(reg)];
end;
top_ref :
begin
{ create ot field }
if (ot and OT_SIZE_MASK)=0 then
ot:=OT_MEMORY or opsize_2_type[i,opsize]
else
ot:=OT_MEMORY or (ot and OT_SIZE_MASK);
if (ref^.base=NR_NO) and (ref^.index=NR_NO) then
ot:=ot or OT_MEM_OFFS;
{ fix scalefactor }
if (ref^.index=NR_NO) then
ref^.scalefactor:=0
else
if (ref^.scalefactor=0) then
ref^.scalefactor:=1;
end;
top_local :
begin
if (ot and OT_SIZE_MASK)=0 then
ot:=OT_MEMORY or opsize_2_type[i,opsize]
else
ot:=OT_MEMORY or (ot and OT_SIZE_MASK);
end;
top_const :
begin
if (opsize<>S_W) and (longint(val)>=-128) and (val<=127) then
ot:=OT_IMM8 or OT_SIGNED
else
ot:=OT_IMMEDIATE or opsize_2_type[i,opsize];
end;
top_symbol :
begin
if LastInsOffset=-1 then
l:=0
else
l:=InsOffset-LastInsOffset;
inc(l,symofs);
if assigned(sym) then
inc(l,sym.address);
{ instruction size will then always become 2 (PFV) }
relsize:=(InsOffset+2)-l;
if (not assigned(sym) or
((sym.currbind<>AB_EXTERNAL) and (sym.address<>0))) and
(relsize>=-128) and (relsize<=127) then
ot:=OT_IMM32 or OT_SHORT
else
ot:=OT_IMM32 or OT_NEAR;
end;
end;
end;
end;
function taicpu.InsEnd:longint;
begin
InsEnd:=InsOffset+InsSize;
end;
function taicpu.Matches(p:PInsEntry):longint;
{ * IF_SM stands for Size Match: any operand whose size is not
* explicitly specified by the template is `really' intended to be
* the same size as the first size-specified operand.
* Non-specification is tolerated in the input instruction, but
* _wrong_ specification is not.
*
* IF_SM2 invokes Size Match on only the first _two_ operands, for
* three-operand instructions such as SHLD: it implies that the
* first two operands must match in size, but that the third is
* required to be _unspecified_.
*
* IF_SB invokes Size Byte: operands with unspecified size in the
* template are really bytes, and so no non-byte specification in
* the input instruction will be tolerated. IF_SW similarly invokes
* Size Word, and IF_SD invokes Size Doubleword.
*
* (The default state if neither IF_SM nor IF_SM2 is specified is
* that any operand with unspecified size in the template is
* required to have unspecified size in the instruction too...)
}
var
i,j,asize,oprs : longint;
siz : array[0..2] of longint;
begin
Matches:=100;
{ Check the opcode and operands }
if (p^.opcode<>opcode) or (p^.ops<>ops) then
begin
Matches:=0;
exit;
end;
{ Check that no spurious colons or TOs are present }
for i:=0 to p^.ops-1 do
if (oper[i].ot and (not p^.optypes[i]) and (OT_COLON or OT_TO))<>0 then
begin
Matches:=0;
exit;
end;
{ Check that the operand flags all match up }
for i:=0 to p^.ops-1 do
begin
if ((p^.optypes[i] and (not oper[i].ot)) or
((p^.optypes[i] and OT_SIZE_MASK) and
((p^.optypes[i] xor oper[i].ot) and OT_SIZE_MASK)))<>0 then
begin
if ((p^.optypes[i] and (not oper[i].ot) and OT_NON_SIZE) or
(oper[i].ot and OT_SIZE_MASK))<>0 then
begin
Matches:=0;
exit;
end
else
Matches:=1;
end;
end;
{ Check operand sizes }
{ as default an untyped size can get all the sizes, this is different
from nasm, but else we need to do a lot checking which opcodes want
size or not with the automatic size generation }
asize:=longint($ffffffff);
if (p^.flags and IF_SB)<>0 then
asize:=OT_BITS8
else if (p^.flags and IF_SW)<>0 then
asize:=OT_BITS16
else if (p^.flags and IF_SD)<>0 then
asize:=OT_BITS32;
if (p^.flags and IF_ARMASK)<>0 then
begin
siz[0]:=0;
siz[1]:=0;
siz[2]:=0;
if (p^.flags and IF_AR0)<>0 then
siz[0]:=asize
else if (p^.flags and IF_AR1)<>0 then
siz[1]:=asize
else if (p^.flags and IF_AR2)<>0 then
siz[2]:=asize;
end
else
begin
{ we can leave because the size for all operands is forced to be
the same
but not if IF_SB IF_SW or IF_SD is set PM }
if asize=-1 then
exit;
siz[0]:=asize;
siz[1]:=asize;
siz[2]:=asize;
end;
if (p^.flags and (IF_SM or IF_SM2))<>0 then
begin
if (p^.flags and IF_SM2)<>0 then
oprs:=2
else
oprs:=p^.ops;
for i:=0 to oprs-1 do
if ((p^.optypes[i] and OT_SIZE_MASK) <> 0) then
begin
for j:=0 to oprs-1 do
siz[j]:=p^.optypes[i] and OT_SIZE_MASK;
break;
end;
end
else
oprs:=2;
{ Check operand sizes }
for i:=0 to p^.ops-1 do
begin
if ((p^.optypes[i] and OT_SIZE_MASK)=0) and
((oper[i].ot and OT_SIZE_MASK and (not siz[i]))<>0) and
{ Immediates can always include smaller size }
((oper[i].ot and OT_IMMEDIATE)=0) and
(((p^.optypes[i] and OT_SIZE_MASK) or siz[i])<(oper[i].ot and OT_SIZE_MASK)) then
Matches:=2;
end;
end;
procedure taicpu.ResetPass1;
begin
{ we need to reset everything here, because the choosen insentry
can be invalid for a new situation where the previously optimized
insentry is not correct }
InsEntry:=nil;
InsSize:=0;
LastInsOffset:=-1;
end;
procedure taicpu.ResetPass2;
begin
{ we are here in a second pass, check if the instruction can be optimized }
if assigned(InsEntry) and
((InsEntry^.flags and IF_PASS2)<>0) then
begin
InsEntry:=nil;
InsSize:=0;
end;
LastInsOffset:=-1;
end;
function taicpu.CheckIfValid:boolean;
begin
result:=FindInsEntry;
end;
function taicpu.FindInsentry:boolean;
var
i : longint;
begin
result:=false;
{ Things which may only be done once, not when a second pass is done to
optimize }
if (Insentry=nil) or ((InsEntry^.flags and IF_PASS2)<>0) then
begin
{ We need intel style operands }
SetOperandOrder(op_intel);
{ create the .ot fields }
create_ot;
{ set the file postion }
aktfilepos:=fileinfo;
end
else
begin
{ we've already an insentry so it's valid }
result:=true;
exit;
end;
{ Lookup opcode in the table }
InsSize:=-1;
i:=instabcache^[opcode];
if i=-1 then
begin
Message1(asmw_e_opcode_not_in_table,gas_op2str[opcode]);
exit;
end;
insentry:=@instab[i];
while (insentry^.opcode=opcode) do
begin
if matches(insentry)=100 then
begin
result:=true;
exit;
end;
inc(i);
insentry:=@instab[i];
end;
Message1(asmw_e_invalid_opcode_and_operands,GetString);
{ No instruction found, set insentry to nil and inssize to -1 }
insentry:=nil;
inssize:=-1;
end;
function taicpu.Pass1(offset:longint):longint;
begin
Pass1:=0;
{ Save the old offset and set the new offset }
InsOffset:=Offset;
{ Things which may only be done once, not when a second pass is done to
optimize }
if Insentry=nil then
begin
{ Check if error last time then InsSize=-1 }
if InsSize=-1 then
exit;
{ set the file postion }
aktfilepos:=fileinfo;
end
else
begin
{$ifdef PASS2FLAG}
{ we are here in a second pass, check if the instruction can be optimized }
if (InsEntry^.flags and IF_PASS2)=0 then
begin
Pass1:=InsSize;
exit;
end;
{ update the .ot fields, some top_const can be updated }
create_ot;
{$endif PASS2FLAG}
end;
{ Get InsEntry }
if FindInsEntry then
begin
{ Calculate instruction size }
InsSize:=calcsize(insentry);
if segprefix<>NR_NO then
inc(InsSize);
{ Fix opsize if size if forced }
if (insentry^.flags and (IF_SB or IF_SW or IF_SD))<>0 then
begin
if (insentry^.flags and IF_ARMASK)=0 then
begin
if (insentry^.flags and IF_SB)<>0 then
begin
if opsize=S_NO then
opsize:=S_B;
end
else if (insentry^.flags and IF_SW)<>0 then
begin
if opsize=S_NO then
opsize:=S_W;
end
else if (insentry^.flags and IF_SD)<>0 then
begin
if opsize=S_NO then
opsize:=S_L;
end;
end;
end;
LastInsOffset:=InsOffset;
Pass1:=InsSize;
exit;
end;
LastInsOffset:=-1;
end;
procedure taicpu.Pass2(sec:TAsmObjectData);
var
c : longint;
begin
{ error in pass1 ? }
if insentry=nil then
exit;
aktfilepos:=fileinfo;
{ Segment override }
if (segprefix<>NR_NO) then
begin
case segprefix of
NR_CS : c:=$2e;
NR_DS : c:=$3e;
NR_ES : c:=$26;
NR_FS : c:=$64;
NR_GS : c:=$65;
NR_SS : c:=$36;
end;
sec.writebytes(c,1);
{ fix the offset for GenNode }
inc(InsOffset);
end;
{ Generate the instruction }
GenCode(sec);
end;
function taicpu.needaddrprefix(opidx:byte):boolean;
begin
needaddrprefix:=false;
if (OT_MEMORY and (not oper[opidx].ot))=0 then
begin
if (
(oper[opidx].ref^.index<>NR_NO) and
(getsubreg(oper[opidx].ref^.index)<>R_SUBD)
) or
(
(oper[opidx].ref^.base<>NR_NO) and
(getsubreg(oper[opidx].ref^.base)<>R_SUBD)
) then
needaddrprefix:=true;
end;
end;
function regval(r:Tregister):byte;
const
{$ifdef x86_64}
opcode_table:array[tregisterindex] of tregisterindex = (
{$i r8664op.inc}
);
{$else x86_64}
opcode_table:array[tregisterindex] of tregisterindex = (
{$i r386op.inc}
);
{$endif x86_64}
begin
result:=opcode_table[findreg_by_number(r)];
end;
function process_ea(const input:toper;var output:ea;rfield:longint):boolean;
var
sym : tasmsymbol;
md,s,rv : byte;
base,index,scalefactor,
o : longint;
ir,br : Tregister;
isub,bsub : tsubregister;
begin
process_ea:=false;
{Register ?}
if (input.typ=top_reg) then
begin
rv:=regval(input.reg);
output.sib_present:=false;
output.bytes:=0;
output.modrm:=$c0 or (rfield shl 3) or rv;
output.size:=1;
process_ea:=true;
exit;
end;
{No register, so memory reference.}
if ((input.ref^.index<>NR_NO) and (getregtype(input.ref^.index)<>R_INTREGISTER)) or
((input.ref^.base<>NR_NO) and (getregtype(input.ref^.base)<>R_INTREGISTER)) then
internalerror(200301081);
ir:=input.ref^.index;
br:=input.ref^.base;
isub:=getsubreg(ir);
bsub:=getsubreg(br);
s:=input.ref^.scalefactor;
o:=input.ref^.offset;
sym:=input.ref^.symbol;
{ it's direct address }
if (br=NR_NO) and (ir=NR_NO) then
begin
{ it's a pure offset }
output.sib_present:=false;
output.bytes:=4;
output.modrm:=5 or (rfield shl 3);
end
else
{ it's an indirection }
begin
{ 16 bit address? }
if ((ir<>NR_NO) and (isub<>R_SUBD)) or
((br<>NR_NO) and (bsub<>R_SUBD)) then
message(asmw_e_16bit_not_supported);
{$ifdef OPTEA}
{ make single reg base }
if (br=NR_NO) and (s=1) then
begin
br:=ir;
ir:=NR_NO;
end;
{ convert [3,5,9]*EAX to EAX+[2,4,8]*EAX }
if (br=NR_NO) and
(((s=2) and (ir<>NR_ESP)) or
(s=3) or (s=5) or (s=9)) then
begin
br:=ir;
dec(s);
end;
{ swap ESP into base if scalefactor is 1 }
if (s=1) and (ir=NR_ESP) then
begin
ir:=br;
br:=NR_ESP;
end;
{$endif OPTEA}
{ wrong, for various reasons }
if (ir=NR_ESP) or ((s<>1) and (s<>2) and (s<>4) and (s<>8) and (ir<>NR_NO)) then
exit;
{ base }
case br of
NR_EAX : base:=0;
NR_ECX : base:=1;
NR_EDX : base:=2;
NR_EBX : base:=3;
NR_ESP : base:=4;
NR_NO,
NR_EBP : base:=5;
NR_ESI : base:=6;
NR_EDI : base:=7;
else
exit;
end;
{ index }
case ir of
NR_EAX : index:=0;
NR_ECX : index:=1;
NR_EDX : index:=2;
NR_EBX : index:=3;
NR_NO : index:=4;
NR_EBP : index:=5;
NR_ESI : index:=6;
NR_EDI : index:=7;
else
exit;
end;
case s of
0,
1 : scalefactor:=0;
2 : scalefactor:=1;
4 : scalefactor:=2;
8 : scalefactor:=3;
else
exit;
end;
if (br=NR_NO) or
((br<>NR_EBP) and (o=0) and (sym=nil)) then
md:=0
else
if ((o>=-128) and (o<=127) and (sym=nil)) then
md:=1
else
md:=2;
if (br=NR_NO) or (md=2) then
output.bytes:=4
else
output.bytes:=md;
{ SIB needed ? }
if (ir=NR_NO) and (br<>NR_ESP) then
begin
output.sib_present:=false;
output.modrm:=(md shl 6) or (rfield shl 3) or base;
end
else
begin
output.sib_present:=true;
output.modrm:=(md shl 6) or (rfield shl 3) or 4;
output.sib:=(scalefactor shl 6) or (index shl 3) or base;
end;
end;
if output.sib_present then
output.size:=2+output.bytes
else
output.size:=1+output.bytes;
process_ea:=true;
end;
function taicpu.calcsize(p:PInsEntry):longint;
var
codes : pchar;
c : byte;
len : longint;
ea_data : ea;
begin
len:=0;
codes:=@p^.code;
repeat
c:=ord(codes^);
inc(codes);
case c of
0 :
break;
1,2,3 :
begin
inc(codes,c);
inc(len,c);
end;
8,9,10 :
begin
inc(codes);
inc(len);
end;
4,5,6,7 :
begin
if opsize=S_W then
inc(len,2)
else
inc(len);
end;
15,
12,13,14,
16,17,18,
20,21,22,
40,41,42 :
inc(len);
24,25,26,
31,
48,49,50 :
inc(len,2);
28,29,30, { we don't have 16 bit immediates code }
32,33,34,
52,53,54,
56,57,58 :
inc(len,4);
192,193,194 :
if NeedAddrPrefix(c-192) then
inc(len);
208 :
inc(len);
200,
201,
202,
209,
210,
217,218,219 : ;
216 :
begin
inc(codes);
inc(len);
end;
224,225,226 :
begin
InternalError(777002);
end;
else
begin
if (c>=64) and (c<=191) then
begin
if not process_ea(oper[(c shr 3) and 7], ea_data, 0) then
Message(asmw_e_invalid_effective_address)
else
inc(len,ea_data.size);
end
else
InternalError(777003);
end;
end;
until false;
calcsize:=len;
end;
procedure taicpu.GenCode(sec:TAsmObjectData);
{
* the actual codes (C syntax, i.e. octal):
* \0 - terminates the code. (Unless it's a literal of course.)
* \1, \2, \3 - that many literal bytes follow in the code stream
* \4, \6 - the POP/PUSH (respectively) codes for CS, DS, ES, SS
* (POP is never used for CS) depending on operand 0
* \5, \7 - the second byte of POP/PUSH codes for FS, GS, depending
* on operand 0
* \10, \11, \12 - a literal byte follows in the code stream, to be added
* to the register value of operand 0, 1 or 2
* \17 - encodes the literal byte 0. (Some compilers don't take
* kindly to a zero byte in the _middle_ of a compile time
* string constant, so I had to put this hack in.)
* \14, \15, \16 - a signed byte immediate operand, from operand 0, 1 or 2
* \20, \21, \22 - a byte immediate operand, from operand 0, 1 or 2
* \24, \25, \26 - an unsigned byte immediate operand, from operand 0, 1 or 2
* \30, \31, \32 - a word immediate operand, from operand 0, 1 or 2
* \34, \35, \36 - select between \3[012] and \4[012] depending on 16/32 bit
* assembly mode or the address-size override on the operand
* \37 - a word constant, from the _segment_ part of operand 0
* \40, \41, \42 - a long immediate operand, from operand 0, 1 or 2
* \50, \51, \52 - a byte relative operand, from operand 0, 1 or 2
* \60, \61, \62 - a word relative operand, from operand 0, 1 or 2
* \64, \65, \66 - select between \6[012] and \7[012] depending on 16/32 bit
* assembly mode or the address-size override on the operand
* \70, \71, \72 - a long relative operand, from operand 0, 1 or 2
* \1ab - a ModRM, calculated on EA in operand a, with the spare
* field the register value of operand b.
* \2ab - a ModRM, calculated on EA in operand a, with the spare
* field equal to digit b.
* \30x - might be an 0x67 byte, depending on the address size of
* the memory reference in operand x.
* \310 - indicates fixed 16-bit address size, i.e. optional 0x67.
* \311 - indicates fixed 32-bit address size, i.e. optional 0x67.
* \320 - indicates fixed 16-bit operand size, i.e. optional 0x66.
* \321 - indicates fixed 32-bit operand size, i.e. optional 0x66.
* \322 - indicates that this instruction is only valid when the
* operand size is the default (instruction to disassembler,
* generates no code in the assembler)
* \330 - a literal byte follows in the code stream, to be added
* to the condition code value of the instruction.
* \340 - reserve <operand 0> bytes of uninitialised storage.
* Operand 0 had better be a segmentless constant.
}
var
currval : longint;
currsym : tasmsymbol;
procedure getvalsym(opidx:longint);
begin
case oper[opidx].typ of
top_ref :
begin
currval:=oper[opidx].ref^.offset;
currsym:=oper[opidx].ref^.symbol;
end;
top_const :
begin
currval:=longint(oper[opidx].val);
currsym:=nil;
end;
top_symbol :
begin
currval:=oper[opidx].symofs;
currsym:=oper[opidx].sym;
end;
else
Message(asmw_e_immediate_or_reference_expected);
end;
end;
const
CondVal:array[TAsmCond] of byte=($0,
$7, $3, $2, $6, $2, $4, $F, $D, $C, $E, $6, $2,
$3, $7, $3, $5, $E, $C, $D, $F, $1, $B, $9, $5,
$0, $A, $A, $B, $8, $4);
var
c : byte;
pb,
codes : pchar;
bytes : array[0..3] of byte;
rfield,
data,s,opidx : longint;
ea_data : ea;
begin
{$ifdef EXTDEBUG}
{ safety check }
if sec.sects[sec.currsec].datasize<>insoffset then
internalerror(200130121);
{$endif EXTDEBUG}
{ load data to write }
codes:=insentry^.code;
{ Force word push/pop for registers }
if (opsize=S_W) and ((codes[0]=#4) or (codes[0]=#6) or
((codes[0]=#1) and ((codes[2]=#5) or (codes[2]=#7)))) then
begin
bytes[0]:=$66;
sec.writebytes(bytes,1);
end;
repeat
c:=ord(codes^);
inc(codes);
case c of
0 :
break;
1,2,3 :
begin
sec.writebytes(codes^,c);
inc(codes,c);
end;
4,6 :
begin
case oper[0].reg of
NR_CS:
bytes[0]:=$e;
NR_NO,
NR_DS:
bytes[0]:=$1e;
NR_ES:
bytes[0]:=$6;
NR_SS:
bytes[0]:=$16;
else
internalerror(777004);
end;
if c=4 then
inc(bytes[0]);
sec.writebytes(bytes,1);
end;
5,7 :
begin
case oper[0].reg of
NR_FS:
bytes[0]:=$a0;
NR_GS:
bytes[0]:=$a8;
else
internalerror(777005);
end;
if c=5 then
inc(bytes[0]);
sec.writebytes(bytes,1);
end;
8,9,10 :
begin
bytes[0]:=ord(codes^)+regval(oper[c-8].reg);
inc(codes);
sec.writebytes(bytes,1);
end;
15 :
begin
bytes[0]:=0;
sec.writebytes(bytes,1);
end;
12,13,14 :
begin
getvalsym(c-12);
if (currval<-128) or (currval>127) then
Message2(asmw_e_value_exceeds_bounds,'signed byte',tostr(currval));
if assigned(currsym) then
sec.writereloc(currval,1,currsym,RELOC_ABSOLUTE)
else
sec.writebytes(currval,1);
end;
16,17,18 :
begin
getvalsym(c-16);
if (currval<-256) or (currval>255) then
Message2(asmw_e_value_exceeds_bounds,'byte',tostr(currval));
if assigned(currsym) then
sec.writereloc(currval,1,currsym,RELOC_ABSOLUTE)
else
sec.writebytes(currval,1);
end;
20,21,22 :
begin
getvalsym(c-20);
if (currval<0) or (currval>255) then
Message2(asmw_e_value_exceeds_bounds,'unsigned byte',tostr(currval));
if assigned(currsym) then
sec.writereloc(currval,1,currsym,RELOC_ABSOLUTE)
else
sec.writebytes(currval,1);
end;
24,25,26 :
begin
getvalsym(c-24);
if (currval<-65536) or (currval>65535) then
Message2(asmw_e_value_exceeds_bounds,'word',tostr(currval));
if assigned(currsym) then
sec.writereloc(currval,2,currsym,RELOC_ABSOLUTE)
else
sec.writebytes(currval,2);
end;
28,29,30 :
begin
getvalsym(c-28);
if assigned(currsym) then
sec.writereloc(currval,4,currsym,RELOC_ABSOLUTE)
else
sec.writebytes(currval,4);
end;
32,33,34 :
begin
getvalsym(c-32);
if assigned(currsym) then
sec.writereloc(currval,4,currsym,RELOC_ABSOLUTE)
else
sec.writebytes(currval,4);
end;
40,41,42 :
begin
getvalsym(c-40);
data:=currval-insend;
if assigned(currsym) then
inc(data,currsym.address);
if (data>127) or (data<-128) then
Message1(asmw_e_short_jmp_out_of_range,tostr(data));
sec.writebytes(data,1);
end;
52,53,54 :
begin
getvalsym(c-52);
if assigned(currsym) then
sec.writereloc(currval,4,currsym,RELOC_RELATIVE)
else
sec.writereloc(currval-insend,4,nil,RELOC_ABSOLUTE)
end;
56,57,58 :
begin
getvalsym(c-56);
if assigned(currsym) then
sec.writereloc(currval,4,currsym,RELOC_RELATIVE)
else
sec.writereloc(currval-insend,4,nil,RELOC_ABSOLUTE)
end;
192,193,194 :
begin
if NeedAddrPrefix(c-192) then
begin
bytes[0]:=$67;
sec.writebytes(bytes,1);
end;
end;
200 :
begin
bytes[0]:=$67;
sec.writebytes(bytes,1);
end;
208 :
begin
bytes[0]:=$66;
sec.writebytes(bytes,1);
end;
216 :
begin
bytes[0]:=ord(codes^)+condval[condition];
inc(codes);
sec.writebytes(bytes,1);
end;
201,
202,
209,
210,
217,218,219 :
begin
{ these are dissambler hints or 32 bit prefixes which
are not needed }
end;
31,
48,49,50,
224,225,226 :
begin
InternalError(777006);
end
else
begin
if (c>=64) and (c<=191) then
begin
if (c<127) then
begin
if (oper[c and 7].typ=top_reg) then
rfield:=regval(oper[c and 7].reg)
else
rfield:=regval(oper[c and 7].ref^.base);
end
else
rfield:=c and 7;
opidx:=(c shr 3) and 7;
if not process_ea(oper[opidx], ea_data, rfield) then
Message(asmw_e_invalid_effective_address);
pb:=@bytes;
pb^:=chr(ea_data.modrm);
inc(pb);
if ea_data.sib_present then
begin
pb^:=chr(ea_data.sib);
inc(pb);
end;
s:=pb-pchar(@bytes);
sec.writebytes(bytes,s);
case ea_data.bytes of
0 : ;
1 :
begin
if (oper[opidx].ot and OT_MEMORY)=OT_MEMORY then
sec.writereloc(oper[opidx].ref^.offset,1,oper[opidx].ref^.symbol,RELOC_ABSOLUTE)
else
begin
bytes[0]:=oper[opidx].ref^.offset;
sec.writebytes(bytes,1);
end;
inc(s);
end;
2,4 :
begin
sec.writereloc(oper[opidx].ref^.offset,ea_data.bytes,
oper[opidx].ref^.symbol,RELOC_ABSOLUTE);
inc(s,ea_data.bytes);
end;
end;
end
else
InternalError(777007);
end;
end;
until false;
end;
{$endif NOAG386BIN}
function Taicpu.is_nop:boolean;
begin
{We do not check the number of operands; we assume that nobody constructs
a mov or xchg instruction with less than 2 operands. (DM)}
is_nop:=(opcode=A_NOP) or
(opcode=A_MOV) and (oper[0].typ=top_reg) and (oper[1].typ=top_reg) and (oper[0].reg=oper[1].reg) or
(opcode=A_XCHG) and (oper[0].typ=top_reg) and (oper[1].typ=top_reg) and (oper[0].reg=oper[1].reg);
end;
function Taicpu.is_move:boolean;
begin
{We do not check the number of operands; we assume that nobody constructs
a mov, movzx or movsx instruction with less than 2 operands. Note that
a move between a reference and a register is not a move that is of
interrest to the register allocation, therefore we only return true
for a move between two registers. (DM)}
is_move:=((opcode=A_MOV) or (opcode=A_MOVZX) or (opcode=A_MOVSX)) and
((oper[0].typ=top_reg) and (oper[1].typ=top_reg));
end;
function Taicpu.spill_registers(list:Taasmoutput;
rgget:Trggetproc;
rgunget:Trgungetproc;
r:Tsuperregisterset;
var unusedregsint:Tsuperregisterset;
const spilltemplist:Tspill_temp_list):boolean;
{Spill the registers in r in this instruction. Returns true if any help
registers are used. This procedure has become one big hack party, because
of the huge amount of situations you can have. The irregularity of the i386
instruction set doesn't help either. (DM)}
var i:byte;
supreg:Tsuperregister;
subreg:Tsubregister;
helpreg:Tregister;
helpins:Taicpu;
op:Tasmop;
hopsize:Topsize;
pos:Tai;
begin
{Situation examples are in intel notation, so operand order:
mov eax , ebx
^^^ ^^^
oper[1] oper[0]
(DM)}
spill_registers:=false;
case ops of
1:
begin
if (oper[0].typ=top_reg) and
(getregtype(oper[0].reg)=R_INTREGISTER) then
begin
supreg:=getsupreg(oper[0].reg);
if supreg in r then
begin
{Situation example:
push r20d ; r20d must be spilled into [ebp-12]
Change into:
push [ebp-12] ; Replace register by reference }
{ hopsize:=reg2opsize(oper[0].reg);}
oper[0].typ:=top_ref;
new(oper[0].ref);
oper[0].ref^:=spilltemplist[supreg];
{ oper[0].ref^.size:=hopsize;}
end;
end;
if oper[0].typ=top_ref then
begin
supreg:=getsupreg(oper[0].ref^.base);
if supreg in r then
begin
{Situation example:
push [r21d+4*r22d] ; r21d must be spilled into [ebp-12]
Change into:
mov r23d,[ebp-12] ; Use a help register
push [r23d+4*r22d] ; Replace register by helpregister }
subreg:=getsubreg(oper[0].ref^.base);
if oper[0].ref^.index=NR_NO then
pos:=Tai(previous)
else
pos:=get_insert_pos(Tai(previous),getsupreg(oper[0].ref^.index),RS_INVALID,RS_INVALID,unusedregsint);
rgget(list,pos,subreg,helpreg);
spill_registers:=true;
helpins:=Taicpu.op_ref_reg(A_MOV,reg2opsize(oper[0].ref^.base),spilltemplist[supreg],helpreg);
if pos=nil then
list.insertafter(helpins,list.first)
else
list.insertafter(helpins,pos.next);
rgunget(list,helpins,helpreg);
forward_allocation(Tai(helpins.next),unusedregsint);
oper[0].ref^.base:=helpreg;
end;
supreg:=getsupreg(oper[0].ref^.index);
if supreg in r then
begin
{Situation example:
push [r21d+4*r22d] ; r22d must be spilled into [ebp-12]
Change into:
mov r23d,[ebp-12] ; Use a help register
push [r21d+4*r23d] ; Replace register by helpregister }
subreg:=getsubreg(oper[0].ref^.index);
if oper[0].ref^.base=NR_NO then
pos:=Tai(previous)
else
pos:=get_insert_pos(Tai(previous),getsupreg(oper[0].ref^.base),RS_INVALID,RS_INVALID,unusedregsint);
rgget(list,pos,subreg,helpreg);
spill_registers:=true;
helpins:=Taicpu.op_ref_reg(A_MOV,reg2opsize(oper[0].ref^.index),spilltemplist[supreg],helpreg);
if pos=nil then
list.insertafter(helpins,list.first)
else
list.insertafter(helpins,pos.next);
rgunget(list,helpins,helpreg);
forward_allocation(Tai(helpins.next),unusedregsint);
oper[0].ref^.index:=helpreg;
end;
end;
end;
2:
begin
{ First spill the registers from the references. This is
required because the reference can be moved from this instruction
to a MOV instruction when spilling of the register operand is done }
for i:=0 to 1 do
if oper[i].typ=top_ref then
begin
supreg:=getsupreg(oper[i].ref^.base);
if supreg in r then
begin
{Situation example:
add r20d,[r21d+4*r22d] ; r21d must be spilled into [ebp-12]
Change into:
mov r23d,[ebp-12] ; Use a help register
add r20d,[r23d+4*r22d] ; Replace register by helpregister }
subreg:=getsubreg(oper[i].ref^.base);
if i=1 then
pos:=get_insert_pos(Tai(previous),getsupreg(oper[i].ref^.index),getsupreg(oper[0].reg),
RS_INVALID,unusedregsint)
else
pos:=get_insert_pos(Tai(previous),getsupreg(oper[i].ref^.index),RS_INVALID,RS_INVALID,unusedregsint);
rgget(list,pos,subreg,helpreg);
spill_registers:=true;
helpins:=Taicpu.op_ref_reg(A_MOV,reg2opsize(oper[i].ref^.base),spilltemplist[supreg],helpreg);
if pos=nil then
list.insertafter(helpins,list.first)
else
list.insertafter(helpins,pos.next);
oper[i].ref^.base:=helpreg;
rgunget(list,helpins,helpreg);
forward_allocation(Tai(helpins.next),unusedregsint);
end;
supreg:=getsupreg(oper[i].ref^.index);
if supreg in r then
begin
{Situation example:
add r20d,[r21d+4*r22d] ; r22d must be spilled into [ebp-12]
Change into:
mov r23d,[ebp-12] ; Use a help register
add r20d,[r21d+4*r23d] ; Replace register by helpregister }
subreg:=getsubreg(oper[i].ref^.index);
if i=1 then
pos:=get_insert_pos(Tai(previous),getsupreg(oper[i].ref^.base),getsupreg(oper[0].reg),
RS_INVALID,unusedregsint)
else
pos:=get_insert_pos(Tai(previous),getsupreg(oper[i].ref^.base),RS_INVALID,RS_INVALID,unusedregsint);
rgget(list,pos,subreg,helpreg);
spill_registers:=true;
helpins:=Taicpu.op_ref_reg(A_MOV,reg2opsize(oper[i].ref^.index),spilltemplist[supreg],helpreg);
if pos=nil then
list.insertafter(helpins,list.first)
else
list.insertafter(helpins,pos.next);
oper[i].ref^.index:=helpreg;
rgunget(list,helpins,helpreg);
forward_allocation(Tai(helpins.next),unusedregsint);
end;
end;
if (oper[0].typ=top_reg) and
(getregtype(oper[0].reg)=R_INTREGISTER) then
begin
supreg:=getsupreg(oper[0].reg);
subreg:=getsubreg(oper[0].reg);
if supreg in r then
if oper[1].typ=top_ref then
begin
{Situation example:
add [r20d],r21d ; r21d must be spilled into [ebp-12]
Change into:
mov r22d,[ebp-12] ; Use a help register
add [r20d],r22d ; Replace register by helpregister }
pos:=get_insert_pos(Tai(previous),getsupreg(oper[0].reg),
getsupreg(oper[1].ref^.base),getsupreg(oper[1].ref^.index),
unusedregsint);
rgget(list,pos,subreg,helpreg);
spill_registers:=true;
helpins:=Taicpu.op_ref_reg(A_MOV,reg2opsize(oper[0].reg),spilltemplist[supreg],helpreg);
if pos=nil then
list.insertafter(helpins,list.first)
else
list.insertafter(helpins,pos.next);
oper[0].reg:=helpreg;
rgunget(list,helpins,helpreg);
forward_allocation(Tai(helpins.next),unusedregsint);
end
else
begin
{Situation example:
add r20d,r21d ; r21d must be spilled into [ebp-12]
Change into:
add r20d,[ebp-12] ; Replace register by reference }
oper[0].typ:=top_ref;
new(oper[0].ref);
oper[0].ref^:=spilltemplist[supreg];
end;
end;
if (oper[1].typ=top_reg) and
(getregtype(oper[1].reg)=R_INTREGISTER) then
begin
supreg:=getsupreg(oper[1].reg);
subreg:=getsubreg(oper[1].reg);
if supreg in r then
begin
if oper[0].typ=top_ref then
begin
{Situation example:
add r20d,[r21d] ; r20d must be spilled into [ebp-12]
Change into:
mov r22d,[r21d] ; Use a help register
add [ebp-12],r22d ; Replace register by helpregister }
pos:=get_insert_pos(Tai(previous),getsupreg(oper[0].ref^.base),
getsupreg(oper[0].ref^.index),RS_INVALID,unusedregsint);
rgget(list,pos,subreg,helpreg);
spill_registers:=true;
op:=A_MOV;
hopsize:=opsize; {Save old value...}
if (opcode=A_MOVZX) or (opcode=A_MOVSX) or (opcode=A_LEA) then
begin
{Because 'movzx memory,register' does not exist...}
op:=opcode;
opcode:=A_MOV;
opsize:=reg2opsize(oper[1].reg);
end;
helpins:=Taicpu.op_ref_reg(op,hopsize,oper[0].ref^,helpreg);
if pos=nil then
list.insertafter(helpins,list.first)
else
list.insertafter(helpins,pos.next);
dispose(oper[0].ref);
oper[0].typ:=top_reg;
oper[0].reg:=helpreg;
oper[1].typ:=top_ref;
new(oper[1].ref);
oper[1].ref^:=spilltemplist[supreg];
rgunget(list,helpins,helpreg);
forward_allocation(Tai(helpins.next),unusedregsint);
end
else
begin
{Situation example:
add r20d,r21d ; r20d must be spilled into [ebp-12]
Change into:
add [ebp-12],r21d ; Replace register by reference }
if (opcode=A_MOVZX) or (opcode=A_MOVSX) then
begin
{Because 'movzx memory,register' does not exist...}
spill_registers:=true;
op:=opcode;
hopsize:=opsize;
opcode:=A_MOV;
opsize:=reg2opsize(oper[1].reg);
pos:=get_insert_pos(Tai(previous),getsupreg(oper[0].reg),RS_INVALID,RS_INVALID,unusedregsint);
rgget(list,pos,subreg,helpreg);
helpins:=Taicpu.op_reg_reg(op,hopsize,oper[0].reg,helpreg);
if pos=nil then
list.insertafter(helpins,list.first)
else
list.insertafter(helpins,pos.next);
oper[0].reg:=helpreg;
rgunget(list,helpins,helpreg);
forward_allocation(Tai(helpins.next),unusedregsint);
end;
oper[1].typ:=top_ref;
new(oper[1].ref);
oper[1].ref^:=spilltemplist[supreg];
end;
{ The i386 instruction set never gets boring...
some opcodes do not support a memory location as destination }
case opcode of
A_IMUL,
A_BT,A_BTS,
A_BTC,A_BTR :
begin
{Yikes! We just changed the destination register into
a memory location above here.
Situation example:
imul [ebp-12],r21d ; We need a help register
Change into:
mov r22d,[ebp-12] ; Use a help instruction (only for IMUL)
imul r22d,r21d ; Replace reference by helpregister
mov [ebp-12],r22d ; Use another help instruction}
rgget(list,Tai(previous),subreg,helpreg);
spill_registers:=true;
{First help instruction.}
helpins:=Taicpu.op_ref_reg(A_MOV,opsize,oper[1].ref^,helpreg);
if previous=nil then
list.insert(helpins)
else
list.insertafter(helpins,previous);
{Second help instruction.}
helpins:=Taicpu.op_reg_ref(A_MOV,opsize,helpreg,oper[1].ref^);
dispose(oper[1].ref);
oper[1].typ:=top_reg;
oper[1].reg:=helpreg;
list.insertafter(helpins,self);
end;
end;
end;
end;
end;
3:
begin
{$warning todo!!}
end;
end;
end;
{*****************************************************************************
Instruction table
*****************************************************************************}
procedure BuildInsTabCache;
{$ifndef NOAG386BIN}
var
i : longint;
{$endif}
begin
{$ifndef NOAG386BIN}
new(instabcache);
FillChar(instabcache^,sizeof(tinstabcache),$ff);
i:=0;
while (i<InsTabEntries) do
begin
if InsTabCache^[InsTab[i].OPcode]=-1 then
InsTabCache^[InsTab[i].OPcode]:=i;
inc(i);
end;
{$endif NOAG386BIN}
end;
procedure InitAsm;
begin
{$ifndef NOAG386BIN}
if not assigned(instabcache) then
BuildInsTabCache;
{$endif NOAG386BIN}
end;
procedure DoneAsm;
begin
{$ifndef NOAG386BIN}
if assigned(instabcache) then
begin
dispose(instabcache);
instabcache:=nil;
end;
{$endif NOAG386BIN}
end;
end.
{
$Log$
Revision 1.26 2003-09-24 21:15:49 florian
* fixed make cycle
Revision 1.25 2003/09/24 17:12:36 florian
* x86-64 adaptions
Revision 1.24 2003/09/23 17:56:06 peter
* locals and paras are allocated in the code generation
* tvarsym.localloc contains the location of para/local when
generating code for the current procedure
Revision 1.23 2003/09/14 14:22:51 daniel
* Fixed incorrect movzx spilling
Revision 1.22 2003/09/12 20:25:17 daniel
* Add BTR to destination memory location check in spilling
Revision 1.21 2003/09/10 19:14:31 daniel
* Failed attempt to restore broken fastspill functionality
Revision 1.20 2003/09/10 11:23:09 marco
* fix from peter for bts reg32,mem32 problem
Revision 1.19 2003/09/09 12:54:45 florian
* x86 instruction table updated to nasm 0.98.37:
- sse3 aka prescott support
- small fixes
Revision 1.18 2003/09/07 22:09:35 peter
* preparations for different default calling conventions
* various RA fixes
Revision 1.17 2003/09/03 15:55:02 peter
* NEWRA branch merged
Revision 1.16.2.4 2003/08/31 15:46:26 peter
* more updates for tregister
Revision 1.16.2.3 2003/08/29 17:29:00 peter
* next batch of updates
Revision 1.16.2.2 2003/08/28 18:35:08 peter
* tregister changed to cardinal
Revision 1.16.2.1 2003/08/27 19:55:54 peter
* first tregister patch
Revision 1.16 2003/08/21 17:20:19 peter
* first spill the registers of top_ref before spilling top_reg
Revision 1.15 2003/08/21 14:48:36 peter
* fix reg-supreg range check error
Revision 1.14 2003/08/20 16:52:01 daniel
* Some old register convention code removed
* A few changes to eliminate a few lines of code
Revision 1.13 2003/08/20 09:07:00 daniel
* New register coding now mandatory, some more convert_registers calls
removed.
Revision 1.12 2003/08/20 07:48:04 daniel
* Made internal assembler use new register coding
Revision 1.11 2003/08/19 13:58:33 daniel
* Corrected a comment.
Revision 1.10 2003/08/15 14:44:20 daniel
* Fixed newra compilation
Revision 1.9 2003/08/11 21:18:20 peter
* start of sparc support for newra
Revision 1.8 2003/08/09 18:56:54 daniel
* cs_regalloc renamed to cs_regvars to avoid confusion with register
allocator
* Some preventive changes to i386 spillinh code
Revision 1.7 2003/07/06 15:31:21 daniel
* Fixed register allocator. *Lots* of fixes.
Revision 1.6 2003/06/14 14:53:50 jonas
* fixed newra cycle for x86
* added constants for indicating source and destination operands of the
"move reg,reg" instruction to aasmcpu (and use those in rgobj)
Revision 1.5 2003/06/03 13:01:59 daniel
* Register allocator finished
Revision 1.4 2003/05/30 23:57:08 peter
* more sparc cleanup
* accumulator removed, splitted in function_return_reg (called) and
function_result_reg (caller)
Revision 1.3 2003/05/22 21:33:31 peter
* removed some unit dependencies
Revision 1.2 2002/04/25 16:12:09 florian
* fixed more problems with cpubase and x86-64
Revision 1.1 2003/04/25 12:43:40 florian
* merged i386/aasmcpu and x86_64/aasmcpu to x86/aasmcpu
Revision 1.18 2003/04/25 12:04:31 florian
* merged agx64att and ag386att to x86/agx86att
Revision 1.17 2003/04/22 14:33:38 peter
* removed some notes/hints
Revision 1.16 2003/04/22 10:09:35 daniel
+ Implemented the actual register allocator
+ Scratch registers unavailable when new register allocator used
+ maybe_save/maybe_restore unavailable when new register allocator used
Revision 1.15 2003/03/26 12:50:54 armin
* avoid problems with the ide in init/dome
Revision 1.14 2003/03/08 08:59:07 daniel
+ $define newra will enable new register allocator
+ getregisterint will return imaginary registers with $newra
+ -sr switch added, will skip register allocation so you can see
the direct output of the code generator before register allocation
Revision 1.13 2003/02/25 07:41:54 daniel
* Properly fixed reversed operands bug
Revision 1.12 2003/02/19 22:00:15 daniel
* Code generator converted to new register notation
- Horribily outdated todo.txt removed
Revision 1.11 2003/01/09 20:40:59 daniel
* Converted some code in cgx86.pas to new register numbering
Revision 1.10 2003/01/08 18:43:57 daniel
* Tregister changed into a record
Revision 1.9 2003/01/05 13:36:53 florian
* x86-64 compiles
+ very basic support for float128 type (x86-64 only)
Revision 1.8 2002/11/17 16:31:58 carl
* memory optimization (3-4%) : cleanup of tai fields,
cleanup of tdef and tsym fields.
* make it work for m68k
Revision 1.7 2002/11/15 01:58:54 peter
* merged changes from 1.0.7 up to 04-11
- -V option for generating bug report tracing
- more tracing for option parsing
- errors for cdecl and high()
- win32 import stabs
- win32 records<=8 are returned in eax:edx (turned off by default)
- heaptrc update
- more info for temp management in .s file with EXTDEBUG
Revision 1.6 2002/10/31 13:28:32 pierre
* correct last wrong fix for tw2158
Revision 1.5 2002/10/30 17:10:00 pierre
* merge of fix for tw2158 bug
Revision 1.4 2002/08/15 19:10:36 peter
* first things tai,tnode storing in ppu
Revision 1.3 2002/08/13 18:01:52 carl
* rename swatoperands to swapoperands
+ m68k first compilable version (still needs a lot of testing):
assembler generator, system information , inline
assembler reader.
Revision 1.2 2002/07/20 11:57:59 florian
* types.pas renamed to defbase.pas because D6 contains a types
unit so this would conflicts if D6 programms are compiled
+ Willamette/SSE2 instructions to assembler added
Revision 1.1 2002/07/01 18:46:29 peter
* internal linker
* reorganized aasm layer
}