fpc/compiler/ptype.pas

1760 lines
69 KiB
ObjectPascal

{
Copyright (c) 1998-2002 by Florian Klaempfl
Does parsing types for Free Pascal
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
****************************************************************************
}
unit ptype;
{$i fpcdefs.inc}
interface
uses
globtype,cclasses,
symtype,symdef,symbase;
type
TSingleTypeOption=(
stoIsForwardDef, { foward declaration }
stoAllowTypeDef, { allow type definitions }
stoAllowSpecialization, { allow type specialization }
stoParseClassParent { parse of parent class type }
);
TSingleTypeOptions=set of TSingleTypeOption;
procedure resolve_forward_types;
{ reads a string, file type or a type identifier }
procedure single_type(var def:tdef;options:TSingleTypeOptions);
{ reads any type declaration, where the resulting type will get name as type identifier }
procedure read_named_type(var def:tdef;const name : TIDString;genericdef:tstoreddef;genericlist:TFPObjectList;parseprocvardir:boolean);
{ reads any type declaration }
procedure read_anon_type(var def : tdef;parseprocvardir:boolean);
{ generate persistent type information like VMT, RTTI and inittables }
procedure write_persistent_type_info(st:tsymtable);
procedure generate_specialization(var tt:tdef;parse_class_parent:boolean);
implementation
uses
{ common }
cutils,
{ global }
globals,tokens,verbose,constexp,
systems,
{ target }
paramgr,procinfo,
{ symtable }
symconst,symsym,symtable,
defutil,defcmp,
{ modules }
fmodule,
{ pass 1 }
node,ncgrtti,nobj,
nmat,nadd,ncal,nset,ncnv,ninl,ncon,nld,nflw,
{ parser }
scanner,
pbase,pexpr,pdecsub,pdecvar,pdecobj,pdecl;
procedure resolve_forward_types;
var
i: longint;
hpd,
def : tdef;
srsym : tsym;
srsymtable : TSymtable;
hs : string;
begin
for i:=0 to current_module.checkforwarddefs.Count-1 do
begin
def:=tdef(current_module.checkforwarddefs[i]);
case def.typ of
pointerdef,
classrefdef :
begin
{ classrefdef inherits from pointerdef }
hpd:=tabstractpointerdef(def).pointeddef;
{ still a forward def ? }
if hpd.typ=forwarddef then
begin
{ try to resolve the forward }
if not assigned(tforwarddef(hpd).tosymname) then
internalerror(200211201);
hs:=tforwarddef(hpd).tosymname^;
searchsym(upper(hs),srsym,srsymtable);
{ we don't need the forwarddef anymore, dispose it }
hpd.free;
tabstractpointerdef(def).pointeddef:=nil; { if error occurs }
{ was a type sym found ? }
if assigned(srsym) and
(srsym.typ=typesym) then
begin
tabstractpointerdef(def).pointeddef:=ttypesym(srsym).typedef;
{ avoid wrong unused warnings web bug 801 PM }
inc(ttypesym(srsym).refs);
{ we need a class type for classrefdef }
if (def.typ=classrefdef) and
not(is_class(ttypesym(srsym).typedef)) and
not(is_objcclass(ttypesym(srsym).typedef)) then
MessagePos1(def.typesym.fileinfo,type_e_class_type_expected,ttypesym(srsym).typedef.typename);
end
else
begin
Message1(sym_e_forward_type_not_resolved,hs);
{ try to recover }
tabstractpointerdef(def).pointeddef:=generrordef;
end;
end;
end;
objectdef :
begin
{ give an error as the implementation may follow in an
other type block which is allowed by FPC modes }
if not(m_fpc in current_settings.modeswitches) and
(oo_is_forward in tobjectdef(def).objectoptions) then
MessagePos1(def.typesym.fileinfo,type_e_type_is_not_completly_defined,def.typename);
end;
else
internalerror(200811071);
end;
end;
current_module.checkforwarddefs.clear;
end;
procedure generate_specialization(var tt:tdef;parse_class_parent:boolean);
var
st : TSymtable;
srsym : tsym;
pt2 : tnode;
first,
err : boolean;
i : longint;
sym : tsym;
genericdef : tstoreddef;
generictype : ttypesym;
generictypelist : TFPObjectList;
oldsymtablestack : tsymtablestack;
oldextendeddefs : TFPHashObjectList;
hmodule : tmodule;
pu : tused_unit;
uspecializename,
specializename : string;
vmtbuilder : TVMTBuilder;
onlyparsepara : boolean;
specializest : tsymtable;
item: psymtablestackitem;
begin
{ retrieve generic def that we are going to replace }
genericdef:=tstoreddef(tt);
tt:=nil;
onlyparsepara:=false;
if not(df_generic in genericdef.defoptions) then
begin
Message(parser_e_special_onlygenerics);
tt:=generrordef;
onlyparsepara:=true;
end;
{ only need to record the tokens, then we don't know the type yet ... }
if parse_generic then
begin
{ ... but we have to insert a def into the symtable else the deflist
of generic and specialization might not be equally sized which
is later assumed }
tt:=tundefineddef.create;
if parse_class_parent then
tt:=genericdef;
onlyparsepara:=true;
end;
{ Only parse the parameters for recovery or
for recording in genericbuf }
if onlyparsepara then
begin
consume(_LSHARPBRACKET);
repeat
pt2:=factor(false,true);
pt2.free;
until not try_to_consume(_COMMA);
consume(_RSHARPBRACKET);
exit;
end;
if not try_to_consume(_LT) then
consume(_LSHARPBRACKET);
{ Parse generic parameters, for each undefineddef in the symtable of
the genericdef we need to have a new def }
err:=false;
first:=true;
generictypelist:=TFPObjectList.create(false);
case genericdef.typ of
procdef:
st:=genericdef.GetSymtable(gs_para);
objectdef,
recorddef:
st:=genericdef.GetSymtable(gs_record);
arraydef:
st:=tarraydef(genericdef).symtable;
procvardef:
st:=genericdef.GetSymtable(gs_para);
else
internalerror(200511182);
end;
{ Parse type parameters }
if not assigned(genericdef.typesym) then
internalerror(200710173);
specializename:=genericdef.typesym.realname;
for i:=0 to st.SymList.Count-1 do
begin
sym:=tsym(st.SymList[i]);
if (sp_generic_para in sym.symoptions) then
begin
if not first then
consume(_COMMA)
else
first:=false;
pt2:=factor(false,true);
if pt2.nodetype=typen then
begin
if df_generic in pt2.resultdef.defoptions then
Message(parser_e_no_generics_as_params);
generictype:=ttypesym.create(sym.realname,pt2.resultdef);
generictypelist.add(generictype);
if not assigned(pt2.resultdef.typesym) then
message(type_e_generics_cannot_reference_itself)
else
specializename:=specializename+'$'+pt2.resultdef.typesym.realname;
end
else
begin
Message(type_e_type_id_expected);
err:=true;
end;
pt2.free;
end;
end;
uspecializename:=upper(specializename);
{ force correct error location if too much type parameters are passed }
if not (token in [_RSHARPBRACKET,_GT]) then
consume(_RSHARPBRACKET);
{ Special case if we are referencing the current defined object }
if assigned(current_structdef) and
(current_structdef.objname^=uspecializename) then
tt:=current_structdef;
{ for units specializations can already be needed in the interface, therefor we
will use the global symtable. Programs don't have a globalsymtable and there we
use the localsymtable }
if current_module.is_unit then
specializest:=current_module.globalsymtable
else
specializest:=current_module.localsymtable;
{ Can we reuse an already specialized type? }
if not assigned(tt) then
begin
srsym:=tsym(specializest.find(uspecializename));
if assigned(srsym) then
begin
if srsym.typ<>typesym then
internalerror(200710171);
tt:=ttypesym(srsym).typedef;
end;
end;
if not assigned(tt) then
begin
{ Setup symtablestack at definition time
to get types right, however this is not perfect, we should probably record
the resolved symbols }
oldsymtablestack:=symtablestack;
oldextendeddefs:=current_module.extendeddefs;
current_module.extendeddefs:=TFPHashObjectList.create(true);
symtablestack:=tdefawaresymtablestack.create;
if not assigned(genericdef) then
internalerror(200705151);
hmodule:=find_module_from_symtable(genericdef.owner);
if hmodule=nil then
internalerror(200705152);
pu:=tused_unit(hmodule.used_units.first);
while assigned(pu) do
begin
if not assigned(pu.u.globalsymtable) then
internalerror(200705153);
symtablestack.push(pu.u.globalsymtable);
pu:=tused_unit(pu.next);
end;
if assigned(hmodule.globalsymtable) then
symtablestack.push(hmodule.globalsymtable);
{ hacky, but necessary to insert the newly generated class properly }
item:=oldsymtablestack.stack;
while assigned(item) and (item^.symtable.symtablelevel>main_program_level) do
item:=item^.next;
if assigned(item) and (item^.symtable<>symtablestack.top) then
symtablestack.push(item^.symtable);
{ Reparse the original type definition }
if not err then
begin
{ First a new typesym so we can reuse this specialization and
references to this specialization can be handled }
srsym:=ttypesym.create(specializename,generrordef);
specializest.insert(srsym);
if not assigned(genericdef.generictokenbuf) then
internalerror(200511171);
current_scanner.startreplaytokens(genericdef.generictokenbuf);
read_named_type(tt,specializename,genericdef,generictypelist,false);
ttypesym(srsym).typedef:=tt;
tt.typesym:=srsym;
case tt.typ of
{ Build VMT indexes for classes }
objectdef:
begin
vmtbuilder:=TVMTBuilder.Create(tobjectdef(tt));
vmtbuilder.generate_vmt;
vmtbuilder.free;
end;
{ handle params, calling convention, etc }
procvardef:
begin
if not check_proc_directive(true) then
begin
try_consume_hintdirective(ttypesym(srsym).symoptions,ttypesym(srsym).deprecatedmsg);
consume(_SEMICOLON);
end;
parse_var_proc_directives(ttypesym(srsym));
handle_calling_convention(tprocvardef(tt));
if try_consume_hintdirective(ttypesym(srsym).symoptions,ttypesym(srsym).deprecatedmsg) then
consume(_SEMICOLON);
end;
end;
{ Consume the semicolon if it is also recorded }
try_to_consume(_SEMICOLON);
end;
{ Restore symtablestack }
current_module.extendeddefs.free;
current_module.extendeddefs:=oldextendeddefs;
symtablestack.free;
symtablestack:=oldsymtablestack;
end
else
begin
{ There is comment few lines before ie 200512115
saying "We are parsing the same objectdef, the def index numbers
are the same". This is wrong (index numbers are not same)
in case there is specialization (S2 in this case) inside
specialized generic (G2 in this case) which is equal to
some previous specialization (S1 in this case). In that case,
new symbol is not added to currently specialized type
(S in this case) for that specializations (S2 in this case),
and this results in that specialization and generic definition
don't have same number of elements in their object symbol tables.
This patch adds undefined def to ensure that those
two symbol tables will have same number of elements.
}
tundefineddef.create;
end;
generictypelist.free;
if not try_to_consume(_GT) then
consume(_RSHARPBRACKET);
end;
procedure id_type(var def : tdef;isforwarddef,checkcurrentrecdef:boolean); forward;
{ def is the outermost type in which other types have to be searched
isforward indicates whether the current definition can be a forward definition
if assigned, currentstructstack is a list of tabstractrecorddefs that, from
last to first, are child types of def that are not yet visible via the
normal symtable searching routines because they are types that are currently
being parsed (so using id_type on them after pushing def on the
symtablestack would result in errors because they'd come back as errordef)
}
procedure parse_nested_types(var def: tdef; isforwarddef: boolean; currentstructstack: tfpobjectlist);
var
t2: tdef;
structstackindex: longint;
begin
if assigned(currentstructstack) then
structstackindex:=currentstructstack.count-1
else
structstackindex:=-1;
{ handle types inside classes, e.g. TNode.TLongint }
while (token=_POINT) do
begin
if parse_generic then
begin
consume(_POINT);
consume(_ID);
end
else if is_class_or_object(def) or is_record(def) then
begin
consume(_POINT);
if (structstackindex>=0) and
(tabstractrecorddef(currentstructstack[structstackindex]).objname^=pattern) then
begin
def:=tdef(currentstructstack[structstackindex]);
dec(structstackindex);
consume(_ID);
end
else
begin
structstackindex:=-1;
symtablestack.push(tabstractrecorddef(def).symtable);
t2:=generrordef;
id_type(t2,isforwarddef,false);
symtablestack.pop(tabstractrecorddef(def).symtable);
def:=t2;
end;
end
else
break;
end;
end;
function try_parse_structdef_nested_type(out def: tdef; basedef: tabstractrecorddef; isfowarddef: boolean): boolean;
var
structdef : tdef;
structdefstack : tfpobjectlist;
begin
{ use of current parsed object:
classes, objects, records can be used also in themself }
structdef:=basedef;
structdefstack:=nil;
while assigned(structdef) and (structdef.typ in [objectdef,recorddef]) do
begin
if (tabstractrecorddef(structdef).objname^=pattern) then
begin
consume(_ID);
def:=structdef;
{ we found the top-most match, now check how far down we can
follow }
structdefstack:=tfpobjectlist.create(false);
structdef:=basedef;
while (structdef<>def) do
begin
structdefstack.add(structdef);
structdef:=tabstractrecorddef(structdef.owner.defowner);
end;
parse_nested_types(def,isfowarddef,structdefstack);
structdefstack.free;
result:=true;
exit;
end;
structdef:=tdef(tabstractrecorddef(structdef).owner.defowner);
end;
result:=false;
end;
procedure id_type(var def : tdef;isforwarddef,checkcurrentrecdef:boolean);
{ reads a type definition }
{ to a appropriating tdef, s gets the name of }
{ the type to allow name mangling }
var
is_unit_specific : boolean;
pos : tfileposinfo;
srsym : tsym;
srsymtable : TSymtable;
s,sorg : TIDString;
t : ttoken;
begin
s:=pattern;
sorg:=orgpattern;
pos:=current_tokenpos;
{ use of current parsed object:
classes, objects, records can be used also in themself }
if checkcurrentrecdef and
try_parse_structdef_nested_type(def,current_structdef,isforwarddef) then
exit;
{ Use the special searchsym_type that search only types }
searchsym_type(s,srsym,srsymtable);
{ handle unit specification like System.Writeln }
is_unit_specific:=try_consume_unitsym(srsym,srsymtable,t);
consume(t);
{ Types are first defined with an error def before assigning
the real type so check if it's an errordef. if so then
give an error. Only check for typesyms in the current symbol
table as forwarddef are not resolved directly }
if assigned(srsym) and
(srsym.typ=typesym) and
(ttypesym(srsym).typedef.typ=errordef) then
begin
Message1(type_e_type_is_not_completly_defined,ttypesym(srsym).realname);
def:=generrordef;
exit;
end;
{ are we parsing a possible forward def ? }
if isforwarddef and
not(is_unit_specific) then
begin
def:=tforwarddef.create(sorg,pos);
exit;
end;
{ unknown sym ? }
if not assigned(srsym) then
begin
Message1(sym_e_id_not_found,sorg);
def:=generrordef;
exit;
end;
{ type sym ? }
if (srsym.typ<>typesym) then
begin
Message(type_e_type_id_expected);
def:=generrordef;
exit;
end;
{ Give an error when referring to an errordef }
if (ttypesym(srsym).typedef.typ=errordef) then
begin
Message(sym_e_error_in_type_def);
def:=generrordef;
exit;
end;
def:=ttypesym(srsym).typedef;
end;
procedure single_type(var def:tdef;options:TSingleTypeOptions);
var
t2 : tdef;
dospecialize,
again : boolean;
begin
dospecialize:=false;
repeat
again:=false;
case token of
_STRING:
string_dec(def,stoAllowTypeDef in options);
_FILE:
begin
consume(_FILE);
if (token=_OF) then
begin
if not(stoAllowTypeDef in options) then
Message(parser_e_no_local_para_def);
consume(_OF);
single_type(t2,[]);
if is_managed_type(t2) then
Message(parser_e_no_refcounted_typed_file);
def:=tfiledef.createtyped(t2);
end
else
def:=cfiletype;
end;
_ID:
begin
if try_to_consume(_SPECIALIZE) then
begin
if ([stoAllowSpecialization,stoAllowTypeDef] * options = []) then
begin
Message(parser_e_no_local_para_def);
{ try to recover }
while token<>_SEMICOLON do
consume(token);
def:=generrordef;
end
else
begin
dospecialize:=true;
again:=true;
end;
end
else
begin
id_type(def,stoIsForwardDef in options,true);
parse_nested_types(def,stoIsForwardDef in options,nil);
end;
end;
else
begin
message(type_e_type_id_expected);
def:=generrordef;
end;
end;
until not again;
if ([stoAllowSpecialization,stoAllowTypeDef] * options <> []) and
(m_delphi in current_settings.modeswitches) then
dospecialize:=token=_LSHARPBRACKET;
if dospecialize then
generate_specialization(def,stoParseClassParent in options)
else
begin
if assigned(current_specializedef) and (def=current_specializedef.genericdef) then
begin
def:=current_specializedef
end
else if (def=current_genericdef) then
begin
def:=current_genericdef
end
else if (df_generic in def.defoptions) then
begin
Message(parser_e_no_generics_as_types);
def:=generrordef;
end
else if is_classhelper(def) and
not (stoParseClassParent in options) then
begin
Message(parser_e_no_category_as_types);
def:=generrordef
end
end;
end;
procedure parse_record_members;
procedure maybe_parse_hint_directives(pd:tprocdef);
var
dummysymoptions : tsymoptions;
deprecatedmsg : pshortstring;
begin
dummysymoptions:=[];
deprecatedmsg:=nil;
while try_consume_hintdirective(dummysymoptions,deprecatedmsg) do
Consume(_SEMICOLON);
if assigned(pd) then
begin
pd.symoptions:=pd.symoptions+dummysymoptions;
pd.deprecatedmsg:=deprecatedmsg;
end
else
stringdispose(deprecatedmsg);
end;
var
pd : tprocdef;
oldparse_only: boolean;
member_blocktype : tblock_type;
fields_allowed, is_classdef, classfields: boolean;
vdoptions: tvar_dec_options;
begin
{ empty record declaration ? }
if (token=_SEMICOLON) then
Exit;
current_structdef.symtable.currentvisibility:=vis_public;
fields_allowed:=true;
is_classdef:=false;
classfields:=false;
member_blocktype:=bt_general;
repeat
case token of
_TYPE :
begin
consume(_TYPE);
member_blocktype:=bt_type;
{ local and anonymous records can not have inner types. skip top record symtable }
if (current_structdef.objname^='') or
not(symtablestack.stack^.next^.symtable.symtabletype in [globalsymtable,staticsymtable,objectsymtable,recordsymtable]) then
Message(parser_e_no_types_in_local_anonymous_records);
end;
_VAR :
begin
consume(_VAR);
fields_allowed:=true;
member_blocktype:=bt_general;
classfields:=is_classdef;
is_classdef:=false;
end;
_CONST:
begin
consume(_CONST);
member_blocktype:=bt_const;
end;
_ID, _CASE, _OPERATOR :
begin
case idtoken of
_PRIVATE :
begin
consume(_PRIVATE);
current_structdef.symtable.currentvisibility:=vis_private;
include(current_structdef.objectoptions,oo_has_private);
fields_allowed:=true;
is_classdef:=false;
classfields:=false;
member_blocktype:=bt_general;
end;
_PROTECTED :
begin
consume(_PROTECTED);
current_structdef.symtable.currentvisibility:=vis_protected;
include(current_structdef.objectoptions,oo_has_protected);
fields_allowed:=true;
is_classdef:=false;
classfields:=false;
member_blocktype:=bt_general;
end;
_PUBLIC :
begin
consume(_PUBLIC);
current_structdef.symtable.currentvisibility:=vis_public;
fields_allowed:=true;
is_classdef:=false;
classfields:=false;
member_blocktype:=bt_general;
end;
_PUBLISHED :
begin
Message(parser_e_no_record_published);
consume(_PUBLISHED);
current_structdef.symtable.currentvisibility:=vis_published;
fields_allowed:=true;
is_classdef:=false;
classfields:=false;
member_blocktype:=bt_general;
end;
_STRICT :
begin
consume(_STRICT);
if token=_ID then
begin
case idtoken of
_PRIVATE:
begin
consume(_PRIVATE);
current_structdef.symtable.currentvisibility:=vis_strictprivate;
include(current_structdef.objectoptions,oo_has_strictprivate);
end;
_PROTECTED:
begin
consume(_PROTECTED);
current_structdef.symtable.currentvisibility:=vis_strictprotected;
include(current_structdef.objectoptions,oo_has_strictprotected);
end;
else
message(parser_e_protected_or_private_expected);
end;
end
else
message(parser_e_protected_or_private_expected);
fields_allowed:=true;
is_classdef:=false;
classfields:=false;
member_blocktype:=bt_general;
end
else
if is_classdef and (idtoken=_OPERATOR) then
begin
oldparse_only:=parse_only;
parse_only:=true;
pd:=parse_proc_dec(is_classdef,current_structdef);
{ this is for error recovery as well as forward }
{ interface mappings, i.e. mapping to a method }
{ which isn't declared yet }
if assigned(pd) then
begin
parse_record_proc_directives(pd);
handle_calling_convention(pd);
{ add definition to procsym }
proc_add_definition(pd);
end;
maybe_parse_hint_directives(pd);
parse_only:=oldparse_only;
fields_allowed:=false;
is_classdef:=false;
end
else
begin
if member_blocktype=bt_general then
begin
if (not fields_allowed) then
Message(parser_e_field_not_allowed_here);
vdoptions:=[vd_record];
if classfields then
include(vdoptions,vd_class);
read_record_fields(vdoptions);
end
else if member_blocktype=bt_type then
types_dec(true)
else if member_blocktype=bt_const then
consts_dec(true)
else
internalerror(201001110);
end;
end;
end;
_PROPERTY :
begin
struct_property_dec(is_classdef);
fields_allowed:=false;
is_classdef:=false;
end;
_CLASS:
begin
is_classdef:=false;
{ read class method/field/property }
consume(_CLASS);
{ class modifier is only allowed for procedures, functions, }
{ constructors, destructors, fields and properties }
if not(token in [_FUNCTION,_PROCEDURE,_PROPERTY,_VAR,_CONSTRUCTOR,_DESTRUCTOR,_OPERATOR]) and
not((token=_ID) and (idtoken=_OPERATOR)) then
Message(parser_e_procedure_or_function_expected);
is_classdef:=true;
end;
_PROCEDURE,
_FUNCTION:
begin
oldparse_only:=parse_only;
parse_only:=true;
pd:=parse_proc_dec(is_classdef,current_structdef);
{ this is for error recovery as well as forward }
{ interface mappings, i.e. mapping to a method }
{ which isn't declared yet }
if assigned(pd) then
begin
parse_record_proc_directives(pd);
{ since records have no inheritance don't allow non static
class methods. delphi do so. }
if is_classdef and not (po_staticmethod in pd.procoptions) then
MessagePos(pd.fileinfo, parser_e_class_methods_only_static_in_records);
handle_calling_convention(pd);
{ add definition to procsym }
proc_add_definition(pd);
end;
maybe_parse_hint_directives(pd);
parse_only:=oldparse_only;
fields_allowed:=false;
is_classdef:=false;
end;
_CONSTRUCTOR :
begin
if not is_classdef then
Message(parser_e_no_constructor_in_records);
if not is_classdef and (current_structdef.symtable.currentvisibility <> vis_public) then
Message(parser_w_constructor_should_be_public);
{ only 1 class constructor is allowed }
if is_classdef and (oo_has_class_constructor in current_structdef.objectoptions) then
Message1(parser_e_only_one_class_constructor_allowed, current_structdef.objrealname^);
oldparse_only:=parse_only;
parse_only:=true;
if is_classdef then
pd:=class_constructor_head
else
pd:=constructor_head;
parse_record_proc_directives(pd);
handle_calling_convention(pd);
{ add definition to procsym }
proc_add_definition(pd);
maybe_parse_hint_directives(pd);
parse_only:=oldparse_only;
fields_allowed:=false;
is_classdef:=false;
end;
_DESTRUCTOR :
begin
if not is_classdef then
Message(parser_e_no_destructor_in_records);
{ only 1 class destructor is allowed }
if is_classdef and (oo_has_class_destructor in current_structdef.objectoptions) then
Message1(parser_e_only_one_class_destructor_allowed, current_structdef.objrealname^);
oldparse_only:=parse_only;
parse_only:=true;
if is_classdef then
pd:=class_destructor_head
else
pd:=destructor_head;
parse_record_proc_directives(pd);
handle_calling_convention(pd);
{ add definition to procsym }
proc_add_definition(pd);
maybe_parse_hint_directives(pd);
parse_only:=oldparse_only;
fields_allowed:=false;
is_classdef:=false;
end;
_END :
begin
consume(_END);
break;
end;
else
consume(_ID); { Give a ident expected message, like tp7 }
end;
until false;
end;
{ reads a record declaration }
function record_dec(const n:tidstring;genericdef:tstoreddef;genericlist:TFPObjectList):tdef;
var
old_current_structdef: tabstractrecorddef;
old_current_genericdef,
old_current_specializedef: tstoreddef;
old_parse_generic: boolean;
recst: trecordsymtable;
begin
old_current_structdef:=current_structdef;
old_current_genericdef:=current_genericdef;
old_current_specializedef:=current_specializedef;
old_parse_generic:=parse_generic;
current_genericdef:=nil;
current_specializedef:=nil;
{ create recdef }
recst:=trecordsymtable.create(n,current_settings.packrecords);
current_structdef:=trecorddef.create(n,recst);
result:=current_structdef;
{ insert in symtablestack }
symtablestack.push(recst);
{ usage of specialized type inside its generic template }
if assigned(genericdef) then
current_specializedef:=current_structdef
{ reject declaration of generic class inside generic class }
else if assigned(genericlist) then
current_genericdef:=current_structdef;
insert_generic_parameter_types(current_structdef,genericdef,genericlist);
parse_generic:=(df_generic in current_structdef.defoptions);
if m_advanced_records in current_settings.modeswitches then
parse_record_members
else
begin
read_record_fields([vd_record]);
consume(_END);
end;
{ make the record size aligned }
recst.addalignmentpadding;
{ restore symtable stack }
symtablestack.pop(recst);
if trecorddef(current_structdef).is_packed and is_managed_type(current_structdef) then
Message(type_e_no_packed_inittable);
{ restore old state }
parse_generic:=old_parse_generic;
current_structdef:=old_current_structdef;
current_genericdef:=old_current_genericdef;
current_specializedef:=old_current_specializedef;
end;
{ reads a type definition and returns a pointer to it }
procedure read_named_type(var def : tdef;const name : TIDString;genericdef:tstoreddef;genericlist:TFPObjectList;parseprocvardir:boolean);
var
pt : tnode;
tt2 : tdef;
aktenumdef : tenumdef;
s : TIDString;
l,v : TConstExprInt;
oldpackrecords : longint;
defpos,storepos : tfileposinfo;
procedure expr_type;
var
pt1,pt2 : tnode;
lv,hv : TConstExprInt;
old_block_type : tblock_type;
dospecialize : boolean;
structdef: tdef;
begin
old_block_type:=block_type;
dospecialize:=false;
{ use of current parsed object:
classes, objects, records can be used also in themself }
if (token=_ID) then
if try_parse_structdef_nested_type(def,current_structdef,false) then
exit;
{ Generate a specialization in FPC mode? }
dospecialize:=not(m_delphi in current_settings.modeswitches) and try_to_consume(_SPECIALIZE);
{ we can't accept a equal in type }
pt1:=comp_expr(false,true);
if not dospecialize and
try_to_consume(_POINTPOINT) then
begin
{ get high value of range }
pt2:=comp_expr(false,false);
{ make both the same type or give an error. This is not
done when both are integer values, because typecasting
between -3200..3200 will result in a signed-unsigned
conflict and give a range check error (PFV) }
if not(is_integer(pt1.resultdef) and is_integer(pt2.resultdef)) then
inserttypeconv(pt1,pt2.resultdef);
{ both must be evaluated to constants now }
if (pt1.nodetype=ordconstn) and
(pt2.nodetype=ordconstn) then
begin
lv:=tordconstnode(pt1).value;
hv:=tordconstnode(pt2).value;
{ Check bounds }
if hv<lv then
message(parser_e_upper_lower_than_lower)
else if (lv.signed and (lv.svalue<0)) and (not hv.signed and (hv.uvalue>qword(high(int64)))) then
message(type_e_cant_eval_constant_expr)
else
begin
{ All checks passed, create the new def }
case pt1.resultdef.typ of
enumdef :
def:=tenumdef.create_subrange(tenumdef(pt1.resultdef),lv.svalue,hv.svalue);
orddef :
begin
if is_char(pt1.resultdef) then
def:=torddef.create(uchar,lv,hv)
else
if is_boolean(pt1.resultdef) then
def:=torddef.create(pasbool,lv,hv)
else if is_signed(pt1.resultdef) then
def:=torddef.create(range_to_basetype(lv,hv),lv,hv)
else
def:=torddef.create(range_to_basetype(lv,hv),lv,hv);
end;
end;
end;
end
else
Message(sym_e_error_in_type_def);
pt2.free;
end
else
begin
{ a simple type renaming or generic specialization }
if (pt1.nodetype=typen) then
begin
def:=ttypenode(pt1).resultdef;
{ Delphi mode specialization? }
if (m_delphi in current_settings.modeswitches) then
dospecialize:=token=_LSHARPBRACKET;
if dospecialize then
generate_specialization(def,false)
else
begin
if assigned(current_specializedef) and (def=current_specializedef.genericdef) then
begin
def:=current_specializedef
end
else if (def=current_genericdef) then
begin
def:=current_genericdef
end
else if (df_generic in def.defoptions) then
begin
Message(parser_e_no_generics_as_types);
def:=generrordef;
end
else if is_classhelper(def) then
begin
Message(parser_e_no_category_as_types);
def:=generrordef
end
end;
end
else
Message(sym_e_error_in_type_def);
end;
pt1.free;
block_type:=old_block_type;
end;
procedure set_dec;
begin
consume(_SET);
consume(_OF);
read_anon_type(tt2,true);
if assigned(tt2) then
begin
case tt2.typ of
{ don't forget that min can be negativ PM }
enumdef :
if (tenumdef(tt2).min>=0) and
(tenumdef(tt2).max<=255) then
// !! def:=tsetdef.create(tt2,tenumdef(tt2.def).min,tenumdef(tt2.def).max))
def:=tsetdef.create(tt2,tenumdef(tt2).min,tenumdef(tt2).max)
else
Message(sym_e_ill_type_decl_set);
orddef :
begin
if (torddef(tt2).ordtype<>uvoid) and
(torddef(tt2).ordtype<>uwidechar) and
(torddef(tt2).low>=0) then
// !! def:=tsetdef.create(tt2,torddef(tt2.def).low,torddef(tt2.def).high))
if Torddef(tt2).high>int64(high(byte)) then
message(sym_e_ill_type_decl_set)
else
def:=tsetdef.create(tt2,torddef(tt2).low.svalue,torddef(tt2).high.svalue)
else
Message(sym_e_ill_type_decl_set);
end;
else
Message(sym_e_ill_type_decl_set);
end;
end
else
def:=generrordef;
end;
procedure array_dec(is_packed:boolean;genericdef:tstoreddef;genericlist:TFPObjectList);
var
lowval,
highval : TConstExprInt;
indexdef : tdef;
hdef : tdef;
arrdef : tarraydef;
procedure setdefdecl(def:tdef);
begin
case def.typ of
enumdef :
begin
lowval:=tenumdef(def).min;
highval:=tenumdef(def).max;
if (m_fpc in current_settings.modeswitches) and
(tenumdef(def).has_jumps) then
Message(type_e_array_index_enums_with_assign_not_possible);
indexdef:=def;
end;
orddef :
begin
if torddef(def).ordtype in [uchar,
u8bit,u16bit,
s8bit,s16bit,s32bit,
{$ifdef cpu64bitaddr}
u32bit,s64bit,
{$endif cpu64bitaddr}
pasbool,bool8bit,bool16bit,bool32bit,bool64bit,
uwidechar] then
begin
lowval:=torddef(def).low;
highval:=torddef(def).high;
indexdef:=def;
end
else
Message1(parser_e_type_cant_be_used_in_array_index,def.typename);
end;
else
Message(sym_e_error_in_type_def);
end;
end;
var
old_current_genericdef,
old_current_specializedef: tstoreddef;
old_parse_generic: boolean;
begin
old_current_genericdef:=current_genericdef;
old_current_specializedef:=current_specializedef;
old_parse_generic:=parse_generic;
current_genericdef:=nil;
current_specializedef:=nil;
arrdef:=nil;
consume(_ARRAY);
{ open array? }
if try_to_consume(_LECKKLAMMER) then
begin
{ defaults }
indexdef:=generrordef;
{ use defaults which don't overflow the compiler }
lowval:=0;
highval:=0;
repeat
{ read the expression and check it, check apart if the
declaration is an enum declaration because that needs to
be parsed by readtype (PFV) }
if token=_LKLAMMER then
begin
read_anon_type(hdef,true);
setdefdecl(hdef);
end
else
begin
pt:=expr(true);
if pt.nodetype=typen then
setdefdecl(pt.resultdef)
else
begin
if (pt.nodetype=rangen) then
begin
if (trangenode(pt).left.nodetype=ordconstn) and
(trangenode(pt).right.nodetype=ordconstn) then
begin
{ make both the same type or give an error. This is not
done when both are integer values, because typecasting
between -3200..3200 will result in a signed-unsigned
conflict and give a range check error (PFV) }
if not(is_integer(trangenode(pt).left.resultdef) and is_integer(trangenode(pt).left.resultdef)) then
inserttypeconv(trangenode(pt).left,trangenode(pt).right.resultdef);
lowval:=tordconstnode(trangenode(pt).left).value;
highval:=tordconstnode(trangenode(pt).right).value;
if highval<lowval then
begin
Message(parser_e_array_lower_less_than_upper_bound);
highval:=lowval;
end
else if (lowval<int64(low(asizeint))) or
(highval>high(asizeint)) then
begin
Message(parser_e_array_range_out_of_bounds);
lowval :=0;
highval:=0;
end;
if is_integer(trangenode(pt).left.resultdef) then
range_to_type(lowval,highval,indexdef)
else
indexdef:=trangenode(pt).left.resultdef;
end
else
Message(type_e_cant_eval_constant_expr);
end
else
Message(sym_e_error_in_type_def)
end;
pt.free;
end;
{ if the array is already created add the new arrray
as element of the existing array, otherwise create a new array }
if assigned(arrdef) then
begin
arrdef.elementdef:=tarraydef.create(lowval.svalue,highval.svalue,indexdef);
arrdef:=tarraydef(arrdef.elementdef);
end
else
begin
arrdef:=tarraydef.create(lowval.svalue,highval.svalue,indexdef);
def:=arrdef;
end;
if is_packed then
include(arrdef.arrayoptions,ado_IsBitPacked);
if token=_COMMA then
consume(_COMMA)
else
break;
until false;
consume(_RECKKLAMMER);
end
else
begin
if is_packed then
Message(parser_e_packed_dynamic_open_array);
arrdef:=tarraydef.create(0,-1,s32inttype);
include(arrdef.arrayoptions,ado_IsDynamicArray);
def:=arrdef;
end;
if assigned(arrdef) then
begin
{ usage of specialized type inside its generic template }
if assigned(genericdef) then
current_specializedef:=arrdef
{ reject declaration of generic class inside generic class }
else if assigned(genericlist) then
current_genericdef:=arrdef;
symtablestack.push(arrdef.symtable);
insert_generic_parameter_types(arrdef,genericdef,genericlist);
parse_generic:=(df_generic in arrdef.defoptions);
end;
consume(_OF);
read_anon_type(tt2,true);
{ set element type of the last array definition }
if assigned(arrdef) then
begin
symtablestack.pop(arrdef.symtable);
arrdef.elementdef:=tt2;
if is_packed and
is_managed_type(tt2) then
Message(type_e_no_packed_inittable);
end;
{ restore old state }
parse_generic:=old_parse_generic;
current_genericdef:=old_current_genericdef;
current_specializedef:=old_current_specializedef;
end;
function procvar_dec(genericdef:tstoreddef;genericlist:TFPObjectList):tdef;
var
is_func:boolean;
pd:tabstractprocdef;
newtype:ttypesym;
old_current_genericdef,
old_current_specializedef: tstoreddef;
old_parse_generic: boolean;
begin
old_current_genericdef:=current_genericdef;
old_current_specializedef:=current_specializedef;
old_parse_generic:=parse_generic;
current_genericdef:=nil;
current_specializedef:=nil;
is_func:=(token=_FUNCTION);
consume(token);
pd:=tprocvardef.create(normal_function_level);
{ usage of specialized type inside its generic template }
if assigned(genericdef) then
current_specializedef:=pd
{ reject declaration of generic class inside generic class }
else if assigned(genericlist) then
current_genericdef:=pd;
symtablestack.push(pd.parast);
insert_generic_parameter_types(pd,genericdef,genericlist);
parse_generic:=(df_generic in pd.defoptions);
{ don't allow to add defs to the symtable - use it for type param search only }
tparasymtable(pd.parast).readonly:=true;
if token=_LKLAMMER then
parse_parameter_dec(pd);
if is_func then
begin
consume(_COLON);
single_type(pd.returndef,[]);
end;
if try_to_consume(_OF) then
begin
consume(_OBJECT);
include(pd.procoptions,po_methodpointer);
end
else if (m_nested_procvars in current_settings.modeswitches) and
try_to_consume(_IS) then
begin
consume(_NESTED);
pd.parast.symtablelevel:=normal_function_level+1;
pd.check_mark_as_nested;
end;
symtablestack.pop(pd.parast);
tparasymtable(pd.parast).readonly:=false;
result:=pd;
{ possible proc directives }
if parseprocvardir then
begin
if check_proc_directive(true) then
begin
newtype:=ttypesym.create('unnamed',result);
parse_var_proc_directives(tsym(newtype));
newtype.typedef:=nil;
result.typesym:=nil;
newtype.free;
end;
{ Add implicit hidden parameters and function result }
handle_calling_convention(pd);
end;
{ restore old state }
parse_generic:=old_parse_generic;
current_genericdef:=old_current_genericdef;
current_specializedef:=old_current_specializedef;
end;
const
SingleTypeOptionsInTypeBlock:array[Boolean] of TSingleTypeOptions = ([],[stoIsForwardDef]);
var
p : tnode;
hdef : tdef;
enumdupmsg, first, is_specialize : boolean;
oldlocalswitches : tlocalswitches;
bitpacking: boolean;
stitem: psymtablestackitem;
sym: tsym;
st: tsymtable;
begin
def:=nil;
case token of
_STRING,_FILE:
begin
single_type(def,[stoAllowTypeDef]);
end;
_LKLAMMER:
begin
consume(_LKLAMMER);
first:=true;
{ allow negativ value_str }
l:=int64(-1);
enumdupmsg:=false;
{ check that we are not adding an enum from specialization
we can't just use current_specializedef because of inner types
like specialize array of record }
is_specialize:=false;
stitem:=symtablestack.stack;
while assigned(stitem) do
begin
{ check records, classes and arrays because they can be specialized }
if stitem^.symtable.symtabletype in [recordsymtable,ObjectSymtable,arraysymtable] then
begin
is_specialize:=is_specialize or (df_specialization in tstoreddef(stitem^.symtable.defowner).defoptions);
stitem:=stitem^.next;
end
else
break;
end;
if not is_specialize then
aktenumdef:=tenumdef.create
else
aktenumdef:=nil;
repeat
{ if it is a specialization then search the first enum member
and get the member owner instead of just created enumdef }
if not assigned(aktenumdef) then
begin
searchsym(pattern,sym,st);
if sym.typ=enumsym then
aktenumdef:=tenumsym(sym).definition
else
internalerror(201101021);
end;
s:=orgpattern;
defpos:=current_tokenpos;
consume(_ID);
{ only allow assigning of specific numbers under fpc mode }
if not(m_tp7 in current_settings.modeswitches) and
(
{ in fpc mode also allow := to be compatible
with previous 1.0.x versions }
((m_fpc in current_settings.modeswitches) and
try_to_consume(_ASSIGNMENT)) or
try_to_consume(_EQ)
) then
begin
oldlocalswitches:=current_settings.localswitches;
include(current_settings.localswitches,cs_allow_enum_calc);
p:=comp_expr(true,false);
current_settings.localswitches:=oldlocalswitches;
if (p.nodetype=ordconstn) then
begin
{ we expect an integer or an enum of the
same type }
if is_integer(p.resultdef) or
is_char(p.resultdef) or
equal_defs(p.resultdef,aktenumdef) then
v:=tordconstnode(p).value
else
IncompatibleTypes(p.resultdef,s32inttype);
end
else
Message(parser_e_illegal_expression);
p.free;
{ please leave that a note, allows type save }
{ declarations in the win32 units ! }
if (not first) and (v<=l) and (not enumdupmsg) then
begin
Message(parser_n_duplicate_enum);
enumdupmsg:=true;
end;
l:=v;
end
else
inc(l.svalue);
first:=false;
{ don't generate enum members is this is a specialization because aktenumdef is copied from the generic type }
if not is_specialize then
begin
storepos:=current_tokenpos;
current_tokenpos:=defpos;
tenumsymtable(aktenumdef.symtable).insert(tenumsym.create(s,aktenumdef,longint(l.svalue)));
if not (cs_scopedenums in current_settings.localswitches) then
tstoredsymtable(aktenumdef.owner).insert(tenumsym.create(s,aktenumdef,longint(l.svalue)));
current_tokenpos:=storepos;
end;
until not try_to_consume(_COMMA);
def:=aktenumdef;
consume(_RKLAMMER);
end;
_ARRAY:
begin
array_dec(false,genericdef,genericlist);
end;
_SET:
begin
set_dec;
end;
_CARET:
begin
consume(_CARET);
single_type(tt2,SingleTypeOptionsInTypeBlock[block_type=bt_type]);
def:=tpointerdef.create(tt2);
if tt2.typ=forwarddef then
current_module.checkforwarddefs.add(def);
end;
_RECORD:
begin
consume(token);
if (idtoken=_HELPER) and (m_advanced_records in current_settings.modeswitches) then
begin
consume(_HELPER);
def:=object_dec(odt_helper,name,genericdef,genericlist,nil,ht_record);
end
else
def:=record_dec(name,genericdef,genericlist);
end;
_PACKED,
_BITPACKED:
begin
bitpacking :=
(cs_bitpacking in current_settings.localswitches) or
(token = _BITPACKED);
consume(token);
if token=_ARRAY then
array_dec(bitpacking,genericdef,genericlist)
else if token=_SET then
set_dec
else if token=_FILE then
single_type(def,[stoAllowTypeDef])
else
begin
oldpackrecords:=current_settings.packrecords;
if (not bitpacking) or
(token in [_CLASS,_OBJECT]) then
current_settings.packrecords:=1
else
current_settings.packrecords:=bit_alignment;
case token of
_CLASS :
begin
consume(_CLASS);
def:=object_dec(odt_class,name,genericdef,genericlist,nil,ht_none);
end;
_OBJECT :
begin
consume(_OBJECT);
def:=object_dec(odt_object,name,genericdef,genericlist,nil,ht_none);
end;
else begin
consume(_RECORD);
def:=record_dec(name,genericdef,genericlist);
end;
end;
current_settings.packrecords:=oldpackrecords;
end;
end;
_DISPINTERFACE :
begin
{ need extra check here since interface is a keyword
in all pascal modes }
if not(m_class in current_settings.modeswitches) then
Message(parser_f_need_objfpc_or_delphi_mode);
consume(token);
def:=object_dec(odt_dispinterface,name,genericdef,genericlist,nil,ht_none);
end;
_CLASS :
begin
consume(token);
{ Delphi only allows class of in type blocks }
if (token=_OF) and
(
not(m_delphi in current_settings.modeswitches) or
(block_type=bt_type)
) then
begin
consume(_OF);
single_type(hdef,SingleTypeOptionsInTypeBlock[block_type=bt_type]);
if is_class(hdef) or
is_objcclass(hdef) then
def:=tclassrefdef.create(hdef)
else
if hdef.typ=forwarddef then
begin
def:=tclassrefdef.create(hdef);
current_module.checkforwarddefs.add(def);
end
else
Message1(type_e_class_or_objcclass_type_expected,hdef.typename);
end
else
if (idtoken=_HELPER) then
begin
consume(_HELPER);
def:=object_dec(odt_helper,name,genericdef,genericlist,nil,ht_class);
end
else
def:=object_dec(odt_class,name,genericdef,genericlist,nil,ht_none);
end;
_CPPCLASS :
begin
consume(token);
def:=object_dec(odt_cppclass,name,genericdef,genericlist,nil,ht_none);
end;
_OBJCCLASS :
begin
if not(m_objectivec1 in current_settings.modeswitches) then
Message(parser_f_need_objc);
consume(token);
def:=object_dec(odt_objcclass,name,genericdef,genericlist,nil,ht_none);
end;
_INTERFACE :
begin
{ need extra check here since interface is a keyword
in all pascal modes }
if not(m_class in current_settings.modeswitches) then
Message(parser_f_need_objfpc_or_delphi_mode);
consume(token);
if current_settings.interfacetype=it_interfacecom then
def:=object_dec(odt_interfacecom,name,genericdef,genericlist,nil,ht_none)
else {it_interfacecorba}
def:=object_dec(odt_interfacecorba,name,genericdef,genericlist,nil,ht_none);
end;
_OBJCPROTOCOL :
begin
if not(m_objectivec1 in current_settings.modeswitches) then
Message(parser_f_need_objc);
consume(token);
def:=object_dec(odt_objcprotocol,name,genericdef,genericlist,nil,ht_none);
end;
_OBJCCATEGORY :
begin
if not(m_objectivec1 in current_settings.modeswitches) then
Message(parser_f_need_objc);
consume(token);
def:=object_dec(odt_objccategory,name,genericdef,genericlist,nil,ht_none);
end;
_OBJECT :
begin
consume(token);
def:=object_dec(odt_object,name,genericdef,genericlist,nil,ht_none);
end;
_PROCEDURE,
_FUNCTION:
begin
def:=procvar_dec(genericdef,genericlist);
end;
else
if (token=_KLAMMERAFFE) and (m_iso in current_settings.modeswitches) then
begin
consume(_KLAMMERAFFE);
single_type(tt2,SingleTypeOptionsInTypeBlock[block_type=bt_type]);
def:=tpointerdef.create(tt2);
if tt2.typ=forwarddef then
current_module.checkforwarddefs.add(def);
end
else
expr_type;
end;
if def=nil then
def:=generrordef;
end;
procedure read_anon_type(var def : tdef;parseprocvardir:boolean);
begin
read_named_type(def,'',nil,nil,parseprocvardir);
end;
procedure write_persistent_type_info(st:tsymtable);
var
i : longint;
def : tdef;
vmtwriter : TVMTWriter;
begin
for i:=0 to st.DefList.Count-1 do
begin
def:=tdef(st.DefList[i]);
case def.typ of
recorddef :
write_persistent_type_info(trecorddef(def).symtable);
objectdef :
begin
{ Skip generics and forward defs }
if (df_generic in def.defoptions) or
(oo_is_forward in tobjectdef(def).objectoptions) then
continue;
write_persistent_type_info(tobjectdef(def).symtable);
{ Write also VMT if not done yet }
if not(ds_vmt_written in def.defstates) then
begin
vmtwriter:=TVMTWriter.create(tobjectdef(def));
if is_interface(tobjectdef(def)) then
vmtwriter.writeinterfaceids;
if (oo_has_vmt in tobjectdef(def).objectoptions) then
vmtwriter.writevmt;
vmtwriter.free;
include(def.defstates,ds_vmt_written);
end;
end;
procdef :
begin
if assigned(tprocdef(def).localst) and
(tprocdef(def).localst.symtabletype=localsymtable) then
write_persistent_type_info(tprocdef(def).localst);
if assigned(tprocdef(def).parast) then
write_persistent_type_info(tprocdef(def).parast);
end;
end;
{ generate always persistent tables for types in the interface so it can
be reused in other units and give always the same pointer location. }
{ Init }
if (
assigned(def.typesym) and
(st.symtabletype=globalsymtable) and
not is_objc_class_or_protocol(def)
) or
is_managed_type(def) or
(ds_init_table_used in def.defstates) then
RTTIWriter.write_rtti(def,initrtti);
{ RTTI }
if (
assigned(def.typesym) and
(st.symtabletype=globalsymtable) and
not is_objc_class_or_protocol(def)
) or
(ds_rtti_table_used in def.defstates) then
RTTIWriter.write_rtti(def,fullrtti);
end;
end;
end.