fpc/compiler/ncal.pas
Jonas Maebe 547fa426c7 Fix emit_ansistr_const: its input is not guaranteed to be #0-terminated
Also cleaned up all memory leaks where pchars were allocated, but never freed.
Before the change to dynamic arrays, these pchars were kept in the tai_string,
but now they got copied. Changed the tai_string constructor to support adding
a terminating #0, so we don't need to create intermediates just for that.
2025-03-24 23:02:10 +01:00

5733 lines
240 KiB
ObjectPascal
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{
This file implements the node for sub procedure calling.
Copyright (c) 1998-2002 by Florian Klaempfl
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
****************************************************************************
}
unit ncal;
{$i fpcdefs.inc}
{ $define DEBUGINLINE}
interface
uses
cutils,cclasses,
globtype,constexp,
paramgr,parabase,cgbase,
node,nbas,nutils,
{$ifdef state_tracking}
nstate,
{$endif state_tracking}
symbase,symtype,symsym,symdef,symtable,
pgentype,compinnr;
type
tcallnodeflag = (
cnf_typedefset,
cnf_return_value_used,
cnf_do_inline,
cnf_inherited,
cnf_anon_inherited,
cnf_new_call,
cnf_dispose_call,
cnf_member_call, { called with implicit methodpointer tree }
cnf_uses_varargs, { varargs are used in the declaration }
cnf_create_failed, { exception thrown in constructor -> don't call beforedestruction }
cnf_objc_processed, { the procedure name has been set to the appropriate objc_msgSend* variant -> don't process again }
cnf_objc_id_call, { the procedure is a member call via id -> any ObjC method of any ObjC type in scope is fair game }
cnf_unit_specified, { the unit in which the procedure has to be searched has been specified }
cnf_call_never_returns, { information for the dfa that a subroutine never returns }
cnf_call_self_node_done,{ the call_self_node has been generated if necessary
(to prevent it from potentially happening again in a wrong context in case of constant propagation or so) }
cnf_ignore_visibility, { internally generated call that should ignore visibility checks }
cnf_check_fpu_exceptions, { after the call fpu exceptions shall be checked }
cnf_ignore_devirt_wpo, { ignore this call for devirtualisation info tracking: calls to newinstance generated by the compiler do not result in extra class types being instanced }
cnf_no_convert_procvar { don't convert a procdef to a procvar }
);
tcallnodeflags = set of tcallnodeflag;
tcallparanode = class;
tcallnode = class(tbinarynode)
private
{ number of parameters passed from the source, this does not include the hidden parameters }
paralength : smallint;
function getoverrideprocnamedef: tprocdef; inline;
function is_simple_para_load(p:tnode; may_be_in_reg: boolean):boolean;
procedure maybe_load_in_temp(var p:tnode);
function gen_high_tree(var p:tnode;paradef:tdef):tnode;
function gen_procvar_context_tree_self:tnode;
function gen_procvar_context_tree_parentfp:tnode;
function gen_self_tree:tnode;
function use_caller_self(check_for_callee_self: boolean): boolean;
procedure maybe_gen_call_self_node;
function gen_vmt_tree:tnode;
function gen_block_context:tnode;
procedure gen_hidden_parameters;
function funcret_can_be_reused:boolean;
procedure maybe_create_funcret_node;
procedure bind_parasym;
procedure add_init_statement(n:tnode);
procedure add_done_statement(n:tnode);
procedure convert_carg_array_of_const;
procedure order_parameters;
function heuristics_favors_inlining:boolean;
procedure check_inlining;
function pass1_normal:tnode;
procedure register_created_object_types;
function get_expect_loc: tcgloc;
function handle_compilerproc: tnode;
protected
function safe_call_self_node: tnode;
procedure load_in_temp(var p:tnode);
procedure gen_vmt_entry_load; virtual;
procedure gen_syscall_para(para: tcallparanode); virtual;
procedure objc_convert_to_message_send;virtual;
protected
{ inlining support }
inlinelocals : TFPObjectList;
inlineinitstatement,
inlinecleanupstatement : tstatementnode;
{ checks whether we have to create a temp to store the value of a
parameter passed to an inline routine to preserve correctness.
On exit, complexpara contains true if the parameter is a complex
expression and for which we can try to create a temp (even though
it's not strictly necessary) for speed and code size reasons.
Returns true if the temp creation has been handled, false otherwise
}
function paraneedsinlinetemp(para: tcallparanode; const pushconstaddr, complexpara: boolean): boolean; virtual;
function maybecreateinlineparatemp(para: tcallparanode; out complexpara: boolean): boolean;
procedure createinlineparas;
procedure wrapcomplexinlinepara(para: tcallparanode); virtual;
function replaceparaload(var n: tnode; arg: pointer): foreachnoderesult;
procedure createlocaltemps(p:TObject;arg:pointer);
function optimize_funcret_assignment(inlineblock: tblocknode): tnode;
function pass1_inline:tnode;
protected
pushedparasize : longint;
{ Objective-C support: force the call node to call the routine with
this name rather than the name of symtableprocentry (don't store
to ppu, is set while processing the node). Also used on the JVM
target for calling virtual methods, as this is name-based and not
based on VMT entry locations }
foverrideprocnamedef: tprocdef;
property overrideprocnamedef: tprocdef read getoverrideprocnamedef;
public
{ the symbol containing the definition of the procedure }
{ to call }
symtableprocentry : tprocsym;
symtableprocentryderef : tderef;
{ symtable where the entry was found, needed for with support }
symtableproc : TSymtable;
{ the definition of the procedure to call }
procdefinition : tabstractprocdef;
procdefinitionderef : tderef;
{ tree that contains the pointer to the object for this method }
methodpointer : tnode;
{ tree representing the VMT entry to call (if any) }
vmt_entry : tnode;
{ tree that contains the self/vmt parameter when this node was created
(so it's still valid when this node is processed in an inline
context)
}
call_self_node,
call_vmt_node: tnode;
{ initialize/finalization of temps }
callinitblock,
callcleanupblock : tblocknode;
{ function return node for initialized types or supplied return variable.
When the result is passed in a parameter then it is set to nil }
funcretnode : tnode;
{ varargs parasyms }
varargsparas : tvarargsparalist;
{ If an inline node is transmuted into a call node, this is the index of
the original internal routine }
intrinsiccode : TInlineNumber;
{ separately specified resultdef for some compilerprocs (e.g.
you can't have a function with an "array of char" resultdef
the RTL) (JM)
}
typedef: tdef;
callnodeflags : tcallnodeflags;
spezcontext : tspecializationcontext;
{ only the processor specific nodes need to override this }
{ constructor }
constructor create(l:tnode; v : tprocsym;st : TSymtable; mp: tnode; callflags:tcallnodeflags;sc:tspecializationcontext);virtual;
constructor create_procvar(l,r:tnode);
constructor createintern(const name: string; params: tnode);
constructor createfromintrinsic(const intrinsic: TInlineNumber; const name: string; params: tnode);
constructor createinternfromunit(const fromunit, procname: string; params: tnode);
constructor createinternres(const name: string; params: tnode; res:tdef);
constructor createinternresfromunit(const fromunit, procname: string; params: tnode; res:tdef);
constructor createinternreturn(const name: string; params: tnode; returnnode : tnode);
constructor createinternmethod(mp: tnode; const name: string; params: tnode);
constructor createinternmethodres(mp: tnode; const name: string; params: tnode; res:tdef);
destructor destroy;override;
constructor ppuload(t:tnodetype;ppufile:tcompilerppufile);override;
procedure ppuwrite(ppufile:tcompilerppufile);override;
procedure buildderefimpl;override;
procedure derefimpl;override;
function dogetcopy : tnode;override;
{ Goes through all symbols in a class and subclasses and calls
verify abstract for each .
}
procedure verifyabstractcalls;
{ called for each definition in a class and verifies if a method
is abstract or not, if it is abstract, give out a warning
}
procedure verifyabstract(sym:TObject;arg:pointer);
procedure insertintolist(l : tnodelist);override;
function pass_1 : tnode;override;
function pass_typecheck:tnode;override;
function simplify(forinline : boolean) : tnode;override;
{$ifdef state_tracking}
function track_state_pass(exec_known:boolean):boolean;override;
{$endif state_tracking}
function docompare(p: tnode): boolean; override;
procedure printnodedata(var t:text);override;
{$ifdef DEBUG_NODE_XML}
procedure XMLPrintNodeData(var T: Text); override;
{$endif DEBUG_NODE_XML}
function para_count:longint;
function required_para_count:longint;
function GetParaFromIndex(const Index: Integer): TCallParaNode;
{ checks if there are any parameters which end up at the stack, i.e.
which have LOC_REFERENCE and set pi_has_stackparameter if this applies }
procedure check_stack_parameters;
{ force the name of the to-be-called routine to a particular string,
used for Objective-C message sending. }
property parameters : tnode read left write left;
property pushed_parasize: longint read pushedparasize;
private
AbstractMethodsList : TFPHashList;
end;
tcallnodeclass = class of tcallnode;
tcallparaflag = (
cpf_is_colon_para,
cpf_varargs_para { belongs this para to varargs }
);
tcallparaflags = set of tcallparaflag;
tcallparanode = class(ttertiarynode)
private
fcontains_stack_tainting_call_cached,
ffollowed_by_stack_tainting_call_cached : boolean;
protected
procedure handlemanagedbyrefpara(orgparadef: tdef);virtual;
{ on some targets, value parameters that are passed by reference must
be copied to a temp location by the caller (and then a reference to
this temp location must be passed) }
procedure copy_value_by_ref_para;
public
{ in case of copy-out parameters: initialization code, and the code to
copy back the parameter value after the call (including any required
finalization code) }
fparainit,
fparacopyback: tnode;
callparaflags : tcallparaflags;
parasym : tparavarsym;
{ The original order of the parameters prior to the "order_parameters"
call, or -1 if not yet configured }
originalindex: Integer;
{ only the processor specific nodes need to override this }
{ constructor }
constructor create(expr,next : tnode);virtual;
destructor destroy;override;
constructor ppuload(t:tnodetype;ppufile:tcompilerppufile);override;
procedure ppuwrite(ppufile:tcompilerppufile);override;
procedure buildderefimpl; override;
procedure derefimpl; override;
function dogetcopy : tnode;override;
procedure insertintolist(l : tnodelist);override;
function pass_typecheck : tnode;override;
function pass_1 : tnode;override;
procedure get_paratype;
procedure firstcallparan;
procedure insert_typeconv;
procedure secondcallparan;virtual;abstract;
function docompare(p: tnode): boolean; override;
procedure printnodetree(var t:text);override;
{ returns whether a parameter contains a type conversion from }
{ a refcounted into a non-refcounted type }
function can_be_inlined: boolean;
property paravalue : tnode read left write left;
property nextpara : tnode read right write right;
{ third is reused to store the parameter name (only while parsing
vardispatch calls, never in real node tree) and copy of 'high'
parameter tree when the parameter is an open array of managed type }
property parametername : tnode read third write third;
{ returns whether the evaluation of this parameter involves a
stack tainting call }
function contains_stack_tainting_call: boolean;
{ initialises the fcontains_stack_tainting_call_cached field with the
result of contains_stack_tainting_call so that it can be quickly
accessed via the contains_stack_tainting_call_cached property }
procedure init_contains_stack_tainting_call_cache;
{ returns result of contains_stack_tainting_call cached during last
call to init_contains_stack_tainting_call_cache }
property contains_stack_tainting_call_cached: boolean read fcontains_stack_tainting_call_cached;
{ returns whether this parameter is followed by at least one other
parameter whose evaluation involves a stack tainting parameter
(result is only valid after order_parameters has been called) }
property followed_by_stack_tainting_call_cached: boolean read ffollowed_by_stack_tainting_call_cached;
property paracopyback: tnode read fparacopyback;
end;
tcallparanodeclass = class of tcallparanode;
tdispcalltype = (
dct_method,
dct_propget,
dct_propput
);
{ also returns the number of parameters }
function reverseparameters(var p: tcallparanode) : sizeint;
function translate_disp_call(selfnode,parametersnode: tnode; calltype: tdispcalltype; const methodname : ansistring;
dispid : longint;resultdef : tdef) : tnode;
var
ccallnode : tcallnodeclass = tcallnode;
ccallparanode : tcallparanodeclass = tcallparanode;
{ Current callnode, this is needed for having a link
between the callparanodes and the callnode they belong to }
aktcallnode : tcallnode;
const
{ track current inlining depth }
inlinelevel : longint = 0;
implementation
uses
systems,
verbose,globals,fmodule,ppu,
aasmbase,aasmdata,
symconst,defutil,defcmp,
htypechk,pass_1,
ncnv,nflw,nld,ninl,nadd,ncon,nmem,nset,nobjc,
pgenutil,
ngenutil,objcutil,aasmcnst,
procinfo,cpuinfo,
wpobase;
type
tobjectinfoitem = class(tlinkedlistitem)
objinfo : tobjectdef;
constructor create(def : tobjectdef);
end;
{****************************************************************************
HELPERS
****************************************************************************}
function reverseparameters(var p: tcallparanode) : sizeint;
var
tmpp,
hp1, hp2: tcallparanode;
begin
result:=0;
hp1:=nil;
tmpp:=p;
while assigned(tmpp) do
begin
{ pull out }
hp2:=tmpp;
tmpp:=tcallparanode(tmpp.right);
{ pull in }
hp2.right:=hp1;
hp1:=hp2;
inc(result);
end;
p:=hp1;
end;
function translate_disp_call(selfnode,parametersnode: tnode; calltype: tdispcalltype; const methodname : ansistring;
dispid : longint;resultdef : tdef) : tnode;
const
DISPATCH_METHOD = $1;
DISPATCH_PROPERTYGET = $2;
DISPATCH_PROPERTYPUT = $4;
DISPATCH_PROPERTYPUTREF = $8;
DISPATCH_CONSTRUCT = $4000;
calltypes: array[tdispcalltype] of byte = (
DISPATCH_METHOD, DISPATCH_PROPERTYGET, DISPATCH_PROPERTYPUT
);
var
statements : tstatementnode;
result_data,
params : ttempcreatenode;
paramssize : cardinal;
resultvalue : tnode;
para : tcallparanode;
namedparacount,
paracount : longint;
assignmenttype,
vardatadef,
pvardatadef : tdef;
useresult: boolean;
restype: byte;
selftemp: ttempcreatenode;
selfpara: tnode;
vardispatchparadef: trecorddef;
vardispatchfield: tsym;
tcb: ttai_typedconstbuilder;
calldescsym: tstaticvarsym;
names : ansistring;
variantdispatch : boolean;
function is_byref_para(out assign_type: tdef): boolean;
begin
result:=(assigned(para.parasym) and (para.parasym.varspez in [vs_var,vs_out,vs_constref])) or
(variantdispatch and valid_for_var(para.left,false));
if result or (para.left.resultdef.typ in [variantdef]) then
assign_type:=voidpointertype
else
case para.left.resultdef.size of
1..4:
assign_type:=u32inttype;
8:
assign_type:=u64inttype;
else
internalerror(2007042801);
end;
end;
function getvardef(sourcedef: TDef): longint;
begin
if is_ansistring(sourcedef) then
result:=varStrArg
else
if is_unicodestring(sourcedef) then
result:=varUStrArg
else
if is_interfacecom_or_dispinterface(sourcedef) then
begin
{ distinct IDispatch and IUnknown interfaces }
if def_is_related(tobjectdef(sourcedef),interface_idispatch) then
result:=vardispatch
else
result:=varunknown;
end
else
result:=sourcedef.getvardef;
end;
begin
variantdispatch:=selfnode.resultdef.typ=variantdef;
result:=internalstatements(statements);
result_data:=nil;
selftemp:=nil;
selfpara:=nil;
useresult := assigned(resultdef) and not is_void(resultdef);
if useresult then
begin
{ get temp for the result }
result_data:=ctempcreatenode.create(colevarianttype,colevarianttype.size,tt_persistent,true);
addstatement(statements,result_data);
end;
{ first, count and check parameters }
para:=tcallparanode(parametersnode);
paracount:=0;
namedparacount:=0;
while assigned(para) do
begin
typecheckpass(para.left);
{ skip hidden dispinterface parameters like $self, $result,
but count skipped variantdispatch parameters. }
if (not variantdispatch) and (para.left.nodetype=nothingn) then
begin
para:=tcallparanode(para.nextpara);
continue;
end;
inc(paracount);
if assigned(para.parametername) then
inc(namedparacount);
{ insert some extra casts }
if para.left.nodetype=stringconstn then
inserttypeconv_internal(para.left,cwidestringtype)
{ force automatable boolean type }
else if is_boolean(para.left.resultdef) then
inserttypeconv_internal(para.left,bool16type)
{ force automatable float type }
else if is_extended(para.left.resultdef)
and (current_settings.fputype<>fpu_none) then
inserttypeconv_internal(para.left,s64floattype)
else if is_shortstring(para.left.resultdef) then
inserttypeconv_internal(para.left,cwidestringtype)
{ skip this check if we've already typecasted to automatable type }
else if (para.left.nodetype<>nothingn) and (not is_automatable(para.left.resultdef)) then
CGMessagePos1(para.left.fileinfo,type_e_not_automatable,para.left.resultdef.typename);
para:=tcallparanode(para.nextpara);
end;
{ create a temp to store parameter values }
vardispatchparadef:=crecorddef.create_global_internal('',voidpointertype.size,voidpointertype.size);
{ the size will be set once the vardistpatchparadef record has been completed }
params:=ctempcreatenode.create(vardispatchparadef,0,tt_persistent,false);
addstatement(statements,params);
tcb:=ctai_typedconstbuilder.create([tcalo_make_dead_strippable,tcalo_new_section]);
tcb.begin_anonymous_record('',1,sizeof(pint),1);
if not variantdispatch then { generate a tdispdesc record }
begin
{ dispid }
tcb.emit_ord_const(dispid,s32inttype);
{ restype }
if useresult then
restype:=getvardef(resultdef)
else
restype:=0;
tcb.emit_ord_const(restype,u8inttype);
end;
tcb.emit_ord_const(calltypes[calltype],u8inttype);
tcb.emit_ord_const(paracount,u8inttype);
tcb.emit_ord_const(namedparacount,u8inttype);
{ build up parameters and description }
para:=tcallparanode(parametersnode);
paramssize:=0;
names := '';
while assigned(para) do
begin
{ Skipped parameters are actually (varType=varError, vError=DISP_E_PARAMNOTFOUND).
Generate only varType here, the value will be added by RTL. }
if para.left.nodetype=nothingn then
begin
if variantdispatch then
tcb.emit_ord_const(varError,u8inttype);
para:=tcallparanode(para.nextpara);
continue;
end;
if assigned(para.parametername) then
begin
if para.parametername.nodetype=stringconstn then
names:=names+tstringconstnode(para.parametername).asconstpchar+#0
else
internalerror(200611041);
end;
restype:=getvardef(para.left.resultdef);
if is_byref_para(assignmenttype) then
restype:=restype or $80;
{ assign the argument/parameter to the temporary location }
{ for Variants, we always pass a pointer, RTL helpers must handle it
depending on byref bit }
vardispatchfield:=vardispatchparadef.add_field_by_def('',assignmenttype);
if assignmenttype=voidpointertype then
addstatement(statements,cassignmentnode.create(
csubscriptnode.create(vardispatchfield,ctemprefnode.create(params)),
ctypeconvnode.create_internal(caddrnode.create_internal(para.left),voidpointertype)))
else
addstatement(statements,cassignmentnode.create(
csubscriptnode.create(vardispatchfield,ctemprefnode.create(params)),
ctypeconvnode.create_internal(para.left,assignmenttype)));
inc(paramssize,max(voidpointertype.size,assignmenttype.size));
tcb.emit_ord_const(restype,u8inttype);
para.left:=nil;
para:=tcallparanode(para.nextpara);
end;
{ finalize the parameter record }
trecordsymtable(vardispatchparadef.symtable).addalignmentpadding;
{ Set final size for parameter block }
params.size:=paramssize;
{ old argument list skeleton isn't needed anymore }
parametersnode.free;
pvardatadef:=tpointerdef(search_system_type('PVARDATA').typedef);
if useresult then
resultvalue:=caddrnode.create(ctemprefnode.create(result_data))
else
resultvalue:=cpointerconstnode.create(0,voidpointertype);
if variantdispatch then
begin
tcb.emit_pchar_const(pchar(methodname),length(methodname));
if names<>'' then
{ length-1 because we added a null terminator to the string itself
already }
tcb.emit_pchar_const(pchar(names),length(names)-1);
end;
{ may be referred from other units in case of inlining -> global
-> must have unique name in entire progream }
calldescsym:=cstaticvarsym.create(
internaltypeprefixName[itp_vardisp_calldesc]+current_module.modulename^+'$'+tostr(current_module.localsymtable.SymList.count),
vs_const,tcb.end_anonymous_record,[vo_is_public,vo_is_typed_const]);
calldescsym.varstate:=vs_initialised;
current_module.localsymtable.insertsym(calldescsym);
current_asmdata.AsmLists[al_typedconsts].concatList(
tcb.get_final_asmlist(
current_asmdata.DefineAsmSymbol(calldescsym.mangledname,AB_GLOBAL,AT_DATA,calldescsym.vardef),
calldescsym.vardef,sec_rodata_norel,
lower(calldescsym.mangledname),sizeof(pint)
)
);
tcb.free;
if variantdispatch then
begin
{ actual call }
vardatadef:=trecorddef(search_system_type('TVARDATA').typedef);
{ the Variant should behave similar to hidden 'self' parameter of objects/records,
see issues #26773 and #27044 }
if not valid_for_var(selfnode,false) then
begin
selftemp:=ctempcreatenode.create(selfnode.resultdef,selfnode.resultdef.size,tt_persistent,false);
addstatement(statements,selftemp);
addstatement(statements,cassignmentnode.create(ctemprefnode.create(selftemp),selfnode));
selfpara:=ctemprefnode.create(selftemp);
end
else
selfpara:=selfnode;
addstatement(statements,ccallnode.createintern('fpc_dispinvoke_variant',
{ parameters are passed always reverted, i.e. the last comes first }
ccallparanode.create(caddrnode.create(ctemprefnode.create(params)),
ccallparanode.create(caddrnode.create(cloadnode.create(calldescsym,current_module.localsymtable)),
ccallparanode.create(ctypeconvnode.create_internal(selfpara,vardatadef),
ccallparanode.create(ctypeconvnode.create_internal(resultvalue,pvardatadef),nil)))))
);
if assigned(selftemp) then
addstatement(statements,ctempdeletenode.create(selftemp));
end
else
begin
addstatement(statements,ccallnode.createintern('fpc_dispatch_by_id',
{ parameters are passed always reverted, i.e. the last comes first }
ccallparanode.create(caddrnode.create(ctemprefnode.create(params)),
ccallparanode.create(caddrnode.create(cloadnode.create(calldescsym,current_module.localsymtable)),
ccallparanode.create(ctypeconvnode.create_internal(selfnode,voidpointertype),
ccallparanode.create(ctypeconvnode.create_internal(resultvalue,pvardatadef),nil)))))
);
end;
addstatement(statements,ctempdeletenode.create(params));
if useresult then
begin
{ clean up }
addstatement(statements,ctempdeletenode.create_normal_temp(result_data));
addstatement(statements,ctemprefnode.create(result_data));
end;
end;
{****************************************************************************
TOBJECTINFOITEM
****************************************************************************}
constructor tobjectinfoitem.create(def : tobjectdef);
begin
inherited create;
objinfo := def;
end;
{****************************************************************************
TCALLPARANODE
****************************************************************************}
procedure tcallparanode.handlemanagedbyrefpara(orgparadef: tdef);
var
temp: ttempcreatenode;
npara: tcallparanode;
paraaddrtype: tdef;
begin
{ release memory for reference counted out parameters }
if (parasym.varspez=vs_out) and
is_managed_type(orgparadef) and
(not is_open_array(resultdef) or
is_managed_type(tarraydef(resultdef).elementdef)) and
not(target_info.system in systems_garbage_collected_managed_types) then
begin
{ after converting a parameter to an open array, its resultdef is
set back to its original resultdef so we can get the value of the
"high" parameter correctly, even though we already inserted a
type conversion to "open array". Since here we work on this
converted parameter, set it back to the type to which it was
converted in order to avoid type mismatches at the LLVM level }
if is_open_array(parasym.vardef) and
is_dynamic_array(orgparadef) then
begin
left.resultdef:=resultdef;
orgparadef:=resultdef;
end;
paraaddrtype:=cpointerdef.getreusable(orgparadef);
{ create temp with address of the parameter }
temp:=ctempcreatenode.create(
paraaddrtype,paraaddrtype.size,tt_persistent,true);
{ put this code in the init/done statement of the call node, because
we should finalize all out parameters before other parameters
are evaluated (in case e.g. a managed out parameter is also
passed by value, we must not pass the pointer to the now possibly
freed data as the value parameter, but the finalized/nil value }
aktcallnode.add_init_statement(temp);
aktcallnode.add_init_statement(
cassignmentnode.create(
ctemprefnode.create(temp),
caddrnode.create(left)));
if not is_open_array(resultdef) or
not is_managed_type(tarraydef(resultdef).elementdef) then
{ finalize the entire parameter }
aktcallnode.add_init_statement(
cnodeutils.finalize_data_node(
cderefnode.create(ctemprefnode.create(temp))))
else
begin
{ passing a (part of, in case of slice) dynamic array as an
open array -> finalize the dynamic array contents, not the
dynamic array itself }
npara:=ccallparanode.create(
{ array length = high + 1 }
caddnode.create(addn,third.getcopy,genintconstnode(1)),
ccallparanode.create(caddrnode.create_internal
(crttinode.create(tstoreddef(tarraydef(resultdef).elementdef),initrtti,rdt_normal)),
ccallparanode.create(caddrnode.create_internal(
cderefnode.create(ctemprefnode.create(temp))),nil)));
aktcallnode.add_init_statement(
ccallnode.createintern('fpc_finalize_array',npara));
end;
left:=cderefnode.create(ctemprefnode.create(temp));
firstpass(left);
aktcallnode.add_done_statement(ctempdeletenode.create(temp));
end;
end;
procedure tcallparanode.copy_value_by_ref_para;
var
initstat,
finistat: tstatementnode;
finiblock: tblocknode;
paratemp: ttempcreatenode;
arraysize,
arraybegin: tnode;
lefttemp: ttempcreatenode;
vardatatype,
temparraydef: tdef;
begin
{ this routine is for targets where by-reference value parameters need
to be copied by the caller. It's basically the node-level equivalent
of thlcgobj.g_copyvalueparas }
if assigned(fparainit) then
exit;
{ in case of an array constructor, we don't need a copy since the array
constructor itself is already constructed on the fly (and hence if
it's modified by the caller, that's no problem) }
if not is_array_constructor(left.resultdef) then
begin
fparainit:=internalstatements(initstat);
finiblock:=internalstatements(finistat);
paratemp:=nil;
{ making a copy of an open array, an array of const or a dynamic
array requires dynamic memory allocation since we don't know the
size at compile time }
if is_open_array(left.resultdef) or
is_array_of_const(left.resultdef) or
(is_dynamic_array(left.resultdef) and
is_open_array(parasym.vardef)) then
begin
paratemp:=ctempcreatenode.create(voidpointertype,voidpointertype.size,tt_persistent,true);
if is_dynamic_array(left.resultdef) then
begin
{ note that in insert_typeconv, this dynamic array was
already converted into an open array (-> dereferenced)
and then its resultdef was restored to the original
dynamic array one -> get the address before treating it
as a dynamic array here }
{ first restore the actual resultdef of left }
temparraydef:=left.resultdef;
left.resultdef:=resultdef;
{ get its address }
lefttemp:=ctempcreatenode.create(voidpointertype,voidpointertype.size,tt_persistent,true);
addstatement(initstat,lefttemp);
addstatement(finistat,ctempdeletenode.create(lefttemp));
addstatement(initstat,
cassignmentnode.create(
ctemprefnode.create(lefttemp),
caddrnode.create_internal(left)
)
);
{ now treat that address (correctly) as the original
dynamic array to get its start and length }
arraybegin:=cvecnode.create(
ctypeconvnode.create_explicit(ctemprefnode.create(lefttemp),
temparraydef),
genintconstnode(0)
);
arraysize:=caddnode.create(muln,
geninlinenode(in_length_x,false,
ctypeconvnode.create_explicit(ctemprefnode.create(lefttemp),
temparraydef)
),
genintconstnode(tarraydef(temparraydef).elementdef.size)
);
end
else
begin
{ no problem here that left is used multiple times, as
sizeof() will simply evaluate to the high parameter }
arraybegin:=left.getcopy;
arraysize:=geninlinenode(in_sizeof_x,false,left);
end;
addstatement(initstat,paratemp);
{ paratemp:=getmem(sizeof(para)) }
addstatement(initstat,
cassignmentnode.create(
ctemprefnode.create(paratemp),
ccallnode.createintern('fpc_getmem',
ccallparanode.create(
arraysize.getcopy,nil
)
)
)
);
{ move(para,temp,sizeof(arr)) (no "left.getcopy" below because
we replace left afterwards) }
addstatement(initstat,
cifnode.create_internal(
caddnode.create_internal(
unequaln,
arraysize.getcopy,
genintconstnode(0)
),
ccallnode.createintern('MOVE',
ccallparanode.create(
arraysize,
ccallparanode.create(
cderefnode.create(ctemprefnode.create(paratemp)),
ccallparanode.create(
arraybegin,nil
)
)
)
),
nil
)
);
{ no reference count increases, that's still done on the callee
side because for compatibility with targets that perform this
copy on the callee side, that should only be done for non-
assember functions (and we can't know that 100% certain here,
e.g. in case of external declarations) (*) }
{ free the memory again after the call: freemem(paratemp) }
addstatement(finistat,
ccallnode.createintern('fpc_freemem',
ccallparanode.create(
ctemprefnode.create(paratemp),nil
)
)
);
{ replace the original parameter with a dereference of the
temp typecasted to the same type as the original parameter
(don't free left, it has been reused above) }
left:=ctypeconvnode.create_internal(
cderefnode.create(ctemprefnode.create(paratemp)),
left.resultdef);
end
else if is_shortstring(parasym.vardef) then
begin
{ the shortstring parameter may have a different size than the
parameter type -> assign and truncate/extend }
paratemp:=ctempcreatenode.create(parasym.vardef,parasym.vardef.size,tt_persistent,false);
addstatement(initstat,paratemp);
{ assign shortstring }
addstatement(initstat,
cassignmentnode.create(
ctemprefnode.create(paratemp),left
)
);
{ replace parameter with temp (don't free left, it has been
reused above) }
left:=ctemprefnode.create(paratemp);
end
else if parasym.vardef.typ=variantdef then
begin
vardatatype:=search_system_type('TVARDATA').typedef;
paratemp:=ctempcreatenode.create(vardatatype,vardatatype.size,tt_persistent,false);
addstatement(initstat,paratemp);
addstatement(initstat,
ccallnode.createintern('fpc_variant_copy_overwrite',
ccallparanode.create(
ctypeconvnode.create_explicit(ctemprefnode.create(paratemp),
vardatatype
),
ccallparanode.create(ctypeconvnode.create_explicit(left,
vardatatype),
nil
)
)
)
);
{ replace parameter with temp (don't free left, it has been
reused above) }
left:=ctypeconvnode.create_explicit(ctemprefnode.create(paratemp),parasym.vardef);
end
else if is_managed_type(left.resultdef) then
begin
{ don't increase/decrease the reference count here, will be done by
the callee (see (*) above) -> typecast to array of byte
for the assignment to the temp }
temparraydef:=carraydef.getreusable(u8inttype,left.resultdef.size);
paratemp:=ctempcreatenode.create(temparraydef,temparraydef.size,tt_persistent,false);
addstatement(initstat,paratemp);
addstatement(initstat,
cassignmentnode.create(
ctemprefnode.create(paratemp),
ctypeconvnode.create_internal(left,temparraydef)
)
);
left:=ctypeconvnode.create_explicit(ctemprefnode.create(paratemp),left.resultdef);
end
else
begin
paratemp:=ctempcreatenode.create(left.resultdef,left.resultdef.size,tt_persistent,false);
addstatement(initstat,paratemp);
addstatement(initstat,
cassignmentnode.create(ctemprefnode.create(paratemp),left)
);
{ replace parameter with temp (don't free left, it has been
reused above) }
left:=ctemprefnode.create(paratemp);
end;
{ add the finish statements to the call cleanup block }
addstatement(finistat,ctempdeletenode.create(paratemp));
aktcallnode.add_done_statement(finiblock);
firstpass(fparainit);
firstpass(left);
end;
end;
constructor tcallparanode.create(expr,next : tnode);
begin
inherited create(callparan,expr,next,nil);
if not assigned(expr) then
internalerror(200305091);
expr.fileinfo:=fileinfo;
callparaflags:=[];
originalindex:=-1;
if expr.nodetype = typeconvn then
ttypeconvnode(expr).warn_pointer_to_signed:=false;
end;
destructor tcallparanode.destroy;
begin
fparainit.free;
fparacopyback.free;
inherited destroy;
end;
constructor tcallparanode.ppuload(t:tnodetype;ppufile:tcompilerppufile);
begin
inherited ppuload(t,ppufile);
ppufile.getset(tppuset1(callparaflags));
fparainit:=ppuloadnode(ppufile);
fparacopyback:=ppuloadnode(ppufile);
end;
procedure tcallparanode.ppuwrite(ppufile:tcompilerppufile);
begin
inherited ppuwrite(ppufile);
ppufile.putset(tppuset1(callparaflags));
ppuwritenode(ppufile,fparainit);
ppuwritenode(ppufile,fparacopyback);
end;
procedure tcallparanode.buildderefimpl;
begin
inherited buildderefimpl;
if assigned(fparainit) then
fparainit.buildderefimpl;
if assigned(fparacopyback) then
fparacopyback.buildderefimpl;
end;
procedure tcallparanode.derefimpl;
begin
inherited derefimpl;
if assigned(fparainit) then
fparainit.derefimpl;
if assigned(fparacopyback) then
fparacopyback.derefimpl;
end;
function tcallparanode.dogetcopy : tnode;
var
n : tcallparanode;
initcopy: tnode;
begin
initcopy:=nil;
{ must be done before calling inherited getcopy, because can create
tempcreatenodes for values used in left }
if assigned(fparainit) then
initcopy:=fparainit.getcopy;
n:=tcallparanode(inherited dogetcopy);
n.callparaflags:=callparaflags;
n.originalindex:=originalindex;
n.parasym:=parasym;
n.fparainit:=initcopy;
if assigned(fparacopyback) then
n.fparacopyback:=fparacopyback.getcopy;
result:=n;
end;
procedure tcallparanode.insertintolist(l : tnodelist);
begin
end;
function tcallparanode.pass_typecheck : tnode;
begin
{ need to use get_paratype }
internalerror(200709251);
result:=nil;
end;
function tcallparanode.pass_1 : tnode;
begin
{ need to use firstcallparan }
internalerror(200709252);
result:=nil;
end;
procedure tcallparanode.get_paratype;
begin
if assigned(right) then
tcallparanode(right).get_paratype;
if assigned(fparainit) then
typecheckpass(fparainit);
typecheckpass(left);
if assigned(third) then
typecheckpass(third);
if assigned(fparacopyback) then
typecheckpass(fparacopyback);
if codegenerror then
resultdef:=generrordef
else
resultdef:=left.resultdef;
end;
procedure tcallparanode.firstcallparan;
begin
if assigned(right) then
tcallparanode(right).firstcallparan;
if not assigned(left.resultdef) then
get_paratype;
if assigned(parasym) and
(parasym.varspez in [vs_var,vs_out,vs_constref]) and
{ for record constructors }
(left.nodetype<>nothingn) then
handlemanagedbyrefpara(left.resultdef);
{ for targets that have to copy "value parameters by reference" on the
caller side
aktcallnode may not be assigned in case firstcallparan is called for
fake parameters to inline nodes (in that case, we don't have a real
call and hence no "caller side" either)
}
if assigned(aktcallnode) and
(target_info.system in systems_caller_copy_addr_value_para) and
((assigned(parasym) and
(parasym.varspez=vs_value)) or
(cpf_varargs_para in callparaflags)) and
(left.nodetype<>nothingn) and
not(vo_has_local_copy in parasym.varoptions) and
((not is_open_array(parasym.vardef) and
not is_array_of_const(parasym.vardef)) or
not(aktcallnode.procdefinition.proccalloption in cdecl_pocalls)) and
paramanager.push_addr_param(vs_value,parasym.vardef,
aktcallnode.procdefinition.proccalloption) then
copy_value_by_ref_para;
if assigned(fparainit) then
firstpass(fparainit);
firstpass(left);
if assigned(fparacopyback) then
firstpass(fparacopyback);
if assigned(third) then
firstpass(third);
expectloc:=left.expectloc;
end;
procedure tcallparanode.insert_typeconv;
var
olddef : tdef;
hp : tnode;
block : tblocknode;
statements : tstatementnode;
temp : ttempcreatenode;
owningprocdef: tprocdef;
begin
{ Be sure to have the resultdef }
if not assigned(left.resultdef) then
typecheckpass(left);
if (left.nodetype<>nothingn) then
begin
{ convert loads of the function result variable into procvars
representing the current function in case the formal parameter is
a procvar (CodeWarrior Pascal contains the same kind of
automatic disambiguation; you can use the function name in both
meanings, so we cannot statically pick either the function result
or the function definition in pexpr) }
if (m_mac in current_settings.modeswitches) and
(parasym.vardef.typ=procvardef) and
is_ambiguous_funcret_load(left,owningprocdef) then
begin
hp:=cloadnode.create_procvar(owningprocdef.procsym,owningprocdef,owningprocdef.procsym.owner);
typecheckpass(hp);
left.free;
left:=hp;
end;
{ Convert tp procvars, this is needs to be done
here to make the change permanent. in the overload
choosing the changes are only made temporarily
Don't do this for parentfp parameters, as for calls to nested
procvars they are a copy of right, which is the procvar itself
and hence turning that into a call would result into endless
recursion. For regular nested calls, the parentfp node can
never be a procvar (it's a loadparentfpnode). }
if not(vo_is_parentfp in parasym.varoptions) and
(left.resultdef.typ=procvardef) and
not(parasym.vardef.typ in [procvardef,formaldef]) then
begin
if maybe_call_procvar(left,true) then
resultdef:=left.resultdef
end;
{ Remove implicitly inserted typecast to pointer for
@procvar in macpas }
if (m_mac_procvar in current_settings.modeswitches) and
(parasym.vardef.typ=procvardef) and
(left.nodetype=typeconvn) and
is_voidpointer(left.resultdef) and
(ttypeconvnode(left).left.nodetype=typeconvn) and
(ttypeconvnode(ttypeconvnode(left).left).convtype=tc_proc_2_procvar) then
begin
hp:=left;
left:=ttypeconvnode(left).left;
ttypeconvnode(hp).left:=nil;
hp.free;
end;
maybe_global_proc_to_nested(left,parasym.vardef);
{ Handle varargs and hidden paras directly, no typeconvs or }
{ pass_typechecking needed }
if (cpf_varargs_para in callparaflags) then
begin
{ this should only happen vor C varargs }
{ the necessary conversions have already been performed in }
{ tarrayconstructornode.insert_typeconvs }
set_varstate(left,vs_read,[vsf_must_be_valid]);
insert_varargstypeconv(left,true);
resultdef:=left.resultdef;
{ also update parasym type to get the correct parameter location
for the new types }
parasym.vardef:=left.resultdef;
end
else
if (vo_is_hidden_para in parasym.varoptions) then
begin
set_varstate(left,vs_read,[vsf_must_be_valid]);
resultdef:=left.resultdef;
end
else
begin
{ Do we need arrayconstructor -> set conversion, then insert
it here before the arrayconstructor node breaks the tree
with its conversions of enum->ord }
if (left.nodetype=arrayconstructorn) and
(parasym.vardef.typ=setdef) then
inserttypeconv(left,parasym.vardef);
{ if an array constructor can be a set and it is passed to
a formaldef, a set must be passed, see also issue #37796 }
if (left.nodetype=arrayconstructorn) and
(parasym.vardef.typ=formaldef) and
(arrayconstructor_can_be_set(left)) then
left:=arrayconstructor_to_set(left,false);
{ set some settings needed for arrayconstructor }
if is_array_constructor(left.resultdef) then
begin
if left.nodetype<>arrayconstructorn then
internalerror(200504041);
if is_array_of_const(parasym.vardef) then
begin
{ force variant array }
include(tarrayconstructornode(left).arrayconstructornodeflags,acnf_forcevaria);
end
else
begin
include(tarrayconstructornode(left).arrayconstructornodeflags,acnf_novariaallowed);
{ now that the resultting type is know we can insert the required
typeconvs for the array constructor }
if parasym.vardef.typ=arraydef then
tarrayconstructornode(left).force_type(tarraydef(parasym.vardef).elementdef);
end;
end;
{ check if local proc/func is assigned to procvar }
if left.resultdef.typ=procvardef then
test_local_to_procvar(tprocvardef(left.resultdef),parasym.vardef);
{ test conversions }
if not(is_shortstring(left.resultdef) and
is_shortstring(parasym.vardef)) and
(parasym.vardef.typ<>formaldef) and
not(parasym.univpara) then
begin
{ Process open parameters }
if paramanager.keep_para_array_range(parasym.varspez,parasym.vardef,aktcallnode.procdefinition.proccalloption) then
begin
{ insert type conv but hold the ranges of the array }
olddef:=left.resultdef;
inserttypeconv(left,parasym.vardef);
left.resultdef:=olddef;
end
else
begin
check_ranges(left.fileinfo,left,parasym.vardef);
inserttypeconv(left,parasym.vardef);
end;
if codegenerror then
exit;
end;
{ truncate shortstring value parameters at the caller side if }
{ they are passed by value (if passed by reference, then the }
{ callee will truncate when copying in the string) }
{ This happens e.g. on x86_64 for small strings }
if is_shortstring(left.resultdef) and
is_shortstring(parasym.vardef) and
(parasym.varspez=vs_value) and
not paramanager.push_addr_param(parasym.varspez,parasym.vardef,
aktcallnode.procdefinition.proccalloption) and
((is_open_string(left.resultdef) and
(tstringdef(parasym.vardef).len < 255)) or
(not is_open_string(left.resultdef) and
{ when a stringconstn is typeconverted, then only its }
{ def is modified, not the contents (needed because in }
{ Delphi/TP, if you pass a longer string to a const }
{ parameter, then the callee has to see this longer }
{ string) }
(((left.nodetype<>stringconstn) and
(tstringdef(parasym.vardef).len<tstringdef(left.resultdef).len)) or
((left.nodetype=stringconstn) and
(tstringdef(parasym.vardef).len<tstringconstnode(left).len))))) then
begin
block:=internalstatements(statements);
{ temp for the new string }
temp:=ctempcreatenode.create(parasym.vardef,parasym.vardef.size,
tt_persistent,true);
addstatement(statements,temp);
{ assign parameter to temp }
addstatement(statements,cassignmentnode.create(ctemprefnode.create(temp),left));
left:=nil;
{ release temp after next use }
addstatement(statements,ctempdeletenode.create_normal_temp(temp));
addstatement(statements,ctemprefnode.create(temp));
typecheckpass(tnode(block));
left:=block;
end;
{ check var strings }
if (cs_strict_var_strings in current_settings.localswitches) and
is_shortstring(left.resultdef) and
is_shortstring(parasym.vardef) and
(parasym.varspez in [vs_out,vs_var,vs_constref]) and
not(is_open_string(parasym.vardef)) and
not(equal_defs(left.resultdef,parasym.vardef)) then
begin
CGMessagePos(left.fileinfo,type_e_strict_var_string_violation);
end;
{ passing a value to an "univ" parameter implies an explicit
typecast to the parameter type. Must be done before the
valid_for_var() check, since the typecast can result in
an invalid lvalue in case of var/out parameters. }
if (parasym.univpara) then
begin
{ load procvar if a procedure is passed }
if ((m_tp_procvar in current_settings.modeswitches) or
(m_mac_procvar in current_settings.modeswitches)) and
(left.nodetype=calln) and
(is_void(left.resultdef)) then
begin
load_procvar_from_calln(left);
{ load_procvar_from_calln() creates a loadn for a
a procedure, which means that the type conversion
below will type convert the first instruction
bytes of the procedure -> convert to a procvar }
left:=ctypeconvnode.create_proc_to_procvar(left);
typecheckpass(left);
end;
inserttypeconv_explicit(left,parasym.vardef);
end;
{ Handle formal parameters separate }
if (parasym.vardef.typ=formaldef) then
begin
{ load procvar if a procedure is passed }
if ((m_tp_procvar in current_settings.modeswitches) or
(m_mac_procvar in current_settings.modeswitches)) and
(left.nodetype=calln) and
(is_void(left.resultdef)) then
load_procvar_from_calln(left);
case parasym.varspez of
vs_var,
vs_out :
begin
if not valid_for_formal_var(left,true) then
CGMessagePos(left.fileinfo,parser_e_illegal_parameter_list);
end;
vs_constref:
begin
if not valid_for_formal_constref(left,true) then
CGMessagePos(left.fileinfo,parser_e_illegal_parameter_list);
end;
vs_const :
begin
if not valid_for_formal_const(left,true) then
CGMessagePos(left.fileinfo,parser_e_illegal_parameter_list)
else if (target_info.system in systems_managed_vm) and
(left.resultdef.typ in [orddef,floatdef]) then
begin
left:=cinlinenode.create(in_box_x,false,ccallparanode.create(left,nil));
typecheckpass(left);
end;
end;
else
;
end;
end
else
begin
{ check if the argument is allowed }
if (parasym.varspez in [vs_out,vs_var]) then
valid_for_var(left,true);
end;
if parasym.varspez in [vs_var,vs_out,vs_constref] then
set_unique(left);
if (parasym.varspez=vs_const) and (parasym.vardef.typ=formaldef) then
begin
{ compilerprocs never capture the address of their
parameters }
if (po_compilerproc in aktcallnode.procdefinition.procoptions) or
{ if we handled already the proc. body and it is not inlined,
we can propagate the information if the address of a parameter is taken or not }
((aktcallnode.procdefinition.typ=procdef) and
not(po_inline in tprocdef(aktcallnode.procdefinition).procoptions) and
(tprocdef(aktcallnode.procdefinition).is_implemented) and
not(parasym.addr_taken)) then
make_not_regable(left,[ra_addr_regable])
else
make_not_regable(left,[ra_addr_regable,ra_addr_taken]);
end
else
case parasym.varspez of
vs_out :
begin
{ first set written separately to avoid false }
{ uninitialized warnings (tbs/tb0542) }
set_varstate(left,vs_written,[]);
set_varstate(left,vs_readwritten,[]);
{ compilerprocs never capture the address of their
parameters }
if (po_compilerproc in aktcallnode.procdefinition.procoptions) or
{ if we handled already the proc. body and it is not inlined,
we can propagate the information if the address of a parameter is taken or not }
((aktcallnode.procdefinition.typ=procdef) and
not(po_inline in tprocdef(aktcallnode.procdefinition).procoptions) and
(tprocdef(aktcallnode.procdefinition).is_implemented) and
not(parasym.addr_taken)) then
make_not_regable(left,[ra_addr_regable])
else
make_not_regable(left,[ra_addr_regable,ra_addr_taken]);
end;
vs_var,
vs_constref:
begin
set_varstate(left,vs_readwritten,[vsf_must_be_valid,vsf_use_hints]);
{ compilerprocs never capture the address of their
parameters }
if (po_compilerproc in aktcallnode.procdefinition.procoptions) or
{ if we handled already the proc. body and it is not inlined,
we can propagate the information if the address of a parameter is taken or not }
((aktcallnode.procdefinition.typ=procdef) and
not(po_inline in tprocdef(aktcallnode.procdefinition).procoptions) and
(tprocdef(aktcallnode.procdefinition).is_implemented) and
not(parasym.addr_taken)) then
make_not_regable(left,[ra_addr_regable])
else
make_not_regable(left,[ra_addr_regable,ra_addr_taken]);
end;
else
set_varstate(left,vs_read,[vsf_must_be_valid]);
end;
{ must only be done after typeconv PM }
resultdef:=parasym.vardef;
end;
end;
{ process next node }
if assigned(right) then
tcallparanode(right).insert_typeconv;
end;
function tcallparanode.can_be_inlined: boolean;
var
n: tnode;
begin
n:=left;
result:=false;
while assigned(n) and
(n.nodetype=typeconvn) do
begin
{ look for type conversion nodes which convert a }
{ refcounted type into a non-refcounted type }
if not is_managed_type(n.resultdef) and
is_managed_type(ttypeconvnode(n).left.resultdef) then
exit;
n:=ttypeconvnode(n).left;
end;
{ also check for dereferencing constant pointers, like }
{ tsomerecord(nil^) passed to a const r: tsomerecord }
{ parameter }
if (n.nodetype=derefn) then
begin
repeat
n:=tunarynode(n).left;
until (n.nodetype<>typeconvn);
if (n.nodetype in [niln,pointerconstn]) then
exit
end;
result:=true;
end;
function check_contains_stack_tainting_call(var n: tnode; arg: pointer): foreachnoderesult;
begin
if (n.nodetype=calln) and
tcallnode(n).procdefinition.stack_tainting_parameter(callerside) then
result:=fen_norecurse_true
else
result:=fen_false;
end;
function tcallparanode.contains_stack_tainting_call: boolean;
begin
result:=foreachnodestatic(pm_postprocess,left,@check_contains_stack_tainting_call,nil);
end;
procedure tcallparanode.init_contains_stack_tainting_call_cache;
begin
fcontains_stack_tainting_call_cached:=contains_stack_tainting_call;
end;
function tcallparanode.docompare(p: tnode): boolean;
begin
docompare :=
inherited docompare(p) and
fparainit.isequal(tcallparanode(p).fparainit) and
fparacopyback.isequal(tcallparanode(p).fparacopyback) and
(callparaflags = tcallparanode(p).callparaflags)
;
end;
procedure tcallparanode.printnodetree(var t:text);
var
hp: tbinarynode;
begin
hp:=self;
while assigned(hp) do
begin
write(t,printnodeindention,'(');
printnodeindent;
hp.printnodeinfo(t);
writeln(t);
if assigned(tcallparanode(hp).fparainit) then
begin
writeln(t,printnodeindention,'(parainit =');
printnodeindent;
printnode(t,tcallparanode(hp).fparainit);
printnodeunindent;
writeln(t,printnodeindention,')');
end;
if assigned(tcallparanode(hp).fparacopyback) then
begin
writeln(t,printnodeindention,'(fparacopyback =');
printnodeindent;
printnode(t,tcallparanode(hp).fparacopyback);
printnodeunindent;
writeln(t,printnodeindention,')');
end;
printnode(t,hp.left);
writeln(t);
printnodeunindent;
writeln(t,printnodeindention,')');
hp:=tbinarynode(hp.right);
end;
end;
{****************************************************************************
TCALLNODE
****************************************************************************}
constructor tcallnode.create(l:tnode;v : tprocsym;st : TSymtable; mp: tnode; callflags:tcallnodeflags;sc:tspecializationcontext);
var
srsym: tsym;
srsymtable: tsymtable;
begin
inherited create(calln,l,nil);
spezcontext:=sc;
symtableprocentry:=v;
symtableproc:=st;
callnodeflags:=callflags+[cnf_return_value_used];
methodpointer:=mp;
callinitblock:=nil;
callcleanupblock:=nil;
procdefinition:=nil;
funcretnode:=nil;
paralength:=-1;
varargsparas:=nil;
intrinsiccode:=Default(TInlineNumber);
if assigned(current_structdef) and
assigned(mp) and
assigned(current_procinfo) then
begin
{ only needed when calling a destructor from an exception block in a
contructor of a TP-style object }
if (current_procinfo.procdef.proctypeoption=potype_constructor) and
(cnf_create_failed in callflags) then
if is_object(current_structdef) then
call_vmt_node:=load_vmt_pointer_node
else if is_class(current_structdef) then
begin
if not searchsym(copy(internaltypeprefixName[itp_vmt_afterconstruction_local],2,255),srsym,srsymtable) then
internalerror(2016090801);
call_vmt_node:=cloadnode.create(srsym,srsymtable);
end;
end;
end;
constructor tcallnode.create_procvar(l,r:tnode);
begin
create(l,nil,nil,nil,[],nil);
right:=r;
end;
constructor tcallnode.createintern(const name: string; params: tnode);
var
srsym: tsym;
begin
srsym := tsym(systemunit.Find(name));
{ in case we are looking for a non-external compilerproc of which we
only have parsed the declaration until now (the symbol name will
still be uppercased, because it needs to be matched when we
encounter the implementation) }
if not assigned(srsym) and
(cs_compilesystem in current_settings.moduleswitches) then
srsym := tsym(systemunit.Find(upper(name)));
if not assigned(srsym) or
(srsym.typ<>procsym) then
Message1(cg_f_unknown_compilerproc,name);
create(params,tprocsym(srsym),srsym.owner,nil,[],nil);
end;
constructor tcallnode.createfromintrinsic(const intrinsic: TInlineNumber; const name: string; params: tnode);
begin
createintern(name, params);
intrinsiccode := intrinsic;
end;
constructor tcallnode.createinternfromunit(const fromunit, procname: string; params: tnode);
var
srsym: tsym;
srsymtable: tsymtable;
begin
srsym:=nil;
if not searchsym_in_named_module(fromunit,procname,srsym,srsymtable) or
(srsym.typ<>procsym) then
Message1(cg_f_unknown_compilerproc,fromunit+'.'+procname);
create(params,tprocsym(srsym),srsymtable,nil,[],nil);
end;
constructor tcallnode.createinternres(const name: string; params: tnode; res:tdef);
var
pd : tprocdef;
begin
createintern(name,params);
typedef:=res;
include(callnodeflags,cnf_typedefset);
pd:=tprocdef(symtableprocentry.ProcdefList[0]);
{ both the normal and specified resultdef either have to be returned via a }
{ parameter or not, but no mixing (JM) }
if paramanager.ret_in_param(typedef,pd) xor
paramanager.ret_in_param(pd.returndef,pd) then
internalerror(2001082911);
end;
constructor tcallnode.createinternresfromunit(const fromunit, procname: string; params: tnode; res:tdef);
var
pd : tprocdef;
begin
createinternfromunit(fromunit,procname,params);
typedef:=res;
include(callnodeflags,cnf_typedefset);
pd:=tprocdef(symtableprocentry.ProcdefList[0]);
{ both the normal and specified resultdef either have to be returned via a }
{ parameter or not, but no mixing (JM) }
if paramanager.ret_in_param(typedef,pd) xor
paramanager.ret_in_param(pd.returndef,pd) then
internalerror(200108291);
end;
constructor tcallnode.createinternreturn(const name: string; params: tnode; returnnode : tnode);
begin
createintern(name,params);
funcretnode:=returnnode;
end;
constructor tcallnode.createinternmethod(mp: tnode; const name: string; params: tnode);
var
ps: tsym;
recdef: tabstractrecorddef;
begin
typecheckpass(mp);
if mp.resultdef.typ=classrefdef then
recdef:=tabstractrecorddef(tclassrefdef(mp.resultdef).pointeddef)
else
recdef:=tabstractrecorddef(mp.resultdef);
ps:=search_struct_member(recdef,name);
if not assigned(ps) or
(ps.typ<>procsym) then
internalerror(2011062806);
create(params,tprocsym(ps),ps.owner,mp,[],nil);
end;
constructor tcallnode.createinternmethodres(mp: tnode; const name: string; params: tnode; res: tdef);
begin
createinternmethod(mp,name,params);
typedef:=res;
include(callnodeflags,cnf_typedefset)
end;
destructor tcallnode.destroy;
begin
methodpointer.free;
callinitblock.free;
callcleanupblock.free;
funcretnode.free;
if assigned(varargsparas) then
varargsparas.free;
call_self_node.free;
call_vmt_node.free;
vmt_entry.free;
spezcontext.free;
inherited destroy;
end;
constructor tcallnode.ppuload(t:tnodetype;ppufile:tcompilerppufile);
begin
callinitblock:=tblocknode(ppuloadnode(ppufile));
methodpointer:=ppuloadnode(ppufile);
call_self_node:=ppuloadnode(ppufile);
call_vmt_node:=ppuloadnode(ppufile);
callcleanupblock:=tblocknode(ppuloadnode(ppufile));
funcretnode:=ppuloadnode(ppufile);
inherited ppuload(t,ppufile);
ppufile.getderef(symtableprocentryderef);
{ TODO: FIXME: No withsymtable support}
symtableproc:=nil;
ppufile.getderef(procdefinitionderef);
ppufile.getset(tppuset4(callnodeflags));
intrinsiccode:=TInlineNumber(ppufile.getword);
end;
procedure tcallnode.ppuwrite(ppufile:tcompilerppufile);
begin
ppuwritenode(ppufile,callinitblock);
ppuwritenode(ppufile,methodpointer);
ppuwritenode(ppufile,call_self_node);
ppuwritenode(ppufile,call_vmt_node);
ppuwritenode(ppufile,callcleanupblock);
ppuwritenode(ppufile,funcretnode);
inherited ppuwrite(ppufile);
ppufile.putderef(symtableprocentryderef);
ppufile.putderef(procdefinitionderef);
ppufile.putset(tppuset4(callnodeflags));
ppufile.putword(word(intrinsiccode));
end;
procedure tcallnode.buildderefimpl;
begin
inherited buildderefimpl;
symtableprocentryderef.build(symtableprocentry);
procdefinitionderef.build(procdefinition);
if assigned(methodpointer) then
methodpointer.buildderefimpl;
if assigned(call_self_node) then
call_self_node.buildderefimpl;
if assigned(call_vmt_node) then
call_vmt_node.buildderefimpl;
if assigned(callinitblock) then
callinitblock.buildderefimpl;
if assigned(callcleanupblock) then
callcleanupblock.buildderefimpl;
if assigned(funcretnode) then
funcretnode.buildderefimpl;
end;
procedure tcallnode.derefimpl;
var
pt : tcallparanode;
i : integer;
begin
inherited derefimpl;
symtableprocentry:=tprocsym(symtableprocentryderef.resolve);
if assigned(symtableprocentry) then
symtableproc:=symtableprocentry.owner;
procdefinition:=tabstractprocdef(procdefinitionderef.resolve);
if assigned(methodpointer) then
methodpointer.derefimpl;
if assigned(call_self_node) then
call_self_node.derefimpl;
if assigned(call_vmt_node) then
call_vmt_node.derefimpl;
if assigned(callinitblock) then
callinitblock.derefimpl;
if assigned(callcleanupblock) then
callcleanupblock.derefimpl;
if assigned(funcretnode) then
funcretnode.derefimpl;
{ generic method has no procdefinition }
if assigned(procdefinition) then
begin
{ Connect parasyms }
pt:=tcallparanode(left);
while assigned(pt) and
(cpf_varargs_para in pt.callparaflags) do
pt:=tcallparanode(pt.right);
for i:=procdefinition.paras.count-1 downto 0 do
begin
if not assigned(pt) then
internalerror(200311077);
pt.parasym:=tparavarsym(procdefinition.paras[i]);
pt:=tcallparanode(pt.right);
end;
if assigned(pt) then
internalerror(200311078);
end;
end;
function tcallnode.dogetcopy : tnode;
var
n : tcallnode;
i : integer;
hp,hpn : tparavarsym;
oldleft, oldright : tnode;
para: tcallparanode;
begin
{ Need to use a hack here to prevent the parameters from being copied.
The parameters must be copied between callinitblock/callcleanupblock because
they can reference methodpointer }
{ same goes for right (= self/context for procvars) }
oldleft:=left;
left:=nil;
oldright:=right;
right:=nil;
n:=tcallnode(inherited dogetcopy);
left:=oldleft;
right:=oldright;
n.symtableprocentry:=symtableprocentry;
n.symtableproc:=symtableproc;
n.procdefinition:=procdefinition;
n.typedef := typedef;
n.callnodeflags := callnodeflags;
n.pushedparasize := pushedparasize;
n.intrinsiccode := intrinsiccode;
if assigned(callinitblock) then
n.callinitblock:=tblocknode(callinitblock.dogetcopy)
else
n.callinitblock:=nil;
{ callinitblock is copied, now references to the temp will also be copied
correctly. We can now copy the parameters, funcret and methodpointer }
if assigned(left) then
n.left:=left.dogetcopy
else
n.left:=nil;
if assigned(right) then
n.right:=right.dogetcopy
else
n.right:=nil;
if assigned(methodpointer) then
n.methodpointer:=methodpointer.dogetcopy
else
n.methodpointer:=nil;
if assigned(call_self_node) then
n.call_self_node:=call_self_node.dogetcopy
else
n.call_self_node:=nil;
if assigned(call_vmt_node) then
n.call_vmt_node:=call_vmt_node.dogetcopy
else
n.call_vmt_node:=nil;
if assigned(vmt_entry) then
n.vmt_entry:=vmt_entry.dogetcopy
else
n.vmt_entry:=nil;
{ must be copied before the funcretnode, because the callcleanup block
may contain a ttempdeletenode that sets the tempinfo of the
corresponding temp to ti_nextref_set_hookoncopy_nil, and this nextref
itself may be the funcretnode }
if assigned(callcleanupblock) then
n.callcleanupblock:=tblocknode(callcleanupblock.dogetcopy)
else
n.callcleanupblock:=nil;
if assigned(funcretnode) then
n.funcretnode:=funcretnode.dogetcopy
else
n.funcretnode:=nil;
if assigned(varargsparas) then
begin
n.varargsparas:=tvarargsparalist.create(true);
n.varargsparas.capacity:=varargsparas.count;
for i:=0 to varargsparas.count-1 do
begin
hp:=tparavarsym(varargsparas[i]);
hpn:=cparavarsym.create(hp.realname,hp.paranr,hp.varspez,hp.vardef,[]);
n.varargsparas.add(hpn);
para:=tcallparanode(n.left);
while assigned(para) do
begin
if (para.parasym=hp) then
para.parasym:=hpn;
para:=tcallparanode(para.right);
end;
end;
end
else
n.varargsparas:=nil;
n.foverrideprocnamedef:=foverrideprocnamedef;
result:=n;
end;
function tcallnode.docompare(p: tnode): boolean;
begin
docompare :=
inherited docompare(p) and
(symtableprocentry = tcallnode(p).symtableprocentry) and
(procdefinition = tcallnode(p).procdefinition) and
{ this implicitly also compares the vmt_entry node, as it is
deterministically based on the methodpointer }
(methodpointer.isequal(tcallnode(p).methodpointer)) and
(((cnf_typedefset in callnodeflags) and (cnf_typedefset in tcallnode(p).callnodeflags) and
(equal_defs(typedef,tcallnode(p).typedef))) or
(not(cnf_typedefset in callnodeflags) and not(cnf_typedefset in tcallnode(p).callnodeflags)));
end;
{$ifdef DEBUG_NODE_XML}
procedure TCallNode.XMLPrintNodeData(var T: Text);
begin
if assigned(procdefinition) and (procdefinition.typ=procdef) then
WriteLn(T, PrintNodeIndention, '<procname>', SanitiseXMLString(TProcDef(procdefinition).FullProcName(True)), '</procname>')
else
begin
if assigned(symtableprocentry) then
WriteLn(T, PrintNodeIndention, '<procname>', symtableprocentry.name, '</procname>')
end;
if intrinsiccode <> Default(TInlineNumber) then
WriteLn(T, PrintNodeIndention, '<intrinsiccode>', intrinsiccode, '</intrinsiccode>');
if assigned(methodpointer) then
begin
WriteLn(T, PrintNodeIndention, '<methodpointer>');
PrintNodeIndent;
XMLPrintNode(T, methodpointer);
PrintNodeUnindent;
WriteLn(T, PrintNodeIndention, '</methodpointer>');
end;
if assigned(funcretnode) then
begin
WriteLn(T, PrintNodeIndention, '<funcretnode>');
PrintNodeIndent;
XMLPrintNode(T, funcretnode);
PrintNodeUnindent;
WriteLn(T, PrintNodeIndention, '</funcretnode>');
end;
if assigned(vmt_entry) then
begin
WriteLn(T, PrintNodeIndention, '<vmt_entry>');
PrintNodeIndent;
XMLPrintNode(T, vmt_entry);
PrintNodeUnindent;
WriteLn(T, PrintNodeIndention, '</vmt_entry>');
end;
if assigned(call_self_node) then
begin
WriteLn(T, PrintNodeIndention, '<call_self_node>');
PrintNodeIndent;
XMLPrintNode(T, call_self_node);
PrintNodeUnindent;
WriteLn(T, PrintNodeIndention, '</call_self_node>');
end;
if assigned(call_vmt_node) then
begin
WriteLn(T, PrintNodeIndention, '<call_vmt_node>');
PrintNodeIndent;
XMLPrintNode(T, call_vmt_node);
PrintNodeUnindent;
WriteLn(T, PrintNodeIndention, '</call_vmt_node>');
end;
if assigned(callinitblock) then
begin
WriteLn(T, PrintNodeIndention, '<callinitblock>');
PrintNodeIndent;
XMLPrintNode(T, callinitblock);
PrintNodeUnindent;
WriteLn(T, PrintNodeIndention, '</callinitblock>');
end;
if assigned(callcleanupblock) then
begin
WriteLn(T, PrintNodeIndention, '<callcleanupblock>');
PrintNodeIndent;
XMLPrintNode(T, callcleanupblock);
PrintNodeUnindent;
WriteLn(T, PrintNodeIndention, '</callcleanupblock>');
end;
inherited XMLPrintNodeData(T);
end;
{$endif DEBUG_NODE_XML}
procedure tcallnode.printnodedata(var t:text);
begin
if assigned(procdefinition) and
(procdefinition.typ=procdef) then
writeln(t,printnodeindention,'proc = ',tprocdef(procdefinition).fullprocname(true))
else
begin
if assigned(symtableprocentry) then
writeln(t,printnodeindention,'proc = ',symtableprocentry.name)
else
writeln(t,printnodeindention,'proc = <nil>');
end;
if intrinsiccode <> Default(TInlineNumber) then
writeln(t,printnodeindention,'intrinsiccode = ', intrinsiccode);
if assigned(methodpointer) then
begin
writeln(t,printnodeindention,'methodpointer =');
printnode(t,methodpointer);
end;
if assigned(funcretnode) then
begin
writeln(t,printnodeindention,'funcretnode =');
printnode(t,funcretnode);
end;
if assigned(vmt_entry) then
begin
writeln(t,printnodeindention,'vmt_entry =');
printnode(t,vmt_entry);
end;
if assigned(call_self_node) then
begin
writeln(t,printnodeindention,'call_self_node =');
printnode(t,call_self_node);
end;
if assigned(call_vmt_node) then
begin
writeln(t,printnodeindention,'call_vmt_node =');
printnode(t,call_vmt_node);
end;
if assigned(callinitblock) then
begin
writeln(t,printnodeindention,'callinitblock =');
printnode(t,callinitblock);
end;
if assigned(callcleanupblock) then
begin
writeln(t,printnodeindention,'callcleanupblock =');
printnode(t,callcleanupblock);
end;
if assigned(right) then
begin
writeln(t,printnodeindention,'right =');
printnode(t,right);
end;
if assigned(left) then
begin
writeln(t,printnodeindention,'left =');
printnode(t,left);
end;
end;
procedure tcallnode.insertintolist(l : tnodelist);
begin
end;
procedure tcallnode.add_init_statement(n:tnode);
var
lastinitstatement, before_firstpass : tstatementnode;
was_first_statement : boolean;
begin
if not assigned(n) then
exit;
if not assigned(callinitblock) then
begin
callinitblock:=internalstatements(lastinitstatement);
lastinitstatement.left.free;
lastinitstatement.left:=n;
firstpass(tnode(callinitblock));
exit;
end;
lastinitstatement:=laststatement(callinitblock);
was_first_statement:=(lastinitstatement=callinitblock.statements);
{ all these nodes must be immediately typechecked, because this routine }
{ can be called from pass_1 (i.e., after typecheck has already run) and }
{ moreover, the entire blocks themselves are also only typechecked in }
{ pass_1, while the the typeinfo is already required after the }
{ typecheck pass for simplify purposes (not yet perfect, because the }
{ statementnodes themselves are not typechecked this way) }
addstatement(lastinitstatement,n);
before_firstpass:=lastinitstatement;
firstpass(tnode(lastinitstatement));
if was_first_statement and (lastinitstatement<>before_firstpass) then
callinitblock.statements:=lastinitstatement;
{ Update expectloc for callinitblock }
callinitblock.expectloc:=lastinitstatement.expectloc;
end;
procedure tcallnode.add_done_statement(n:tnode);
var
lastdonestatement, before_firstpass : tstatementnode;
was_first_statement : boolean;
begin
if not assigned(n) then
exit;
if not assigned(callcleanupblock) then
begin
callcleanupblock:=internalstatements(lastdonestatement);
lastdonestatement.left.free;
lastdonestatement.left:=n;
firstpass(tnode(callcleanupblock));
exit;
end;
lastdonestatement:=laststatement(callcleanupblock);
was_first_statement:=(lastdonestatement=callcleanupblock.statements);
{ see comments in add_init_statement }
addstatement(lastdonestatement,n);
before_firstpass:=lastdonestatement;
firstpass(tnode(lastdonestatement));
if was_first_statement and (lastdonestatement<>before_firstpass) then
callcleanupblock.statements:=lastdonestatement;
{ Update expectloc for callcleanupblock }
callcleanupblock.expectloc:=lastdonestatement.expectloc;
end;
function tcallnode.para_count:longint;
var
ppn : tcallparanode;
begin
result:=0;
ppn:=tcallparanode(left);
while assigned(ppn) do
begin
if not(assigned(ppn.parasym) and
(vo_is_hidden_para in ppn.parasym.varoptions)) then
inc(result);
ppn:=tcallparanode(ppn.right);
end;
end;
function tcallnode.required_para_count: longint;
var
ppn : tcallparanode;
begin
result:=0;
ppn:=tcallparanode(left);
while assigned(ppn) do
begin
if not(assigned(ppn.parasym) and
((vo_is_hidden_para in ppn.parasym.varoptions) or
assigned(ppn.parasym.defaultconstsym))) then
inc(result);
ppn:=tcallparanode(ppn.right);
end;
end;
function tcallnode.GetParaFromIndex(const Index: Integer): TCallParaNode;
var
hp : TCallParaNode;
Count: Integer;
begin
Result := nil;
Count := 0;
hp := TCallParaNode(left);
repeat
{ If the original indices have not yet been set, just go by the order
they appear in the node tree }
if hp.originalindex = -1 then
begin
if Count = Index then
begin
Result := hp;
Exit;
end;
Inc(Count);
end
else if hp.originalindex = Index then
begin
Result := hp;
Exit;
end;
hp := TCallParaNode(hp.right);
until not Assigned(hp);
end;
function tcallnode.is_simple_para_load(p:tnode; may_be_in_reg: boolean):boolean;
var
hp : tnode;
begin
hp:=p;
while assigned(hp) and
(hp.nodetype=typeconvn) and
(ttypeconvnode(hp).convtype=tc_equal) do
hp:=tunarynode(hp).left;
result:=(hp.nodetype in [typen,loadvmtaddrn,loadn,temprefn,arrayconstructorn,addrn]);
if result and
not(may_be_in_reg) then
case hp.nodetype of
loadn:
result:=(tabstractvarsym(tloadnode(hp).symtableentry).varregable in [vr_none,vr_addr]);
temprefn:
result:=not(ti_may_be_in_reg in ttemprefnode(hp).tempflags);
else
;
end;
end;
function tcallnode.getoverrideprocnamedef: tprocdef; inline;
begin
result:=foverrideprocnamedef;
end;
function look_for_call(var n: tnode; arg: pointer): foreachnoderesult;
begin
case n.nodetype of
calln,asn:
result := fen_norecurse_true;
typen,loadvmtaddrn,loadn,temprefn,arrayconstructorn:
result := fen_norecurse_false;
else
result := fen_false;
end;
end;
procedure tcallnode.maybe_load_in_temp(var p:tnode);
begin
{ Load all complex loads into a temp to prevent
double calls to a function. We can't simply check for a hp.nodetype=calln }
if assigned(p) and
foreachnodestatic(p,@look_for_call,nil) then
load_in_temp(p);
end;
procedure tcallnode.load_in_temp(var p:tnode);
var
actnode : pnode;
loadp,
refp : tnode;
hdef : tdef;
ptemp : ttempcreatenode;
usederef : boolean;
begin
if assigned(p) then
begin
{ if the node is a deref node we load the pointer in a temp to allow
code using this node to still be able to modify the original
reference (e.g. a function returning a floating point value on x86
would pass that value through the FP stack and then to the stack
and thus e.g. a type helper for float called on that would modify
the temporary memory on the stack instead of the returned pointer
value }
actnode:=@p;
actnode:=actualtargetnode(actnode);
if actnode^.nodetype=derefn then
begin
load_in_temp(tderefnode(actnode^).left);
exit;
end;
{ temp create }
usederef:=(p.resultdef.typ in [arraydef,recorddef]) or
is_shortstring(p.resultdef) or
is_object(p.resultdef);
if usederef then
hdef:=cpointerdef.getreusable(p.resultdef)
else
hdef:=p.resultdef;
ptemp:=ctempcreatenode.create(hdef,hdef.size,tt_persistent,true);
if usederef then
begin
loadp:=caddrnode.create_internal(p);
refp:=cderefnode.create(ctemprefnode.create(ptemp));
end
else
begin
loadp:=p;
refp:=ctemprefnode.create(ptemp);
{ ensure that an invokable isn't called again }
if is_invokable(hdef) then
include(ttemprefnode(refp).flags,nf_load_procvar);
end;
add_init_statement(ptemp);
add_init_statement(cassignmentnode.create(
ctemprefnode.create(ptemp),
loadp));
add_done_statement(ctempdeletenode.create(ptemp));
{ new tree is only a temp reference }
p:=refp;
typecheckpass(p);
end;
end;
function tcallnode.gen_high_tree(var p:tnode;paradef:tdef):tnode;
{ When passing an array to an open array, or a string to an open string,
some code is needed that generates the high bound of the array. This
function returns a tree containing the nodes for it. }
var
temp: tnode;
len : integer;
loadconst : boolean;
hightree,l,r : tnode;
defkind: tdeftyp;
begin
len:=-1;
loadconst:=true;
hightree:=nil;
{ constant strings are internally stored as array of char, but if the
parameter is a string also treat it like one }
defkind:=p.resultdef.typ;
if (p.nodetype=stringconstn) and
(paradef.typ=stringdef) then
defkind:=stringdef;
case defkind of
arraydef :
begin
if (paradef.typ<>arraydef) then
internalerror(200405241);
{ passing a string to an array of char }
if (p.nodetype=stringconstn) and
is_char(tarraydef(paradef).elementdef) then
begin
len:=tstringconstnode(p).len;
if len>0 then
dec(len);
end
else
{ handle special case of passing an single array to an array of array }
if compare_defs(tarraydef(paradef).elementdef,p.resultdef,nothingn)>=te_equal then
len:=0
else
begin
{ handle via a normal inline in_high_x node }
loadconst:=false;
{ slice? }
if (p.nodetype=inlinen) and (tinlinenode(p).inlinenumber=in_slice_x) then
with Tcallparanode(Tinlinenode(p).left) do
begin
{Array slice using slice builtin function.}
l:=Tcallparanode(right).left;
hightree:=caddnode.create(subn,geninlinenode(in_ord_x,false,l),genintconstnode(1));
Tcallparanode(right).left:=nil;
{Remove the inline node.}
temp:=p;
p:=left;
Tcallparanode(tinlinenode(temp).left).left:=nil;
temp.free;
typecheckpass(hightree);
end
else if (p.nodetype=vecn) and (Tvecnode(p).right.nodetype=rangen) then
begin
{Array slice using .. operator.}
with Trangenode(Tvecnode(p).right) do
begin
l:=geninlinenode(in_ord_x,false,left); {Get lower bound.}
r:=geninlinenode(in_ord_x,false,right); {Get upper bound.}
end;
{In the procedure the array range is 0..(upper_bound-lower_bound).}
hightree:=caddnode.create(subn,r,l);
{Replace the rangnode in the tree by its lower_bound, and
dispose the rangenode.}
temp:=Tvecnode(p).right;
Tvecnode(p).right:=l.getcopy;
{Typecheckpass can only be performed *after* the l.getcopy since it
can modify the tree, and l is in the hightree.}
typecheckpass(hightree);
with Trangenode(temp) do
begin
left:=nil;
right:=nil;
end;
temp.free;
{Tree changed from p[l..h] to p[l], recalculate resultdef.}
p.resultdef:=nil;
typecheckpass(p);
end
else
begin
maybe_load_in_temp(p);
hightree:=geninlinenode(in_ord_x,false,geninlinenode(in_high_x,false,p.getcopy));
typecheckpass(hightree);
{ only substract low(array) if it's <> 0 }
temp:=geninlinenode(in_ord_x,false,geninlinenode(in_low_x,false,p.getcopy));
typecheckpass(temp);
if (temp.nodetype <> ordconstn) or
(tordconstnode(temp).value <> 0) then
begin
hightree:=caddnode.create(subn,hightree,temp);
include(hightree.flags,nf_internal);
end
else
temp.free;
end;
end;
end;
stringdef :
begin
if is_open_string(paradef) then
begin
{ a stringconstn is not a simple parameter and hence would be
loaded in a temp, but in that case the high() node
a) goes wrong (it cannot deal with a temp node)
b) would give a generic result instead of one specific to
this constant string
}
if p.nodetype<>stringconstn then
maybe_load_in_temp(p);
{ handle via a normal inline in_high_x node }
loadconst := false;
hightree := geninlinenode(in_high_x,false,p.getcopy);
end
else
{ handle special case of passing an single string to an array of string }
if compare_defs(tarraydef(paradef).elementdef,p.resultdef,nothingn)>=te_equal then
len:=0
else
{ passing a string to an array of char }
if (p.nodetype=stringconstn) and
is_char(tarraydef(paradef).elementdef) then
begin
len:=tstringconstnode(p).len;
if len>0 then
dec(len);
end
else
begin
maybe_load_in_temp(p);
hightree:=caddnode.create(subn,geninlinenode(in_length_x,false,p.getcopy),
cordconstnode.create(1,sizesinttype,false));
loadconst:=false;
end;
end;
else
len:=0;
end;
if loadconst then
hightree:=cordconstnode.create(len,sizesinttype,true)
else
begin
if not assigned(hightree) then
internalerror(200304071);
{ Need to use explicit, because it can also be a enum }
hightree:=ctypeconvnode.create_internal(hightree,sizesinttype);
end;
result:=hightree;
end;
function tcallnode.gen_procvar_context_tree_self:tnode;
begin
{ Load tmehodpointer(right).self }
result:=genloadfield(ctypeconvnode.create_internal(
right.getcopy,methodpointertype),
'self');
end;
function tcallnode.gen_procvar_context_tree_parentfp: tnode;
begin
{ Load tnestedprocpointer(right).parentfp }
result:=genloadfield(ctypeconvnode.create_internal(
right.getcopy,nestedprocpointertype),
'parentfp');
end;
function tcallnode.gen_self_tree:tnode;
var
selftree : tnode;
selfdef : tdef;
temp : ttempcreatenode;
begin
selftree:=nil;
{ When methodpointer was a callnode we must load it first into a
temp to prevent processing the callnode twice }
if (methodpointer.nodetype=calln) then
internalerror(200405121);
{ Objective-C: objc_convert_to_message_send() already did all necessary
transformation on the methodpointer }
if (procdefinition.typ=procdef) and
(po_objc in tprocdef(procdefinition).procoptions) then
selftree:=methodpointer.getcopy
{ inherited }
else if (cnf_inherited in callnodeflags) then
begin
selftree:=safe_call_self_node.getcopy;
{ we can call an inherited class static/method from a regular method
-> self node must change from instance pointer to vmt pointer)
}
if (procdefinition.procoptions*[po_classmethod,po_staticmethod] <> []) and
(selftree.resultdef.typ<>classrefdef) then
selftree:=cloadvmtaddrnode.create(selftree);
end
else
{ constructors }
if (procdefinition.proctypeoption=potype_constructor) then
begin
if (methodpointer.resultdef.typ=classrefdef) or
(cnf_new_call in callnodeflags) then
if not is_javaclass(tdef(procdefinition.owner.defowner)) then
begin
if (cnf_new_call in callnodeflags) then
{ old-style object: push 0 as self }
selftree:=cpointerconstnode.create(0,voidpointertype)
else
begin
{ class-style: push classtype }
selftree:=methodpointer.getcopy;
if selftree.nodetype=typen then
begin
selftree:=cloadvmtaddrnode.create(selftree);
tloadvmtaddrnode(selftree).forcall:=true;
end;
end;
end
else
{ special handling for Java constructors, handled in
tjvmcallnode.extra_pre_call_code }
selftree:=cnothingnode.create
else
begin
if methodpointer.nodetype=typen then
if (methodpointer.resultdef.typ<>objectdef) then
begin
if not(target_info.system in systems_jvm) then
begin
{ TSomeRecord.Constructor call. We need to allocate }
{ self node as a temp node of the result type }
temp:=ctempcreatenode.create(methodpointer.resultdef,methodpointer.resultdef.size,tt_persistent,false);
add_init_statement(temp);
add_done_statement(ctempdeletenode.create_normal_temp(temp));
selftree:=ctemprefnode.create(temp);
end
else
begin
{ special handling for Java constructors, handled in
tjvmcallnode.extra_pre_call_code }
selftree:=cnothingnode.create
end;
end
else
selftree:=safe_call_self_node.getcopy
else
selftree:=methodpointer.getcopy;
end;
end
else
{ Calling a static/class method }
if (po_classmethod in procdefinition.procoptions) or
(po_staticmethod in procdefinition.procoptions) then
begin
if (procdefinition.typ<>procdef) then
internalerror(200305062);
{ if the method belongs to a helper then we need to use the
extended type for references to Self }
if is_objectpascal_helper(tprocdef(procdefinition).struct) then
selfdef:=tobjectdef(tprocdef(procdefinition).struct).extendeddef
else
selfdef:=tprocdef(procdefinition).struct;
if ((selfdef.typ in [recorddef,objectdef]) and
(oo_has_vmt in tabstractrecorddef(selfdef).objectoptions)) or
{ all Java classes have a "VMT" }
(target_info.system in systems_jvm) then
begin
{ we only need the vmt, loading self is not required and there is no
need to check for typen, because that will always get the
loadvmtaddrnode added }
selftree:=methodpointer.getcopy;
if (methodpointer.resultdef.typ<>classrefdef) or
(methodpointer.nodetype = typen) then
selftree:=cloadvmtaddrnode.create(selftree);
end
else
selftree:=cpointerconstnode.create(0,voidpointertype);
end
else
begin
if methodpointer.nodetype=typen then
selftree:=safe_call_self_node.getcopy
else
selftree:=methodpointer.getcopy;
end;
result:=selftree;
end;
function tcallnode.use_caller_self(check_for_callee_self: boolean): boolean;
var
i: longint;
ps: tparavarsym;
begin
result:=false;
{ is there a self parameter? }
if check_for_callee_self then
begin
ps:=nil;
for i:=0 to procdefinition.paras.count-1 do
begin
ps:=tparavarsym(procdefinition.paras[i]);
if vo_is_self in ps.varoptions then
break;
ps:=nil;
end;
if not assigned(ps) then
exit;
end;
{ we need to load the'self' parameter of the current routine as the
'self' parameter of the called routine if
1) we're calling an inherited routine
2) we're calling a constructor via type.constructorname and
type is not a classrefdef (i.e., we're calling a constructor like
a regular method)
3) we're calling any regular (non-class/non-static) method via
a typenode (the methodpointer is then that typenode, but the
passed self node must become the current self node)
In other cases, we either don't have to pass the 'self' parameter of
the current routine to the called one, or methodpointer will already
contain it (e.g. because a method was called via "method", in which
case the parser already passed 'self' as the method pointer, or via
"self.method") }
if (cnf_inherited in callnodeflags) or
((procdefinition.proctypeoption=potype_constructor) and
not((methodpointer.resultdef.typ=classrefdef) or
(cnf_new_call in callnodeflags)) and
(methodpointer.nodetype=typen) and
(methodpointer.resultdef.typ=objectdef)) or
(assigned(methodpointer) and
(procdefinition.proctypeoption<>potype_constructor) and
not(po_classmethod in procdefinition.procoptions) and
not(po_staticmethod in procdefinition.procoptions) and
(methodpointer.nodetype=typen)) then
result:=true;
end;
procedure tcallnode.maybe_gen_call_self_node;
begin
if cnf_call_self_node_done in callnodeflags then
exit;
include(callnodeflags,cnf_call_self_node_done);
if use_caller_self(true) then
call_self_node:=load_self_node;
end;
procedure tcallnode.register_created_object_types;
var
crefdef,
systobjectdef : tdef;
begin
{ only makes sense for methods }
if not assigned(methodpointer) then
exit;
{ inherited calls don't create an instance of the inherited type, but of
the current type }
if ([cnf_inherited,cnf_anon_inherited,cnf_ignore_devirt_wpo]*callnodeflags)<>[] then
exit;
if (methodpointer.resultdef.typ=classrefdef) then
begin
{ constructor call via classreference => instance can be created
same with calling newinstance without a instance-self (don't
consider self-based newinstance calls, because then everything
will be assumed to be just a TObject since TObject.Create calls
NewInstance) }
if procdefinition.wpo_may_create_instance(methodpointer) then
begin
{ Only a typenode can be passed when it is called with <class of xx>.create }
if (methodpointer.nodetype=typen) then
begin
if wpoinfomanager.symbol_live_in_currentproc(methodpointer.resultdef) then
{ we know the exact class type being created }
tclassrefdef(methodpointer.resultdef).pointeddef.register_created_object_type
end
else
begin
{ the loadvmtaddrnode is already created in case of classtype.create }
if (methodpointer.nodetype=loadvmtaddrn) and
(tloadvmtaddrnode(methodpointer).left.nodetype=typen) then
begin
if wpoinfomanager.symbol_live_in_currentproc(methodpointer.resultdef) then
tclassrefdef(methodpointer.resultdef).pointeddef.register_created_object_type
end
else
begin
if wpoinfomanager.symbol_live_in_currentproc(methodpointer.resultdef) then
begin
{ special case: if the classref comes from x.classtype (with classtype,
being tobject.classtype) then the created instance is x or a descendant
of x (rather than tobject or a descendant of tobject)
}
systobjectdef:=search_system_type('TOBJECT').typedef;
if (methodpointer.nodetype=calln) and
{ not a procvar call }
not assigned(right) and
{ procdef is owned by system.tobject }
(tprocdef(tcallnode(methodpointer).procdefinition).owner.defowner=systobjectdef) and
{ we're calling system.tobject.classtype }
(tcallnode(methodpointer).symtableprocentry.name='CLASSTYPE') and
{ could again be a classrefdef, but unlikely }
(tcallnode(methodpointer).methodpointer.resultdef.typ=objectdef) and
{ don't go through this trouble if it was already a tobject }
(tcallnode(methodpointer).methodpointer.resultdef<>systobjectdef) then
begin
{ register this object type as classref, so all descendents will also
be marked as instantiatable (only the pointeddef will actually be
recorded, so it's no problem that the clasrefdef is only temporary)
}
crefdef:=cclassrefdef.create(tcallnode(methodpointer).methodpointer.resultdef);
{ and register it }
crefdef.register_created_object_type;
end
else
{ the created class can be any child class as well -> register classrefdef }
methodpointer.resultdef.register_created_object_type;
end;
end;
end;
end
end
else
{ Old style object }
if is_object(methodpointer.resultdef) then
begin
{ constructor with extended syntax called from new }
if (cnf_new_call in callnodeflags) then
begin
if wpoinfomanager.symbol_live_in_currentproc(methodpointer.resultdef) then
methodpointer.resultdef.register_created_object_type;
end
else
{ normal object call like obj.proc }
if not(cnf_dispose_call in callnodeflags) and
not(cnf_inherited in callnodeflags) and
not(cnf_member_call in callnodeflags) then
begin
if (procdefinition.proctypeoption=potype_constructor) then
begin
if (methodpointer.nodetype<>typen) and
wpoinfomanager.symbol_live_in_currentproc(methodpointer.resultdef) then
methodpointer.resultdef.register_created_object_type;
end
end;
end;
end;
function tcallnode.get_expect_loc: tcgloc;
var
realresdef: tstoreddef;
begin
if not assigned(typedef) then
realresdef:=tstoreddef(resultdef)
else
realresdef:=tstoreddef(typedef);
if realresdef.is_intregable then
result:=LOC_REGISTER
else if (realresdef.typ=floatdef) and
not(cs_fp_emulation in current_settings.moduleswitches) then
if use_vectorfpu(realresdef) then
result:=LOC_MMREGISTER
else
{$ifdef x86}
result:=LOC_REFERENCE
{$else x86}
result:=LOC_FPUREGISTER
{$endif x86}
else
result:=LOC_REFERENCE
end;
function tcallnode.handle_compilerproc: tnode;
var
para: TCallParaNode;
maxlennode, outnode, valnode: TNode;
MaxStrLen: Int64;
StringLiteral, name: string;
ValOutput: TConstExprInt;
ValCode: Longint;
NewStatements: TStatementNode;
si : ShortInt;
b: Byte;
i: SmallInt;
w: Word;
li: LongInt;
dw: DWord;
i64: Int64;
qw: QWord;
begin
result := nil;
case intrinsiccode of
in_str_x_string:
begin
{ rare optimization opportunity which takes some extra time,
so check only at level 3+ }
if not(cs_opt_level3 in current_settings.optimizerswitches) then
exit;
{ If n is a constant, attempt to convert, for example:
"Str(5, Output);" to "Output := '5';" }
{ Format of the internal function (also for fpc_shortstr_uint) is:
$fpc_shortstr_sint(Int64;Int64;out OpenString;<const Int64>); }
{ Remember the parameters are in reverse order - the leftmost one
can usually be ignored }
para := GetParaFromIndex(1);
if Assigned(para) then
begin
{ Output variable }
outnode := para.left;
para := GetParaFromIndex(2);
if Assigned(para) then
begin
{ Maximum length }
maxlennode := para.left;
if is_integer(maxlennode.resultdef) then
begin
para := GetParaFromIndex(3);
while (maxlennode.nodetype = typeconvn) and (ttypeconvnode(maxlennode).convtype in [tc_equal, tc_int_2_int]) do
begin
maxlennode := ttypeconvnode(maxlennode).left;
end;
if Assigned(para) and is_constintnode(maxlennode) then
begin
{ Numeric value }
valnode := para.left;
if is_integer(valnode.resultdef) and not Assigned(GetParaFromIndex(4)) then
begin
while (valnode.nodetype = typeconvn) and (ttypeconvnode(valnode).convtype in [tc_equal, tc_int_2_int]) do
begin
valnode := ttypeconvnode(valnode).left;
end;
if is_constintnode(valnode) then
begin
MaxStrLen := TOrdConstNode(maxlennode).value.svalue;
{ If we've gotten this far, we can convert the node into a direct assignment }
StringLiteral := tostr(tordconstnode(valnode).value);
if MaxStrLen <> -1 then
SetLength(StringLiteral, Integer(MaxStrLen));
result := cassignmentnode.create(
outnode.getcopy,
cstringconstnode.createstr(StringLiteral)
);
end;
end;
end;
end;
end;
end;
end;
in_val_x:
begin
{ rare optimization opportunity which takes some extra time,
so check only at level 3+ }
if not(cs_opt_level3 in current_settings.optimizerswitches) then
exit;
{ If the input is a constant, attempt to convert, for example:
"Val('5', Output, Code);" to "Output := 5; Code := 0;" }
{ Format of the internal function fpc_val_sint_*str) is:
fpc_val_sint_*str(SizeInt; *String; out ValSInt): ValSInt; }
{ Remember the parameters are in reverse order - the leftmost one
is the integer data size can usually be ignored.
For fpc_val_uint_*str variants, the data size is not present as
of FPC 3.2.0
Para indices:
* 0 = Code output (present even if omitted in original code)
* 1 = String input
* 2 = Data size
}
para := GetParaFromIndex(0);
if Assigned(para) then
begin
outnode := para.left;
para := GetParaFromIndex(1);
if Assigned(para) then
begin
valnode:=para.left;
name:=tprocdef(procdefinition).fullprocname(true);
if is_conststringnode(valnode) and
{ we can handle only the fpc_val_sint helpers so far }
((copy(name,1,13)='$fpc_val_sint') or (copy(name,1,13)='$fpc_val_uint')) then
begin
ValOutput.signed := is_signed(ResultDef);
case Longint(tordconstnode(GetParaFromIndex(2).paravalue).value.svalue) of
1:
if ValOutput.signed then
begin
Val(TStringConstNode(valnode).asrawbytestring, si, ValCode);
ValOutput.svalue:=si;
end
else
begin
Val(TStringConstNode(valnode).asrawbytestring, b, ValCode);
ValOutput.uvalue:=b;
end;
2:
if ValOutput.signed then
begin
Val(TStringConstNode(valnode).asrawbytestring, i, ValCode);
ValOutput.svalue:=i;
end
else
begin
Val(TStringConstNode(valnode).asrawbytestring, w, ValCode);
ValOutput.uvalue:=w;
end;
4:
if ValOutput.signed then
begin
Val(TStringConstNode(valnode).asrawbytestring, li, ValCode);
ValOutput.svalue:=li;
end
else
begin
Val(TStringConstNode(valnode).asrawbytestring, dw, ValCode);
ValOutput.uvalue:=dw;
end;
8:
if ValOutput.signed then
begin
Val(TStringConstNode(valnode).asrawbytestring, i64, ValCode);
ValOutput.svalue:=i64;
end
else
begin
Val(TStringConstNode(valnode).asrawbytestring, qw, ValCode);
ValOutput.uvalue:=qw;
end;
else
Internalerror(2024011402);
end;
{ Due to the way the node tree works, we have to insert
the assignment to the Code output within the
assignment to the value output (function result),
so use a block node for that}
Result := internalstatements(NewStatements);
{ Create a node for writing the Code output }
addstatement(
NewStatements,
CAssignmentNode.Create_Internal(
outnode.getcopy(), { The original will get destroyed }
COrdConstNode.Create(ValCode, outnode.ResultDef, False)
)
);
{ Now actually create the function result }
case resultdef.typ of
orddef:
valnode := COrdConstNode.Create(ValOutput, resultdef, False);
else
Internalerror(2024011401);
end;
addstatement(NewStatements, valnode);
{ Result will now undergo firstpass }
end;
end;
end;
end;
else
;
end;
end;
function tcallnode.safe_call_self_node: tnode;
begin
if not assigned(call_self_node) then
begin
CGMessage(parser_e_illegal_expression);
call_self_node:=cerrornode.create;
end;
result:=call_self_node;
end;
procedure tcallnode.gen_vmt_entry_load;
var
vmt_def: trecorddef;
begin
if not assigned(right) and
not assigned(overrideprocnamedef) and
(po_virtualmethod in procdefinition.procoptions) and
not is_objectpascal_helper(tprocdef(procdefinition).struct) and
assigned(methodpointer) and
(methodpointer.nodetype<>typen) then
begin
vmt_entry:=load_vmt_for_self_node(methodpointer.getcopy);
{ get the right entry in the VMT }
vmt_entry:=cderefnode.create(vmt_entry);
typecheckpass(vmt_entry);
vmt_def:=trecorddef(vmt_entry.resultdef);
{ tobjectdef(tprocdef(procdefinition).struct) can be a parent of the
methodpointer's resultdef, but the vmtmethodoffset of the method
in that objectdef is obviously the same as in any child class }
vmt_entry:=csubscriptnode.create(
trecordsymtable(vmt_def.symtable).findfieldbyoffset(
tobjectdef(tprocdef(procdefinition).struct).vmtmethodoffset(tprocdef(procdefinition).extnumber)
),
vmt_entry
);
firstpass(vmt_entry);
end;
end;
procedure tcallnode.gen_syscall_para(para: tcallparanode);
begin
{ unsupported }
internalerror(2014040101);
end;
procedure tcallnode.objc_convert_to_message_send;
var
block,
selftree : tnode;
statements : tstatementnode;
field : tfieldvarsym;
temp : ttempcreatenode;
selfrestype,
objcsupertype : tdef;
srsym : tsym;
srsymtable : tsymtable;
msgsendname : string;
begin
if not(m_objectivec1 in current_settings.modeswitches) then
Message(parser_f_modeswitch_objc_required);
{ typecheck pass must already have run on the call node,
because pass1 calls this method
}
{ default behaviour: call objc_msgSend and friends;
64 bit targets for Mac OS X can override this as they
can call messages via an indirect function call similar to
dynamically linked functions, ARM maybe as well (not checked)
Which variant of objc_msgSend is used depends on the
result type, and on whether or not it's an inherited call.
}
{ make sure we don't perform this transformation twice in case
firstpass would be called multiple times }
include(callnodeflags,cnf_objc_processed);
{ make sure the methodpointer doesn't get translated into a call
as well (endless loop) }
if methodpointer.nodetype=loadvmtaddrn then
tloadvmtaddrnode(methodpointer).forcall:=true;
{ A) set the appropriate objc_msgSend* variant to call }
{ The AArch64 abi does not require special handling for struct returns }
{$ifndef aarch64}
{ record returned via implicit pointer }
if paramanager.ret_in_param(resultdef,procdefinition) then
begin
if not(cnf_inherited in callnodeflags) then
msgsendname:='OBJC_MSGSEND_STRET'
else if (target_info.system in systems_objc_nfabi) and
(not MacOSXVersionMin.isvalid or
(MacOSXVersionMin.relationto(10,6,0)>=0)) then
msgsendname:='OBJC_MSGSENDSUPER2_STRET'
else
msgsendname:='OBJC_MSGSENDSUPER_STRET'
end
{$ifdef i386}
{ special case for fpu results on i386 for non-inherited calls }
{ TODO: also for x86_64 "extended" results }
else if (resultdef.typ=floatdef) and
not(cnf_inherited in callnodeflags) then
msgsendname:='OBJC_MSGSEND_FPRET'
{$endif i386}
{ default }
else
{$endif aarch64}
if not(cnf_inherited in callnodeflags) then
msgsendname:='OBJC_MSGSEND'
else if (target_info.system in systems_objc_nfabi) and
(not MacOSXVersionMin.isvalid or
(MacOSXVersionMin.relationto(10,6,0)>=0)) then
msgsendname:='OBJC_MSGSENDSUPER2'
else
msgsendname:='OBJC_MSGSENDSUPER';
{ get the mangled name }
srsym:=nil;
if not searchsym_in_named_module('OBJC',msgsendname,srsym,srsymtable) or
(srsym.typ<>procsym) or
(tprocsym(srsym).ProcdefList.count<>1) then
Message1(cg_f_unknown_compilerproc,'objc.'+msgsendname);
foverrideprocnamedef:=tprocdef(tprocsym(srsym).ProcdefList[0]);
{ B) Handle self }
{ 1) in case of sending a message to a superclass, self is a pointer to
an objc_super record
}
if (cnf_inherited in callnodeflags) then
begin
block:=internalstatements(statements);
objcsupertype:=search_named_unit_globaltype('OBJC','OBJC_SUPER',true).typedef;
if (objcsupertype.typ<>recorddef) then
internalerror(2009032901);
{ temp for the for the objc_super record }
temp:=ctempcreatenode.create(objcsupertype,objcsupertype.size,tt_persistent,false);
addstatement(statements,temp);
{ initialize objc_super record }
selftree:=safe_call_self_node.getcopy;
{ we can call an inherited class static/method from a regular method
-> self node must change from instance pointer to vmt pointer)
}
if (po_classmethod in procdefinition.procoptions) and
(selftree.resultdef.typ<>classrefdef) then
begin
selftree:=cloadvmtaddrnode.create(selftree);
{ since we're in a class method of the current class, its
information has already been initialized (and that of all of
its parent classes too) }
tloadvmtaddrnode(selftree).forcall:=true;
typecheckpass(selftree);
end;
selfrestype:=selftree.resultdef;
field:=tfieldvarsym(trecorddef(objcsupertype).symtable.find('RECEIVER'));
if not assigned(field) then
internalerror(2009032902);
{ first the destination object/class instance }
addstatement(statements,
cassignmentnode.create(
csubscriptnode.create(field,ctemprefnode.create(temp)),
selftree
)
);
{ and secondly, the class type in which the selector must be looked
up (the parent class in case of an instance method, the parent's
metaclass in case of a class method) }
field:=tfieldvarsym(trecorddef(objcsupertype).symtable.find('_CLASS'));
if not assigned(field) then
internalerror(2009032903);
addstatement(statements,
cassignmentnode.create(
csubscriptnode.create(field,ctemprefnode.create(temp)),
objcsuperclassnode(selftree.resultdef)
)
);
{ result of this block is the address of this temp }
addstatement(statements,ctypeconvnode.create_internal(
caddrnode.create_internal(ctemprefnode.create(temp)),selfrestype)
);
{ replace the method pointer with the address of this temp }
methodpointer.free;
methodpointer:=block;
typecheckpass(block);
end
else
{ 2) regular call (not inherited) }
begin
{ a) If we're calling a class method, use a class ref. }
if (po_classmethod in procdefinition.procoptions) and
((methodpointer.nodetype=typen) or
(methodpointer.resultdef.typ<>classrefdef)) then
begin
methodpointer:=cloadvmtaddrnode.create(methodpointer);
{ no need to obtain the class ref by calling class(), sending
this message will initialize it if necessary }
tloadvmtaddrnode(methodpointer).forcall:=true;
firstpass(methodpointer);
end;
end;
end;
function tcallnode.gen_vmt_tree:tnode;
var
vmttree : tnode;
begin
vmttree:=nil;
if not(procdefinition.proctypeoption in [potype_constructor,potype_destructor]) then
internalerror(200305051);
{ When methodpointer was a callnode we must load it first into a
temp to prevent the processing callnode twice }
if (methodpointer.nodetype=calln) then
internalerror(200405122);
{ Handle classes and legacy objects separate to make it
more maintainable }
if (methodpointer.resultdef.typ=classrefdef) then
begin
if not is_class(tclassrefdef(methodpointer.resultdef).pointeddef) then
internalerror(200501041);
{ constructor call via classreference => allocate memory }
if (procdefinition.proctypeoption=potype_constructor) then
begin
vmttree:=cpointerconstnode.create(1,voidpointertype);
end
else { <class of xx>.destroy is not valid }
InternalError(2014020601);
end
else
{ Class style objects }
if is_class(methodpointer.resultdef) then
begin
{ inherited call, no create/destroy }
if (cnf_inherited in callnodeflags) then
vmttree:=cpointerconstnode.create(0,voidpointertype)
else
{ do not create/destroy when called from member function
without specifying self explicit }
if (cnf_member_call in callnodeflags) then
begin
{ destructor (in the same class, since cnf_member_call):
if not called from a destructor then
call beforedestruction and release instance, vmt=1
else
don't release instance, vmt=0
constructor (in the same class, since cnf_member_call):
if called from a constructor then
don't call afterconstruction, vmt=0
else
call afterconstrution but not NewInstance, vmt=-1 }
if (procdefinition.proctypeoption=potype_destructor) then
if (current_procinfo.procdef.proctypeoption<>potype_constructor) then
vmttree:=cpointerconstnode.create(1,voidpointertype)
else
vmttree:=cpointerconstnode.create(0,voidpointertype)
else if (current_procinfo.procdef.proctypeoption=potype_constructor) and
(procdefinition.proctypeoption=potype_constructor) then
vmttree:=cpointerconstnode.create(0,voidpointertype)
else
vmttree:=cpointerconstnode.create(TConstPtrUInt(-1),voidpointertype);
end
else
{ normal call to method like cl1.proc }
begin
{ destructor:
if not(called from exception block in constructor) or
(called from afterconstruction)
call beforedestruction and release instance, vmt=1
else
don't call beforedestruction and release instance, vmt=-1
constructor:
if called from a constructor in the same class using self.create then
don't call afterconstruction, vmt=0
else
call afterconstruction, vmt=1 }
if (procdefinition.proctypeoption=potype_destructor) then
if (cnf_create_failed in callnodeflags) and
is_class(methodpointer.resultdef) then
vmttree:=call_vmt_node.getcopy
else if not(cnf_create_failed in callnodeflags) then
vmttree:=cpointerconstnode.create(1,voidpointertype)
else
vmttree:=cpointerconstnode.create(TConstPtrUInt(-1),voidpointertype)
else
begin
if (current_procinfo.procdef.proctypeoption=potype_constructor) and
(procdefinition.proctypeoption=potype_constructor) and
(methodpointer.nodetype=loadn) and
(loadnf_is_self in tloadnode(methodpointer).loadnodeflags) then
vmttree:=cpointerconstnode.create(0,voidpointertype)
else
vmttree:=cpointerconstnode.create(TConstPtrUInt(-1),voidpointertype);
end;
end;
end
else
{ Old style object }
begin
{ constructor with extended syntax called from new }
if (cnf_new_call in callnodeflags) then
vmttree:=cloadvmtaddrnode.create(ctypenode.create(methodpointer.resultdef))
else
{ destructor with extended syntax called from dispose }
{ value -1 is what fpc_help_constructor() changes VMT to when it allocates memory }
if (cnf_dispose_call in callnodeflags) then
vmttree:=cpointerconstnode.create(TConstPtrUInt(-1),voidpointertype)
else
{ destructor called from exception block in constructor }
if (cnf_create_failed in callnodeflags) then
vmttree:=ctypeconvnode.create_internal(call_vmt_node.getcopy,voidpointertype)
else
{ inherited call, no create/destroy }
if (cnf_inherited in callnodeflags) then
vmttree:=cpointerconstnode.create(0,voidpointertype)
else
{ do not create/destroy when called from member function
without specifying self explicit }
if (cnf_member_call in callnodeflags) then
begin
{ destructor: don't release instance, vmt=0
constructor: don't initialize instance, vmt=0 }
vmttree:=cpointerconstnode.create(0,voidpointertype)
end
else
{ normal object call like obj.proc }
begin
{ destructor: direct call, no dispose, vmt=0
constructor: initialize object, load vmt }
if (procdefinition.proctypeoption=potype_constructor) then
begin
{ old styled inherited call? }
if (methodpointer.nodetype=typen) then
vmttree:=cpointerconstnode.create(0,voidpointertype)
else
vmttree:=cloadvmtaddrnode.create(ctypenode.create(methodpointer.resultdef))
end
else
vmttree:=cpointerconstnode.create(0,voidpointertype);
end;
end;
result:=vmttree;
end;
function tcallnode.gen_block_context: tnode;
begin
{ the self parameter of a block invocation is that address of the
block literal (which is what right contains) }
result:=right.getcopy;
end;
function check_funcret_used_as_para(var n: tnode; arg: pointer): foreachnoderesult;
var
destsym : tsym absolute arg;
begin
result := fen_false;
if (n.nodetype=loadn) and
(tloadnode(n).symtableentry = destsym) then
result := fen_norecurse_true;
end;
function check_funcret_temp_used_as_para(var n: tnode; arg: pointer): foreachnoderesult;
var
tempinfo : ptempinfo absolute arg;
begin
result := fen_false;
if (n.nodetype=temprefn) and
(ttemprefnode(n).tempinfo = tempinfo) then
result := fen_norecurse_true;
end;
function tcallnode.funcret_can_be_reused:boolean;
var
realassignmenttarget: tnode;
alignment: longint;
begin
result:=false;
{ we are processing an assignment node? }
if not(assigned(aktassignmentnode) and
(aktassignmentnode.right=self) and
(aktassignmentnode.left.resultdef=resultdef)) then
exit;
{ destination must be able to be passed as var parameter }
if not valid_for_var(aktassignmentnode.left,false) then
exit;
{ destination must be a simple load so it doesn't need a temp when
it is evaluated }
if not is_simple_para_load(aktassignmentnode.left,false) then
exit;
{ remove possible typecasts }
realassignmenttarget:=actualtargetnode(@aktassignmentnode.left)^;
{ when the result is returned by value (instead of by writing it to the
address passed in a hidden parameter), aktassignmentnode.left will
only be changed once the function has returned and we don't have to
perform any checks regarding whether it may alias with one of the
parameters -- unless this is an inline function, in which case
writes to the function result will directly change it and we do have
to check for potential aliasing }
if not paramanager.ret_in_param(resultdef,procdefinition) then
begin
if not(cnf_do_inline in callnodeflags) then
begin
result:=true;
exit;
end
else
begin
{ don't replace the function result if we are inlining and if
the destination is complex, this could lead to lengthy
code in case the function result is used often and it is
assigned e.g. to a threadvar }
if node_complexity(aktassignmentnode.left)>1 then
exit;
end;
end;
{ if the result is the same as the self parameter (in case of objects),
we can't optimise. We have to check this explicitly because
hidden parameters such as self have not yet been inserted at this
point
}
if assigned(methodpointer) and
realassignmenttarget.isequal(actualtargetnode(@methodpointer)^) then
exit;
{ when we substitute a function result inside an inlined function,
we may take the address of this function result. Therefore the
substituted function result may not be in a register, as we cannot
take its address in that case }
if (realassignmenttarget.nodetype=temprefn) and
not(ti_addr_taken in ttemprefnode(realassignmenttarget).tempflags) and
not(ti_may_be_in_reg in ttemprefnode(realassignmenttarget).tempflags) then
begin
result:=not foreachnodestatic(left,@check_funcret_temp_used_as_para,ttemprefnode(realassignmenttarget).tempinfo);
exit;
end;
if (realassignmenttarget.nodetype=loadn) and
{ nested procedures may access the current procedure's locals }
(procdefinition.parast.symtablelevel=normal_function_level) and
{ must be a local variable, a value para or a hidden function result }
{ parameter (which can be passed by address, but in that case it got }
{ through these same checks at the caller side and is thus safe ) }
{ other option: we're calling a compilerproc, because those don't
rely on global state
}
((po_compilerproc in procdefinition.procoptions) or
(
(
(tloadnode(realassignmenttarget).symtableentry.typ=localvarsym) or
(
(tloadnode(realassignmenttarget).symtableentry.typ=paravarsym) and
((tparavarsym(tloadnode(realassignmenttarget).symtableentry).varspez = vs_value) or
(vo_is_funcret in tparavarsym(tloadnode(realassignmenttarget).symtableentry).varoptions))
)
) and
{ the address may not have been taken of the variable/parameter, because }
{ otherwise it's possible that the called function can access it via a }
{ global variable or other stored state }
(
not(tabstractvarsym(tloadnode(realassignmenttarget).symtableentry).addr_taken) and
(tabstractvarsym(tloadnode(realassignmenttarget).symtableentry).varregable in [vr_none,vr_addr])
)
)
) then
begin
{ If the funcret is also used as a parameter we can't optimize because the funcret
and the parameter will point to the same address. That means that a change of the result variable
will result also in a change of the parameter value }
result:=not foreachnodestatic(left,@check_funcret_used_as_para,tloadnode(realassignmenttarget).symtableentry);
{ ensure that it is aligned using the default alignment }
alignment:=tabstractvarsym(tloadnode(realassignmenttarget).symtableentry).vardef.alignment;
if (used_align(alignment,target_info.alignment.localalignmin,target_info.alignment.localalignmax)<>
used_align(alignment,current_settings.alignment.localalignmin,current_settings.alignment.localalignmax)) then
result:=false;
exit;
end;
end;
procedure tcallnode.maybe_create_funcret_node;
var
temp : ttempcreatenode;
begin
if procdefinition.proctypeoption=potype_constructor then
exit;
{ For the function result we need to create a temp node for:
- Inlined functions
- Types requiring initialization/finalization
- Types passed in parameters }
if not is_void(resultdef) and
not assigned(funcretnode) and
(
(cnf_do_inline in callnodeflags) or
is_managed_type(resultdef) or
paramanager.ret_in_param(resultdef,procdefinition)
) then
begin
{ Optimize calls like x:=f() where we can use x directly as
result instead of using a temp. Condition is that x cannot be accessed from f().
This implies that x is a local variable or value parameter of the current block
and its address is not passed to f. One problem: what if someone takes the
address of x, puts it in a pointer variable/field and then accesses it that way
from within the function? This is solved (in a conservative way) using the
ti_addr_taken flag.
When the result is not not passed in a parameter there are no problem because
then it means only reference counted types (eg. ansistrings) that need a decr
of the refcount before being assigned. This is all done after the call so there
is no issue with exceptions and possible use of the old value in the called
function }
if funcret_can_be_reused then
begin
funcretnode:=aktassignmentnode.left.getcopy;
include(funcretnode.flags,nf_is_funcret);
{ notify the assignment node that the assignment can be removed }
include(aktassignmentnode.assignmentnodeflags,anf_assign_done_in_right);
end
else
begin
temp:=ctempcreatenode.create(resultdef,resultdef.size,tt_persistent,
(cnf_do_inline in callnodeflags) and
not(tabstractvarsym(tprocdef(procdefinition).funcretsym).varregable in [vr_none,vr_addr]));
include(temp.flags,nf_is_funcret);
{ if a managed type is returned by reference, assigning something
to the result on the caller side will take care of decreasing
the reference count }
if paramanager.ret_in_param(resultdef,procdefinition) then
temp.includetempflag(ti_nofini);
add_init_statement(temp);
{ When the function result is not used in an inlined function
we need to delete the temp. This can currently only be done by
a tempdeletenode and not after converting it to a normal temp }
if not(cnf_return_value_used in callnodeflags) and
(cnf_do_inline in callnodeflags) then
add_done_statement(ctempdeletenode.create(temp))
else
add_done_statement(ctempdeletenode.create_normal_temp(temp));
funcretnode:=ctemprefnode.create(temp);
include(funcretnode.flags,nf_is_funcret);
end;
end;
end;
procedure tcallnode.gen_hidden_parameters;
var
para : tcallparanode;
begin
para:=tcallparanode(left);
while assigned(para) do
begin
{ The processing of high() and typeinfo() is already
done in the typecheckpass. We only need to process the
nodes that still have a nothingn }
if (vo_is_hidden_para in para.parasym.varoptions) and
(para.left.nodetype=nothingn) then
begin
{ remove dummy nothingn }
para.left.free;
para.left:=nil;
{ generate the corresponding nodes for the hidden parameter type }
if (vo_is_funcret in para.parasym.varoptions) then
begin
if not assigned(funcretnode) then
internalerror(200709083);
{ if funcretnode is a temprefnode, we have to keep it intact
if it may have been created in maybe_create_funcret_node(),
because then it will also be destroyed by a
ctempdeletenode.create_normal_temp() in the cleanup code
for this call code. In that case we have to copy this
ttemprefnode after the tempdeletenode to reset its
tempinfo^.hookoncopy. This is done by copying funcretnode
in tcallnode.getcopy(), but for that to work we can't reset
funcretnode to nil here. }
if (funcretnode.nodetype<>temprefn) or
(not(cnf_return_value_used in callnodeflags) and
(cnf_do_inline in callnodeflags)) then
begin
para.left:=funcretnode;
funcretnode:=nil;
end
else
para.left:=funcretnode.getcopy;
end
else
if vo_is_self in para.parasym.varoptions then
begin
if assigned(right) then
para.left:=gen_procvar_context_tree_self
else
para.left:=gen_self_tree;
{ make sure that e.g. the self pointer of an advanced
record does not become a regvar, because it's a vs_var
parameter }
if paramanager.push_addr_param(para.parasym.varspez,para.parasym.vardef,
procdefinition.proccalloption) then
make_not_regable(para.left,[ra_addr_regable]);
end
else
if vo_is_vmt in para.parasym.varoptions then
begin
para.left:=gen_vmt_tree;
end
else
if vo_is_syscall_lib in para.parasym.varoptions then
gen_syscall_para(para)
else
if vo_is_range_check in para.parasym.varoptions then
begin
para.left:=cordconstnode.create(Ord(cs_check_range in current_settings.localswitches),pasbool1type,false);
end
else
if vo_is_overflow_check in para.parasym.varoptions then
begin
para.left:=cordconstnode.create(Ord(cs_check_overflow in current_settings.localswitches),pasbool1type,false);
end
else
if vo_is_msgsel in para.parasym.varoptions then
begin
para.left:=cobjcselectornode.create(cstringconstnode.createstr(tprocdef(procdefinition).messageinf.str^));
end;
end;
if not assigned(para.left) then
internalerror(200709084);
para:=tcallparanode(para.right);
end;
end;
procedure tcallnode.verifyabstract(sym:TObject;arg:pointer);
var
pd : tprocdef;
i : longint;
j : integer;
hs : string;
begin
if (tsym(sym).typ<>procsym) then
exit;
for i:=0 to tprocsym(sym).ProcdefList.Count-1 do
begin
pd:=tprocdef(tprocsym(sym).ProcdefList[i]);
hs:=pd.procsym.name+pd.typename_paras([]);
j:=AbstractMethodsList.FindIndexOf(hs);
if j<>-1 then
AbstractMethodsList[j]:=pd
else
AbstractMethodsList.Add(hs,pd);
end;
end;
procedure tcallnode.verifyabstractcalls;
var
objectdf : tobjectdef;
parents : tlinkedlist;
objectinfo : tobjectinfoitem;
pd : tprocdef;
i : integer;
begin
objectdf := nil;
{ verify if trying to create an instance of a class which contains
non-implemented abstract methods }
{ first verify this class type, no class than exit }
{ also, this checking can only be done if the constructor is directly
called, indirect constructor calls cannot be checked.
}
if assigned(methodpointer) and
not((methodpointer.nodetype=loadn) and
(loadnf_is_self in tloadnode(methodpointer).loadnodeflags)) then
begin
if (methodpointer.resultdef.typ = objectdef) then
objectdf:=tobjectdef(methodpointer.resultdef)
else
if (methodpointer.resultdef.typ = classrefdef) and
(tclassrefdef(methodpointer.resultdef).pointeddef.typ = objectdef) and
(methodpointer.nodetype in [typen,loadvmtaddrn]) then
objectdf:=tobjectdef(tclassrefdef(methodpointer.resultdef).pointeddef);
end;
if not assigned(objectdf) then
exit;
{ quick exit if nothing to check }
if objectdf.abstractcnt = 0 then
exit;
parents := tlinkedlist.create;
AbstractMethodsList := TFPHashList.create;
{ insert all parents in this class : the first item in the
list will be the base parent of the class .
}
while assigned(objectdf) do
begin
objectinfo:=tobjectinfoitem.create(objectdf);
parents.insert(objectinfo);
objectdf := objectdf.childof;
end;
{ now all parents are in the correct order
insert all abstract methods in the list, and remove
those which are overridden by parent classes.
}
objectinfo:=tobjectinfoitem(parents.first);
while assigned(objectinfo) do
begin
objectdf := objectinfo.objinfo;
if assigned(objectdf.symtable) then
objectdf.symtable.SymList.ForEachCall(@verifyabstract,nil);
objectinfo:=tobjectinfoitem(objectinfo.next);
end;
if assigned(parents) then
parents.free;
{ Finally give out a warning for each abstract method still in the list }
for i:=0 to AbstractMethodsList.Count-1 do
begin
pd:=tprocdef(AbstractMethodsList[i]);
if po_abstractmethod in pd.procoptions then
begin
Message2(type_w_instance_with_abstract,objectdf.typesymbolprettyname,pd.customprocname([pno_proctypeoption, pno_paranames,pno_ownername, pno_noclassmarker, pno_prettynames]));
MessagePos1(pd.fileinfo,sym_h_abstract_method_list,pd.fullprocname(true));
end;
end;
if assigned(AbstractMethodsList) then
AbstractMethodsList.Free;
end;
procedure tcallnode.convert_carg_array_of_const;
var
hp : tarrayconstructornode;
oldleft : tcallparanode;
begin
oldleft:=tcallparanode(left);
if oldleft.left.nodetype<>arrayconstructorn then
begin
CGMessage1(type_e_wrong_type_in_array_constructor,oldleft.left.resultdef.typename);
exit;
end;
include(callnodeflags,cnf_uses_varargs);
{ Get arrayconstructor node and insert typeconvs }
hp:=tarrayconstructornode(oldleft.left);
{ Add c args parameters }
{ It could be an empty set }
if assigned(hp) and
assigned(hp.left) then
begin
while assigned(hp) do
begin
left:=ccallparanode.create(hp.left,left);
{ set callparanode resultdef and flags }
left.resultdef:=hp.left.resultdef;
include(tcallparanode(left).callparaflags,cpf_varargs_para);
hp.left:=nil;
hp:=tarrayconstructornode(hp.right);
end;
end;
{ Remove value of old array of const parameter, but keep it
in the list because it is required for bind_parasym.
Generate a nothign to keep callparanoed.left valid }
oldleft.left.free;
oldleft.left:=cnothingnode.create;
end;
procedure tcallnode.bind_parasym;
type
pcallparanode = ^tcallparanode;
var
i : integer;
pt : tcallparanode;
oldppt : pcallparanode;
varargspara,
currpara : tparavarsym;
hiddentree : tnode;
paradef : tdef;
begin
pt:=tcallparanode(left);
oldppt:=pcallparanode(@left);
{ flag all callparanodes that belong to the varargs }
i:=paralength;
while (i>procdefinition.maxparacount) do
begin
include(pt.callparaflags,cpf_varargs_para);
oldppt:=pcallparanode(@pt.right);
pt:=tcallparanode(pt.right);
dec(i);
end;
{ skip varargs that are inserted by array of const }
while assigned(pt) and
(cpf_varargs_para in pt.callparaflags) do
pt:=tcallparanode(pt.right);
{ process normal parameters and insert hidden parameter nodes, the content
of the hidden parameters will be updated in pass1 }
for i:=procdefinition.paras.count-1 downto 0 do
begin
currpara:=tparavarsym(procdefinition.paras[i]);
if vo_is_hidden_para in currpara.varoptions then
begin
{ Here we handle only the parameters that depend on
the types of the previous parameter. The typeconversion
can change the type in the next step. For example passing
an array can be change to a pointer and a deref.
We also handle the generation of parentfp parameters, as they
must all be created before pass_1 on targets that use explicit
parentfp structs (rather than the frame pointer). The reason
is that the necessary initialisation code for the these
structures is attached to the procedure's nodetree after
the resulttype pass.
}
if vo_is_high_para in currpara.varoptions then
begin
if not assigned(pt) or (i=0) then
internalerror(200304081);
{ we need the information of the previous parameter }
paradef:=tparavarsym(procdefinition.paras[i-1]).vardef;
hiddentree:=gen_high_tree(pt.left,paradef);
{ for open array of managed type, a copy of high parameter is
necessary to properly initialize before the call }
if is_open_array(paradef) and
(tparavarsym(procdefinition.paras[i-1]).varspez=vs_out) and
is_managed_type(tarraydef(paradef).elementdef) then
begin
typecheckpass(hiddentree);
{this eliminates double call to fpc_dynarray_high, if any}
maybe_load_in_temp(hiddentree);
oldppt^.third:=hiddentree.getcopy;
end;
end
else
if vo_is_typinfo_para in currpara.varoptions then
begin
if not assigned(pt) or (i=0) then
internalerror(200304082);
hiddentree:=caddrnode.create_internal(
crttinode.create(Tstoreddef(pt.resultdef),fullrtti,rdt_normal)
);
end
else if vo_is_parentfp in currpara.varoptions then
begin
if assigned(right) and (right.resultdef.typ=procvardef) and
not tabstractprocdef(right.resultdef).is_addressonly then
maybe_load_in_temp(right);
if not assigned(right) then
begin
if assigned(procdefinition.owner.defowner) then
begin
if paramanager.can_opt_unused_para(currpara) then
{ If parentfp is unused by the target proc, create a dummy
pointerconstnode which will be discarded later. }
hiddentree:=cpointerconstnode.create(0,currpara.vardef)
else
begin
hiddentree:=cloadparentfpnode.create(tprocdef(procdefinition.owner.defowner),lpf_forpara);
if is_nested_pd(current_procinfo.procdef) then
current_procinfo.set_needs_parentfp(tprocdef(procdefinition.owner.defowner).parast.symtablelevel);
end;
end
{ exceptfilters called from main level are not owned }
else if procdefinition.proctypeoption=potype_exceptfilter then
hiddentree:=cloadparentfpnode.create(current_procinfo.procdef,lpf_forpara)
else
internalerror(200309287);
end
else if not(po_is_block in procdefinition.procoptions) then
hiddentree:=gen_procvar_context_tree_parentfp
else
hiddentree:=gen_block_context
end
else
hiddentree:=cnothingnode.create;
pt:=ccallparanode.create(hiddentree,oldppt^);
oldppt^:=pt;
end;
if not assigned(pt) then
internalerror(200310052);
pt.parasym:=currpara;
oldppt:=pcallparanode(@pt.right);
pt:=tcallparanode(pt.right);
end;
{ Create parasyms for varargs, first count the number of varargs paras,
then insert the parameters with numbering in reverse order. The SortParas
will set the correct order at the end}
pt:=tcallparanode(left);
i:=0;
while assigned(pt) do
begin
if cpf_varargs_para in pt.callparaflags then
inc(i);
pt:=tcallparanode(pt.right);
end;
if (i>0) then
begin
include(current_procinfo.flags,pi_calls_c_varargs);
varargsparas:=tvarargsparalist.create;
pt:=tcallparanode(left);
while assigned(pt) do
begin
if cpf_varargs_para in pt.callparaflags then
begin
varargspara:=cparavarsym.create('va'+tostr(i),i,vs_value,pt.resultdef,[]);
dec(i);
{ varargspara is left-right, use insert
instead of concat }
varargsparas.add(varargspara);
pt.parasym:=varargspara;
end;
pt:=tcallparanode(pt.right);
end;
varargsparas.sortparas;
end;
end;
function tcallnode.pass_typecheck:tnode;
function is_undefined_recursive(def:tdef):boolean;
begin
{ might become more refined in the future }
if def.typ=undefineddef then
result:=true
else if def.typ=arraydef then
result:=is_undefined_recursive(tarraydef(def).elementdef)
else
result:=false;
end;
var
candidates : tcallcandidates;
ccflags : tcallcandidatesflags;
oldcallnode : tcallnode;
hpt,tmp : tnode;
pt : tcallparanode;
lastpara : longint;
paraidx,
cand_cnt : integer;
i : longint;
ignoregenericparacall,
is_const : boolean;
statements : tstatementnode;
converted_result_data : ttempcreatenode;
calltype: tdispcalltype;
invokesym : tsym;
begin
result:=nil;
oldcallnode:=aktcallnode;
aktcallnode:=self;
try
{ determine length of parameter list }
pt:=tcallparanode(left);
paralength:=0;
while assigned(pt) do
begin
inc(paralength);
pt:=tcallparanode(pt.right);
end;
{ determine the type of the parameters }
if assigned(left) then
begin
tcallparanode(left).get_paratype;
if codegenerror then
exit;
end;
if assigned(methodpointer) then
typecheckpass(methodpointer);
{ procedure variable ? }
if assigned(right) then
begin
set_varstate(right,vs_read,[vsf_must_be_valid]);
typecheckpass(right);
if codegenerror then
exit;
if is_invokable(right.resultdef) then
begin
procdefinition:=get_invoke_procdef(tobjectdef(right.resultdef));
if assigned(methodpointer) then
internalerror(2021041004);
methodpointer:=right;
{ don't convert again when this is used as the self parameter }
include(right.flags,nf_load_procvar);
right:=nil;
end
else
procdefinition:=tabstractprocdef(right.resultdef);
{ Compare parameters from right to left }
paraidx:=procdefinition.Paras.count-1;
{ Skip default parameters }
if not(po_varargs in procdefinition.procoptions) then
begin
{ ignore hidden parameters }
while (paraidx>=0) and (vo_is_hidden_para in tparavarsym(procdefinition.paras[paraidx]).varoptions) do
dec(paraidx);
for i:=1 to procdefinition.maxparacount-paralength do
begin
if paraidx<0 then
internalerror(200402265);
if not assigned(tparavarsym(procdefinition.paras[paraidx]).defaultconstsym) then
begin
CGMessage1(parser_e_wrong_parameter_size,'<Procedure Variable>');
exit;
end;
dec(paraidx);
end;
end;
while (paraidx>=0) and (vo_is_hidden_para in tparavarsym(procdefinition.paras[paraidx]).varoptions) do
dec(paraidx);
pt:=tcallparanode(left);
lastpara:=paralength;
while (paraidx>=0) and assigned(pt) do
begin
{ only goto next para if we're out of the varargs }
if not(po_varargs in procdefinition.procoptions) or
(lastpara<=procdefinition.maxparacount) then
begin
repeat
dec(paraidx);
until (paraidx<0) or not(vo_is_hidden_para in tparavarsym(procdefinition.paras[paraidx]).varoptions);
end;
pt:=tcallparanode(pt.right);
dec(lastpara);
end;
if assigned(pt) or
((paraidx>=0) and
not assigned(tparavarsym(procdefinition.paras[paraidx]).defaultconstsym)) then
begin
if assigned(pt) then
current_filepos:=pt.fileinfo;
CGMessage1(parser_e_wrong_parameter_size,'<Procedure Variable>');
exit;
end;
end
else
{ not a procedure variable }
begin
{ do we know the procedure to call ? }
if not(assigned(procdefinition)) then
begin
{ according to bug reports 32539 and 20551, real variant of sqr/abs should be used when they are called for variants to be
delphi compatible, this is in contrast to normal overloading behaviour, so fix this by a terrible hack to be compatible }
if assigned(left) and assigned(tcallparanode(left).left) and
(tcallparanode(left).left.resultdef.typ=variantdef) and assigned(symtableproc.name) and (symtableproc.name^='SYSTEM') then
begin
if symtableprocentry.Name='SQR' then
begin
result:=cinlinenode.createintern(in_sqr_real,false,tcallparanode(left).left.getcopy);
exit;
end;
if symtableprocentry.Name='ABS' then
begin
result:=cinlinenode.createintern(in_abs_real,false,tcallparanode(left).left.getcopy);
exit;
end;
end;
ccflags:=[];
{ ignore possible private for properties or in delphi mode for anon. inherited (FK) }
if (nf_isproperty in flags) or
((m_delphi in current_settings.modeswitches) and (cnf_anon_inherited in callnodeflags)) or
(cnf_ignore_visibility in callnodeflags)
then
ccflags:=ccflags+[cc_ignorevisibility];
if not(nf_isproperty in flags) then
ccflags:=ccflags+[cc_allowdefaultparas];
if cnf_objc_id_call in callnodeflags then
ccflags:=ccflags+[cc_objcidcall];
if cnf_unit_specified in callnodeflags then
ccflags:=ccflags+[cc_explicitunit];
if callnodeflags*[cnf_anon_inherited,cnf_inherited]=[] then
ccflags:=ccflags+[cc_searchhelpers];
if cnf_anon_inherited in callnodeflags then
ccflags:=ccflags+[cc_anoninherited];
candidates.init(symtableprocentry,symtableproc,left,ccflags,spezcontext);
{ no procedures found? then there is something wrong
with the parameter size or the procedures are
not accessible }
if candidates.count=0 then
begin
{ when it's an auto inherited call and there
is no procedure found, but the procedures
were defined with overload directive and at
least two procedures are defined then we ignore
this inherited by inserting a nothingn. Only
do this ugly hack in Delphi mode as it looks more
like a bug. It's also not documented }
if (m_delphi in current_settings.modeswitches) and
(cnf_anon_inherited in callnodeflags) and
(symtableprocentry.owner.symtabletype=ObjectSymtable) and
(po_overload in tprocdef(symtableprocentry.ProcdefList[0]).procoptions) and
(symtableprocentry.ProcdefList.Count>=2) then
result:=cnothingnode.create
else
begin
{ in tp mode we can try to convert to procvar if
there are no parameters specified }
if not(assigned(left)) and
([cnf_inherited,cnf_no_convert_procvar]*callnodeflags=[]) and
((m_tp_procvar in current_settings.modeswitches) or
(m_mac_procvar in current_settings.modeswitches)) and
(not assigned(methodpointer) or
(methodpointer.nodetype <> typen)) then
begin
hpt:=cloadnode.create(tprocsym(symtableprocentry),symtableproc);
if assigned(methodpointer) then
tloadnode(hpt).set_mp(methodpointer.getcopy);
typecheckpass(hpt);
result:=hpt;
end
else
begin
CGMessagePos1(fileinfo,parser_e_wrong_parameter_size,symtableprocentry.realname);
symtableprocentry.write_parameter_lists(nil);
end;
end;
candidates.done;
exit;
end;
{ Retrieve information about the candidates }
candidates.get_information;
{$ifdef EXTDEBUG}
{ Display info when multiple candidates are found }
if candidates.count>1 then
candidates.dump_info(V_Debug);
{$endif EXTDEBUG}
{ Choose the best candidate and count the number of
candidates left }
cand_cnt:=candidates.choose_best(procdefinition,
assigned(left) and
not assigned(tcallparanode(left).right) and
(tcallparanode(left).left.resultdef.typ=variantdef));
{ All parameters are checked, check if there are any
procedures left }
if cand_cnt>0 then
begin
{ Multiple candidates left? }
if cand_cnt>1 then
begin
{ if we're inside a generic and call another function
with generic types as arguments we don't complain in
the generic, but only during the specialization }
ignoregenericparacall:=false;
if assigned(current_procinfo) and (df_generic in current_procinfo.procdef.defoptions) then
begin
pt:=tcallparanode(left);
while assigned(pt) do
begin
if is_undefined_recursive(pt.resultdef) then
begin
ignoregenericparacall:=true;
break;
end;
pt:=tcallparanode(pt.right);
end;
end;
if not ignoregenericparacall then
begin
CGMessage(type_e_cant_choose_overload_function);
{$ifdef EXTDEBUG}
candidates.dump_info(V_Hint);
{$else EXTDEBUG}
candidates.list(false);
{$endif EXTDEBUG}
end;
{ we'll just use the first candidate to make the
call }
end;
{ assign procdefinition }
if symtableproc=nil then
symtableproc:=procdefinition.owner;
end
else
begin
{ No candidates left, this must be a type error,
because wrong size is already checked. procdefinition
is filled with the first (random) definition that is
found. We use this definition to display a nice error
message that the wrong type is passed }
candidates.find_wrong_para;
candidates.list(true);
{$ifdef EXTDEBUG}
candidates.dump_info(V_Hint);
{$endif EXTDEBUG}
{ We can not proceed, release all procs and exit }
candidates.done;
exit;
end;
{ if the final procedure definition is not yet owned,
ensure that it is }
procdefinition.register_def;
if procdefinition.is_specialization and (procdefinition.typ=procdef) then
maybe_add_pending_specialization(procdefinition,candidates.para_anon_syms);
candidates.done;
end; { end of procedure to call determination }
end;
if procdefinition.typ = procdef then
begin
{ check for hints (deprecated etc) }
check_hints(tprocdef(procdefinition).procsym,tprocdef(procdefinition).symoptions,tprocdef(procdefinition).deprecatedmsg);
{ add reference to corresponding procsym; may not be the one
originally found/passed to the constructor because of overloads }
addsymref(tprocdef(procdefinition).procsym,procdefinition);
{ ensure that the generic is considered as used as for an
implicit specialization must only be called after the final
overload was picked }
if assigned(tprocdef(procdefinition).genericdef) and
assigned(tprocdef(tprocdef(procdefinition).genericdef).procsym) and
(tprocdef(tprocdef(procdefinition).genericdef).procsym.refs=0) then
addsymref(tprocdef(tprocdef(procdefinition).genericdef).procsym);
end;
{ add needed default parameters }
if (paralength<procdefinition.maxparacount) then
begin
paraidx:=0;
i:=0;
while (i<paralength) do
begin
if paraidx>=procdefinition.Paras.count then
internalerror(200306181);
if not(vo_is_hidden_para in tparavarsym(procdefinition.paras[paraidx]).varoptions) then
inc(i);
inc(paraidx);
end;
while (paraidx<procdefinition.paras.count) and (vo_is_hidden_para in tparavarsym(procdefinition.paras[paraidx]).varoptions) do
inc(paraidx);
while (paraidx<procdefinition.paras.count) do
begin
if not assigned(tparavarsym(procdefinition.paras[paraidx]).defaultconstsym) then
internalerror(200212142);
left:=ccallparanode.create(genconstsymtree(
tconstsym(tparavarsym(procdefinition.paras[paraidx]).defaultconstsym)),left);
{ Ignore vs_hidden parameters }
repeat
inc(paraidx);
until (paraidx>=procdefinition.paras.count) or
not(vo_is_hidden_para in tparavarsym(procdefinition.paras[paraidx]).varoptions);
end;
end;
{ recursive call? }
if assigned(current_procinfo) and
(procdefinition=current_procinfo.procdef) then
include(current_procinfo.flags,pi_is_recursive);
{ handle predefined procedures }
is_const:=(po_internconst in procdefinition.procoptions) and
((block_type in [bt_const,bt_type,bt_const_type,bt_var_type]) or
(assigned(left) and ((tcallparanode(left).left.nodetype in [realconstn,ordconstn])
and (not assigned(tcallparanode(left).right) or (tcallparanode(tcallparanode(left).right).left.nodetype in [realconstn,ordconstn])))));
if (procdefinition.proccalloption=pocall_internproc) or is_const then
begin
if assigned(left) then
begin
{ convert types to those of the prototype, this is required by functions like ror, rol, sar
some use however a dummy type (Typedfile) so this would break them }
if not(tinlinenumber(tprocdef(procdefinition).extnumber) in
[in_Reset_TypedFile,in_Rewrite_TypedFile,in_reset_typedfile_name,in_rewrite_typedfile_name]) then
begin
{ bind parasyms to the callparanodes and insert hidden parameters }
bind_parasym;
{ insert type conversions for parameters }
if assigned(left) then
tcallparanode(left).insert_typeconv;
end;
{ ptr and settextbuf need two args }
if assigned(tcallparanode(left).right) then
begin
hpt:=geninlinenode(tinlinenumber(tprocdef(procdefinition).extnumber),is_const,left);
left:=nil;
end
else
begin
hpt:=geninlinenode(tinlinenumber(tprocdef(procdefinition).extnumber),is_const,tcallparanode(left).left);
tcallparanode(left).left:=nil;
end;
end
else
hpt:=geninlinenode(tinlinenumber(tprocdef(procdefinition).extnumber),is_const,nil);
result:=hpt;
exit;
end;
{ in case this is an Objective-C message that returns a related object type by convention,
override the default result type }
if po_objc_related_result_type in procdefinition.procoptions then
begin
{ don't crash in case of syntax errors }
if assigned(methodpointer) then
begin
include(callnodeflags,cnf_typedefset);
typedef:=methodpointer.resultdef;
if typedef.typ=classrefdef then
typedef:=tclassrefdef(typedef).pointeddef;
end;
end;
{ ensure that the result type is set }
if not(cnf_typedefset in callnodeflags) then
begin
{ constructors return their current class type, not the type where the
constructor is declared, this can be different because of inheritance }
if (procdefinition.proctypeoption=potype_constructor) and
assigned(methodpointer) and
assigned(methodpointer.resultdef) and
(methodpointer.resultdef.typ=classrefdef) then
resultdef:=tclassrefdef(methodpointer.resultdef).pointeddef
else
{ Member call to a (inherited) constructor from the class, the return
value is always self, so we change it to voidtype to generate an
error and to prevent users from generating non-working code
when they expect to clone the current instance, see bug 3662 (PFV) }
if (procdefinition.proctypeoption=potype_constructor) and
is_class(tprocdef(procdefinition).struct) and
assigned(methodpointer) and
(methodpointer.nodetype=loadn) and
(loadnf_is_self in tloadnode(methodpointer).loadnodeflags) then
resultdef:=voidtype
else
resultdef:=procdefinition.returndef;
end
else
resultdef:=typedef;
{ Check object/class for methods }
if assigned(methodpointer) then
begin
{ direct call to inherited abstract method, then we
can already give a error in the compiler instead
of a runtime error }
if (cnf_inherited in callnodeflags) and
(po_abstractmethod in procdefinition.procoptions) then
begin
if (m_delphi in current_settings.modeswitches) and
(cnf_anon_inherited in callnodeflags) then
begin
CGMessage(cg_h_inherited_ignored);
result:=cnothingnode.create;
exit;
end
else
CGMessage(cg_e_cant_call_abstract_method);
end;
{ directly calling an interface/protocol/category/class helper
method via its type is not possible (always must be called via
the actual instance) }
if (methodpointer.nodetype=typen) and
((
is_interface(methodpointer.resultdef) and not
is_objectpascal_helper(tdef(procdefinition.owner.defowner))
) or
is_objc_protocol_or_category(methodpointer.resultdef)) then
CGMessage1(type_e_class_type_expected,methodpointer.resultdef.typename);
{ if an inherited con- or destructor should be }
{ called in a con- or destructor then a warning }
{ will be made }
{ con- and destructors need a pointer to the vmt }
if (cnf_inherited in callnodeflags) and
(procdefinition.proctypeoption in [potype_constructor,potype_destructor]) and
is_object(methodpointer.resultdef) and
not(current_procinfo.procdef.proctypeoption in [potype_constructor,potype_destructor]) then
CGMessage(cg_w_member_cd_call_from_method);
if methodpointer.nodetype<>typen then
begin
hpt:=methodpointer;
{ Remove all postfix operators }
while assigned(hpt) and (hpt.nodetype in [subscriptn,vecn]) do
hpt:=tunarynode(hpt).left;
if ((hpt.nodetype=loadvmtaddrn) or
((hpt.nodetype=loadn) and assigned(tloadnode(hpt).resultdef) and (tloadnode(hpt).resultdef.typ=classrefdef))) and
not (procdefinition.proctypeoption=potype_constructor) and
not (po_classmethod in procdefinition.procoptions) and
not (po_staticmethod in procdefinition.procoptions) then
{ error: we are calling instance method from the class method/static method }
CGMessage(parser_e_only_class_members);
if (procdefinition.proctypeoption=potype_constructor) and
assigned(symtableproc) and
(symtableproc.symtabletype=withsymtable) and
(tnode(twithsymtable(symtableproc).withrefnode).nodetype=temprefn) then
CGmessage(cg_e_cannot_call_cons_dest_inside_with);
{ skip (absolute and other simple) type conversions -- only now,
because the checks above have to take type conversions into
e.g. class reference types account }
hpt:=actualtargetnode(@hpt)^;
{ R.Init then R will be initialized by the constructor,
Also allow it for simple loads }
if (procdefinition.proctypeoption=potype_constructor) or
((hpt.nodetype=loadn) and
(((methodpointer.resultdef.typ=objectdef) and
not(oo_has_virtual in tobjectdef(methodpointer.resultdef).objectoptions)) or
(methodpointer.resultdef.typ=recorddef)
)
) then
{ a constructor will and a method may write something to }
{ the fields }
set_varstate(methodpointer,vs_readwritten,[])
else
set_varstate(methodpointer,vs_read,[vsf_must_be_valid]);
end;
{ if we are calling the constructor check for abstract
methods. Ignore inherited and member calls, because the
class is then already created }
if (procdefinition.proctypeoption=potype_constructor) and
not(cnf_inherited in callnodeflags) and
not(cnf_member_call in callnodeflags) then
verifyabstractcalls;
end
else
begin
{ When this is method the methodpointer must be available }
if (right=nil) and
(procdefinition.owner.symtabletype in [ObjectSymtable,recordsymtable]) and
not procdefinition.no_self_node then
internalerror(200305061);
end;
{ Set flag that the procedure uses varargs, also if they are not passed it is still
needed for x86_64 to pass the number of SSE registers used }
if po_varargs in procdefinition.procoptions then
include(callnodeflags,cnf_uses_varargs);
{ set the appropriate node flag if the call never returns }
if po_noreturn in procdefinition.procoptions then
include(callnodeflags,cnf_call_never_returns);
{ Change loading of array of const to varargs }
if assigned(left) and
is_array_of_const(tparavarsym(procdefinition.paras[procdefinition.paras.count-1]).vardef) and
(procdefinition.proccalloption in cdecl_pocalls) then
convert_carg_array_of_const;
{ bind parasyms to the callparanodes and insert hidden parameters }
bind_parasym;
{ insert type conversions for parameters }
if assigned(left) then
tcallparanode(left).insert_typeconv;
{ dispinterface methode invoke? }
if assigned(methodpointer) and is_dispinterface(methodpointer.resultdef) then
begin
case procdefinition.proctypeoption of
potype_propgetter: calltype:=dct_propget;
potype_propsetter: calltype:=dct_propput;
else
calltype:=dct_method;
end;
{ if the result is used, we've to insert a call to convert the type to be on the "safe side" }
if (cnf_return_value_used in callnodeflags) and not is_void(procdefinition.returndef) then
begin
result:=internalstatements(statements);
converted_result_data:=ctempcreatenode.create(procdefinition.returndef,sizeof(procdefinition.returndef),
tt_persistent,true);
addstatement(statements,converted_result_data);
addstatement(statements,cassignmentnode.create(ctemprefnode.create(converted_result_data),
ctypeconvnode.create_internal(
translate_disp_call(methodpointer,parameters,calltype,'',tprocdef(procdefinition).dispid,procdefinition.returndef),
procdefinition.returndef)));
addstatement(statements,ctempdeletenode.create_normal_temp(converted_result_data));
addstatement(statements,ctemprefnode.create(converted_result_data));
end
else
result:=translate_disp_call(methodpointer,parameters,calltype,'',tprocdef(procdefinition).dispid,voidtype);
{ don't free reused nodes }
methodpointer:=nil;
parameters:=nil;
end;
maybe_gen_call_self_node;
if assigned(call_self_node) then
typecheckpass(call_self_node);
if assigned(call_vmt_node) then
typecheckpass(call_vmt_node);
if assigned(current_procinfo) and
(procdefinition.typ=procdef) and
(procdefinition.parast.symtablelevel<=current_procinfo.procdef.parast.symtablelevel) and
(procdefinition.parast.symtablelevel>normal_function_level) and
(current_procinfo.procdef.parast.symtablelevel>normal_function_level) then
current_procinfo.add_captured_sym(tprocdef(procdefinition).procsym,procdefinition,fileinfo);
finally
aktcallnode:=oldcallnode;
end;
end;
function tcallnode.simplify(forinline : boolean) : tnode;
begin
{ See if there's any special handling we can do based on the intrinsic code }
if (intrinsiccode <> Default(TInlineNumber)) then
result := handle_compilerproc
else
result := nil;
end;
procedure tcallnode.order_parameters;
var
hp,hpcurr,hpnext,hpfirst,hpprev : tcallparanode;
currloc : tcgloc;
indexcount: Integer;
begin
indexcount:=0;
hpfirst:=nil;
hpcurr:=tcallparanode(left);
{ cache all info about parameters containing stack tainting calls,
since we will need it a lot below and calculting it can be expensive }
while assigned(hpcurr) do
begin
{ Also remember the original parameter order for the sake of
tcallnode.simplify }
if hpcurr.originalindex = -1 then
begin
hpcurr.originalindex := indexcount;
Inc(indexcount);
end;
hpcurr.init_contains_stack_tainting_call_cache;
hpcurr:=tcallparanode(hpcurr.right);
end;
hpcurr:=tcallparanode(left);
while assigned(hpcurr) do
begin
{ pull out }
hpnext:=tcallparanode(hpcurr.right);
{ pull in at the correct place.
Used order:
1. vs_out for a reference-counted type
2. LOC_REFERENCE with smallest offset (i386 only)
3. LOC_REFERENCE with least complexity (non-i386 only)
4. LOC_REFERENCE with most complexity (non-i386 only)
5. LOC_REGISTER with most complexity
6. LOC_REGISTER with least complexity
For the moment we only look at the first parameter field. Combining it
with multiple parameter fields will make things a lot complexer (PFV)
The reason for the difference regarding complexity ordering
between LOC_REFERENCE and LOC_REGISTER is mainly for calls:
we first want to treat the LOC_REFERENCE destinations whose
calculation does not require a call, because their location
may contain registers which might otherwise have to be saved
if a call has to be evaluated first. The calculated value is
stored on the stack and will thus no longer occupy any
register.
Similarly, for the register parameters we first want to
evaluate the calls, because otherwise the already loaded
register parameters will have to be saved so the intermediate
call can be evaluated (JM) }
if not assigned(hpcurr.parasym.paraloc[callerside].location) then
internalerror(200412152);
currloc:=hpcurr.parasym.paraloc[callerside].location^.loc;
hpprev:=nil;
hp:=hpfirst;
{ on fixed_stack targets, always evaluate parameters containing
a call with stack parameters before all other parameters,
because they will prevent any other parameters from being put
in their final place; if both the current and the next para
contain a stack tainting call, don't do anything to prevent
them from keeping on chasing eachother's tail }
while assigned(hp) do
begin
if paramanager.use_fixed_stack and
hpcurr.contains_stack_tainting_call_cached then
break;
case currloc of
LOC_REFERENCE :
begin
case hp.parasym.paraloc[callerside].location^.loc of
LOC_REFERENCE :
begin
{ Offset is calculated like:
sub esp,12
mov [esp+8],para3
mov [esp+4],para2
mov [esp],para1
call function
That means the for pushes the para with the
highest offset (see para3) needs to be pushed first
}
{$if defined(i386) or defined(i8086) or defined(m68k) or defined(z80)}
{ the i386, i8086, m68k, z80 and jvm code generators expect all reference }
{ parameters to be in this order so they can use }
{ pushes in case of no fixed stack }
if (not paramanager.use_fixed_stack and
(hpcurr.parasym.paraloc[callerside].location^.reference.offset>
hp.parasym.paraloc[callerside].location^.reference.offset)) or
(paramanager.use_fixed_stack and
(node_complexity(hpcurr.left)<node_complexity(hp.left))) then
{$elseif defined(jvm) or defined(wasm)}
if (hpcurr.parasym.paraloc[callerside].location^.reference.offset<hp.parasym.paraloc[callerside].location^.reference.offset) then
{$else jvm}
if (node_complexity(hpcurr.left)<node_complexity(hp.left)) then
{$endif jvm}
break;
end;
LOC_MMREGISTER,
LOC_REGISTER,
LOC_FPUREGISTER :
break;
else
;
end;
end;
LOC_MMREGISTER,
LOC_FPUREGISTER,
LOC_REGISTER :
begin
if (hp.parasym.paraloc[callerside].location^.loc<>LOC_REFERENCE) and
(node_complexity(hpcurr.left)>node_complexity(hp.left)) then
break;
end;
else
;
end;
hpprev:=hp;
hp:=tcallparanode(hp.right);
end;
hpcurr.right:=hp;
if assigned(hpprev) then
hpprev.right:=hpcurr
else
hpfirst:=hpcurr;
{ next }
hpcurr:=hpnext;
end;
left:=hpfirst;
{ now mark each parameter that is followed by a stack-tainting call,
to determine on use_fixed_stack targets which ones can immediately be
put in their final destination. Unforunately we can never put register
parameters immediately in their final destination (even on register-
rich architectures such as the PowerPC), because the code generator
can still insert extra calls that only make use of register
parameters (fpc_move() etc. }
hpcurr:=hpfirst;
while assigned(hpcurr) do
begin
if hpcurr.contains_stack_tainting_call_cached then
begin
{ all parameters before this one are followed by a stack
tainting call }
hp:=hpfirst;
while hp<>hpcurr do
begin
hp.ffollowed_by_stack_tainting_call_cached:=true;
hp:=tcallparanode(hp.right);
end;
hpfirst:=hpcurr;
end;
hpcurr:=tcallparanode(hpcurr.right);
end;
end;
procedure tcallnode.check_stack_parameters;
var
hp : tcallparanode;
loc : pcgparalocation;
begin
hp:=tcallparanode(left);
while assigned(hp) do
begin
if assigned(hp.parasym) then
begin
loc:=hp.parasym.paraloc[callerside].location;
while assigned(loc) do
begin
if loc^.loc=LOC_REFERENCE then
begin
include(current_procinfo.flags,pi_has_stackparameter);
exit;
end;
loc:=loc^.next;
end;
end;
hp:=tcallparanode(hp.right);
end;
end;
function tcallnode.heuristics_favors_inlining:boolean;
var
limExcluding: cardinal;
begin
{ Prevent too deep inlining recursion and code bloat by inlining
The actual formuala is
inlinelevel/3+1 /-------
node count < -----------------\/ 10000
This allows exponential grow of the code only to a certain limit.
Remarks
- The current approach calculates the inlining level top down, so outer call nodes (nodes closer to the leaf) might not be inlined
if the max. complexity is reached. This is done because it makes the implementation easier and because
there might be situations were it is more beneficial to inline inner nodes and do the calls to the outer nodes
if the outer nodes are in a seldomly used code path
- The code avoids to use functions from the math unit
}
limExcluding:=round(exp((1.0/(inlinelevel/3.0+1))*ln(10000)));
result:=node_count(tprocdef(procdefinition).inlininginfo^.code,limExcluding)<limExcluding;
end;
procedure tcallnode.check_inlining;
var
st : tsymtable;
para : tcallparanode;
begin
{ Can we inline the procedure? }
if (po_inline in procdefinition.procoptions) and
(procdefinition.typ=procdef) and
tprocdef(procdefinition).has_inlininginfo and
heuristics_favors_inlining then
begin
include(callnodeflags,cnf_do_inline);
{ Check if we can inline the procedure when it references proc/var that
are not in the globally available }
st:=procdefinition.owner;
while (st.symtabletype in [ObjectSymtable,recordsymtable]) do
st:=st.defowner.owner;
if not(tf_supports_hidden_symbols in target_info.flags) and
(pi_uses_static_symtable in tprocdef(procdefinition).inlininginfo^.flags) and
(st.symtabletype=globalsymtable) and
(not st.iscurrentunit) then
begin
Comment(V_lineinfo+V_Debug,'Not inlining "'+tprocdef(procdefinition).procsym.realname+'", references private symbols from other unit');
exclude(callnodeflags,cnf_do_inline);
end;
para:=tcallparanode(parameters);
while assigned(para) do
begin
if not para.can_be_inlined then
begin
Comment(V_lineinfo+V_Debug,'Not inlining "'+tprocdef(procdefinition).procsym.realname+
'", invocation parameter contains an unsafe/unsupported construct');
exclude(callnodeflags,cnf_do_inline);
break;
end;
para:=tcallparanode(para.nextpara);
end;
end;
end;
function tcallnode.pass_1 : tnode;
procedure mark_unregable_parameters;
var
hp : tcallparanode;
begin
hp:=tcallparanode(left);
while assigned(hp) do
begin
do_typecheckpass(hp.left);
{ When the address needs to be pushed then the register is
not regable. Exception is when the location is also a var
parameter and we can pass the address transparently (but
that is handled by make_not_regable if ra_addr_regable is
passed, and make_not_regable always needs to called for
the ra_addr_taken info for non-invisble parameters) }
if (not (cpf_varargs_para in hp.callparaflags)) and (
not(
(vo_is_hidden_para in hp.parasym.varoptions) and
(hp.left.resultdef.typ in [pointerdef,classrefdef])
) and
paramanager.push_addr_param(hp.parasym.varspez,hp.parasym.vardef,
self.procdefinition.proccalloption)
) then
{ pushing the address of a variable to take the place of a temp
as the complex function result of a function does not make its
address escape the current block, as the "address of the
function result" is not something which can be stored
persistently by the callee (it becomes invalid when the callee
returns) }
if not(vo_is_funcret in hp.parasym.varoptions) and
((po_inline in procdefinition.procoptions) or
(not(po_compilerproc in procdefinition.procoptions) and
(hp.parasym.varspez=vs_const))
) then
make_not_regable(hp.left,[ra_addr_regable,ra_addr_taken])
else
make_not_regable(hp.left,[ra_addr_regable]);
hp:=tcallparanode(hp.right);
end;
end;
var
para: tcallparanode;
oldcallnode: tcallnode;
begin
result:=nil;
oldcallnode:=aktcallnode;
aktcallnode:=self;
try
{ as pass_1 is never called on the methodpointer node, we must check
here that it's not a helper type }
if assigned(methodpointer) and
(methodpointer.nodetype=typen) and
is_objectpascal_helper(ttypenode(methodpointer).typedef) and
not ttypenode(methodpointer).helperallowed then
begin
CGMessage(parser_e_no_category_as_types);
{ we get an internal error when trying to insert the hidden
parameters in this case }
exit;
end;
{ can we get rid of the call? }
if (cs_opt_remove_empty_proc in current_settings.optimizerswitches) and
not(cnf_return_value_used in callnodeflags) and
(procdefinition.typ=procdef) and
tprocdef(procdefinition).isempty and
{ allow only certain proc options }
((tprocdef(procdefinition).procoptions-[po_none,po_classmethod,po_staticmethod,
po_interrupt,po_iocheck,po_assembler,po_msgstr,po_msgint,po_exports,po_external,po_overload,
po_nostackframe,po_has_mangledname,po_has_public_name,po_forward,po_global,
po_inline,po_compilerproc,po_has_importdll,po_has_importname,po_kylixlocal,po_dispid,po_delphi_nested_cc,
po_rtlproc,po_ignore_for_overload_resolution,po_auto_raised_visibility])=[]) then
begin
{ check parameters for side effects }
para:=tcallparanode(left);
while assigned(para) do
begin
if (para.parasym.typ = paravarsym) and
((para.parasym.refs>0) or
{ array of consts are converted later on so we need to skip them here
else no error detection is done }
is_array_of_const(para.parasym.vardef) or
not(cs_opt_dead_values in current_settings.optimizerswitches) or
might_have_sideeffects(para.left)) then
break;
para:=tcallparanode(para.right);
end;
{ finally, remove it if no parameter with side effect has been found }
if para=nil then
begin
result:=cnothingnode.create;
exit;
end;
end;
{ convert Objective-C calls into a message call }
if (procdefinition.typ=procdef) and
(po_objc in tprocdef(procdefinition).procoptions) then
begin
if not(cnf_objc_processed in callnodeflags) then
objc_convert_to_message_send;
end
else
begin
{ The following don't apply to obj-c: obj-c methods can never be
inlined because they're always virtual and the destination can
change at run, and for the same reason we also can't perform
WPO on them (+ they have no constructors) }
{ Check if the call can be inlined, sets the cnf_do_inline flag }
check_inlining;
{ must be called before maybe_load_in_temp(methodpointer), because
it converts the methodpointer into a temp in case it's a call
(and we want to know the original call)
}
register_created_object_types;
end;
{ Maybe optimize the loading of the methodpointer using a temp. When the methodpointer
is a calln this is even required to not execute the calln twice.
This needs to be done after the resulttype pass, because in the resulttype we can still convert the
calln to a loadn (PFV) }
if assigned(methodpointer) then
maybe_load_in_temp(methodpointer);
if assigned(right) and (right.resultdef.typ=procvardef) and
not tabstractprocdef(right.resultdef).is_addressonly then
maybe_load_in_temp(right);
{ the return value might be stored on the current stack by allocating a temp. }
if not(paramanager.ret_in_param(procdefinition.returndef,procdefinition)) then
inc(current_procinfo.estimatedtempsize,procdefinition.returndef.size);
{ Create destination (temp or assignment-variable reuse) for function result if it not yet set }
maybe_create_funcret_node;
{ Insert the self,vmt,function result in the parameters }
gen_hidden_parameters;
{ Remove useless nodes from init/final blocks }
{ (simplify depends on typecheck info) }
if assigned(callinitblock) then
begin
typecheckpass(tnode(callinitblock));
doinlinesimplify(tnode(callinitblock));
end;
if assigned(callcleanupblock) then
begin
typecheckpass(tnode(callcleanupblock));
doinlinesimplify(tnode(callcleanupblock));
end;
{ If a constructor calls another constructor of the same or of an
inherited class, some targets (jvm) have to generate different
entry code for the constructor. }
if (current_procinfo.procdef.proctypeoption=potype_constructor) and
(procdefinition.typ=procdef) and
(tprocdef(procdefinition).proctypeoption=potype_constructor) and
([cnf_member_call,cnf_inherited] * callnodeflags <> []) then
current_procinfo.ConstructorCallingConstructor:=true;
{ Continue with checking a normal call or generate the inlined code }
if cnf_do_inline in callnodeflags then
result:=pass1_inline
else
begin
if (po_inline in procdefinition.procoptions) and not(po_compilerproc in procdefinition.procoptions) and
(procdefinition.typ=procdef) and
not (pio_inline_not_possible in tprocdef(procdefinition).implprocoptions) then
begin
Message1(cg_n_no_inline,tprocdef(procdefinition).customprocname([pno_proctypeoption, pno_paranames,pno_ownername, pno_noclassmarker, pno_prettynames]));
end;
mark_unregable_parameters;
result:=pass1_normal;
end;
finally
aktcallnode:=oldcallnode;
end;
end;
function tcallnode.pass1_normal : tnode;
begin
result:=nil;
{ calculate the parameter info for the procdef }
procdefinition.init_paraloc_info(callerside);
{ calculate the parameter size needed for this call include varargs if they are available }
if assigned(varargsparas) then
pushedparasize:=paramanager.create_varargs_paraloc_info(procdefinition,callerside,varargsparas)
else
pushedparasize:=procdefinition.callerargareasize;
{ record maximum parameter size used in this proc }
current_procinfo.allocate_push_parasize(pushedparasize);
{ check for stacked parameters }
if assigned(left) and
(current_settings.optimizerswitches*[cs_opt_stackframe,cs_opt_level1]<>[]) then
check_stack_parameters;
if assigned(callinitblock) then
firstpass(tnode(callinitblock));
{ function result node (tempref or simple load) }
if assigned(funcretnode) then
firstpass(funcretnode);
{ parameters }
if assigned(left) then
tcallparanode(left).firstcallparan;
{ procedure variable ? }
if assigned(right) then
firstpass(right);
if assigned(methodpointer) and
(methodpointer.nodetype<>typen) then
firstpass(methodpointer);
if assigned(callcleanupblock) then
firstpass(tnode(callcleanupblock));
if not (block_type in [bt_const,bt_type,bt_const_type,bt_var_type]) then
include(current_procinfo.flags,pi_do_call);
{ order parameters }
order_parameters;
{ get a register for the return value }
if (not is_void(resultdef)) then
begin
if paramanager.ret_in_param(resultdef,procdefinition) then
begin
expectloc:=LOC_REFERENCE;
end
else
{ ansi/widestrings must be registered, so we can dispose them }
if is_ansistring(resultdef) or
is_widestring(resultdef) or
is_unicodestring(resultdef) then
begin
expectloc:=LOC_REFERENCE;
end
else
{ we have only to handle the result if it is used }
if (cnf_return_value_used in callnodeflags) then
expectloc:=get_expect_loc
else
expectloc:=LOC_VOID;
end
else
expectloc:=LOC_VOID;
{ create tree for VMT entry if required }
gen_vmt_entry_load;
end;
{$ifdef state_tracking}
function Tcallnode.track_state_pass(exec_known:boolean):boolean;
var hp:Tcallparanode;
value:Tnode;
begin
track_state_pass:=false;
hp:=Tcallparanode(left);
while assigned(hp) do
begin
if left.track_state_pass(exec_known) then
begin
left.resultdef:=nil;
do_typecheckpass(left);
end;
value:=aktstate.find_fact(hp.left);
if value<>nil then
begin
track_state_pass:=true;
hp.left.free;
hp.left:=value.getcopy;
do_typecheckpass(hp.left);
end;
hp:=Tcallparanode(hp.right);
end;
end;
{$endif}
{**************************************************************************
INLINING SUPPORT
**************************************************************************}
function tcallnode.replaceparaload(var n: tnode; arg: pointer): foreachnoderesult;
var
paras: tcallparanode;
temp: tnode;
indexnr : integer;
begin
result := fen_false;
n.fileinfo := pfileposinfo(arg)^;
if (n.nodetype = loadn) then
begin
case tloadnode(n).symtableentry.typ of
paravarsym :
begin
paras := tcallparanode(left);
while assigned(paras) and
(paras.parasym <> tloadnode(n).symtableentry) do
paras := tcallparanode(paras.right);
if assigned(paras) then
begin
temp:=paras.left.getcopy;
{ inherit modification information, this is needed by the dfa/cse }
temp.flags:=temp.flags+(n.flags*[nf_modify,nf_write,nf_address_taken]);
n.free;
n:=temp;
typecheckpass(n);
result := fen_true;
end;
end;
localvarsym :
begin
{ local? }
if (tloadnode(n).symtableentry.owner <> tprocdef(procdefinition).localst) then
exit;
indexnr:=tloadnode(n).symtableentry.owner.SymList.IndexOf(tloadnode(n).symtableentry);
if (indexnr >= inlinelocals.count) or
not assigned(inlinelocals[indexnr]) then
internalerror(20040720);
temp := tnode(inlinelocals[indexnr]).getcopy;
{ inherit modification information, this is needed by the dfa/cse }
temp.flags:=temp.flags+(n.flags*[nf_modify,nf_write,nf_address_taken]);
n.free;
n:=temp;
typecheckpass(n);
result := fen_true;
end;
else
;
end;
end;
end;
procedure tcallnode.createlocaltemps(p:TObject;arg:pointer);
var
tempnode: ttempcreatenode;
indexnr : integer;
begin
if (TSym(p).typ <> localvarsym) then
exit;
indexnr:=TSym(p).Owner.SymList.IndexOf(p);
if (indexnr >= inlinelocals.count) then
inlinelocals.count:=indexnr+10;
if (vo_is_funcret in tabstractvarsym(p).varoptions) then
begin
if not assigned(funcretnode) then
internalerror(200709081);
inlinelocals[indexnr] := funcretnode.getcopy
end
else
begin
tempnode :=ctempcreatenode.create(tabstractvarsym(p).vardef,
tabstractvarsym(p).vardef.size,tt_persistent,tabstractvarsym(p).is_regvar(false));
addstatement(inlineinitstatement,tempnode);
if localvartrashing <> -1 then
cnodeutils.maybe_trash_variable(inlineinitstatement,tabstractnormalvarsym(p),ctemprefnode.create(tempnode));
addstatement(inlinecleanupstatement,ctempdeletenode.create(tempnode));
{ inherit addr_taken flag }
if (tabstractvarsym(p).addr_taken) then
tempnode.includetempflag(ti_addr_taken);
inlinelocals[indexnr] := ctemprefnode.create(tempnode);
end;
end;
function nonlocalvars(var n: tnode; arg: pointer): foreachnoderesult;
begin
result := fen_false;
{ this is just to play it safe, there are more safe situations }
if (n.nodetype = derefn) or
((n.nodetype = loadn) and
{ can be nil in case of internally generated labels like $raiseaddr }
assigned(tloadnode(n).symtable) and
{ globals and fields of (possibly global) objects could always be changed in the callee }
((tloadnode(n).symtable.symtabletype in [globalsymtable,ObjectSymtable]) or
{ statics can only be modified by functions in the same unit }
((tloadnode(n).symtable.symtabletype = staticsymtable) and
(tloadnode(n).symtable = TSymtable(arg))) or
{ if the addr of the symbol is taken somewhere, it can be also non-local }
((tloadnode(n).symtableentry.typ in [localvarsym,paravarsym,staticvarsym]) and
(tabstractvarsym(tloadnode(n).symtableentry).addr_taken))
)
) or
((n.nodetype = subscriptn) and
(tsubscriptnode(n).vs.owner.symtabletype = ObjectSymtable)) then
result := fen_norecurse_true;
end;
function tcallnode.paraneedsinlinetemp(para: tcallparanode; const pushconstaddr, complexpara: boolean): boolean;
begin
{ if it's an assignable call-by-reference parameter, we cannot pass a
temp since then the modified valua will be lost }
if para.parasym.varspez in [vs_var,vs_out] then
exit(false);
{ We cannot create a formaldef temp and assign something to it }
if para.parasym.vardef.typ=formaldef then
exit(false);
{ We don't need temps for parameters that are already temps, except if
the passed temp could be put in a regvar while the parameter inside
the routine cannot be (e.g., because its address is taken in the
routine), or if the temp is a const and the parameter gets modified }
if (para.left.nodetype=temprefn) and
(not(ti_may_be_in_reg in ttemprefnode(para.left).tempflags) or
not(tparavarsym(para.parasym).varregable in [vr_none,vr_addr])) and
(not(ti_const in ttemprefnode(para.left).tempflags) or
(tparavarsym(para.parasym).varstate in [vs_initialised,vs_declared,vs_read])) then
exit(false);
{ We need a temp if the passed value will not be in memory, while
the parameter inside the routine must be in memory }
if (tparavarsym(para.parasym).varregable in [vr_none,vr_addr]) and
not(para.left.expectloc in [LOC_REFERENCE,LOC_CREFERENCE]) then
exit(true);
{ We try to handle complex expressions later by taking their address
and storing this address in a temp (which is then dereferenced when
the value is used; that doesn't work if we cannot take the address
of the expression though, in which case we store the result of the
expression in a temp }
if (complexpara and not(para.left.expectloc in [LOC_REFERENCE,LOC_CREFERENCE]) or
(complexpara and
(not valid_for_addr(para.left,false) or
(para.left.nodetype=calln) or
is_constnode(para.left)))) then
exit(true);
{ Normally, we do not need to create a temp for value parameters that
are not modified in the inlined function, and neither for const
parameters that are passed by value.
However, if we pass a global variable, an object field, a variable
whose address has been taken, or an expression containing a pointer
dereference as parameter, this value could be modified in other ways
as well (even inside the callee) and in such cases we still create a
temp to be on the safe side.
We *must not* create a temp for global variables passed by
reference to a const parameter, because if not inlined then any
changes to the original value will also be visible in the callee
(although this is technically undefined behaviour, since with
"const" the programmer tells the compiler this argument will not
change). }
if (((para.parasym.varspez=vs_value) and
(para.parasym.varstate in [vs_initialised,vs_declared,vs_read])) or
((para.parasym.varspez=vs_const) and
not pushconstaddr)) and
foreachnodestatic(para.left,@nonlocalvars,pointer(symtableproc)) then
exit(true);
{ Value parameters of which we know they are modified by definition
have to be copied to a temp }
if (para.parasym.varspez=vs_value) and
not(para.parasym.varstate in [vs_initialised,vs_declared,vs_read]) then
exit(true);
{ the compiler expects that it can take the address of parameters passed by reference in
the case of const so we can't replace the node simply by a constant node
When playing with this code, ensure that
function f(const a,b : longint) : longint;inline;
begin
result:=a*b;
end;
[...]
...:=f(10,20));
[...]
is still folded. (FK)
}
if (para.parasym.varspez=vs_const) and
{ const para's can get vs_readwritten if their address is taken ->
in case they are not passed by reference, to keep the same
behaviour as without inlining we have to make a copy in case the
originally passed parameter value gets changed inside the callee
}
(not pushconstaddr and
(para.parasym.varstate=vs_readwritten)
) or
{ call-by-reference const's may need to be passed by reference to
function called in the inlined code }
(pushconstaddr and
not valid_for_addr(para.left,false)) then
exit(true);
{ insert value parameters directly if they are complex instead
of inserting a reference to the temp.
- this keeps the node tree simpler
- alignment is propagated }
if (para.parasym.varspez=vs_value) and
complexpara then
exit(true);
result:=false;
end;
function tcallnode.maybecreateinlineparatemp(para: tcallparanode; out complexpara: boolean): boolean;
var
tempnode: ttempcreatenode;
realtarget: tnode;
paracomplexity: longint;
pushconstaddr: boolean;
begin
result:=false;
{ determine how a parameter is passed to the inlined body
There are three options:
- insert the node tree of the callparanode directly
If a parameter is used only once, this is the best option if we can do so
- get the address of the argument, store it in a temp and insert a dereference to this temp
If the node tree cannot be inserted directly, taking the address of the argument and using it
is the second best option, but even this is not always possible
- assign the value of the argument to a newly created temp
This is the fall back which works always
Notes:
- we need to take care that we use the type of the defined parameter and not of the
passed parameter, because these can be different in case of a formaldef (PFV)
}
{ pre-compute some values }
paracomplexity:=node_complexity(para.left);
if para.parasym.varspez=vs_const then
pushconstaddr:=paramanager.push_addr_param(vs_const,para.parasym.vardef,procdefinition.proccalloption)
else
pushconstaddr:=false;
realtarget:=actualtargetnode(@para.left)^;
{ if the parameter is "complex", try to take the address of the
parameter expression, store it in a temp and replace occurrences of
the parameter with dereferencings of this temp
}
complexpara:=
{ don't create a temp. for function results }
not(nf_is_funcret in realtarget.flags) and
{ this makes only sense if the parameter is reasonably complex,
otherwise inserting directly is a better solution }
(
(paracomplexity>2) or
{ don't create a temp. for the often seen case that p^ is passed to a var parameter }
((paracomplexity>1) and
not((realtarget.nodetype=derefn) and (para.parasym.varspez in [vs_var,vs_out,vs_constref])) and
not((realtarget.nodetype=loadn) and tloadnode(realtarget).is_addr_param_load) and
not(realtarget.nodetype=realconstn)
)
);
{ check if we have to create a temp, assign the parameter's
contents to that temp and then substitute the parameter
with the temp everywhere in the function }
if paraneedsinlinetemp(para,pushconstaddr,complexpara) then
begin
tempnode:=ctempcreatenode.create(para.parasym.vardef,para.parasym.vardef.size,
tt_persistent,tparavarsym(para.parasym).is_regvar(false));
addstatement(inlineinitstatement,tempnode);
addstatement(inlinecleanupstatement,ctempdeletenode.create(tempnode));
addstatement(inlineinitstatement,cassignmentnode.create(ctemprefnode.create(tempnode),
para.left));
para.left := ctemprefnode.create(tempnode);
{ inherit addr_taken flag }
if (tabstractvarsym(para.parasym).addr_taken) then
tempnode.includetempflag(ti_addr_taken);
{ inherit const }
if tabstractvarsym(para.parasym).varspez=vs_const then
begin
tempnode.includetempflag(ti_const);
{ apply less strict rules for the temp. to be a register than
ttempcreatenode does
this way, dyn. array, ansistrings etc. can be put into registers as well }
if tparavarsym(para.parasym).is_regvar(false) then
tempnode.includetempflag(ti_may_be_in_reg);
end;
result:=true;
end
{ for formaldefs, we do not need a temp., but it must be inherited if they are not regable }
else if (para.parasym.vardef.typ=formaldef) and not(tparavarsym(para.parasym).is_regvar(false)) then
make_not_regable(para.left,[ra_addr_regable]);
end;
procedure tcallnode.createinlineparas;
var
para: tcallparanode;
n: tnode;
complexpara: boolean;
begin
{ parameters }
para := tcallparanode(left);
while assigned(para) do
begin
if (para.parasym.typ = paravarsym) and
((para.parasym.refs>0) or
not(cs_opt_dead_values in current_settings.optimizerswitches) or
might_have_sideeffects(para.left)) then
begin
{ must take copy of para.left, because if it contains a }
{ temprefn pointing to a copied temp (e.g. methodpointer), }
{ then this parameter must be changed to point to the copy of }
{ that temp (JM) }
n := para.left.getcopy;
para.left.free;
para.left := n;
firstpass(para.left);
if not maybecreateinlineparatemp(para,complexpara) and
complexpara then
wrapcomplexinlinepara(para);
end;
para := tcallparanode(para.right);
end;
{ local variables }
if not assigned(tprocdef(procdefinition).localst) or
(tprocdef(procdefinition).localst.SymList.count = 0) then
exit;
inlinelocals.count:=tprocdef(procdefinition).localst.SymList.count;
tprocdef(procdefinition).localst.SymList.ForEachCall(@createlocaltemps,nil);
end;
procedure tcallnode.wrapcomplexinlinepara(para: tcallparanode);
var
ptrtype: tdef;
tempnode: ttempcreatenode;
paraaddr: taddrnode;
isfuncretnode : boolean;
begin
ptrtype:=cpointerdef.getreusable(para.left.resultdef);
tempnode:=ctempcreatenode.create(ptrtype,ptrtype.size,tt_persistent,true);
addstatement(inlineinitstatement,tempnode);
isfuncretnode:=nf_is_funcret in para.left.flags;
if isfuncretnode then
addstatement(inlinecleanupstatement,ctempdeletenode.create_normal_temp(tempnode))
else
addstatement(inlinecleanupstatement,ctempdeletenode.create(tempnode));
{ inherit addr_taken flag }
if (tabstractvarsym(para.parasym).addr_taken) then
tempnode.includetempflag(ti_addr_taken);
{ inherit read only }
if tabstractvarsym(para.parasym).varspez=vs_const then
tempnode.includetempflag(ti_const);
paraaddr:=caddrnode.create_internal(para.left);
include(paraaddr.addrnodeflags,anf_typedaddr);
addstatement(inlineinitstatement,cassignmentnode.create(ctemprefnode.create(tempnode),
paraaddr));
para.left:=cderefnode.create(ctemprefnode.create(tempnode));
if isfuncretnode then
Include(para.left.flags,nf_is_funcret);
end;
function UsesTmp(var n: tnode; arg: pointer): foreachnoderesult;
begin
Result:=fen_false;
if (n.nodetype=temprefn) and (ttemprefnode(n).tempinfo=arg) then
Result:=fen_norecurse_true;
end;
function tcallnode.optimize_funcret_assignment(inlineblock: tblocknode): tnode;
var
hp : tstatementnode;
hp2 : tnode;
resassign : tassignmentnode;
begin
result:=nil;
if not assigned(funcretnode) or
not(cnf_return_value_used in callnodeflags) then
exit;
{ block already optimized? }
if not(inlineblock.nodetype=blockn) then
exit;
{ tempcreatenode for the function result }
hp:=tstatementnode(inlineblock.left);
if not(assigned(hp)) or
(hp.left.nodetype <> tempcreaten) or
not(nf_is_funcret in hp.left.flags) then
exit;
hp:=tstatementnode(hp.right);
if not(assigned(hp)) or
(hp.left.nodetype<>assignn)
{ FK: check commented, original comment was:
constant assignment? right must be a constant (mainly to avoid trying
to reuse local temps which may already be freed afterwards once these
checks are made looser)
or
not is_constnode(tassignmentnode(hp.left).right)
So far I found no example why removing this check might be a problem.
If this needs to be revert, issue #36279 must be checked/solved again.
}
then
exit;
{ left must be function result }
resassign:=tassignmentnode(hp.left);
hp2:=resassign.left;
{ can have extra type conversion due to absolute mapping
of <fucntionname> on function result var }
if (hp2.nodetype=typeconvn) and (ttypeconvnode(hp2).convtype=tc_equal) then
hp2:=ttypeconvnode(hp2).left;
if (hp2.nodetype<>temprefn) or
{ check if right references the temp. being removed, i.e. using an uninitialized result }
foreachnodestatic(resassign.right,@UsesTmp,ttemprefnode(hp2).tempinfo) or
not(nf_is_funcret in hp2.flags) then
exit;
{ tempdelete to normal of the function result }
hp:=tstatementnode(hp.right);
if not(assigned(hp)) or
(hp.left.nodetype <> tempdeleten) then
exit;
{ the function result once more }
hp:=tstatementnode(hp.right);
if not(assigned(hp)) or
(hp.left.nodetype<>temprefn) or
not(nf_is_funcret in hp.left.flags) then
exit;
{ should be the end }
if assigned(hp.right) then
exit;
{ we made it! }
result:=ctypeconvnode.create_internal(tassignmentnode(resassign).right.getcopy,hp2.resultdef);
firstpass(result);
end;
{ this procedure removes the user code flag because it prevents optimizations }
function removeusercodeflag(var n : tnode; arg : pointer) : foreachnoderesult;
begin
result:=fen_false;
if nf_usercode_entry in n.flags then
begin
exclude(n.flags,nf_usercode_entry);
result:=fen_norecurse_true;
end;
end;
{ reference symbols that are imported from another unit }
function importglobalsyms(var n:tnode; arg:pointer):foreachnoderesult;
var
sym : tsym;
begin
result:=fen_false;
if n.nodetype=loadn then
begin
sym:=tloadnode(n).symtableentry;
if sym.typ=staticvarsym then
begin
if FindUnitSymtable(tloadnode(n).symtable).moduleid<>current_module.moduleid then
current_module.addimportedsym(sym);
end
else if (sym.typ=constsym) and (tconstsym(sym).consttyp in [constwresourcestring,constresourcestring]) then
begin
if tloadnode(n).symtableentry.owner.moduleid<>current_module.moduleid then
current_module.addimportedsym(sym);
end;
end
else if (n.nodetype=calln) then
begin
if (assigned(tcallnode(n).procdefinition)) and
(tcallnode(n).procdefinition.typ=procdef) and
(findunitsymtable(tcallnode(n).procdefinition.owner).moduleid<>current_module.moduleid) then
current_module.addimportedsym(tprocdef(tcallnode(n).procdefinition).procsym);
end;
end;
function tcallnode.pass1_inline:tnode;
var
n,
body : tnode;
para : tcallparanode;
inlineblock,
inlinecleanupblock : tblocknode;
begin
inc(inlinelevel);
result:=nil;
if not(assigned(tprocdef(procdefinition).inlininginfo) and
assigned(tprocdef(procdefinition).inlininginfo^.code)) then
internalerror(200412021);
inlinelocals:=TFPObjectList.create(true);
{ inherit flags }
current_procinfo.flags:=current_procinfo.flags+
((procdefinition as tprocdef).inlininginfo^.flags*inherited_inlining_flags);
{ Create new code block for inlining }
inlineblock:=internalstatements(inlineinitstatement);
{ make sure that valid_for_assign() returns false for this block
(otherwise assigning values to the block will result in assigning
values to the inlined function's result) }
include(inlineblock.flags,nf_no_lvalue);
inlinecleanupblock:=internalstatements(inlinecleanupstatement);
if assigned(callinitblock) then
addstatement(inlineinitstatement,callinitblock.getcopy);
{ replace complex parameters with temps }
createinlineparas;
{ create a copy of the body and replace parameter loads with the parameter values }
body:=tprocdef(procdefinition).inlininginfo^.code.getcopy;
foreachnodestatic(pm_postprocess,body,@removeusercodeflag,nil);
foreachnodestatic(pm_postprocess,body,@importglobalsyms,nil);
foreachnode(pm_preprocess,body,@replaceparaload,@fileinfo);
{ Concat the body and finalization parts }
addstatement(inlineinitstatement,body);
addstatement(inlineinitstatement,inlinecleanupblock);
inlinecleanupblock:=nil;
if assigned(callcleanupblock) then
addstatement(inlineinitstatement,callcleanupblock.getcopy);
{ the last statement of the new inline block must return the
location and type of the function result.
This is not needed when the result is not used, also the tempnode is then
already destroyed by a tempdelete in the callcleanupblock tree }
if not is_void(resultdef) and
(cnf_return_value_used in callnodeflags) then
begin
if assigned(funcretnode) then
addstatement(inlineinitstatement,funcretnode.getcopy)
else
begin
para:=tcallparanode(left);
while assigned(para) do
begin
if (vo_is_hidden_para in para.parasym.varoptions) and
(vo_is_funcret in para.parasym.varoptions) then
begin
addstatement(inlineinitstatement,para.left.getcopy);
break;
end;
para:=tcallparanode(para.right);
end;
end;
end;
typecheckpass(tnode(inlineblock));
doinlinesimplify(tnode(inlineblock));
node_reset_flags(tnode(inlineblock),[],[tnf_pass1_done]);
firstpass(tnode(inlineblock));
result:=inlineblock;
{ if the function result is used then verify that the blocknode
returns the same result type as the original callnode }
if (cnf_return_value_used in callnodeflags) and
(result.resultdef<>resultdef) then
internalerror(200709171);
{ free the temps for the locals }
inlinelocals.free;
inlinelocals:=nil;
inlineinitstatement:=nil;
inlinecleanupstatement:=nil;
n:=optimize_funcret_assignment(inlineblock);
if assigned(n) then
begin
inlineblock.free;
result:=n;
end;
{$ifdef DEBUGINLINE}
writeln;
writeln('**************************',tprocdef(procdefinition).mangledname);
printnode(output,result);
{$endif DEBUGINLINE}
dec(inlinelevel);
end;
end.