fpc/compiler/symtable.pas
2025-03-20 17:01:31 +01:00

5062 lines
192 KiB
ObjectPascal

{
Copyright (c) 1998-2002 by Florian Klaempfl, Pierre Muller
This unit handles the symbol tables
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
****************************************************************************
}
unit symtable;
{$i fpcdefs.inc}
interface
uses
{ common }
cutils,cclasses,globtype,tokens,
{ symtable }
symconst,symbase,symtype,symdef,symsym;
{****************************************************************************
Symtable types
****************************************************************************}
type
{ tstoredsymtable }
tstoredsymtable = class(TSymtable)
private
init_final_check_done : boolean;
deref_built : boolean;
derefimpl_built : boolean;
procedure _needs_init_final(sym:TObject;arg:pointer);
procedure do_init_final_check;
procedure check_forward(sym:TObject;arg:pointer);
procedure check_block_valid(def: TObject;arg:pointer);
procedure register_defs(def:tobject;arg:pointer);
procedure register_syms(sym:tobject;arg:pointer);
procedure labeldefined(sym:TObject;arg:pointer);
procedure varsymbolused(sym:TObject;arg:pointer);
procedure TestPrivate(sym:TObject;arg:pointer);
procedure objectprivatesymbolused(sym:TObject;arg:pointer);
procedure loaddefs(ppufile:tcompilerppufile);
procedure loadsyms(ppufile:tcompilerppufile);
procedure writedefs(ppufile:tcompilerppufile);
procedure writesyms(ppufile:tcompilerppufile);
public
constructor create(const s:string);
procedure insertsym(sym:TSymEntry;checkdup:boolean=true);override;
procedure deletesym(sym:TSymEntry);override;
{ load/write }
procedure ppuload(ppufile:tcompilerppufile);virtual;
procedure ppuwrite(ppufile:tcompilerppufile);virtual;
procedure buildderef;
procedure buildderefimpl;
{ buildderef but only for (recursively) used symbols/defs }
procedure buildderef_registered;
procedure deref(only_registered: boolean);virtual;
procedure derefimpl(only_registered: boolean);virtual;
function checkduplicate(var hashedid:THashedIDString;sym:TSymEntry):boolean;override;
procedure allsymbolsused;
procedure allprivatesused;
procedure check_forwards;
procedure checklabels;
function needs_init_final : boolean; virtual;
function has_non_trivial_init:boolean;virtual;
function is_derefimpl_built: boolean;
function is_deref_built: boolean;
procedure testfordefaultproperty(sym:TObject;arg:pointer);
procedure register_children;
end;
{$ifdef llvm}
tllvmshadowsymtableentry = class
constructor create(def: tdef; fieldoffset: aint);
private
ffieldoffset: aint;
fdef: tdef;
public
property fieldoffset: aint read ffieldoffset;
property def: tdef read fdef;
end;
tllvmshadowsymtable = class;
{$endif llvm}
tmanagementoperator_offset_entry = record
pd : tprocdef;
offset : asizeint;
end;
pmanagementoperator_offset_entry = ^tmanagementoperator_offset_entry;
tabstractrecordsymtable = class(tstoredsymtable)
{$ifdef llvm}
private
fllvmst: tllvmshadowsymtable;
function getllvmshadowsymtabll: tllvmshadowsymtable;
{$endif llvm}
public
usefieldalignment, { alignment to use for fields (PACKRECORDS value), C_alignment is C style }
recordalignment, { alignment desired when inserting this record }
fieldalignment, { alignment current alignment used when fields are inserted }
padalignment : shortint; { size to a multiple of which the symtable has to be rounded up }
recordalignmin: shortint; { local equivalentsof global settings, so that records can be created with custom settings internally }
has_fields_with_mop : tmanagementoperators; { whether any of the fields has the need for a management operator (or one of the field's fields) }
constructor create(const n:string;usealign,recordminalign:shortint);
destructor destroy;override;
procedure ppuload(ppufile:tcompilerppufile);override;
procedure ppuwrite(ppufile:tcompilerppufile);override;
procedure alignrecord(fieldoffset:asizeint;varalign:shortint);
procedure addfield(sym:tfieldvarsym;vis:tvisibility);
procedure addfieldlist(list: tfpobjectlist; maybereorder: boolean);
{ returns the field closest to this offset (may not be exact because
of padding; internalerrors for variant records, assumes fields are
ordered by increasing offset) }
function findfieldbyoffset(offset:asizeint): tfieldvarsym;
procedure addalignmentpadding;
procedure insertdef(def:TDefEntry);override;
function is_packed: boolean;
function has_single_field(out def:tdef): boolean;
function has_double_field(out def1,def2:tdef; out offset:integer): integer;
{ collects all management operators of the specified type in list (which
is not cleared); the entries are copies and thus must be freed by the
caller }
procedure get_managementoperator_offset_list(mop:tmanagementoperator;list:tfplist);
protected
{ size in bytes including padding }
_datasize : asizeint;
{ size in bits of the data in case of bitpacked record. Only important during construction, }
{ no need to save in/restore from ppu file. datasize is always (databitsize+7) div 8. }
databitsize : asizeint;
{ size in bytes of padding }
_paddingsize : word;
{ array of tmanagementoperator_offset_entry lists; only assigned if
they had been queried once by get_management_operator_list }
mop_list : array[tmanagementoperator] of tfplist;
procedure setdatasize(val: asizeint);
function getfieldoffset(sym: tfieldvarsym; base: asizeint; var globalfieldalignment: shortint): asizeint;
procedure do_get_managementoperator_offset_list(data:tobject;arg:pointer);
public
function iscurrentunit: boolean; override;
property datasize : asizeint read _datasize write setdatasize;
property paddingsize: word read _paddingsize write _paddingsize;
{$ifdef llvm}
property llvmst: tllvmshadowsymtable read getllvmshadowsymtabll;
{$endif llvm}
end;
trecordsymtable = class(tabstractrecordsymtable)
public
{ maybe someday is worth to move managementoperators to }
{ tabstractrecordsymtable to perform management class operators for }
{ object/classes. In XE5 and newer is possible to use class operator }
{ for classes (like for Delphi .NET before) only for Delphi NEXTGEN }
managementoperators : tmanagementoperators;
constructor create(const n:string;usealign,recordminalign:shortint);
procedure insertunionst(unionst : trecordsymtable;offset : asizeint);
procedure includemanagementoperator(mop:tmanagementoperator);
end;
tObjectSymtable = class(tabstractrecordsymtable)
public
constructor create(adefowner:tdef;const n:string;usealign,recordminalign:shortint);
function checkduplicate(var hashedid:THashedIDString;sym:TSymEntry):boolean;override;
end;
{$ifdef llvm}
{ llvm record definitions cannot contain variant/union parts, }
{ you have to flatten them first. the tllvmshadowsymtable }
{ contains a flattened version of a record/object symtable }
tllvmshadowsymtable = class
private
equivst: tabstractrecordsymtable;
curroffset: aint;
function get(f: tfieldvarsym): tllvmshadowsymtableentry;
function get_by_llvm_index(index: longint): tllvmshadowsymtableentry;
public
symdeflist: TFPObjectList;
constructor create(st: tabstractrecordsymtable);
destructor destroy; override;
property entries[index: tfieldvarsym]: tllvmshadowsymtableentry read get; default;
{ warning: do not call this with field.llvmfieldnr, as
field.llvmfieldnr will only be initialised when the llvm shadow
symtable is accessed for the first time. Use the default/entries
property instead in this case }
property entries_by_llvm_index[index: longint]: tllvmshadowsymtableentry read get_by_llvm_index;
private
// generate the table
procedure generate;
// helpers
procedure appenddefoffset(vardef:tdef; fieldoffset: aint; derefclass: boolean);
procedure preprocess(out tempsymlist, variantstarts: tfplist);
procedure addalignmentpadding(finalsize: aint);
procedure buildmapping(tempsymlist, variantstarts: tfplist);
procedure buildtable(tempsymlist, variantstarts: tfplist);
end;
{$endif llvm}
{ tabstractsubsymtable }
tabstractsubsymtable = class(tstoredsymtable)
public
procedure ppuwrite(ppufile:tcompilerppufile);override;
end;
{ tabstractlocalsymtable }
tabstractlocalsymtable = class(tabstractsubsymtable)
public
function count_locals:longint;
function iscurrentunit: boolean; override;
end;
tlocalsymtable = class(tabstractlocalsymtable)
public
constructor create(adefowner:tdef;level:byte);
function checkduplicate(var hashedid:THashedIDString;sym:TSymEntry):boolean;override;
end;
{ tparasymtable }
tparasymtable = class(tabstractlocalsymtable)
public
constructor create(adefowner:tdef;level:byte);
function checkduplicate(var hashedid:THashedIDString;sym:TSymEntry):boolean;override;
end;
tabstractuniTSymtable = class(tstoredsymtable)
public
constructor create(const n : string;id:word);
function checkduplicate(var hashedid:THashedIDString;sym:TSymEntry):boolean;override;
function findnamespace(const n:string):TSymEntry;virtual;
function iscurrentunit:boolean;override;
function needs_init_final: boolean; override;
procedure insertunit(sym:TSymEntry);
function has_class_condestructors: boolean;
end;
tglobalsymtable = class(tabstractuniTSymtable)
public
unittypecount : word;
constructor create(const n : string;id:word);
procedure ppuload(ppufile:tcompilerppufile);override;
procedure ppuwrite(ppufile:tcompilerppufile);override;
end;
tstaticsymtable = class(tabstractuniTSymtable)
public
constructor create(const n : string;id:word);
procedure ppuload(ppufile:tcompilerppufile);override;
procedure ppuwrite(ppufile:tcompilerppufile);override;
function checkduplicate(var hashedid:THashedIDString;sym:TSymEntry):boolean;override;
function findnamespace(const n:string):TSymEntry;override;
end;
tspecializesymtable = class(tglobalsymtable)
public
constructor create(const n : string;id:word);
function iscurrentunit:boolean;override;
end;
twithsymtable = class(TSymtable)
withrefnode : tobject; { tnode }
constructor create(aowner:tdef;ASymList:TFPHashObjectList;refnode:tobject{tnode});
destructor destroy;override;
procedure clear;override;
procedure insertdef(def:TDefEntry);override;
end;
tstt_exceptsymtable = class(TSymtable)
public
constructor create;
end;
tmacrosymtable = class(tstoredsymtable)
public
constructor create(exported: boolean);
end;
{ tenumsymtable }
tenumsymtable = class(tabstractsubsymtable)
public
procedure insertsym(sym: TSymEntry; checkdup: boolean = true); override;
constructor create(adefowner:tdef);
end;
{ tarraysymtable }
tarraysymtable = class(tabstractsubsymtable)
public
procedure insertdef(def:TDefEntry);override;
constructor create(adefowner:tdef);
end;
var
systemunit : tglobalsymtable; { pointer to the system unit }
type
tsymbol_search_flag = (
ssf_search_option,
ssf_search_helper,
ssf_has_inherited,
ssf_no_addsymref,
ssf_unit_or_namespace_only
);
tsymbol_search_flags = set of tsymbol_search_flag;
{****************************************************************************
Functions
****************************************************************************}
{*** Misc ***}
function FullTypeName(def,otherdef:tdef):string;
function generate_nested_name(symtable:tsymtable;const delimiter:string):string;
{ def is the extended type of a helper }
function generate_objectpascal_helper_key(def:tdef):TSymStr;
procedure incompatibletypes(def1,def2:tdef);
procedure hidesym(sym:TSymEntry);
procedure duplicatesym(var hashedid: THashedIDString; dupsym, origsym:TSymEntry; warn: boolean);
function handle_generic_dummysym(sym:TSymEntry;var symoptions:tsymoptions):boolean;
{ writes all declarations for the specified system unit symbol }
procedure write_system_parameter_lists(const name:string);
{*** Search ***}
procedure addsymref(sym:tsym);inline;
procedure addsymref(sym:tsym;def:tdef);
function is_owned_by(nesteddef,ownerdef:tdef):boolean;
function sym_is_owned_by(childsym:tsym;symtable:tsymtable):boolean;
function defs_belong_to_same_generic(def1,def2:tdef):boolean;
function get_generic_in_hierarchy_by_name(srsym:tsym;def:tdef):tdef;
function return_specialization_of_generic(nesteddef,genericdef:tdef;out resultdef:tdef):boolean;
function is_visible_for_object(symst:tsymtable;symvisibility:tvisibility;contextobjdef:tabstractrecorddef):boolean;
function is_visible_for_object(pd:tprocdef;contextobjdef:tabstractrecorddef):boolean;
function is_visible_for_object(sym:tsym;contextobjdef:tabstractrecorddef):boolean;
function searchsym(const s : TIDString;out srsym:tsym;out srsymtable:TSymtable):boolean;
function searchsym_with_flags(const s : TIDString;out srsym:tsym;out srsymtable:TSymtable;flags:tsymbol_search_flags):boolean;
function searchsym_maybe_with_symoption(const s : TIDString;out srsym:tsym;out srsymtable:TSymtable;flags:tsymbol_search_flags;option:tsymoption):boolean;
{ searches for a symbol with the given name that has the given option in
symoptions set }
function searchsym_with_symoption(const s : TIDString;out srsym:tsym;out srsymtable:TSymtable;option:tsymoption):boolean;
function searchsym_type(const s : TIDString;out srsym:tsym;out srsymtable:TSymtable):boolean;
function searchsym_in_module(pm:pointer;const s : TIDString;out srsym:tsym;out srsymtable:TSymtable):boolean;
function searchsym_in_named_module(const unitname, symname: TIDString; out srsym: tsym; out srsymtable: tsymtable): boolean;
function searchsym_in_class(classh: tobjectdef; contextclassh:tabstractrecorddef;const s : TIDString;out srsym:tsym;out srsymtable:TSymtable;flags:tsymbol_search_flags):boolean;
function searchsym_in_record(recordh:tabstractrecorddef;const s : TIDString;out srsym:tsym;out srsymtable:TSymtable):boolean;
function searchsym_in_class_by_msgint(classh:tobjectdef;msgid:longint;out srdef : tdef;out srsym:tsym;out srsymtable:TSymtable):boolean;
function searchsym_in_class_by_msgstr(classh:tobjectdef;const s:string;out srsym:tsym;out srsymtable:TSymtable):boolean;
{ searches symbols inside of a helper's implementation }
function searchsym_in_helper(classh,contextclassh:tobjectdef;const s: TIDString;out srsym:tsym;out srsymtable:TSymtable;flags:tsymbol_search_flags):boolean;
function search_system_type(const s: TIDString): ttypesym;
function try_search_system_type(const s: TIDString): ttypesym;
function try_search_current_module_type(const s: TIDString): ttypesym;
function search_system_proc(const s: TIDString): tprocdef;
function search_named_unit_globaltype(const unitname, typename: TIDString; throwerror: boolean): ttypesym;
function search_struct_member(pd : tabstractrecorddef;const s : string):tsym;
function search_struct_member_no_helper(pd : tabstractrecorddef;const s : string):tsym;
function search_assignment_operator(from_def,to_def:Tdef;explicit:boolean):Tprocdef;
function search_enumerator_operator(from_def,to_def:Tdef):Tprocdef;
function search_management_operator(mop:tmanagementoperator;pd:Tdef):Tprocdef;
{ searches for the helper definition that's currently active for pd }
function search_last_objectpascal_helper(pd : tdef;contextclassh : tabstractrecorddef;out odef : tobjectdef):boolean;
{ searches whether the symbol s is available in the currently active }
{ helper for pd }
function search_objectpascal_helper(pd : tdef;contextclassh : tabstractrecorddef;const s : string; out srsym: tsym; out srsymtable: tsymtable):boolean;
function search_objc_helper(pd : tobjectdef;const s : string; out srsym: tsym; out srsymtable: tsymtable):boolean;
function search_objc_method(const s : string; out srsym: tsym; out srsymtable: tsymtable):boolean;
{Looks for macro s (must be given in upper case) in the macrosymbolstack, }
{and returns it if found. Returns nil otherwise.}
function search_macro(const s : string):tsym;
{ Additionally to searching for a macro, also checks whether it's still }
{ actually defined (could be disable using "undef") }
function defined_macro(const s : string):boolean;
{ Look for a system procedure (no overloads supported) }
{ returns a list of helpers in the current module for the def }
function get_objectpascal_helpers(pd : tdef):TFPObjectList;
{*** Object Helpers ***}
function search_default_property(pd : tabstractrecorddef) : tpropertysym;
function maybe_find_real_class_definition(pd: tdef; erroronfailure: boolean): tdef;
function find_real_class_definition(pd: tobjectdef; erroronfailure: boolean): tobjectdef;
{*** Macro Helpers ***}
{If called initially, the following procedures manipulate macros in }
{initialmacrotable, otherwise they manipulate system macros local to a module.}
{Name can be given in any case (it will be converted to upper case).}
procedure def_system_macro(const name : string);
procedure set_system_macro(const name, value : string);
procedure set_system_compvar(const name, value : string);
procedure undef_system_macro(const name : string);
{*** symtable stack ***}
{ $ifdef DEBUG
procedure test_symtablestack;
procedure list_symtablestack;
$endif DEBUG}
{$ifdef UNITALIASES}
type
punit_alias = ^tunit_alias;
tunit_alias = object(TNamedIndexItem)
newname : pshortstring;
constructor init(const n:string);
destructor done;virtual;
end;
var
unitaliases : pdictionary;
procedure addunitalias(const n:string);
function getunitalias(const n:string):string;
{$endif UNITALIASES}
{*** Init / Done ***}
procedure IniTSymtable;
procedure DoneSymtable;
const
overloaded_names : array [NOTOKEN..last_overloaded] of string[16] = (
{ NOTOKEN } 'error',
{ _PLUS } 'plus',
{ _MINUS } 'minus',
{ _STAR } 'star',
{ _SLASH } 'slash',
{ _EQ } 'equal',
{ _GT } 'greater',
{ _LT } 'lower',
{ _GTE } 'greater_or_equal',
{ _LTE } 'lower_or_equal',
{ _NE } 'not_equal',
{ _SYMDIF } 'sym_diff',
{ _STARSTAR } 'starstar',
{ _OP_AS } 'as',
{ _OP_IN } 'in',
{ _OP_IS } 'is',
{ _OP_OR } 'or',
{ _OP_AND } 'and',
{ _OP_DIV } 'div',
{ _OP_MOD } 'mod',
{ _OP_NOT } 'not',
{ _OP_SHL } 'shl',
{ _OP_SHR } 'shr',
{ _OP_XOR } 'xor',
{ _ASSIGNMENT } 'assign',
{ _OP_EXPLICIT } 'explicit',
{ _OP_ENUMERATOR } 'enumerator',
{ _OP_INITIALIZE } 'initialize',
{ _OP_FINALIZE } 'finalize',
{ _OP_ADDREF } 'addref',
{ _OP_COPY } 'copy',
{ _OP_INC } 'inc',
{ _OP_DEC } 'dec');
managementoperator2tok:array[tmanagementoperator] of ttoken = (
{ mop_none } NOTOKEN,
{ mop_initialize } _OP_INITIALIZE,
{ mop_finalize } _OP_FINALIZE,
{ mop_addref } _OP_ADDREF,
{ mop_copy } _OP_COPY
);
implementation
uses
{ global }
verbose,globals,systems,
{ symtable }
symutil,defutil,defcmp,objcdef,
{ module }
fmodule,
{ codegen }
procinfo,
{ ppu }
entfile,ppu,
{ parser }
scanner
;
var
dupnr : longint; { unique number for duplicate symbols }
{*****************************************************************************
TStoredSymtable
*****************************************************************************}
constructor tstoredsymtable.create(const s:string);
begin
inherited create(s);
{ Note: this happens for the initial macro symtable, so no error here }
if not assigned(current_module) then
comment(v_debug,'Current module not available for module id')
else
moduleid:=current_module.moduleid;
end;
procedure tstoredsymtable.insertsym(sym:TSymEntry;checkdup:boolean=true);
begin
inherited insertsym(sym,checkdup);
init_final_check_done:=false;
end;
procedure tstoredsymtable.deletesym(sym:TSymEntry);
begin
inherited deletesym(sym);
init_final_check_done:=false;
end;
procedure tstoredsymtable.ppuload(ppufile:tcompilerppufile);
begin
{ load the table's flags }
if ppufile.readentry<>ibsymtableoptions then
Message(unit_f_ppu_read_error);
ppufile.getset(tppuset1(tableoptions));
{ load definitions }
loaddefs(ppufile);
{ load symbols }
loadsyms(ppufile);
init_final_check_done:=true;
end;
procedure tstoredsymtable.ppuwrite(ppufile:tcompilerppufile);
begin
{ ensure that we have the sto_needs_init_final flag set if needed }
if not init_final_check_done then
needs_init_final;
{ write the table's flags }
ppufile.putset(tppuset1(tableoptions));
ppufile.writeentry(ibsymtableoptions);
{ write definitions }
writedefs(ppufile);
{ write symbols }
writesyms(ppufile);
end;
procedure tstoredsymtable.loaddefs(ppufile:tcompilerppufile);
var
def : tdef;
b : byte;
begin
{ load start of definition section, which holds the amount of defs }
if ppufile.readentry<>ibstartdefs then
Message(unit_f_ppu_read_error);
{ read definitions }
repeat
b:=ppufile.readentry;
def:=nil;
case b of
ibpointerdef : def:=cpointerdef.ppuload(ppufile);
ibarraydef : def:=carraydef.ppuload(ppufile);
iborddef : def:=corddef.ppuload(ppufile);
ibfloatdef : def:=cfloatdef.ppuload(ppufile);
ibprocdef : def:=cprocdef.ppuload(ppufile);
ibshortstringdef : def:=cstringdef.loadshort(ppufile);
iblongstringdef : def:=cstringdef.loadlong(ppufile);
ibansistringdef : def:=cstringdef.loadansi(ppufile);
ibwidestringdef : def:=cstringdef.loadwide(ppufile);
ibunicodestringdef : def:=cstringdef.loadunicode(ppufile);
ibrecorddef : def:=crecorddef.ppuload(ppufile);
ibobjectdef : def:=cobjectdef.ppuload(ppufile);
ibenumdef : def:=cenumdef.ppuload(ppufile);
ibsetdef : def:=csetdef.ppuload(ppufile);
ibprocvardef : def:=cprocvardef.ppuload(ppufile);
ibfiledef : def:=cfiledef.ppuload(ppufile);
ibclassrefdef : def:=cclassrefdef.ppuload(ppufile);
ibformaldef : def:=cformaldef.ppuload(ppufile);
ibvariantdef : def:=cvariantdef.ppuload(ppufile);
ibundefineddef : def:=cundefineddef.ppuload(ppufile);
ibenddefs : break;
ibend : Message(unit_f_ppu_read_error);
else
Message1(unit_f_ppu_invalid_entry,tostr(b));
end;
if assigned(def) then
tstoreddef(def).ppuload_subentries(ppufile);
InsertDef(def);
until false;
end;
procedure tstoredsymtable.loadsyms(ppufile:tcompilerppufile);
var
b : byte;
sym : tsym;
begin
{ load start of definition section, which holds the amount of defs }
if ppufile.readentry<>ibstartsyms then
Message(unit_f_ppu_read_error);
{ now read the symbols }
repeat
sym:=nil;
b:=ppufile.readentry;
case b of
ibtypesym : sym:=ctypesym.ppuload(ppufile);
ibprocsym : sym:=cprocsym.ppuload(ppufile);
ibconstsym : sym:=cconstsym.ppuload(ppufile);
ibstaticvarsym : sym:=cstaticvarsym.ppuload(ppufile);
iblocalvarsym : sym:=clocalvarsym.ppuload(ppufile);
ibparavarsym : sym:=cparavarsym.ppuload(ppufile);
ibfieldvarsym : sym:=cfieldvarsym.ppuload(ppufile);
ibabsolutevarsym : sym:=cabsolutevarsym.ppuload(ppufile);
ibenumsym : sym:=cenumsym.ppuload(ppufile);
ibpropertysym : sym:=cpropertysym.ppuload(ppufile);
ibunitsym : sym:=cunitsym.ppuload(ppufile);
iblabelsym : sym:=clabelsym.ppuload(ppufile);
ibsyssym : sym:=csyssym.ppuload(ppufile);
ibmacrosym : sym:=tmacro.ppuload(ppufile);
ibnamespacesym : sym:=cnamespacesym.ppuload(ppufile);
ibendsyms : break;
ibend : Message(unit_f_ppu_read_error);
else
Message1(unit_f_ppu_invalid_entry,tostr(b));
end;
if assigned(sym) then
tstoredsym(sym).ppuload_subentries(ppufile);
InsertSym(sym,false);
until false;
end;
procedure tstoredsymtable.writedefs(ppufile:tcompilerppufile);
var
defcount,
i : longint;
def : tstoreddef;
begin
defcount:=0;
for i:=0 to DefList.Count-1 do
if tstoreddef(DefList[i]).is_registered then
inc(defcount);
{ each definition get a number, write then the amount of defs to the
ibstartdef entry }
ppufile.putlongint(defcount);
ppufile.writeentry(ibstartdefs);
{ now write the definition }
for i:=0 to DefList.Count-1 do
begin
def:=tstoreddef(DefList[i]);
if def.is_registered then
begin
def.ppuwrite(ppufile);
def.ppuwrite_subentries(ppufile);
end;
end;
{ write end of definitions }
ppufile.writeentry(ibenddefs);
end;
procedure tstoredsymtable.writesyms(ppufile:tcompilerppufile);
var
symcount,
i : longint;
sym : Tstoredsym;
begin
symcount:=0;
for i:=0 to SymList.Count-1 do
if tstoredsym(SymList[i]).is_registered then
inc(symcount);
{ each definition get a number, write then the amount of syms and the
datasize to the ibsymdef entry }
ppufile.putlongint(symcount);
ppufile.writeentry(ibstartsyms);
{ foreach is used to write all symbols }
for i:=0 to SymList.Count-1 do
begin
sym:=tstoredsym(SymList[i]);
if sym.is_registered then
begin
sym.ppuwrite(ppufile);
sym.ppuwrite_subentries(ppufile);
end;
end;
{ end of symbols }
ppufile.writeentry(ibendsyms);
end;
function tstoredsymtable.is_deref_built: boolean;
begin
Result:=deref_built;
end;
function tstoredsymtable.is_derefimpl_built: boolean;
begin
Result:=derefimpl_built;
end;
procedure tstoredsymtable.buildderef;
var
i : longint;
def : tstoreddef;
sym : tstoredsym;
begin
{ interface definitions }
for i:=0 to DefList.Count-1 do
begin
def:=tstoreddef(DefList[i]);
def.buildderef;
end;
{ interface symbols }
for i:=0 to SymList.Count-1 do
begin
sym:=tstoredsym(SymList[i]);
sym.buildderef;
end;
deref_built:=True;
end;
procedure tstoredsymtable.buildderefimpl;
var
i : longint;
def : tstoreddef;
begin
{ implementation definitions }
for i:=0 to DefList.Count-1 do
begin
def:=tstoreddef(DefList[i]);
def.buildderefimpl;
end;
derefimpl_built:=True;
end;
procedure tstoredsymtable.buildderef_registered;
var
def : tstoreddef;
sym : tstoredsym;
i : longint;
defidmax,
symidmax: longint;
newbuiltdefderefs,
builtdefderefs,
builtsymderefs: array of boolean;
changed: boolean;
begin
newbuiltdefderefs:=nil;
builtdefderefs:=nil;
builtsymderefs:=nil;
{ tdefs for which we already built the deref }
setlength(builtdefderefs,deflist.count);
{ tdefs for which we built the deref in this iteration }
setlength(newbuiltdefderefs,deflist.count);
{ syms for which we already built the deref }
setlength(builtsymderefs,symlist.count);
repeat
{ we only have to store the defs (recursively) referred by wpo info
or inlined routines in the static symbtable }
{ current number of registered defs/syms }
defidmax:=current_module.deflist.count;
symidmax:=current_module.symlist.count;
changed:=false;
{ build the derefs for the registered defs we haven't processed yet }
for i:=0 to DefList.Count-1 do
begin
if not builtdefderefs[i] then
begin
def:=tstoreddef(DefList[i]);
if def.is_registered then
begin
def.buildderef;
newbuiltdefderefs[i]:=true;
builtdefderefs[i]:=true;
changed:=true;
end;
end;
end;
{ same for the syms }
for i:=0 to SymList.Count-1 do
begin
if not builtsymderefs[i] then
begin
sym:=tstoredsym(SymList[i]);
if sym.is_registered then
begin
sym.buildderef;
builtsymderefs[i]:=true;
changed:=true;
end;
end;
end;
{ now buildderefimpl for the defs we processed in this iteration }
for i:=0 to DefList.Count-1 do
begin
if newbuiltdefderefs[i] then
begin
newbuiltdefderefs[i]:=false;
tstoreddef(DefList[i]).buildderefimpl;
changed:=true;
end;
end;
{ stop when no new defs or syms have been registered while processing
the currently registered ones (defs/syms get added to the module's
deflist/symlist when they are registered) }
until not changed and
(defidmax=current_module.deflist.count) and
(symidmax=current_module.symlist.count);
end;
procedure tstoredsymtable.deref(only_registered: boolean);
var
i : longint;
def : tstoreddef;
sym : tstoredsym;
begin
{ first deref the interface ttype symbols. This is needs
to be done before the interface defs are derefed, because
the interface defs can contain references to the type symbols
which then already need to contain a resolved typedef field (PFV) }
for i:=0 to SymList.Count-1 do
begin
sym:=tstoredsym(SymList[i]);
if (sym.typ=typesym) and
(not only_registered or
sym.is_registered) then
sym.deref;
end;
{ interface definitions }
for i:=0 to DefList.Count-1 do
begin
def:=tstoreddef(DefList[i]);
if not only_registered or
def.is_registered then
def.deref;
end;
{ interface symbols }
for i:=0 to SymList.Count-1 do
begin
sym:=tstoredsym(SymList[i]);
if (not only_registered or
sym.is_registered) and
(sym.typ<>typesym) then
sym.deref;
end;
end;
procedure tstoredsymtable.derefimpl(only_registered: boolean);
var
i : longint;
def : tstoreddef;
begin
{ implementation definitions }
for i:=0 to DefList.Count-1 do
begin
def:=tstoreddef(DefList[i]);
if not only_registered or
def.is_registered then
def.derefimpl;
end;
end;
function tstoredsymtable.checkduplicate(var hashedid:THashedIDString;sym:TSymEntry):boolean;
var
hsym : tsym;
begin
hsym:=tsym(FindWithHash(hashedid));
if assigned(hsym) then
DuplicateSym(hashedid,sym,hsym,false);
result:=assigned(hsym);
end;
{**************************************
Callbacks
**************************************}
procedure TStoredSymtable.check_forward(sym:TObject;arg:pointer);
begin
if tsym(sym).typ=procsym then
tprocsym(sym).check_forward
{ check also object method table }
{ we needn't to test the def list }
{ because each object has to have a type sym,
only test objects declarations, not type renamings }
else
if (tsym(sym).typ=typesym) and
assigned(ttypesym(sym).typedef) and
(ttypesym(sym).typedef.typesym=ttypesym(sym)) and
(ttypesym(sym).typedef.typ in [objectdef,recorddef]) then
tabstractrecorddef(ttypesym(sym).typedef).check_forwards;
end;
procedure tstoredsymtable.check_block_valid(def: TObject; arg: pointer);
var
founderrordef: tdef;
begin
{ all parameters passed to a block must be handled by the Objective-C
runtime }
if is_block(tdef(def)) and
not objcchecktype(tdef(def),founderrordef) then
if assigned(tdef(def).typesym) then
MessagePos1(tdef(def).typesym.fileinfo,type_e_objc_type_unsupported,founderrordef.typename)
else
Message1(type_e_objc_type_unsupported,tprocvardef(def).typename)
end;
procedure tstoredsymtable.register_syms(sym:tobject;arg:pointer);
begin
tsym(sym).register_sym;
end;
procedure tstoredsymtable.register_defs(def:tobject;arg:pointer);
begin
tdef(def).register_def;
end;
procedure TStoredSymtable.labeldefined(sym:TObject;arg:pointer);
begin
if (tsym(sym).typ=labelsym) and
not(tlabelsym(sym).defined) then
begin
if tlabelsym(sym).used then
Message1(sym_e_label_used_and_not_defined,tlabelsym(sym).realname)
else
Message1(sym_w_label_not_defined,tlabelsym(sym).realname);
end;
end;
procedure TStoredSymtable.varsymbolused(sym:TObject;arg:pointer);
begin
if (tsym(sym).typ in [staticvarsym,localvarsym,paravarsym,fieldvarsym]) and
((tsym(sym).owner.symtabletype in
[parasymtable,localsymtable,ObjectSymtable,recordsymtable,staticsymtable])) then
begin
{ unused symbol should be reported only if no }
{ error is reported }
{ if the symbol is in a register it is used }
{ also don't count the value parameters which have local copies }
{ also don't claim for high param of open parameters (PM) }
{ also don't complain about unused symbols in generic procedures }
{ and methods }
{ and neither in abstract methods }
if (Errorcount<>0) or
([vo_is_hidden_para,vo_is_funcret] * tabstractvarsym(sym).varoptions = [vo_is_hidden_para]) or
(sp_internal in tsym(sym).symoptions) or
((assigned(tsym(sym).owner.defowner) and
(tsym(sym).owner.defowner.typ=procdef) and
((df_generic in tprocdef(tsym(sym).owner.defowner).defoptions) or
(po_abstractmethod in tprocdef(tsym(sym).owner.defowner).procoptions)))) then
exit;
if (tstoredsym(sym).refs=0) then
begin
if (vo_is_funcret in tabstractvarsym(sym).varoptions) then
begin
{ don't warn about the result of constructors }
{ or the synthetic helper functions for class-attributes }
if ((tsym(sym).owner.symtabletype<>localsymtable) or
(tprocdef(tsym(sym).owner.defowner).proctypeoption<>potype_constructor)) and
not (po_noreturn in tprocdef(tsym(sym).owner.defowner).procoptions) and
not(cs_opt_nodedfa in current_settings.optimizerswitches) then
MessagePos(tsym(sym).fileinfo,sym_w_function_result_not_set)
end
else if (tsym(sym).owner.symtabletype=parasymtable) then
MessagePos1(tsym(sym).fileinfo,sym_h_para_identifier_not_used,tsym(sym).prettyname)
else if (tsym(sym).owner.symtabletype in [ObjectSymtable,recordsymtable]) then
MessagePos2(tsym(sym).fileinfo,sym_n_private_identifier_not_used,tabstractrecorddef(tsym(sym).owner.defowner).GetTypeName,tsym(sym).prettyname)
else
MessagePos1(tsym(sym).fileinfo,sym_n_local_identifier_not_used,tsym(sym).prettyname);
end
else if tabstractvarsym(sym).varstate in [vs_written,vs_initialised] then
begin
if (tsym(sym).owner.symtabletype=parasymtable) then
begin
if not(tabstractvarsym(sym).varspez in [vs_var,vs_out,vs_constref]) and
not(vo_is_funcret in tabstractvarsym(sym).varoptions) then
MessagePos1(tsym(sym).fileinfo,sym_h_para_identifier_only_set,tsym(sym).prettyname)
end
else if (tsym(sym).owner.symtabletype in [ObjectSymtable,recordsymtable]) then
MessagePos2(tsym(sym).fileinfo,sym_n_private_identifier_only_set,tabstractrecorddef(tsym(sym).owner.defowner).GetTypeName,tsym(sym).prettyname)
else if tabstractvarsym(sym).varoptions*[vo_is_funcret,vo_is_public,vo_is_external]=[] then
MessagePos1(tsym(sym).fileinfo,sym_n_local_identifier_only_set,tsym(sym).prettyname);
end
else if (tabstractvarsym(sym).varstate = vs_read_not_warned) and
([vo_is_public,vo_is_external] * tabstractvarsym(sym).varoptions = []) then
MessagePos1(tsym(sym).fileinfo,sym_w_identifier_only_read,tsym(sym).prettyname)
end
else if ((tsym(sym).owner.symtabletype in
[ObjectSymtable,parasymtable,localsymtable,staticsymtable,recordsymtable])) then
begin
if (Errorcount<>0) or
(sp_internal in tsym(sym).symoptions) then
exit;
{ do not claim for inherited private fields !! }
if (tsym(sym).refs=0) and (tsym(sym).owner.symtabletype in [ObjectSymtable,recordsymtable]) then
case tsym(sym).typ of
typesym:
MessagePos2(tsym(sym).fileinfo,sym_n_private_type_not_used,tabstractrecorddef(tsym(sym).owner.defowner).GetTypeName,tsym(sym).prettyname);
constsym:
MessagePos2(tsym(sym).fileinfo,sym_n_private_const_not_used,tabstractrecorddef(tsym(sym).owner.defowner).GetTypeName,tsym(sym).prettyname);
propertysym:
MessagePos2(tsym(sym).fileinfo,sym_n_private_property_not_used,tabstractrecorddef(tsym(sym).owner.defowner).GetTypeName,tsym(sym).prettyname);
else
MessagePos2(tsym(sym).fileinfo,sym_n_private_method_not_used,tabstractrecorddef(tsym(sym).owner.defowner).GetTypeName,tsym(sym).prettyname);
end
{ units references are problematic }
else
begin
if (tsym(sym).refs=0) and
not(tsym(sym).typ in [enumsym,unitsym,namespacesym]) and
not(is_funcret_sym(tsym(sym))) and
{ don't complain about compiler generated syms for specializations, see also #13405 }
not((tsym(sym).typ=typesym) and (df_specialization in ttypesym(sym).typedef.defoptions) and
(pos('$',ttypesym(sym).Realname)<>0)) and
(
(tsym(sym).typ<>procsym) or
((tsym(sym).owner.symtabletype=staticsymtable) and
not current_module.is_unit)
) and
{ don't complain about alias for hidden _cmd parameter to
obj-c methods }
not((tsym(sym).typ in [localvarsym,paravarsym,absolutevarsym]) and
(vo_is_msgsel in tabstractvarsym(sym).varoptions)) then
MessagePos2(tsym(sym).fileinfo,sym_h_local_symbol_not_used,SymTypeName[tsym(sym).typ],tsym(sym).prettyname);
end;
end;
end;
procedure TStoredSymtable.TestPrivate(sym:TObject;arg:pointer);
begin
if tsym(sym).visibility in [vis_private,vis_strictprivate] then
varsymbolused(sym,arg);
end;
procedure TStoredSymtable.objectprivatesymbolused(sym:TObject;arg:pointer);
begin
{
Don't test simple object aliases PM
}
if (tsym(sym).typ=typesym) and
(ttypesym(sym).typedef.typ in [objectdef,recorddef]) and
(ttypesym(sym).typedef.typesym=tsym(sym)) then
tabstractrecorddef(ttypesym(sym).typedef).symtable.SymList.ForEachCall(@TestPrivate,nil);
end;
procedure tstoredsymtable.testfordefaultproperty(sym:TObject;arg:pointer);
begin
if (tsym(sym).typ=propertysym) and
(ppo_defaultproperty in tpropertysym(sym).propoptions) then
ppointer(arg)^:=sym;
end;
procedure tstoredsymtable.register_children;
begin
SymList.ForEachCall(@register_syms,nil);
DefList.ForEachCall(@register_defs,nil);
end;
{***********************************************
Process all entries
***********************************************}
{ checks, if all procsyms and methods are defined }
procedure tstoredsymtable.check_forwards;
begin
SymList.ForEachCall(@check_forward,nil);
{ check whether all block definitions contain valid Objective-C types
(now that all forward definitions have been resolved) }
DefList.ForEachCall(@check_block_valid,nil);
end;
procedure tstoredsymtable.checklabels;
begin
SymList.ForEachCall(@labeldefined,nil);
end;
procedure tstoredsymtable.allsymbolsused;
begin
SymList.ForEachCall(@varsymbolused,nil);
end;
procedure tstoredsymtable.allprivatesused;
begin
SymList.ForEachCall(@objectprivatesymbolused,nil);
end;
procedure TStoredSymtable._needs_init_final(sym:TObject;arg:pointer);
begin
if [sto_needs_init_final,sto_has_non_trivial_init] <= tableoptions then
exit;
{ don't check static symbols - they can be present in structures only and
always have a reference to a symbol defined on unit level }
if sp_static in tsym(sym).symoptions then
exit;
case tsym(sym).typ of
fieldvarsym,
staticvarsym,
localvarsym,
paravarsym :
begin
if assigned(tabstractvarsym(sym).vardef) and
is_managed_type(tabstractvarsym(sym).vardef) then
include(tableoptions,sto_needs_init_final);
if is_record((tabstractvarsym(sym).vardef)) and
(mop_initialize in trecordsymtable(trecorddef(tabstractvarsym(sym).vardef).symtable).managementoperators) then
include(tableoptions,sto_has_non_trivial_init);
end;
else
;
end;
end;
procedure tstoredsymtable.do_init_final_check;
begin
if not init_final_check_done then
begin
exclude(tableoptions,sto_needs_init_final);
exclude(tableoptions,sto_has_non_trivial_init);
SymList.ForEachCall(@_needs_init_final,nil);
init_final_check_done:=true;
end;
end;
{ returns true, if p contains data which needs init/final code }
function tstoredsymtable.needs_init_final : boolean;
begin
do_init_final_check;
result:=sto_needs_init_final in tableoptions;
end;
function tstoredsymtable.has_non_trivial_init:boolean;
begin
do_init_final_check;
result:=sto_has_non_trivial_init in tableoptions;
end;
{****************************************************************************
TAbstractRecordSymtable
****************************************************************************}
{$ifdef llvm}
function tabstractrecordsymtable.getllvmshadowsymtabll: tllvmshadowsymtable;
begin
if not assigned(fllvmst) then
fllvmst:=tllvmshadowsymtable.create(self);
result:=fllvmst;
end;
{$endif llvm}
constructor tabstractrecordsymtable.create(const n:string;usealign,recordminalign:shortint);
begin
inherited create(n);
_datasize:=0;
databitsize:=0;
recordalignment:=1;
usefieldalignment:=usealign;
recordalignmin:=recordminalign;
padalignment:=1;
{ recordalign C_alignment means C record packing, that starts
with an alignment of 1 }
case usealign of
C_alignment,
bit_alignment:
fieldalignment:=1;
mac68k_alignment:
fieldalignment:=2;
else
fieldalignment:=usealign;
end;
end;
destructor tabstractrecordsymtable.destroy;
var
mop : tmanagementoperator;
begin
if refcount>1 then
exit;
{$ifdef llvm}
fllvmst.free;
{$endif llvm}
for mop:=low(tmanagementoperator) to high(tmanagementoperator) do
TFPList.FreeAndNilDisposing(mop_list[mop],TypeInfo(tmanagementoperator_offset_entry));
inherited destroy;
end;
procedure tabstractrecordsymtable.ppuload(ppufile:tcompilerppufile);
begin
if ppufile.readentry<>ibrecsymtableoptions then
Message(unit_f_ppu_read_error);
recordalignment:=shortint(ppufile.getbyte);
usefieldalignment:=shortint(ppufile.getbyte);
recordalignmin:=shortint(ppufile.getbyte);
if (usefieldalignment=C_alignment) then
fieldalignment:=shortint(ppufile.getbyte);
ppufile.getset(tppuset1(has_fields_with_mop));
inherited ppuload(ppufile);
end;
procedure tabstractrecordsymtable.ppuwrite(ppufile:tcompilerppufile);
var
oldtyp : byte;
begin
oldtyp:=ppufile.entrytyp;
ppufile.entrytyp:=subentryid;
{ in case of classes using C alignment, the alignment of the parent
affects the alignment of fields of the childs }
ppufile.putbyte(byte(recordalignment));
ppufile.putbyte(byte(usefieldalignment));
ppufile.putbyte(byte(recordalignmin));
if (usefieldalignment=C_alignment) then
ppufile.putbyte(byte(fieldalignment));
{ it's not really a "symtableoption", but loading this from the record
def requires storing the set in the recorddef at least between
ppuload and deref/derefimpl }
ppufile.putset(tppuset1(has_fields_with_mop));
ppufile.writeentry(ibrecsymtableoptions);
inherited ppuwrite(ppufile);
ppufile.entrytyp:=oldtyp;
end;
function field2recordalignment(fieldoffs, fieldalign: asizeint): asizeint;
begin
{ optimal alignment of the record when declaring a variable of this }
{ type is independent of the packrecords setting }
if (fieldoffs mod fieldalign) = 0 then
result:=fieldalign
else if (fieldalign >= 16) and
((fieldoffs mod 16) = 0) and
((fieldalign mod 16) = 0) then
result:=16
else if (fieldalign >= 8) and
((fieldoffs mod 8) = 0) and
((fieldalign mod 8) = 0) then
result:=8
else if (fieldalign >= 4) and
((fieldoffs mod 4) = 0) and
((fieldalign mod 4) = 0) then
result:=4
else if (fieldalign >= 2) and
((fieldoffs mod 2) = 0) and
((fieldalign mod 2) = 0) then
result:=2
else
result:=1;
end;
procedure tabstractrecordsymtable.alignrecord(fieldoffset:asizeint;varalign:shortint);
var
varalignrecord: shortint;
begin
case usefieldalignment of
C_alignment:
varalignrecord:=used_align(varalign,recordalignmin,current_settings.alignment.maxCrecordalign);
mac68k_alignment:
varalignrecord:=2;
else
varalignrecord:=field2recordalignment(fieldoffset,varalign);
end;
recordalignment:=max(recordalignment,varalignrecord);
end;
procedure tabstractrecordsymtable.addfield(sym:tfieldvarsym;vis:tvisibility);
var
l : asizeint;
varalign : shortint;
vardef : tdef;
begin
if (sym.owner<>self) then
internalerror(200602031);
if sym.fieldoffset<>-1 then
internalerror(200602032);
{ set visibility for the symbol }
sym.visibility:=vis;
{ this symbol can't be loaded to a register }
sym.varregable:=vr_none;
{ management operators }
if sym.vardef.typ in [recorddef,objectdef] then
has_fields_with_mop:=has_fields_with_mop + tabstractrecordsymtable(tabstractrecorddef(sym.vardef).symtable).has_fields_with_mop;
if sym.vardef.typ=recorddef then
has_fields_with_mop:=has_fields_with_mop + trecordsymtable(trecorddef(sym.vardef).symtable).managementoperators;
{ Calculate field offset }
l:=sym.getsize;
vardef:=sym.vardef;
varalign:=vardef.structalignment;
case usefieldalignment of
bit_alignment:
begin
{ bitpacking only happens for ordinals, the rest is aligned at }
{ 1 byte (compatible with GPC/GCC) }
if is_ordinal(vardef) then
begin
sym.fieldoffset:=databitsize;
l:=sym.getpackedbitsize;
end
else
begin
databitsize:=_datasize*8;
sym.fieldoffset:=databitsize;
if (l>high(asizeint) div 8) then
Message(sym_e_segment_too_large);
l:=l*8;
end;
if varalign=0 then
varalign:=size_2_align(l);
recordalignment:=max(recordalignment,field2recordalignment(databitsize mod 8,varalign));
{ bit packed records are limited to high(aint) bits }
{ instead of bytes to avoid double precision }
{ arithmetic in offset calculations }
if int64(l)>high(asizeint)-sym.fieldoffset then
begin
Message(sym_e_segment_too_large);
_datasize:=high(asizeint);
databitsize:=high(asizeint);
end
else
begin
databitsize:=sym.fieldoffset+l;
_datasize:=(databitsize+7) div 8;
end;
{ rest is not applicable }
exit;
end;
else
begin
sym.fieldoffset:=getfieldoffset(sym,_datasize,fieldalignment);
if l>high(asizeint)-sym.fieldoffset then
begin
Message(sym_e_segment_too_large);
_datasize:=high(asizeint);
end
else
_datasize:=sym.fieldoffset+l;
{ Calc alignment needed for this record }
alignrecord(sym.fieldoffset,varalign);
end;
end;
end;
function field_alignment_compare(item1, item2: pointer): integer;
var
field1: tfieldvarsym absolute item1;
field2: tfieldvarsym absolute item2;
begin
{ we don't care about static fields, those become global variables }
if (sp_static in field1.symoptions) or
(sp_static in field2.symoptions) then
exit(0);
{ sort from large to small alignment, and in case of the same alignment
in declaration order (items declared close together are possibly
also related and hence possibly used together -> putting them next
to each other can improve cache behaviour) }
result:=field2.vardef.alignment-field1.vardef.alignment;
if result=0 then
result:=field1.fieldoffset-field2.fieldoffset;
end;
procedure tabstractrecordsymtable.addfieldlist(list: tfpobjectlist; maybereorder: boolean);
var
fieldvs, insertfieldvs: tfieldvarsym;
base, fieldoffset, space, insertfieldsize, insertfieldoffset, bestinsertfieldoffset, bestspaceleft: asizeint;
i, j, bestfieldindex: longint;
globalfieldalignment,
prevglobalfieldalignment,
newfieldalignment: shortint;
changed: boolean;
begin
if maybereorder and
(cs_opt_reorder_fields in current_settings.optimizerswitches) and
(list.count>1) then
begin
{ assign dummy field offsets so we can know their order in the
sorting routine }
for i:=0 to list.count-1 do
begin
fieldvs:=tfieldvarsym(list[i]);
if sp_static in fieldvs.symoptions then
continue;
fieldvs.fieldoffset:=i;
end;
{ sort the non-class fields to minimise losses due to alignment }
list.sort(@field_alignment_compare);
{ now fill up gaps caused by alignment skips with smaller fields
where possible }
repeat
i:=0;
base:=_datasize;
globalfieldalignment:=fieldalignment;
changed:=false;
while i<list.count do
begin
fieldvs:=tfieldvarsym(list[i]);
if sp_static in fieldvs.symoptions then
begin
inc(i);
continue;
end;
prevglobalfieldalignment:=globalfieldalignment;
fieldoffset:=getfieldoffset(fieldvs,base,globalfieldalignment);
newfieldalignment:=globalfieldalignment;
{ size of the gap between the end of the previous field and
the start of the current one }
space:=fieldoffset-base;
bestspaceleft:=space;
while space>0 do
begin
bestfieldindex:=-1;
bestinsertfieldoffset:=-1;
for j:=i+1 to list.count-1 do
begin
insertfieldvs:=tfieldvarsym(list[j]);
if sp_static in insertfieldvs.symoptions then
continue;
insertfieldsize:=insertfieldvs.getsize;
{ can the new field fit possibly in the gap? }
if insertfieldsize<=space then
begin
{ restore globalfieldalignment to situation before
the original field was inserted }
globalfieldalignment:=prevglobalfieldalignment;
{ at what offset would it be inserted? (this new
field has its own alignment requirements, which
may make it impossible to fit after all) }
insertfieldoffset:=getfieldoffset(insertfieldvs,base,globalfieldalignment);
globalfieldalignment:=prevglobalfieldalignment;
{ taking into account the alignment, does it still
fit and if so, does it fit better than the
previously found best fit? }
if (insertfieldoffset+insertfieldsize<=fieldoffset) and
(fieldoffset-insertfieldoffset-insertfieldsize<bestspaceleft) then
begin
{ new best fit }
bestfieldindex:=j;
bestinsertfieldoffset:=insertfieldoffset;
bestspaceleft:=fieldoffset-insertfieldoffset-insertfieldsize;
if bestspaceleft=0 then
break;
end;
end;
end;
{ if we didn't find any field to fit, stop trying for this
gap }
if bestfieldindex=-1 then
break;
changed:=true;
{ we found a field to insert -> adjust the new base
address }
base:=bestinsertfieldoffset+tfieldvarsym(list[bestfieldindex]).getsize;
{ update globalfieldalignment for this newly inserted
field }
getfieldoffset(tfieldvarsym(list[bestfieldindex]),base,globalfieldalignment);
{ move the new field before the current one }
list.move(bestfieldindex,i);
{ and skip the new field (which is now at position i) }
inc(i);
{ there may be more space left -> continue }
space:=bestspaceleft;
end;
if base>fieldoffset then
internalerror(2012071302);
{ check the next field }
base:=fieldoffset+fieldvs.getsize;
{ since the original field had the same or greater alignment
than anything we inserted before it, the global field
alignment is still the same now as it was originally after
inserting that field }
globalfieldalignment:=newfieldalignment;
inc(i);
end;
{ there may be small gaps left *before* inserted fields }
until not changed;
end;
{ reset the dummy field offsets }
for i:=0 to list.count-1 do
begin
fieldvs:=tfieldvarsym(list[i]);
if sp_static in fieldvs.symoptions then
continue;
fieldvs.fieldoffset:=-1;
end;
{ finally, set the actual field offsets }
for i:=0 to list.count-1 do
begin
fieldvs:=tfieldvarsym(list[i]);
{ static data fields are already inserted in the globalsymtable }
if not(sp_static in fieldvs.symoptions) then
begin
{ read_record_fields already set the visibility of the fields,
because a single list can contain symbols with different
visibility }
addfield(fieldvs,fieldvs.visibility);
end;
end;
end;
function tabstractrecordsymtable.findfieldbyoffset(offset: asizeint): tfieldvarsym;
var
i: longint;
sym: tsym;
begin
{ there could be multiple fields in case of a variant record }
if (defowner.typ=recorddef) and
trecorddef(defowner).isunion then
internalerror(2014090403);
for i:=0 to SymList.count-1 do
begin
sym:=tsym(symlist[i]);
if is_normal_fieldvarsym(sym) and
(tfieldvarsym(sym).fieldoffset>=offset) then
begin
result:=tfieldvarsym(sym);
exit;
end;
end;
result:=nil;
end;
procedure tabstractrecordsymtable.addalignmentpadding;
var
padded_datasize: asizeint;
begin
{ make the record size aligned correctly so it can be
used as elements in an array. For C records we
use the fieldalignment, because that is updated with the
used alignment. }
if (padalignment = 1) then
case usefieldalignment of
C_alignment:
padalignment:=fieldalignment;
{ bitpacked }
bit_alignment:
padalignment:=1;
{ mac68k: always round to multiple of 2 }
mac68k_alignment:
padalignment:=2;
{ default/no packrecords specified }
0:
padalignment:=recordalignment
{ specific packrecords setting -> use as upper limit }
else
padalignment:=min(recordalignment,usefieldalignment);
end;
padded_datasize:=align(_datasize,padalignment);
_paddingsize:=padded_datasize-_datasize;
_datasize:=padded_datasize;
end;
procedure tabstractrecordsymtable.insertdef(def:TDefEntry);
begin
{ Enums must also be available outside the record scope,
insert in the owner of this symtable }
if def.typ=enumdef then
defowner.owner.insertdef(def)
else
inherited insertdef(def);
end;
function tabstractrecordsymtable.is_packed: boolean;
begin
result:=usefieldalignment=bit_alignment;
end;
function tabstractrecordsymtable.has_double_field(out def1,def2:tdef; out offset:integer): integer;
var
i,cnt: longint;
currentsymlist: TFPHashObjectList;
sym: tfieldvarsym;
begin
has_double_field := 0;
offset := 0;
if (defowner.typ=recorddef) and
trecorddef(defowner).isunion then
exit;
currentsymlist:=symlist;
if currentsymlist = nil then
exit;
if currentsymlist.Count <> 2 then
exit;
if is_normal_fieldvarsym(tsym(currentsymlist[0])) then
begin
sym:=tfieldvarsym(currentsymlist[0]);
def1 := sym.vardef;
end
else
exit;
if is_normal_fieldvarsym(tsym(currentsymlist[1])) then
begin
sym:=tfieldvarsym(currentsymlist[1]);
def2 := sym.vardef;
end
else
exit;
offset := sym.fieldoffset;
if def2.typ = def1.typ then
cnt := 2
else
cnt := 1;
if offset = 0 then
cnt := 0;
has_double_field := cnt;
end;
function tabstractrecordsymtable.has_single_field(out def:tdef): boolean;
var
i: longint;
currentsymlist: TFPHashObjectList;
currentdef: tdef;
sym: tfieldvarsym;
begin
result:=false;
def:=generrordef;
{ If a record contains a union, it does not contain a "single
non-composite field" in the context of certain ABIs requiring
special treatment for such records }
if (defowner.typ=recorddef) and
trecorddef(defowner).isunion then
exit;
{ a record/object can contain other things than fields }
currentsymlist:=symlist;
{ recurse in arrays and records }
while true do
begin
sym:=nil;
{ record has one field? }
for i:=0 to currentsymlist.Count-1 do
begin
if is_normal_fieldvarsym(tsym(currentsymlist[i])) then
begin
if result then
begin
result:=false;
exit;
end;
result:=true;
sym:=tfieldvarsym(currentsymlist[i]);
end;
end;
if assigned(sym) then
begin
{ if the field is an array, does it contain one element? }
currentdef:=sym.vardef;
while (currentdef.typ=arraydef) and
not is_special_array(currentdef) do
begin
if tarraydef(currentdef).elecount<>1 then
begin
result:=false;
exit;
end;
currentdef:=tarraydef(currentdef).elementdef;
end;
{ if the array element is again a record, continue descending }
if currentdef.typ=recorddef then
begin
{ the record might be empty, so reset the result until we've
really found something }
result:=false;
currentsymlist:=trecorddef(currentdef).symtable.SymList
end
else
begin
{ otherwise we found the type of the single element }
def:=currentdef;
exit;
end;
end
else
exit
end;
end;
procedure tabstractrecordsymtable.do_get_managementoperator_offset_list(data:tobject;arg:pointer);
var
sym : tsym absolute data;
fsym : tfieldvarsym absolute data;
mop : tmanagementoperator;
entry : pmanagementoperator_offset_entry;
sublist : tfplist;
i : longint;
begin
if not is_normal_fieldvarsym(sym) then
exit;
if not is_record(fsym.vardef) and not is_object(fsym.vardef) and not is_cppclass(fsym.vardef) then
exit;
mop:=tmanagementoperator(ptruint(arg));
if not assigned(mop_list[mop]) then
internalerror(2018082303);
if is_record(fsym.vardef) then
begin
if mop in trecordsymtable(trecorddef(fsym.vardef).symtable).managementoperators then
begin
new(entry);
entry^.pd:=search_management_operator(mop,fsym.vardef);
if not assigned(entry^.pd) then
internalerror(2018082302);
entry^.offset:=fsym.fieldoffset;
mop_list[mop].add(entry);
end;
end;
sublist:=tfplist.create;
tabstractrecordsymtable(tabstractrecorddef(fsym.vardef).symtable).get_managementoperator_offset_list(mop,sublist);
mop_list[mop].capacity:=mop_list[mop].count+sublist.count;
for i:=0 to sublist.count-1 do
begin
entry:=pmanagementoperator_offset_entry(sublist[i]);
entry^.offset:=entry^.offset+fsym.fieldoffset;
mop_list[mop].add(entry);
end;
{ we don't need to remove the entries as they become part of list }
sublist.free;
end;
procedure tabstractrecordsymtable.get_managementoperator_offset_list(mop:tmanagementoperator;list:tfplist);
var
i : longint;
entry,entrycopy : pmanagementoperator_offset_entry;
begin
if not assigned(list) then
internalerror(2018082301);
if mop=mop_none then
exit;
if not (mop in has_fields_with_mop) then
{ none of the fields or one of the field's fields has the requested operator }
exit;
if not assigned(mop_list[mop]) then
begin
mop_list[mop]:=tfplist.create;
SymList.ForEachCall(@do_get_managementoperator_offset_list,pointer(ptruint(mop)));
end;
for i:=0 to mop_list[mop].count-1 do
begin
entry:=pmanagementoperator_offset_entry(mop_list[mop][i]);
New(entrycopy);
entrycopy^:=entry^;
list.add(entrycopy);
end;
end;
procedure tabstractrecordsymtable.setdatasize(val: asizeint);
begin
_datasize:=val;
if (usefieldalignment=bit_alignment) then
{ can overflow in non bitpacked records }
databitsize:=val*8;
end;
function tabstractrecordsymtable.getfieldoffset(sym: tfieldvarsym; base: asizeint; var globalfieldalignment: shortint): asizeint;
var
l : asizeint;
varalignfield,
varalign : shortint;
vardef : tdef;
begin
{ Calculate field offset }
l:=sym.getsize;
vardef:=sym.vardef;
varalign:=vardef.structalignment;
case usefieldalignment of
bit_alignment:
{ has to be handled separately }
internalerror(2012071301);
C_alignment:
begin
{ Calc the alignment size for C style records }
if (varalign>4) and
((varalign mod 4)<>0) and
(vardef.typ=arraydef) then
Message1(sym_w_wrong_C_pack,vardef.typename);
if varalign=0 then
varalign:=l;
if (globalfieldalignment<current_settings.alignment.maxCrecordalign) then
begin
if (varalign>16) and (globalfieldalignment<32) then
globalfieldalignment:=32
else if (varalign>12) and (globalfieldalignment<16) then
globalfieldalignment:=16
{ 12 is needed for long double }
else if (varalign>8) and (globalfieldalignment<12) then
globalfieldalignment:=12
else if (varalign>4) and (globalfieldalignment<8) then
globalfieldalignment:=8
else if (varalign>2) and (globalfieldalignment<4) then
globalfieldalignment:=4
else if (varalign>1) and (globalfieldalignment<2) then
globalfieldalignment:=2;
end;
globalfieldalignment:=min(globalfieldalignment,current_settings.alignment.maxCrecordalign);
end;
mac68k_alignment:
begin
{ mac68k alignment (C description):
* char is aligned to 1 byte
* everything else (except vector) is aligned to 2 bytes
* vector is aligned to 16 bytes
}
if l>1 then
globalfieldalignment:=2
else
globalfieldalignment:=1;
varalign:=2;
end;
end;
if varalign=0 then
varalign:=size_2_align(l);
varalignfield:=used_align(varalign,recordalignmin,globalfieldalignment);
result:=align(base,varalignfield);
end;
function tabstractrecordsymtable.iscurrentunit: boolean;
begin
Result:=assigned(current_module)and(current_module.moduleid=moduleid);
end;
{****************************************************************************
TRecordSymtable
****************************************************************************}
constructor trecordsymtable.create(const n:string;usealign,recordminalign:shortint);
begin
inherited create(n,usealign,recordminalign);
symtabletype:=recordsymtable;
end;
{ this procedure is reserved for inserting case variant into
a record symtable }
{ the offset is the location of the start of the variant
and datasize and dataalignment corresponds to
the complete size (see code in pdecl unit) PM }
procedure trecordsymtable.insertunionst(unionst : trecordsymtable;offset : asizeint);
var
sym : tsym;
def : tdef;
i : integer;
varalignrecord,varalign,
storesize,storealign : asizeint;
bitsize: tcgint;
begin
storesize:=_datasize;
storealign:=fieldalignment;
_datasize:=offset;
if (usefieldalignment=bit_alignment) then
databitsize:=offset*8;
{ We move the ownership of the defs and symbols to the new recordsymtable.
The old unionsymtable keeps the references, but doesn't own the
objects anymore }
unionst.DefList.OwnsObjects:=false;
unionst.SymList.OwnsObjects:=false;
{ copy symbols }
for i:=0 to unionst.SymList.Count-1 do
begin
sym:=TSym(unionst.SymList[i]);
if not is_normal_fieldvarsym(sym) then
internalerror(200601272);
if tfieldvarsym(sym).fieldoffset=0 then
include(tfieldvarsym(sym).varoptions,vo_is_first_field);
{ add to this record symtable, checking for duplicate names }
// unionst.SymList.List.List^[i].Data:=nil;
insertsym(sym);
varalign:=tfieldvarsym(sym).vardef.alignment;
if varalign=0 then
varalign:=size_2_align(tfieldvarsym(sym).getsize);
{ retrieve size }
if (usefieldalignment=bit_alignment) then
begin
{ bit packed records are limited to high(aint) bits }
{ instead of bytes to avoid double precision }
{ arithmetic in offset calculations }
if is_ordinal(tfieldvarsym(sym).vardef) then
bitsize:=tfieldvarsym(sym).getpackedbitsize
else
begin
bitsize:=tfieldvarsym(sym).getsize;
if (bitsize>high(asizeint) div 8) then
Message(sym_e_segment_too_large);
bitsize:=bitsize*8;
end;
if bitsize>high(asizeint)-databitsize then
begin
Message(sym_e_segment_too_large);
_datasize:=high(asizeint);
databitsize:=high(asizeint);
end
else
begin
databitsize:=tfieldvarsym(sym).fieldoffset+offset*8;
_datasize:=(databitsize+7) div 8;
end;
tfieldvarsym(sym).fieldoffset:=databitsize;
varalignrecord:=field2recordalignment(tfieldvarsym(sym).fieldoffset div 8,varalign);
end
else
begin
if tfieldvarsym(sym).getsize>high(asizeint)-_datasize then
begin
Message(sym_e_segment_too_large);
_datasize:=high(asizeint);
end
else
_datasize:=tfieldvarsym(sym).fieldoffset+offset;
{ update address }
tfieldvarsym(sym).fieldoffset:=_datasize;
varalignrecord:=field2recordalignment(tfieldvarsym(sym).fieldoffset,varalign);
end;
{ update alignment of this record }
if (usefieldalignment<>C_alignment) and
(usefieldalignment<>mac68k_alignment) then
recordalignment:=max(recordalignment,varalignrecord);
end;
{ update alignment for C records }
if (usefieldalignment=C_alignment) and
(usefieldalignment<>mac68k_alignment) then
recordalignment:=max(recordalignment,unionst.recordalignment);
{ Register defs in the new record symtable }
for i:=0 to unionst.DefList.Count-1 do
begin
def:=TDef(unionst.DefList[i]);
def.ChangeOwner(self);
end;
_datasize:=storesize;
fieldalignment:=storealign;
{ If a record contains a union, it does not contain a "single
non-composite field" in the context of certain ABIs requiring
special treatment for such records }
if defowner.typ=recorddef then
trecorddef(defowner).isunion:=true;
end;
procedure trecordsymtable.includemanagementoperator(mop:tmanagementoperator);
begin
if mop in managementoperators then
exit;
include(managementoperators,mop);
end;
{****************************************************************************
TObjectSymtable
****************************************************************************}
constructor tObjectSymtable.create(adefowner:tdef;const n:string;usealign,recordminalign:shortint);
begin
inherited create(n,usealign,recordminalign);
symtabletype:=ObjectSymtable;
defowner:=adefowner;
end;
function tObjectSymtable.checkduplicate(var hashedid:THashedIDString;sym:TSymEntry):boolean;
var
hsym: tsym;
warn: boolean;
begin
result:=false;
if not assigned(defowner) then
internalerror(200602061);
{ procsym and propertysym have special code
to override values in inherited classes. For other
symbols check for duplicates (but for internal symbols only in this
symtable, not the whole hierarchy) }
if not(sym.typ in [procsym,propertysym]) and
not (sp_internal in tsym(sym).symoptions) then
begin
{ but private ids can be reused }
hsym:=search_struct_member(tobjectdef(defowner),hashedid.id);
if assigned(hsym) and
(
(
not(m_delphi in current_settings.modeswitches) and
is_visible_for_object(hsym,tobjectdef(defowner))
) or
(
{ In Delphi, you can repeat members of a parent class. You can't }
{ do this for objects however, and you (obviouly) can't }
{ declare two fields with the same name in a single class }
(m_delphi in current_settings.modeswitches) and
(
is_object(tdef(defowner)) or
(hsym.owner = self)
)
)
) then
begin
{ only warn when a parameter/local variable in a method
conflicts with a category method, because this can easily
happen due to all possible categories being imported via
CocoaAll }
warn:=
(is_objccategory(tdef(hsym.owner.defowner)) or
is_classhelper(tdef(hsym.owner.defowner))) and
(sym.typ in [paravarsym,localvarsym,fieldvarsym]);
DuplicateSym(hashedid,sym,hsym,warn);
result:=true;
end;
end
else
result:=inherited checkduplicate(hashedid,sym);
end;
{$ifdef llvm}
{****************************************************************************
tLlvmShadowSymtableEntry
****************************************************************************}
constructor tllvmshadowsymtableentry.create(def: tdef; fieldoffset: aint);
begin
fdef:=def;
ffieldoffset:=fieldoffset;
end;
{****************************************************************************
TLlvmShadowSymtable
****************************************************************************}
function tllvmshadowsymtable.get(f: tfieldvarsym): tllvmshadowsymtableentry;
begin
result:=get_by_llvm_index(f.llvmfieldnr)
end;
function tllvmshadowsymtable.get_by_llvm_index(index: longint): tllvmshadowsymtableentry;
begin
result:=tllvmshadowsymtableentry(symdeflist[index]);
end;
constructor tllvmshadowsymtable.create(st: tabstractrecordsymtable);
begin
equivst:=st;
curroffset:=0;
symdeflist:=tfpobjectlist.create(true);
generate;
end;
destructor tllvmshadowsymtable.destroy;
begin
symdeflist.free;
end;
procedure tllvmshadowsymtable.appenddefoffset(vardef:tdef; fieldoffset: aint; derefclass: boolean);
var
sizectr,
tmpsize: aint;
begin
case equivst.usefieldalignment of
bit_alignment:
begin
{ curoffset: bit address after the previous field. }
{ llvm has no special support for bitfields in records, }
{ so we replace them with plain bytes. }
{ as soon as a single bit of a byte is allocated, we }
{ allocate the byte in the llvm shadow record }
if (fieldoffset>curroffset) then
curroffset:=align(curroffset,8);
{ fields in bitpacked records always start either right }
{ after the previous one, or at the next byte boundary. }
if (curroffset<>fieldoffset) then
internalerror(2008051002);
if is_ordinal(vardef) then
begin
tmpsize:=vardef.packedbitsize;
sizectr:=((curroffset+tmpsize+7) shr 3)-((curroffset+7) shr 3);
inc(curroffset,tmpsize);
tmpsize:=0;
while sizectr<>0 do
begin
symdeflist.add(tllvmshadowsymtableentry.create(u8inttype,fieldoffset+tmpsize*8));
dec(sizectr);
inc(tmpsize);
end;
end
else
begin
symdeflist.add(tllvmshadowsymtableentry.create(vardef,fieldoffset));
if not(derefclass) then
inc(curroffset,vardef.size*8)
else
inc(curroffset,tobjectsymtable(tobjectdef(vardef).symtable).datasize*8);
end;
end
else if not(df_llvm_no_struct_packing in tdef(equivst.defowner).defoptions) then
begin
{ curoffset: address right after the previous field }
while (fieldoffset>curroffset) do
begin
symdeflist.add(tllvmshadowsymtableentry.create(u8inttype,curroffset));
inc(curroffset);
end;
symdeflist.add(tllvmshadowsymtableentry.create(vardef,fieldoffset));
if not(derefclass) then
inc(curroffset,vardef.size)
else
inc(curroffset,tobjectsymtable(tobjectdef(vardef).symtable).datasize);
end
else
{ default for llvm, don't add explicit padding }
symdeflist.add(tllvmshadowsymtableentry.create(vardef,fieldoffset));
end
end;
procedure tllvmshadowsymtable.addalignmentpadding(finalsize: aint);
begin
if not(df_llvm_no_struct_packing in tdef(equivst.defowner).defoptions) then
begin
if equivst.usefieldalignment=bit_alignment then
curroffset:=align(curroffset,8) div 8;
{ add padding fields }
while (finalsize>curroffset) do
begin
symdeflist.add(tllvmshadowsymtableentry.create(u8inttype,curroffset));
inc(curroffset);
end;
end;
end;
function field_offset_compare(item1, item2: pointer): integer;
var
field1: tfieldvarsym absolute item1;
field2: tfieldvarsym absolute item2;
begin
result:=field1.fieldoffset-field2.fieldoffset;
end;
procedure tllvmshadowsymtable.preprocess(out tempsymlist, variantstarts: tfplist);
var
fieldvs: tfieldvarsym;
lastvariantstartoffset, prevfieldoffset: aint;
newalignment: aint;
i, j: longint;
sorttempsymlist: boolean;
begin
i:=0;
variantstarts:=nil;
tempsymlist:=tfplist.create;
sorttempsymlist:=false;
prevfieldoffset:=-1;
while (i<equivst.symlist.count) do
begin
if not is_normal_fieldvarsym(tsym(equivst.symlist[i])) then
begin
inc(i);
continue;
end;
fieldvs:=tfieldvarsym(equivst.symlist[i]);
tempsymlist.Add(fieldvs);
{ a "better" algorithm might be to use the largest }
{ variant in case of (bit)packing, since then }
{ alignment doesn't matter }
if (vo_is_first_field in fieldvs.varoptions) then
begin
{ we assume that all fields are processed in order. }
if assigned(variantstarts) then
lastvariantstartoffset:=tfieldvarsym(variantstarts[variantstarts.count-1]).fieldoffset
else
begin
lastvariantstartoffset:=-1;
variantstarts:=tfplist.create;
end;
{ new variant at same level as last one: use if higher alignment }
if (lastvariantstartoffset=fieldvs.fieldoffset) then
begin
if (equivst.usefieldalignment<>bit_alignment) then
newalignment:=used_align(fieldvs.vardef.alignment,equivst.recordalignmin,equivst.fieldalignment)
else
newalignment:=1;
if (newalignment>tfieldvarsym(variantstarts[variantstarts.count-1]).vardef.alignment) then
variantstarts[variantstarts.count-1]:=fieldvs;
end
{ variant at deeper level than last one -> add }
else if (lastvariantstartoffset<fieldvs.fieldoffset) then
variantstarts.add(fieldvs)
else
begin
{ a variant at a less deep level, so backtrack }
j:=variantstarts.count-2;
while (j>=0) do
begin
if (tfieldvarsym(variantstarts[j]).fieldoffset=fieldvs.fieldoffset) then
break;
dec(j);
end;
if (j<0) then
internalerror(2008051003);
{ new variant has higher alignment? }
if (equivst.fieldalignment<>bit_alignment) then
newalignment:=used_align(fieldvs.vardef.alignment,equivst.recordalignmin,equivst.fieldalignment)
else
newalignment:=1;
{ yes, replace and remove previous nested variants }
if (newalignment>tfieldvarsym(variantstarts[j]).vardef.alignment) then
begin
variantstarts[j]:=fieldvs;
variantstarts.count:=j+1;
end
{ no, skip this variant }
else
begin
inc(i);
while (i<equivst.symlist.count) and
(not is_normal_fieldvarsym(tsym(equivst.symlist[i])) or
(tfieldvarsym(equivst.symlist[i]).fieldoffset>fieldvs.fieldoffset)) do
begin
if is_normal_fieldvarsym(tsym(equivst.symlist[i])) then
tempsymlist.Add(equivst.symlist[i]);
inc(i);
end;
continue;
end;
end;
end;
if not assigned(variantstarts) and
(fieldvs.fieldoffset<prevfieldoffset) then
sorttempsymlist:=true;
prevfieldoffset:=fieldvs.fieldoffset;
inc(i);
end;
if sorttempsymlist then
tempsymlist.Sort(@field_offset_compare);
end;
procedure tllvmshadowsymtable.buildtable(tempsymlist, variantstarts: tfplist);
var
lastvaroffsetprocessed: aint;
i, symcount, varcount: longint;
fieldvs: tfieldvarsym;
begin
{ if it's an object/class, the first entry is the parent (if there is one) }
if (equivst.symtabletype=objectsymtable) and
assigned(tobjectdef(equivst.defowner).childof) then
appenddefoffset(tobjectdef(equivst.defowner).childof,0,is_class_or_interface_or_dispinterface(tobjectdef(equivst.defowner).childof));
symcount:=tempsymlist.count;
varcount:=0;
i:=0;
lastvaroffsetprocessed:=-1;
while (i<symcount) do
begin
fieldvs:=tfieldvarsym(tempsymlist[i]);
{ start of a new variant? }
if (vo_is_first_field in fieldvs.varoptions) then
begin
{ if we want to process the same variant offset twice, it means that we }
{ got to the end and are trying to process the next variant part -> stop }
if (fieldvs.fieldoffset<=lastvaroffsetprocessed) then
break;
if (varcount>=variantstarts.count) then
internalerror(2008051005);
{ new variant part -> use the one with the biggest alignment }
fieldvs:=tfieldvarsym(variantstarts[varcount]);
i:=tempsymlist.indexof(fieldvs);
lastvaroffsetprocessed:=fieldvs.fieldoffset;
inc(varcount);
if (i<0) then
internalerror(2008051004);
end;
appenddefoffset(fieldvs.vardef,fieldvs.fieldoffset,false);
inc(i);
end;
addalignmentpadding(equivst.datasize);
end;
procedure tllvmshadowsymtable.buildmapping(tempsymlist, variantstarts: tfplist);
var
fieldvs: tfieldvarsym;
i, varcount: longint;
shadowindex: longint;
symcount : longint;
begin
varcount:=0;
shadowindex:=0;
symcount:=tempsymlist.count;
i:=0;
while (i<symcount) do
begin
fieldvs:=tfieldvarsym(tempsymlist[i]);
{ start of a new variant? }
if (vo_is_first_field in fieldvs.varoptions) then
begin
{ back up to a less deeply nested variant level? }
while fieldvs.fieldoffset<tfieldvarsym(variantstarts[varcount]).fieldoffset do
dec(varcount);
{ it's possible that some variants are more deeply nested than the
one we recorded in the shadowsymtable (since we recorded the one
with the biggest alignment, not necessarily the biggest one in size
}
if fieldvs.fieldoffset>tfieldvarsym(variantstarts[varcount]).fieldoffset then
varcount:=variantstarts.count-1
else if fieldvs.fieldoffset<>tfieldvarsym(variantstarts[varcount]).fieldoffset then
internalerror(2008051006);
{ reset the shadowindex to the start of this variant. }
{ in case the llvmfieldnr is not (yet) set for this }
{ field, shadowindex will simply be reset to zero and }
{ we'll start searching from the start of the record }
shadowindex:=tfieldvarsym(variantstarts[varcount]).llvmfieldnr;
if (varcount<pred(variantstarts.count)) then
inc(varcount);
end;
{ find the last shadowfield whose offset <= the current field's offset }
while (tllvmshadowsymtableentry(symdeflist[shadowindex]).fieldoffset<fieldvs.fieldoffset) and
(shadowindex<symdeflist.count-1) and
(tllvmshadowsymtableentry(symdeflist[shadowindex+1]).fieldoffset<=fieldvs.fieldoffset) do
inc(shadowindex);
{ set the field number and potential offset from that field (in case }
{ of overlapping variants) }
fieldvs.llvmfieldnr:=shadowindex;
fieldvs.offsetfromllvmfield:=
fieldvs.fieldoffset-tllvmshadowsymtableentry(symdeflist[shadowindex]).fieldoffset;
inc(i);
end;
end;
procedure tllvmshadowsymtable.generate;
var
variantstarts, tempsymlist: tfplist;
begin
{ first go through the entire record and }
{ store the fieldvarsyms of the variants }
{ with the highest alignment }
preprocess(tempsymlist, variantstarts);
{ now go through the regular fields and the selected variants, }
{ and add them to the llvm shadow record symtable }
buildtable(tempsymlist, variantstarts);
{ finally map all original fields to the llvm definition }
buildmapping(tempsymlist, variantstarts);
variantstarts.free;
tempsymlist.free;
end;
{$endif llvm}
{****************************************************************************
TAbstractSubSymtable
****************************************************************************}
procedure tabstractsubsymtable.ppuwrite(ppufile:tcompilerppufile);
var
oldtyp : byte;
begin
oldtyp:=ppufile.entrytyp;
ppufile.entrytyp:=subentryid;
inherited ppuwrite(ppufile);
ppufile.entrytyp:=oldtyp;
end;
{****************************************************************************
TAbstractLocalSymtable
****************************************************************************}
function tabstractlocalsymtable.count_locals:longint;
var
i : longint;
sym : tsym;
begin
result:=0;
for i:=0 to SymList.Count-1 do
begin
sym:=tsym(SymList[i]);
{ Count only varsyms, but ignore the funcretsym }
if (tsym(sym).typ in [localvarsym,paravarsym]) and
(tsym(sym)<>current_procinfo.procdef.funcretsym) and
(not(vo_is_parentfp in tabstractvarsym(sym).varoptions) or
(tstoredsym(sym).refs>0)) then
inc(result);
end;
end;
function tabstractlocalsymtable.iscurrentunit: boolean;
begin
Result:=
assigned(defowner) and
defowner.owner.iscurrentunit;
end;
{****************************************************************************
TLocalSymtable
****************************************************************************}
constructor tlocalsymtable.create(adefowner:tdef;level:byte);
begin
inherited create('');
defowner:=adefowner;
symtabletype:=localsymtable;
symtablelevel:=level;
end;
function tlocalsymtable.checkduplicate(var hashedid:THashedIDString;sym:TSymEntry):boolean;
var
hsym : tsym;
begin
if not assigned(defowner) or
(defowner.typ<>procdef) then
internalerror(200602042);
result:=false;
hsym:=tsym(FindWithHash(hashedid));
if assigned(hsym) then
begin
{ a local and the function can have the same
name in TP and Delphi, but RESULT not }
if (m_duplicate_names in current_settings.modeswitches) and
(hsym.typ in [absolutevarsym,localvarsym]) and
(vo_is_funcret in tabstractvarsym(hsym).varoptions) and
not((m_result in current_settings.modeswitches) and
(vo_is_result in tabstractvarsym(hsym).varoptions)) then
HideSym(hsym)
else
DuplicateSym(hashedid,sym,hsym,false);
result:=true;
exit;
end;
{ check also parasymtable, this needs to be done here because
of the special situation with the funcret sym that needs to be
hidden for tp and delphi modes }
hsym:=tsym(tabstractprocdef(defowner).parast.FindWithHash(hashedid));
if assigned(hsym) then
begin
{ a local and the function can have the same
name in TP and Delphi, but RESULT not }
if (m_duplicate_names in current_settings.modeswitches) and
(sym.typ in [absolutevarsym,localvarsym]) and
(vo_is_funcret in tabstractvarsym(sym).varoptions) and
not((m_result in current_settings.modeswitches) and
(vo_is_result in tabstractvarsym(sym).varoptions)) then
Hidesym(sym)
else
DuplicateSym(hashedid,sym,hsym,false);
result:=true;
exit;
end;
{ check ObjectSymtable, skip this for funcret sym because
that will always be positive because it has the same name
as the procsym }
if not is_funcret_sym(sym) and
(defowner.typ=procdef) and
assigned(tprocdef(defowner).struct) and
(tprocdef(defowner).owner.defowner=tprocdef(defowner).struct) and
(
not(m_duplicate_names in current_settings.modeswitches) or
is_object(tprocdef(defowner).struct)
) then
result:=tprocdef(defowner).struct.symtable.checkduplicate(hashedid,sym);
end;
{****************************************************************************
TParaSymtable
****************************************************************************}
constructor tparasymtable.create(adefowner:tdef;level:byte);
begin
inherited create('');
defowner:=adefowner;
symtabletype:=parasymtable;
symtablelevel:=level;
end;
function tparasymtable.checkduplicate(var hashedid:THashedIDString;sym:TSymEntry):boolean;
begin
result:=inherited checkduplicate(hashedid,sym);
if result then
exit;
if not(m_duplicate_names in current_settings.modeswitches) and
assigned(defowner) and (defowner.typ=procdef) and
assigned(tprocdef(defowner).struct) and
assigned(tprocdef(defowner).owner) and
(tprocdef(defowner).owner.defowner=tprocdef(defowner).struct) and
(
not(m_delphi in current_settings.modeswitches) or
is_object(tprocdef(defowner).struct)
) then
result:=tprocdef(defowner).struct.symtable.checkduplicate(hashedid,sym);
end;
{****************************************************************************
TAbstractUniTSymtable
****************************************************************************}
constructor tabstractuniTSymtable.create(const n : string;id:word);
begin
inherited create(n);
moduleid:=id;
end;
function tabstractuniTSymtable.checkduplicate(var hashedid:THashedIDString;sym:TSymEntry):boolean;
var
hsym : tsym;
begin
result:=false;
hsym:=tsym(FindWithHash(hashedid));
if assigned(hsym) then
begin
if (sym is tstoredsym) and handle_generic_dummysym(hsym,tstoredsym(sym).symoptions) then
exit;
if hsym.typ=symconst.namespacesym then
begin
case sym.typ of
symconst.namespacesym:;
symconst.unitsym:
begin
HideSym(sym); { if we add a unit and there is a namespace with the same name then hide the unit name and not the namespace }
tnamespacesym(hsym).unitsym:=tsym(sym);
end
else
HideSym(hsym);
end;
end
else
{ In delphi (contrary to TP) you can have a symbol with the same name as the
unit, the unit can then not be accessed anymore using
<unit>.<id>, so we can hide the symbol.
Do the same if we add a namespace and there is a unit with the same name }
if (hsym.typ=symconst.unitsym) and
((m_delphi in current_settings.modeswitches) or (sym.typ=symconst.namespacesym)) then
begin
HideSym(hsym);
if sym.typ=symconst.namespacesym then
tnamespacesym(sym).unitsym:=tsym(hsym);
end
{ iso mode program parameters: staticvarsyms might have the same name as a program parameters,
in this case, copy the isoindex and make the original symbol invisible }
else if (m_isolike_program_para in current_settings.modeswitches) and (hsym.typ=programparasym) and (sym.typ=staticvarsym)
and (tprogramparasym(hsym).isoindex<>0) then
begin
HideSym(hsym);
tstaticvarsym(sym).isoindex:=tprogramparasym(hsym).isoindex;
end
else if (m_iso in current_settings.modeswitches) and (hsym.typ=unitsym) then
HideSym(hsym)
else
DuplicateSym(hashedid,sym,hsym,false);
result:=true;
exit;
end;
end;
function tabstractuniTSymtable.findnamespace(const n:string):TSymEntry;
begin
result:=find(n);
if assigned(result)and(result.typ<>namespacesym)then
result:=nil;
end;
function tabstractuniTSymtable.iscurrentunit:boolean;
begin
result:=assigned(current_module) and
(
(current_module.globalsymtable=self) or
(current_module.localsymtable=self)
);
end;
function tabstractuniTSymtable.needs_init_final: boolean;
begin
if not init_final_check_done then
begin
result:=inherited needs_init_final;
if not result then
begin
result:=has_class_condestructors;
if result then
include(tableoptions,sto_needs_init_final);
end;
end;
result:=sto_needs_init_final in tableoptions;
end;
procedure tabstractuniTSymtable.insertunit(sym:TSymEntry);
var
p:integer;
n,ns:string;
oldsym:TSymEntry;
begin
insertsym(sym);
n:=sym.realname;
p:=pos('.',n);
ns:='';
while p>0 do
begin
if ns='' then
ns:=copy(n,1,p-1)
else
ns:=ns+'.'+copy(n,1,p-1);
system.delete(n,1,p);
oldsym:=findnamespace(upper(ns));
if not assigned(oldsym) then
insertsym(cnamespacesym.create(ns));
p:=pos('.',n);
end;
end;
procedure CheckForClassConDestructors(p:TObject;arg:pointer);
var
result: pboolean absolute arg;
begin
if result^ then
exit;
if (tdef(p).typ in [objectdef,recorddef]) and
not (df_generic in tdef(p).defoptions) then
begin
{ first check the class... }
if ([oo_has_class_constructor,oo_has_class_destructor] * tabstractrecorddef(p).objectoptions <> []) then
result^:=true;
{ ... and then also check all subclasses }
if not result^ then
tabstractrecorddef(p).symtable.deflist.foreachcall(@CheckForClassConDestructors,arg);
end;
end;
function tabstractuniTSymtable.has_class_condestructors: boolean;
begin
result:=false;
deflist.foreachcall(@CheckForClassConDestructors,@result);
end;
{****************************************************************************
TStaticSymtable
****************************************************************************}
constructor tstaticsymtable.create(const n : string;id:word);
begin
inherited create(n,id);
symtabletype:=staticsymtable;
symtablelevel:=main_program_level;
currentvisibility:=vis_private;
end;
procedure tstaticsymtable.ppuload(ppufile:tcompilerppufile);
begin
inherited ppuload(ppufile);
{ now we can deref the syms and defs }
deref(false);
end;
procedure tstaticsymtable.ppuwrite(ppufile:tcompilerppufile);
begin
inherited ppuwrite(ppufile);
end;
function tstaticsymtable.checkduplicate(var hashedid:THashedIDString;sym:TSymEntry):boolean;
begin
result:=inherited checkduplicate(hashedid,sym);
if not result and
(current_module.localsymtable=self) and
assigned(current_module.globalsymtable) then
result:=tglobalsymtable(current_module.globalsymtable).checkduplicate(hashedid,sym);
end;
function tstaticsymtable.findnamespace(const n:string):TSymEntry;
begin
result:=inherited findnamespace(n);
if not assigned(result) and
(current_module.localsymtable=self) and
assigned(current_module.globalsymtable) then
result:=tglobalsymtable(current_module.globalsymtable).findnamespace(n);
end;
{****************************************************************************
TGlobalSymtable
****************************************************************************}
constructor tglobalsymtable.create(const n : string;id:word);
begin
inherited create(n,id);
symtabletype:=globalsymtable;
symtablelevel:=main_program_level;
end;
procedure tglobalsymtable.ppuload(ppufile:tcompilerppufile);
begin
inherited ppuload(ppufile);
{ now we can deref the syms and defs }
deref(false);
end;
procedure tglobalsymtable.ppuwrite(ppufile:tcompilerppufile);
begin
{ write the symtable entries }
inherited ppuwrite(ppufile);
end;
{*****************************************************************************
tspecializesymtable
*****************************************************************************}
constructor tspecializesymtable.create(const n : string;id:word);
begin
inherited create(n,id);
{ the specialize symtable does not own the syms and defs as they are all
moved to a different symtable before the symtable is destroyed; this
avoids calls to "extract" }
symlist.ownsobjects:=false;
deflist.ownsobjects:=false;
end;
function tspecializesymtable.iscurrentunit: boolean;
begin
Result:=true;
end;
{****************************************************************************
TWITHSYMTABLE
****************************************************************************}
constructor twithsymtable.create(aowner:tdef;ASymList:TFPHashObjectList;refnode:tobject{tnode});
begin
inherited create('');
symtabletype:=withsymtable;
withrefnode:=refnode;
{ Replace SymList with the passed symlist }
SymList.free;
SymList:=ASymList;
defowner:=aowner;
end;
destructor twithsymtable.destroy;
begin
if refcount>1 then
exit;
withrefnode.free;
{ Disable SymList because we don't Own it }
SymList:=nil;
inherited destroy;
end;
procedure twithsymtable.clear;
begin
{ remove no entry from a withsymtable as it is only a pointer to the
recorddef or objectdef symtable }
end;
procedure twithsymtable.insertdef(def:TDefEntry);
begin
{ Definitions can't be registered in the withsymtable
because the withsymtable is removed after the with block.
We can't easily solve it here because the next symtable in the
stack is not known. }
internalerror(200602046);
end;
{****************************************************************************
TSTT_ExceptionSymtable
****************************************************************************}
constructor tstt_excepTSymtable.create;
begin
inherited create('');
symtabletype:=exceptsymtable;
end;
{****************************************************************************
TMacroSymtable
****************************************************************************}
constructor tmacrosymtable.create(exported: boolean);
begin
inherited create('');
if exported then
symtabletype:=exportedmacrosymtable
else
symtabletype:=localmacrosymtable;
symtablelevel:=main_program_level;
end;
{****************************************************************************
TEnumSymtable
****************************************************************************}
procedure tenumsymtable.insertsym(sym: TSymEntry; checkdup: boolean);
var
value: longint;
def: tenumdef;
begin
// defowner = nil only when we are loading from ppu
if defowner<>nil then
begin
{ First entry? Then we need to set the minval }
value:=tenumsym(sym).value;
def:=tenumdef(defowner);
if SymList.count=0 then
begin
if value>0 then
def.has_jumps:=true;
def.setmin(value);
def.setmax(value);
end
else
begin
{ check for jumps }
if value>def.max+1 then
def.has_jumps:=true;
{ update low and high }
if def.min>value then
def.setmin(value);
if def.max<value then
def.setmax(value);
end;
end;
inherited insertsym(sym, checkdup);
end;
constructor tenumsymtable.create(adefowner: tdef);
begin
inherited Create('');
symtabletype:=enumsymtable;
defowner:=adefowner;
end;
{****************************************************************************
TArraySymtable
****************************************************************************}
procedure tarraysymtable.insertdef(def: TDefEntry);
begin
{ Enums must also be available outside the record scope,
insert in the owner of this symtable }
if def.typ=enumdef then
defowner.owner.insertdef(def)
else
inherited insertdef(def);
end;
constructor tarraysymtable.create(adefowner: tdef);
begin
inherited Create('');
symtabletype:=arraysymtable;
defowner:=adefowner;
end;
{*****************************************************************************
Helper Routines
*****************************************************************************}
function FullTypeName(def,otherdef:tdef):string;
var
s1,s2 : string;
begin
if def.typ in [objectdef,recorddef] then
s1:=tabstractrecorddef(def).RttiName
else
s1:=def.typename;
{ When the names are the same try to include the unit name }
if assigned(otherdef) and
(def.owner.symtabletype in [globalsymtable,staticsymtable]) then
begin
s2:=otherdef.typename;
if upper(s1)=upper(s2) then
s1:=def.owner.realname^+'.'+s1;
end;
FullTypeName:=s1;
end;
function generate_nested_name(symtable:tsymtable;const delimiter:string):string;
begin
result:='';
while assigned(symtable) and (symtable.symtabletype in [ObjectSymtable,recordsymtable]) do
begin
if (result='') then
if symtable.name<>nil then
result:=symtable.name^
else
else
if symtable.name<>nil then
result:=symtable.name^+delimiter+result
else
result:=delimiter+result;
symtable:=symtable.defowner.owner;
end;
end;
function generate_objectpascal_helper_key(def:tdef):TSymStr;
begin
if not assigned(def) then
internalerror(2013020501);
if def.typ in [recorddef,objectdef] then
result:=make_mangledname('',tabstractrecorddef(def).symtable,'')
else
result:=make_mangledname('',def.owner,def.typesym.name);
end;
procedure incompatibletypes(def1,def2:tdef);
begin
{ When there is an errordef there is already an error message show }
if (def2.typ=errordef) or
(def1.typ=errordef) then
exit;
CGMessage2(type_e_incompatible_types,FullTypeName(def1,def2),FullTypeName(def2,def1));
end;
procedure hidesym(sym:TSymEntry);
begin
sym.realname:='$hidden'+sym.realname;
tsym(sym).visibility:=vis_hidden;
end;
procedure duplicatesym(var hashedid: THashedIDString; dupsym, origsym: TSymEntry; warn: boolean);
var
st : TSymtable;
filename : TIDString;
begin
if not warn then
Message1(sym_e_duplicate_id,tsym(origsym).realname)
else
Message1(sym_w_duplicate_id,tsym(origsym).realname);
{ Write hint where the original symbol was found }
st:=finduniTSymtable(origsym.owner);
with tsym(origsym).fileinfo do
begin
if assigned(st) and
(st.symtabletype=globalsymtable) and
st.iscurrentunit then
Message2(sym_h_duplicate_id_where,current_module.sourcefiles.get_file_name(fileindex),tostr(line))
else if assigned(st.name) then
begin
filename:=find_module_from_symtable(st).sourcefiles.get_file_name(fileindex);
if filename<>'' then
Message2(sym_h_duplicate_id_where,'unit '+st.name^+': '+filename,tostr(line))
else
Message2(sym_h_duplicate_id_where,'unit '+st.name^,tostr(line))
end;
end;
{ Rename duplicate sym to an unreachable name, but it can be
inserted in the symtable without errors }
inc(dupnr);
hashedid.id:='dup'+tostr(dupnr)+hashedid.id;
if assigned(dupsym) then
include(tsym(dupsym).symoptions,sp_implicitrename);
end;
function handle_generic_dummysym(sym:TSymEntry;var symoptions:tsymoptions):boolean;
begin
result:=false;
if not assigned(sym) or not (sym is tstoredsym) then
Internalerror(2011081101);
{ For generics a dummy symbol without the parameter count is created
if such a symbol not yet exists so that different parts of the
parser can find that symbol. If that symbol is still a
undefineddef we replace the generic dummy symbol's
name with a "dup" name and use the new symbol as the generic dummy
symbol }
if (sp_generic_dummy in tstoredsym(sym).symoptions) and
(sym.typ=typesym) and (ttypesym(sym).typedef.typ=undefineddef) and
(m_delphi in current_settings.modeswitches) then
begin
inc(dupnr);
sym.Owner.SymList.Rename(upper(sym.realname),'dup_'+tostr(dupnr)+sym.realname);
include(tsym(sym).symoptions,sp_implicitrename);
{ we need to find the new symbol now if checking for a dummy }
include(symoptions,sp_generic_dummy);
result:=true;
end;
end;
procedure check_systemunit_loaded; inline;
begin
if systemunit=nil then
Message(sym_f_systemunitnotloaded);
end;
procedure write_system_parameter_lists(const name:string);
var
srsym:tprocsym;
begin
check_systemunit_loaded;
srsym:=tprocsym(systemunit.find(name));
if not assigned(srsym) or not (srsym.typ=procsym) then
internalerror(2016060302);
srsym.write_parameter_lists(nil);
end;
{*****************************************************************************
Search
*****************************************************************************}
procedure addsymref(sym:tsym;def:tdef);
var
owner,procowner : tsymtable;
begin
{ for symbols used in preprocessor expressions, we don't want to
increase references count (for smaller final binaries) }
if not assigned(current_scanner) then
internalerror(2017050601);
if current_scanner.in_preproc_comp_expr then
exit;
{ symbol uses count }
sym.IncRefCount;
owner:=sym.owner;
while owner.symtabletype in [objectsymtable,recordsymtable,enumsymtable] do
owner:=tdef(owner.defowner).owner;
if assigned(current_module) and
(owner.symtabletype=globalsymtable) then
begin
if tglobalsymtable(owner).moduleid>=current_module.unitmapsize then
internalerror(200501152);
{ unit uses count }
inc(current_module.unitmap[tglobalsymtable(owner).moduleid].refs);
{ Note: don't check the symtable directly as owner might be
a specialize symtable which is a globalsymtable as well }
if (
assigned(current_module.globalsymtable) and
(current_module.globalsymtable.moduleid<>owner.moduleid)
) or (
assigned(current_module.localsymtable) and
(current_module.localsymtable.moduleid<>owner.moduleid)
) then
{ symbol is imported from another unit }
current_module.addimportedsym(sym);
end;
{ static symbols that are used in public functions must be exported
for packages as well }
if ([tf_supports_packages,tf_supports_hidden_symbols]<=target_info.flags) and
(owner.symtabletype=staticsymtable) and
assigned(current_procinfo) and
(
(
(sym.typ=staticvarsym) and
([vo_is_public,vo_has_global_ref]*tstaticvarsym(sym).varoptions=[])
) or (
(sym.typ=localvarsym) and
assigned(tlocalvarsym(sym).defaultconstsym) and
([vo_is_public,vo_has_global_ref]*tstaticvarsym(tlocalvarsym(sym).defaultconstsym).varoptions=[])
) or (
(sym.typ=procsym) and
assigned(def) and
(def.typ=procdef) and
not (df_has_global_ref in def.defoptions) and
not (po_public in tprocdef(def).procoptions)
)
) then
begin
procowner:=current_procinfo.procdef.owner;
while procowner.symtabletype in [objectsymtable,recordsymtable] do
procowner:=tdef(procowner.defowner).owner;
if procowner.symtabletype=globalsymtable then
begin
if sym.typ=procsym then
current_procinfo.add_local_ref_def(def)
else if sym.typ=staticvarsym then
current_procinfo.add_local_ref_sym(sym)
else
current_procinfo.add_local_ref_sym(tlocalvarsym(sym).defaultconstsym);
end;
end;
end;
procedure addsymref(sym:tsym);
begin
addsymref(sym,nil);
end;
function is_owned_by(nesteddef,ownerdef:tdef):boolean;
begin
result:=nesteddef=ownerdef;
if not result and
{ types declared locally in a record method are not defined in the
record itself }
not(nesteddef.owner.symtabletype in [localsymtable,parasymtable]) and
assigned(nesteddef.owner.defowner) then
result:=is_owned_by(tdef(nesteddef.owner.defowner),ownerdef);
end;
function sym_is_owned_by(childsym:tsym;symtable:tsymtable):boolean;
begin
result:=assigned(childsym) and (childsym.owner=symtable);
if not result and assigned(childsym) and
(childsym.owner.symtabletype in [objectsymtable,recordsymtable]) then
result:=sym_is_owned_by(tabstractrecorddef(childsym.owner.defowner).typesym,symtable);
end;
function defs_belong_to_same_generic(def1, def2: tdef): boolean;
begin
result:=false;
if not assigned(def1) or not assigned(def2) then
exit;
{ for both defs walk to the topmost generic }
while assigned(def1.owner.defowner) and (df_generic in tstoreddef(def1.owner.defowner).defoptions) do
def1:=tdef(def1.owner.defowner);
while assigned(def2.owner.defowner) and (df_generic in tstoreddef(def2.owner.defowner).defoptions) do
def2:=tdef(def2.owner.defowner);
result:=def1=def2;
end;
function get_generic_in_hierarchy_by_name(srsym: tsym; def: tdef): tdef;
var
uname : string;
begin
{ TODO : check regarding arrays and records declared as their type }
if not (def.typ in [recorddef,objectdef]) then
internalerror(2012051501);
uname:=upper(srsym.realname);
repeat
if uname=copy(tabstractrecorddef(def).objname^,1,pos('$',tabstractrecorddef(def).objname^)-1) then
begin
result:=def;
exit;
end;
def:=tdef(def.owner.defowner);
until not assigned(def) or not (def.typ in [recorddef,objectdef]);
result:=nil;
end;
function return_specialization_of_generic(nesteddef,genericdef:tdef; out resultdef:tdef):boolean;
begin
{ TODO : check regarding arrays and records declared as their type }
if not (nesteddef.typ in [recorddef,objectdef]) then
internalerror(2012051601);
repeat
if tstoreddef(nesteddef).genericdef=genericdef then
begin
resultdef:=nesteddef;
result:=true;
exit;
end;
nesteddef:=tdef(nesteddef.owner.defowner);
until not assigned(nesteddef) or not (nesteddef.typ in [recorddef,objectdef]);
resultdef:=nil;
result:=false;
end;
{ symst: symboltable that contains the symbol (-> symowner def: record/objectdef in which the symbol is defined)
symvisibility: visibility of the symbol
contextobjdef: via which def the symbol is accessed, e.g.:
fieldname:=1 -> contextobjdef = current_structdef
objfield.fieldname:=1 -> contextobjdef = def of objfield
}
function is_visible_for_object(symst:tsymtable;symvisibility:tvisibility;contextobjdef:tabstractrecorddef):boolean;
var
curstruct : tabstractrecorddef;
function is_current_unit(st:tsymtable):boolean;
begin
result :=
(
(
assigned(curstruct) and
(st.moduleid=curstruct.symtable.moduleid)
) or
(
not assigned(curstruct) and
st.iscurrentunit
)
);
end;
var
orgcontextobjdef,
orgsymownerdef,
symownerdef : tabstractrecorddef;
nonlocalst : tsymtable;
isspezproc : boolean;
function check_strict_private:boolean;
begin
result:=assigned(curstruct) and
is_owned_by(curstruct,symownerdef);
end;
function check_strict_protected:boolean;
function is_childof(child, potentialparent: tdef):boolean;
begin
result:=true;
if def_is_related(child, potentialparent) then
exit;
if (child.typ=objectdef) and
(potentialparent.typ=objectdef) and
(tobjectdef(potentialparent).defoptions*[df_generic,df_specialization]=[df_generic]) then
begin
repeat
if tobjectdef(child).genericdef<>nil then
begin
if tobjectdef(child).genericdef.typ<>objectdef then
break;
child:=tobjectdef(child).genericdef as tobjectdef
end
else
child:=tobjectdef(child).childof;
if (child<>nil) and equal_defs(child, potentialparent) then
exit;
until child=nil;
end;
result:=false;
end;
function owner_hierarchy_related(nested,check:tabstractrecorddef):boolean;
var
owner:tabstractrecorddef;
begin
result:=true;
repeat
if is_childof(nested,check) then
exit;
if nested.owner.symtabletype in [recordsymtable,objectsymtable] then
nested:=tabstractrecorddef(nested.owner.defowner)
else
break;
until not assigned(nested);
result:=false;
end;
begin
result:=(
{ access from nested class (specialization case) }
assigned(curstruct) and
is_owned_by(curstruct,symownerdef)
) or
(
{ access from nested class (non-specialization case) }
(orgsymownerdef<>symownerdef) and
assigned(curstruct) and
is_owned_by(curstruct,orgsymownerdef)
) or
(
{ access from child class (specialization case) }
assigned(contextobjdef) and
assigned(curstruct) and
owner_hierarchy_related(contextobjdef,symownerdef) and
is_childof(curstruct,contextobjdef)
) or
(
{ access from child class (non-specialization case) }
assigned(orgcontextobjdef) and
(
(orgcontextobjdef<>contextobjdef) or
(orgsymownerdef<>symownerdef)
) and
assigned(curstruct) and
owner_hierarchy_related(orgcontextobjdef,orgsymownerdef) and
is_childof(curstruct,orgcontextobjdef)
) or
(
{ helpers can access strict protected symbols }
is_objectpascal_helper(contextobjdef) and
is_childof(tobjectdef(contextobjdef).extendeddef,symownerdef)
) or
(
{ same as above, but from context of call node inside
helper method }
is_objectpascal_helper(curstruct) and
is_childof(tobjectdef(curstruct).extendeddef,symownerdef)
);
end;
begin
result:=false;
{ Get objdectdef owner of the symtable for the is_related checks }
if not assigned(symst) or
not (symst.symtabletype in [objectsymtable,recordsymtable]) then
internalerror(200810285);
symownerdef:=tabstractrecorddef(symst.defowner);
orgsymownerdef:=symownerdef;
orgcontextobjdef:=contextobjdef;
{ for specializations we need to check the visibility of the generic,
not the specialization (at least when comparing outside of the
specialization }
if df_specialization in symownerdef.defoptions then
begin
if not assigned(symownerdef.genericdef) then
internalerror(2024041201);
if not (symownerdef.genericdef.typ in [objectdef,recorddef]) then
internalerror(2024020901);
orgsymownerdef:=symownerdef;
symownerdef:=tabstractrecorddef(symownerdef.genericdef);
end;
if assigned(contextobjdef) and (df_specialization in contextobjdef.defoptions) then
begin
if not assigned(contextobjdef.genericdef) then
internalerror(2024041202);
if not (contextobjdef.genericdef.typ in [objectdef,recorddef]) then
internalerror(2024020902);
orgcontextobjdef:=contextobjdef;
contextobjdef:=tabstractrecorddef(contextobjdef.genericdef);
end;
if assigned(current_structdef) and (df_specialization in current_structdef.defoptions) then
begin
if not assigned(current_structdef.genericdef) then
internalerror(2024041203);
if not (current_structdef.genericdef.typ in [objectdef,recorddef]) then
internalerror(2024030903);
curstruct:=tabstractrecorddef(current_structdef.genericdef)
end
else
curstruct:=current_structdef;
{ specializations might belong to a localsymtable or parasymtable }
nonlocalst:=symownerdef.owner;
if tstoreddef(symownerdef).is_specialization then
while nonlocalst.symtabletype in [localsymtable,parasymtable] do
nonlocalst:=nonlocalst.defowner.owner;
isspezproc:=false;
if assigned(current_procinfo) then
begin
if current_procinfo.procdef.is_specialization and
assigned(current_procinfo.procdef.struct) then
isspezproc:=true;
end;
case symvisibility of
vis_private :
begin
{ private symbols are allowed when we are in the same
module as they are defined }
result:=check_strict_private or
(
(nonlocalst.symtabletype in [globalsymtable,staticsymtable]) and
is_current_unit(nonlocalst)
) or
( // the case of specialize inside the generic declaration and nested types
(nonlocalst.symtabletype in [objectsymtable,recordsymtable]) and
(
assigned(curstruct) and
(
(curstruct=symownerdef) or
(curstruct.owner.moduleid=symownerdef.symtable.moduleid)
)
) or
(
not assigned(curstruct) and
(symownerdef.owner.iscurrentunit)
) or
{ access from a generic method that belongs to the class
but that is specialized elsewere }
(
isspezproc and
(current_procinfo.procdef.struct=curstruct)
) or
{ specializations may access private symbols that their
generics are allowed to access }
(
assigned(curstruct) and
(df_specialization in curstruct.defoptions) and
(symst.moduleid=curstruct.genericdef.owner.moduleid)
)
);
end;
vis_strictprivate :
begin
result:=check_strict_private;
end;
vis_strictprotected :
begin
result:=check_strict_protected;
end;
vis_protected :
begin
{ protected symbols are visible in the module that defines them and
also visible to related objects. The related object must be defined
in the current module }
result:=check_strict_protected or
(
(
(nonlocalst.symtabletype in [globalsymtable,staticsymtable]) and
is_current_unit(nonlocalst)
) or
(
{ context object is inside the current unit and related to
the symbol owner (specialization case) }
assigned(contextobjdef) and
(contextobjdef.owner.symtabletype in [globalsymtable,staticsymtable,ObjectSymtable,recordsymtable,localsymtable]) and
is_current_unit(contextobjdef.owner) and
def_is_related(contextobjdef,symownerdef)
) or
(
{ context object is inside the current unit and related to
the symbol owner (non-specialization case) }
assigned(orgcontextobjdef) and
(
(orgcontextobjdef<>contextobjdef) or
(orgsymownerdef<>symownerdef)
) and
(orgcontextobjdef.owner.symtabletype in [globalsymtable,staticsymtable,ObjectSymtable,recordsymtable,localsymtable]) and
is_current_unit(orgcontextobjdef.owner) and
def_is_related(orgcontextobjdef,orgsymownerdef)
) or
( // the case of specialize inside the generic declaration and nested types
(nonlocalst.symtabletype in [objectsymtable,recordsymtable]) and
(
assigned(curstruct) and
(
(curstruct=symownerdef) or
(curstruct.owner.moduleid=symownerdef.symtable.moduleid)
)
) or
(
not assigned(curstruct) and
(symownerdef.owner.iscurrentunit)
)
) or
{ access from a generic method that belongs to the class
but that is specialized elsewere }
(
isspezproc and
(current_procinfo.procdef.struct=curstruct)
) or
{ specializations may access private symbols that their
generics are allowed to access }
(
assigned(curstruct) and
(df_specialization in curstruct.defoptions) and
(symst.moduleid=curstruct.genericdef.owner.moduleid)
)
);
end;
vis_public,
vis_published :
result:=true;
else
internalerror(2019050702);
end;
if not result then
begin
{ capturers have access to anything as we assume checks were done
before the procdef was inserted into the capturer }
result:=assigned(curstruct) and
(curstruct.typ=objectdef) and
(oo_is_capturer in tobjectdef(curstruct).objectoptions);
end;
end;
function is_visible_for_object(pd:tprocdef;contextobjdef:tabstractrecorddef):boolean;
begin
result:=is_visible_for_object(pd.owner,pd.visibility,contextobjdef);
end;
function is_visible_for_object(sym:tsym;contextobjdef:tabstractrecorddef):boolean;
var
i : longint;
pd : tprocdef;
begin
if sym.typ=procsym then
begin
result:=false;
{ A procsym is visible, when there is at least one of the procdefs visible }
for i:=0 to tprocsym(sym).ProcdefList.Count-1 do
begin
pd:=tprocdef(tprocsym(sym).ProcdefList[i]);
if (pd.owner=sym.owner) and
is_visible_for_object(pd,contextobjdef) then
begin
result:=true;
exit;
end;
end;
{ check dummy sym visbility by following associated procsyms }
if tprocsym(sym).could_be_implicitly_specialized then
begin
for i:=0 to tprocsym(sym).genprocsymovlds.count-1 do
if is_visible_for_object(tsym(tprocsym(sym).genprocsymovlds[i]),contextobjdef) then
begin
result:=true;
exit;
end;
end;
if (tprocsym(sym).procdeflist.count=0) and (sp_generic_dummy in tprocsym(sym).symoptions) then
result:=is_visible_for_object(sym.owner,sym.visibility,contextobjdef);
end
else
result:=is_visible_for_object(sym.owner,sym.visibility,contextobjdef);
end;
function searchsym(const s : TIDString;out srsym:tsym;out srsymtable:TSymtable):boolean;
begin
case s[1] of
internal_macro_escape_unit_namespace_name:
result:=searchsym_maybe_with_symoption(copy(s,2,length(s)-1),srsym,srsymtable,[ssf_unit_or_namespace_only],sp_none)
else
result:=searchsym_maybe_with_symoption(s,srsym,srsymtable,[],sp_none);
end
end;
function searchsym_with_flags(const s : TIDString;out srsym:tsym;out srsymtable:TSymtable;flags:tsymbol_search_flags):boolean;
begin
result:=searchsym_maybe_with_symoption(s,srsym,srsymtable,flags,sp_none);
end;
function searchsym_maybe_with_symoption(const s : TIDString;out srsym:tsym;out srsymtable:TSymtable;flags:tsymbol_search_flags;option:tsymoption):boolean;
var
hashedid: THashedIDString;
contextstructdef: tabstractrecorddef;
stackitem: psymtablestackitem;
begin
result:=false;
hashedid.id:=s;
stackitem:=symtablestack.stack;
while assigned(stackitem) do
begin
srsymtable:=stackitem^.symtable;
if not(ssf_unit_or_namespace_only in flags) and
(srsymtable.symtabletype=objectsymtable) then
begin
{ TODO : implement the search for an option in classes as well }
if ssf_search_option in flags then
begin
result:=false;
exit;
end;
if searchsym_in_class(tobjectdef(srsymtable.defowner),tobjectdef(srsymtable.defowner),s,srsym,srsymtable,flags+[ssf_search_helper]) then
begin
result:=true;
exit;
end;
end
else if not((srsymtable.symtabletype=withsymtable) and assigned(srsymtable.defowner) and
(srsymtable.defowner.typ=undefineddef)) then
begin
srsym:=tsym(srsymtable.FindWithHash(hashedid));
{ First check if it is a unit/namespace symbol.
They are visible only if they are from the current unit or
unit of generic of currently processed specialization. }
if assigned(srsym) and
(not(ssf_unit_or_namespace_only in flags) or
(srsym.typ in [unitsym,namespacesym])) and
(
not(srsym.typ in [unitsym,namespacesym]) or
srsymtable.iscurrentunit or
(assigned(current_specializedef)and(current_specializedef.genericdef.owner.moduleid=srsymtable.moduleid)) or
(
assigned(current_procinfo) and
(df_specialization in current_procinfo.procdef.defoptions) and
(current_procinfo.procdef.genericdef.owner.moduleid=srsymtable.moduleid)
)
) and
(not (ssf_search_option in flags) or (option in srsym.symoptions))then
begin
{ use the class from withsymtable only when it is
defined in this unit }
if (srsymtable.symtabletype=withsymtable) and
assigned(srsymtable.defowner) and
(srsymtable.defowner.typ in [recorddef,objectdef]) and
(srsymtable.defowner.owner.symtabletype in [globalsymtable,staticsymtable,objectsymtable,recordsymtable]) and
(srsymtable.defowner.owner.iscurrentunit) then
contextstructdef:=tabstractrecorddef(srsymtable.defowner)
else
contextstructdef:=current_structdef;
if not(srsym.owner.symtabletype in [objectsymtable,recordsymtable]) or
is_visible_for_object(srsym,contextstructdef) then
begin
{ we need to know if a procedure references symbols
in the static symtable, because then it can't be
inlined from outside this unit }
if assigned(current_procinfo) and
(srsym.owner.symtabletype=staticsymtable) then
include(current_procinfo.flags,pi_uses_static_symtable);
if not (ssf_no_addsymref in flags) then
addsymref(srsym);
result:=true;
exit;
end;
end;
end;
stackitem:=stackitem^.next;
end;
srsym:=nil;
srsymtable:=nil;
end;
function searchsym_with_symoption(const s: TIDString;out srsym:tsym;out
srsymtable:TSymtable;option:tsymoption):boolean;
begin
result:=searchsym_maybe_with_symoption(s,srsym,srsymtable,[ssf_search_option],option);
end;
function searchsym_type(const s : TIDString;out srsym:tsym;out srsymtable:TSymtable):boolean;
var
hashedid : THashedIDString;
stackitem : psymtablestackitem;
classh : tobjectdef;
begin
result:=false;
hashedid.id:=s;
stackitem:=symtablestack.stack;
while assigned(stackitem) do
begin
{
It is not possible to have type symbols in:
parameters
Exception are classes, objects, records, generic definitions and specializations
that have the parameterized types inserted in the symtable.
}
srsymtable:=stackitem^.symtable;
if (srsymtable.symtabletype=ObjectSymtable) then
begin
classh:=tobjectdef(srsymtable.defowner);
while assigned(classh) do
begin
srsymtable:=classh.symtable;
srsym:=tsym(srsymtable.FindWithHash(hashedid));
if assigned(srsym) and
not(srsym.typ in [fieldvarsym,paravarsym,propertysym,procsym,labelsym]) and
is_visible_for_object(srsym,current_structdef) then
begin
addsymref(srsym);
result:=true;
exit;
end;
classh:=classh.childof;
end;
end
else
begin
srsym:=tsym(srsymtable.FindWithHash(hashedid));
if assigned(srsym) and
(
not(srsym.typ in [unitsym,namespacesym]) or
srsymtable.iscurrentunit or
(assigned(current_specializedef)and(current_specializedef.genericdef.owner.moduleid=srsymtable.moduleid))
) and
not(srsym.typ in [fieldvarsym,paravarsym,propertysym,procsym,labelsym]) and
(not (srsym.owner.symtabletype in [objectsymtable,recordsymtable]) or is_visible_for_object(srsym,current_structdef)) then
begin
{ we need to know if a procedure references symbols
in the static symtable, because then it can't be
inlined from outside this unit }
if assigned(current_procinfo) and
(srsym.owner.symtabletype=staticsymtable) then
include(current_procinfo.flags,pi_uses_static_symtable);
addsymref(srsym);
result:=true;
exit;
end;
end;
stackitem:=stackitem^.next;
end;
result:=false;
srsym:=nil;
srsymtable:=nil;
end;
function searchsym_in_module(pm:pointer;const s : TIDString;out srsym:tsym;out srsymtable:TSymtable):boolean;
var
pmod : tmodule;
begin
result:=false;
if not assigned(pm) then exit;
pmod:=tmodule(pm);
if assigned(pmod.globalsymtable) then
begin
srsym:=tsym(pmod.globalsymtable.Find(s));
if assigned(srsym) then
begin
srsymtable:=pmod.globalsymtable;
addsymref(srsym);
result:=true;
exit;
end;
end;
{ If the module is the current unit we also need
to search the local symtable }
if (pmod=current_module) and
assigned(pmod.localsymtable) then
begin
srsym:=tsym(pmod.localsymtable.Find(s));
if assigned(srsym) then
begin
srsymtable:=pmod.localsymtable;
addsymref(srsym);
result:=true;
exit;
end;
end;
srsym:=nil;
srsymtable:=nil;
end;
function searchsym_in_named_module(const unitname, symname: TIDString; out srsym: tsym; out srsymtable: tsymtable): boolean;
var
stackitem : psymtablestackitem;
begin
result:=false;
stackitem:=symtablestack.stack;
while assigned(stackitem) do
begin
srsymtable:=stackitem^.symtable;
if (srsymtable.symtabletype=globalsymtable) and
(srsymtable.name^=unitname) then
begin
srsym:=tsym(srsymtable.find(symname));
if not assigned(srsym) then
break;
result:=true;
exit;
end;
stackitem:=stackitem^.next;
end;
{ If the module is the current unit we also need
to search the local symtable }
if assigned(current_module.localsymtable) and
(current_module.localsymtable.name^=unitname) then
begin
srsymtable:=current_module.localsymtable;
srsym:=tsym(srsymtable.find(symname));
if assigned(srsym) then
begin
result:=true;
exit;
end;
end;
end;
function maybe_find_real_class_definition(pd: tdef; erroronfailure: boolean): tdef;
begin
result:=pd;
if pd.typ<>objectdef then
exit;
result:=find_real_class_definition(tobjectdef(pd),erroronfailure);
end;
function find_real_class_definition(pd: tobjectdef; erroronfailure: boolean): tobjectdef;
var
hashedid : THashedIDString;
stackitem : psymtablestackitem;
srsymtable : tsymtable;
srsym : tsym;
formalname,
foundname : shortstring;
formalnameptr,
foundnameptr: pshortstring;
begin
while pd.is_unique_objpasdef do
begin
pd:=pd.childof;
end;
{ not a formal definition -> return it }
if not(oo_is_formal in pd.objectoptions) then
begin
result:=pd;
exit;
end;
hashedid.id:=pd.typesym.name;
stackitem:=symtablestack.stack;
while assigned(stackitem) do
begin
srsymtable:=stackitem^.symtable;
{ ObjC classes can't appear in generics or as nested class
definitions. Java classes can. }
if not(srsymtable.symtabletype in [recordsymtable,parasymtable]) or
(is_java_class_or_interface(pd) and
(srsymtable.symtabletype=ObjectSymtable)) then
begin
srsym:=tsym(srsymtable.FindWithHash(hashedid));
if assigned(srsym) and
(srsym.typ=typesym) and
(ttypesym(srsym).typedef.typ=objectdef) and
(tobjectdef(ttypesym(srsym).typedef).objecttype=pd.objecttype) and
not(oo_is_formal in tobjectdef(ttypesym(srsym).typedef).objectoptions) then
begin
if not(oo_is_forward in tobjectdef(ttypesym(srsym).typedef).objectoptions) then
begin
{ the external name for the formal and the real
definition must match }
if assigned(tobjectdef(ttypesym(srsym).typedef).import_lib) or
assigned(pd.import_lib) then
begin
if assigned(pd.import_lib) then
formalname:=pd.import_lib^+'.'
else
formalname:='';
formalname:=formalname+pd.objextname^;
if assigned(tobjectdef(ttypesym(srsym).typedef).import_lib) then
foundname:=tobjectdef(ttypesym(srsym).typedef).import_lib^+'.'
else
foundname:='';
foundname:=foundname+tobjectdef(ttypesym(srsym).typedef).objextname^;
formalnameptr:=@formalname;
foundnameptr:=@foundname;
end
else
begin
formalnameptr:=pd.objextname;
foundnameptr:=tobjectdef(ttypesym(srsym).typedef).objextname;
end;
if foundnameptr^<>formalnameptr^ then
begin
MessagePos2(pd.typesym.fileinfo,sym_e_external_class_name_mismatch1,formalnameptr^,pd.typename);
MessagePos1(srsym.fileinfo,sym_e_external_class_name_mismatch2,foundnameptr^);
end;
end;
result:=tobjectdef(ttypesym(srsym).typedef);
if assigned(current_procinfo) and
(srsym.owner.symtabletype=staticsymtable) then
include(current_procinfo.flags,pi_uses_static_symtable);
addsymref(srsym);
exit;
end;
end;
stackitem:=stackitem^.next;
end;
{ nothing found: optionally give an error and return the original
(empty) one }
if erroronfailure then
Message1(sym_e_formal_class_not_resolved,pd.objrealname^);
result:=pd;
end;
function searchsym_in_class(classh: tobjectdef;contextclassh:tabstractrecorddef;const s : TIDString;out srsym:tsym;out srsymtable:TSymtable;flags:tsymbol_search_flags):boolean;
var
hashedid : THashedIDString;
orgclass : tobjectdef;
i : longint;
begin
orgclass:=classh;
{ in case this is a formal class, first find the real definition }
if assigned(classh) then
begin
if (oo_is_formal in classh.objectoptions) then
classh:=find_real_class_definition(classh,true);
{ The contextclassh is used for visibility. The classh must be equal to
or be a parent of contextclassh. E.g. for inherited searches the classh is the
parent or a class helper. }
if not (def_is_related(contextclassh,classh) or
(is_classhelper(contextclassh) and
assigned(tobjectdef(contextclassh).extendeddef) and
(tobjectdef(contextclassh).extendeddef.typ=objectdef) and
def_is_related(tobjectdef(contextclassh).extendeddef,classh))) then
internalerror(200811161);
end;
result:=false;
hashedid.id:=s;
{ an Objective-C protocol or Java interface can inherit from multiple
other protocols/interfaces -> use ImplementedInterfaces instead }
if is_objcprotocol(classh) or
is_javainterface(classh) then
begin
srsymtable:=classh.symtable;
srsym:=tsym(srsymtable.FindWithHash(hashedid));
if assigned(srsym) and
is_visible_for_object(srsym,contextclassh) then
begin
if not (ssf_no_addsymref in flags) then
addsymref(srsym);
result:=true;
exit;
end;
for i:=0 to classh.ImplementedInterfaces.count-1 do
begin
if searchsym_in_class(TImplementedInterface(classh.ImplementedInterfaces[i]).intfdef,contextclassh,s,srsym,srsymtable,flags-[ssf_search_helper]) then
begin
result:=true;
exit;
end;
end;
end
else
if is_objectpascal_helper(classh) then
begin
{ helpers have their own obscure search logic... }
result:=searchsym_in_helper(classh,tobjectdef(contextclassh),s,srsym,srsymtable,flags-[ssf_has_inherited]);
if result then
exit;
end
else
begin
while assigned(classh) do
begin
{ search for a class helper method first if this is an Object
Pascal class and we haven't yet found a helper symbol }
if (classh.objecttype in objecttypes_with_helpers) and
(ssf_search_helper in flags) then
begin
result:=search_objectpascal_helper(classh,contextclassh,s,srsym,srsymtable);
{ an eventual overload inside the extended type's hierarchy
will be found by tcallcandidates }
if result then
exit;
end;
srsymtable:=classh.symtable;
srsym:=tsym(srsymtable.FindWithHash(hashedid));
if assigned(srsym) and
is_visible_for_object(srsym,contextclassh) then
begin
if not (ssf_no_addsymref in flags) then
addsymref(srsym);
result:=true;
exit;
end;
classh:=classh.childof;
end;
end;
if is_objcclass(orgclass) then
result:=search_objc_helper(orgclass,s,srsym,srsymtable)
else
begin
srsym:=nil;
srsymtable:=nil;
end;
end;
function searchsym_in_record(recordh:tabstractrecorddef;const s : TIDString;out srsym:tsym;out srsymtable:TSymtable):boolean;
var
hashedid : THashedIDString;
begin
result:=false;
hashedid.id:=s;
{ search for a record helper method first }
result:=search_objectpascal_helper(recordh,recordh,s,srsym,srsymtable);
if result then
{ an eventual overload inside the extended type's hierarchy
will be found by tcallcandidates }
exit;
srsymtable:=recordh.symtable;
srsym:=tsym(srsymtable.FindWithHash(hashedid));
if assigned(srsym) and is_visible_for_object(srsym,recordh) then
begin
addsymref(srsym);
result:=true;
exit;
end;
srsym:=nil;
srsymtable:=nil;
end;
function searchsym_in_class_by_msgint(classh:tobjectdef;msgid:longint;out srdef : tdef;out srsym:tsym;out srsymtable:TSymtable):boolean;
var
def : tdef;
i : longint;
begin
{ in case this is a formal class, first find the real definition }
if assigned(classh) and
(oo_is_formal in classh.objectoptions) then
classh:=find_real_class_definition(classh,true);
result:=false;
def:=nil;
while assigned(classh) do
begin
for i:=0 to classh.symtable.DefList.Count-1 do
begin
def:=tstoreddef(classh.symtable.DefList[i]);
{ Find also all hidden private methods to
be compatible with delphi, see tw6203 (PFV) }
if (def.typ=procdef) and
(po_msgint in tprocdef(def).procoptions) and
(tprocdef(def).messageinf.i=msgid) then
begin
srdef:=def;
srsym:=tprocdef(def).procsym;
srsymtable:=classh.symtable;
addsymref(srsym);
result:=true;
exit;
end;
end;
classh:=classh.childof;
end;
srdef:=nil;
srsym:=nil;
srsymtable:=nil;
end;
function searchsym_in_class_by_msgstr(classh:tobjectdef;const s:string;out srsym:tsym;out srsymtable:TSymtable):boolean;
var
def : tdef;
i : longint;
begin
{ in case this is a formal class, first find the real definition }
if assigned(classh) and
(oo_is_formal in classh.objectoptions) then
classh:=find_real_class_definition(classh,true);
result:=false;
def:=nil;
while assigned(classh) do
begin
for i:=0 to classh.symtable.DefList.Count-1 do
begin
def:=tstoreddef(classh.symtable.DefList[i]);
{ Find also all hidden private methods to
be compatible with delphi, see tw6203 (PFV) }
if (def.typ=procdef) and
(po_msgstr in tprocdef(def).procoptions) and
(tprocdef(def).messageinf.str^=s) then
begin
srsym:=tprocdef(def).procsym;
srsymtable:=classh.symtable;
addsymref(srsym);
result:=true;
exit;
end;
end;
classh:=classh.childof;
end;
srsym:=nil;
srsymtable:=nil;
end;
function search_best_objectpascal_helper(const name: string;pd : tdef;contextclassh : tabstractrecorddef;out srsym: tsym;out srsymtable: tsymtable):boolean;forward;
function searchsym_in_helper(classh,contextclassh:tobjectdef;const s: TIDString;out srsym:tsym;out srsymtable:TSymtable;flags:tsymbol_search_flags):boolean;
var
hashedid : THashedIDString;
parentclassh : tobjectdef;
begin
result:=false;
if not is_objectpascal_helper(classh) then
Internalerror(2011030101);
hashedid.id:=s;
{ in a helper things are a bit more complex:
1. search the symbol in the helper (if not "inherited")
2. search the symbol in the extended type
3. search the symbol in the parent helpers
4. only classes: search the symbol in the parents of the extended type
}
if not (ssf_has_inherited in flags) then
begin
{ search in the helper itself }
srsymtable:=classh.symtable;
srsym:=tsym(srsymtable.FindWithHash(hashedid));
if assigned(srsym) and
is_visible_for_object(srsym,contextclassh) then
begin
if not (ssf_no_addsymref in flags) then
addsymref(srsym);
result:=true;
exit;
end;
end;
{ now search in the extended type itself }
{ Note: the extendeddef might be Nil if we are currently parsing the
extended type itself and the identifier was not found }
if assigned(classh.extendeddef) and (classh.extendeddef.typ in [recorddef,objectdef]) then
begin
srsymtable:=tabstractrecorddef(classh.extendeddef).symtable;
srsym:=tsym(srsymtable.FindWithHash(hashedid));
if assigned(srsym) and
is_visible_for_object(srsym,contextclassh) then
begin
if not (ssf_no_addsymref in flags) then
addsymref(srsym);
result:=true;
exit;
end;
end;
{ now search in the parent helpers }
parentclassh:=classh.childof;
while assigned(parentclassh) do
begin
srsymtable:=parentclassh.symtable;
srsym:=tsym(srsymtable.FindWithHash(hashedid));
if assigned(srsym) and
is_visible_for_object(srsym,contextclassh) then
begin
if not (ssf_no_addsymref in flags) then
addsymref(srsym);
result:=true;
exit;
end;
parentclassh:=parentclassh.childof;
end;
{ now search in the parents of the extended class (with helpers!) }
if is_class(classh.extendeddef) then
begin
result:=searchsym_in_class(tobjectdef(classh.extendeddef).childof,contextclassh,s,srsym,srsymtable,flags+[ssf_search_helper]);
{ addsymref is already called by searchsym_in_class }
if result then
exit;
end;
{ now search all helpers using the extendeddef as the starting point }
if (m_multi_helpers in current_settings.modeswitches) and
(
(current_structdef<>classh) or
assigned(classh.extendeddef)
) then
begin
{ this is only allowed if classh is currently parsed }
if not assigned(classh.extendeddef) then
internalerror(2019110101);
result:=search_best_objectpascal_helper(s,classh.extendeddef,contextclassh,srsym,srsymtable);
end;
end;
function search_specific_assignment_operator(assignment_type:ttoken;from_def,to_def:Tdef):Tprocdef;
var
sym : Tprocsym;
hashedid : THashedIDString;
curreq,
besteq : tequaltype;
currpd,
bestpd : tprocdef;
stackitem : psymtablestackitem;
shortstringcount : longint;
isexplicit,
checkshortstring : boolean;
begin
hashedid.id:=overloaded_names[assignment_type];
besteq:=te_incompatible;
bestpd:=nil;
stackitem:=symtablestack.stack;
{ special handling for assignments to shortstrings with a specific length:
- if we get an operator to ShortString we use that
- if we get only a single String[x] operator we use that
- otherwise it's a nogo }
isexplicit:=assignment_type=_OP_EXPLICIT;
shortstringcount:=0;
checkshortstring:=not isexplicit and is_shortstring(to_def) and (tstringdef(to_def).len<>255);
while assigned(stackitem) do
begin
sym:=Tprocsym(stackitem^.symtable.FindWithHash(hashedid));
if sym<>nil then
begin
if sym.typ<>procsym then
internalerror(200402031);
{ if the source type is an alias then this is only the second choice,
if you mess with this code, check tw4093 }
currpd:=sym.find_procdef_assignment_operator(from_def,to_def,curreq,isexplicit);
{ we found a ShortString overload, use that and be done }
if checkshortstring and
assigned(currpd) and
is_shortstring(currpd.returndef) and
(tstringdef(currpd.returndef).len=255) then
begin
besteq:=curreq;
bestpd:=currpd;
break;
end;
{ independently of the operator being better count if we encountered
multpile String[x] operators }
if checkshortstring and assigned(currpd) and is_shortstring(currpd.returndef) then
inc(shortstringcount);
if curreq>besteq then
begin
besteq:=curreq;
bestpd:=currpd;
{ don't stop searching if we have a String[x] operator cause
we might find a ShortString one or multiple ones (which
leads to no operator use) }
if (besteq=te_exact) and not checkshortstring then
break;
end;
end;
stackitem:=stackitem^.next;
end;
if checkshortstring and (shortstringcount>1) then
bestpd:=nil;
result:=bestpd;
end;
function search_assignment_operator(from_def,to_def:Tdef;explicit:boolean):Tprocdef;
begin
{ search record/object symtable first for a suitable operator }
if from_def.typ in [recorddef,objectdef] then
symtablestack.push(tabstractrecorddef(from_def).symtable);
if to_def.typ in [recorddef,objectdef] then
symtablestack.push(tabstractrecorddef(to_def).symtable);
{ if type conversion is explicit then search first for explicit
operator overload and if not found then use implicit operator }
if explicit then
result:=search_specific_assignment_operator(_OP_EXPLICIT,from_def,to_def)
else
result:=nil;
if result=nil then
result:=search_specific_assignment_operator(_ASSIGNMENT,from_def,to_def);
{ restore symtable stack }
if to_def.typ in [recorddef,objectdef] then
symtablestack.pop(tabstractrecorddef(to_def).symtable);
if from_def.typ in [recorddef,objectdef] then
symtablestack.pop(tabstractrecorddef(from_def).symtable);
end;
function search_enumerator_operator(from_def,to_def:Tdef): Tprocdef;
var
sym : Tprocsym;
hashedid : THashedIDString;
curreq,
besteq : tequaltype;
currpd,
bestpd : tprocdef;
stackitem : psymtablestackitem;
begin
hashedid.id:='enumerator';
besteq:=te_incompatible;
bestpd:=nil;
stackitem:=symtablestack.stack;
while assigned(stackitem) do
begin
sym:=Tprocsym(stackitem^.symtable.FindWithHash(hashedid));
if sym<>nil then
begin
if sym.typ<>procsym then
internalerror(200910241);
{ if the source type is an alias then this is only the second choice,
if you mess with this code, check tw4093 }
currpd:=sym.find_procdef_enumerator_operator(from_def,to_def,curreq);
if curreq>besteq then
begin
besteq:=curreq;
bestpd:=currpd;
if (besteq=te_exact) then
break;
end;
end;
stackitem:=stackitem^.next;
end;
result:=bestpd;
end;
function search_management_operator(mop:tmanagementoperator;pd:Tdef):Tprocdef;
var
sym : Tprocsym;
hashedid : THashedIDString;
optoken: ttoken;
begin
optoken := managementoperator2tok[mop];
if (optoken<first_managment_operator) or
(optoken>last_managment_operator) then
internalerror(201602280);
hashedid.id:=overloaded_names[optoken];
if not (pd.typ in [recorddef]) then
internalerror(201602281);
sym:=Tprocsym(tabstractrecorddef(pd).symtable.FindWithHash(hashedid));
if sym<>nil then
begin
if sym.typ<>procsym then
internalerror(201602282);
result:=sym.find_procdef_bytype(potype_operator);
end
else
result:=nil;
end;
function search_system_type(const s: TIDString): ttypesym;
var
sym : tsym;
begin
check_systemunit_loaded;
sym:=tsym(systemunit.Find(s));
if not assigned(sym) or
(sym.typ<>typesym) then
message1(cg_f_unknown_system_type,s);
result:=ttypesym(sym);
end;
function try_search_system_type(const s: TIDString): ttypesym;
var
sym : tsym;
begin
check_systemunit_loaded;
sym:=tsym(systemunit.Find(s));
if not assigned(sym) then
result:=nil
else
begin
if sym.typ<>typesym then
message1(cg_f_unknown_system_type,s);
result:=ttypesym(sym);
end;
end;
function try_search_current_module_type(const s: TIDString): ttypesym;
var
found: boolean;
srsymtable: tsymtable;
srsym: tsym;
begin
if s[1]='$' then
found:=searchsym_in_module(current_module,copy(s,2,length(s)),srsym,srsymtable)
else
found:=searchsym_in_module(current_module,s,srsym,srsymtable);
if found then
begin
if (srsym.typ<>typesym) then
internalerror(2014091207);
result:=ttypesym(srsym);
end
else
result:=nil;
end;
function search_system_proc(const s: TIDString): tprocdef;
var
srsym: tsym;
begin
check_systemunit_loaded;
srsym:=tsym(systemunit.find(s));
if not assigned(srsym) and
(cs_compilesystem in current_settings.moduleswitches) then
srsym:=tsym(systemunit.Find(upper(s)));
if not assigned(srsym) or
(srsym.typ<>procsym) then
message1(cg_f_unknown_compilerproc,s);
result:=tprocdef(tprocsym(srsym).procdeflist[0]);
end;
function search_named_unit_globaltype(const unitname, typename: TIDString; throwerror: boolean): ttypesym;
var
srsymtable: tsymtable;
sym: tsym;
begin
sym:=nil;
if searchsym_in_named_module(unitname,typename,sym,srsymtable) and
(sym.typ=typesym) then
begin
result:=ttypesym(sym);
exit;
end
else
begin
if throwerror then
message2(cg_f_unknown_type_in_unit,typename,unitname);
result:=nil;
end;
end;
function search_sym_in_helperdef(const s: string;classh : tobjectdef;contextclassh : tabstractrecorddef;out srsym: tsym;out srsymtable: tsymtable): boolean;
var
hashedid : THashedIDString;
pdef : tprocdef;
i : integer;
begin
hashedid.id:=s;
result:=false;
repeat
srsymtable:=classh.symtable;
srsym:=tsym(srsymtable.FindWithHash(hashedid));
if srsym<>nil then
begin
case srsym.typ of
procsym:
begin
for i:=0 to tprocsym(srsym).procdeflist.count-1 do
begin
pdef:=tprocdef(tprocsym(srsym).procdeflist[i]);
if not is_visible_for_object(pdef.owner,pdef.visibility,contextclassh) then
continue;
srsym:=tprocdef(tprocsym(srsym).procdeflist[i]).procsym;
srsymtable:=srsym.owner;
result:=true;
exit;
end;
if (sp_generic_dummy in tprocsym(srsym).symoptions) and
(tprocsym(srsym).procdeflist.count=0) and
is_visible_for_object(srsym.owner,srsym.visibility,contextclassh) then
begin
srsymtable:=srsym.owner;
result:=true;
exit;
end;
end;
typesym,
fieldvarsym,
constsym,
enumsym,
undefinedsym,
propertysym:
begin
result:=true;
exit;
end;
else
internalerror(2014041101);
end;
end;
{ try the helper parent if available }
classh:=classh.childof;
until classh=nil;
end;
function get_objectpascal_helpers(pd : tdef):TFPObjectList;
var
s : TSymStr;
st : tsymtable;
begin
result:=nil;
{ when there are no helpers active currently then we don't need to do
anything }
if current_module.extendeddefs.count=0 then
exit;
if (df_genconstraint in pd.defoptions) then
begin
{ if we have a constraint for a class type or a single interface we
use that to resolve helpers at declaration time of the generic,
otherwise there can't be any helpers as the type isn't known yet }
if pd.typ=objectdef then
pd:=tobjectdef(pd).getparentdef
else
exit;
end;
{ no helpers for anonymous types }
if ((pd.typ in [recorddef,objectdef]) and
(
not assigned(tabstractrecorddef(pd).objrealname) or
(tabstractrecorddef(pd).objrealname^='')
)
) or
not assigned(pd.typesym) then
exit;
{ if pd is defined inside a procedure we must not use make_mangledname
(as a helper may not be defined in a procedure this is no problem...)}
st:=pd.owner;
while st.symtabletype in [objectsymtable,recordsymtable] do
st:=st.defowner.owner;
if st.symtabletype=localsymtable then
exit;
{ the mangled name is used as the key for tmodule.extendeddefs }
s:=generate_objectpascal_helper_key(pd);
result:=TFPObjectList(current_module.extendeddefs.Find(s));
end;
function search_best_objectpascal_helper(const name: string;pd : tdef;contextclassh : tabstractrecorddef;out srsym: tsym;out srsymtable: tsymtable):boolean;
var
list : TFPObjectList;
i : integer;
odef : tobjectdef;
begin
result:=false;
list:=get_objectpascal_helpers(pd);
if assigned(list) and (list.count>0) then
begin
i:=list.count-1;
repeat
odef:=tobjectdef(list[i]);
result:=(odef.owner.symtabletype in [staticsymtable,globalsymtable]) or
is_visible_for_object(tobjectdef(list[i]).typesym,contextclassh);
if result then
result:=search_sym_in_helperdef(name,odef,contextclassh,srsym,srsymtable);
dec(i);
until result or (i<0);
end;
end;
function search_last_objectpascal_helper(pd : tdef;contextclassh : tabstractrecorddef;out odef : tobjectdef):boolean;
var
list : TFPObjectList;
i : integer;
begin
result:=false;
odef:=nil;
list:=get_objectpascal_helpers(pd);
if assigned(list) and (list.count>0) then
begin
i:=list.count-1;
repeat
odef:=tobjectdef(list[list.count-1]);
result:=(odef.owner.symtabletype in [staticsymtable,globalsymtable]) or
is_visible_for_object(tobjectdef(list[i]).typesym,contextclassh);
dec(i);
until result or (i<0);
if not result then
{ just to be sure that noone uses odef }
odef:=nil;
end;
end;
function search_objectpascal_helper(pd : tdef;contextclassh : tabstractrecorddef;const s: string; out srsym: tsym; out srsymtable: tsymtable):boolean;
var
classh : tobjectdef;
begin
result:=false;
{ if there is no class helper for the class then there is no need to
search further }
if m_multi_helpers in current_settings.modeswitches then
result:=search_best_objectpascal_helper(s,pd,contextclassh,srsym,srsymtable)
else
begin
if search_last_objectpascal_helper(pd,contextclassh,classh) and
search_sym_in_helperdef(s,classh,contextclassh,srsym,srsymtable) then
result:=true;
end;
if result then
begin
{ we need to know if a procedure references symbols
in the static symtable, because then it can't be
inlined from outside this unit }
if (srsym.typ=procsym) and
assigned(current_procinfo) and
(srsym.owner.symtabletype=staticsymtable) then
include(current_procinfo.flags,pi_uses_static_symtable);
addsymref(srsym);
end
else
begin
srsym:=nil;
srsymtable:=nil;
end;
end;
function search_objc_helper(pd : tobjectdef;const s : string; out srsym: tsym; out srsymtable: tsymtable):boolean;
var
searchst : tsymtable;
searchsym : tsym;
hashedid : THashedIDString;
stackitem : psymtablestackitem;
i : longint;
founddefowner,
defowner : tobjectdef;
begin
hashedid.id:=class_helper_prefix+s;
stackitem:=symtablestack.stack;
result:=false;
srsym:=nil;
srsymtable:=nil;
founddefowner:=nil;
while assigned(stackitem) do
begin
searchst:=stackitem^.symtable;
searchsym:=tsym(searchst.FindWithHash(hashedid));
if assigned(searchsym) then
begin
if not(searchst.symtabletype in [globalsymtable,staticsymtable]) or
not(searchsym.owner.symtabletype in [globalsymtable,staticsymtable]) or
(searchsym.typ<>procsym) then
internalerror(2009111505);
{ check whether this procsym includes a helper for this particular class }
for i:=0 to tprocsym(searchsym).procdeflist.count-1 do
begin
{ does pd inherit from (or is the same as) the class
that this method's category extended?
Warning: this list contains both category and objcclass methods
(for id.randommethod), so only check category methods here
}
defowner:=tobjectdef(tprocdef(tprocsym(searchsym).procdeflist[i]).owner.defowner);
if is_objccategory(defowner) and
def_is_related(pd,defowner.childof) then
begin
{ we need to know if a procedure references symbols
in the static symtable, because then it can't be
inlined from outside this unit }
if assigned(current_procinfo) and
(searchsym.owner.symtabletype=staticsymtable) then
include(current_procinfo.flags,pi_uses_static_symtable);
{ Stop looking if this is a category that extends the specified
class itself. There might be other categories that extend this,
but that doesn't matter. If it extens a parent, keep looking
in case we find the symbol in a category that extends this class
(or a closer parent).
}
if not result or
def_is_related(defowner.childof,founddefowner) then
begin
founddefowner:=defowner.childof;
srsym:=tprocdef(tprocsym(searchsym).procdeflist[i]).procsym;
srsymtable:=srsym.owner;
result:=true;
if pd=founddefowner then
begin
addsymref(srsym);
exit;
end;
end;
end;
end;
end;
stackitem:=stackitem^.next;
end;
if result then
begin
addsymref(srsym);
exit;
end;
end;
function search_objc_method(const s : string; out srsym: tsym; out srsymtable: tsymtable):boolean;
var
hashedid : THashedIDString;
stackitem : psymtablestackitem;
i : longint;
begin
hashedid.id:=class_helper_prefix+s;
stackitem:=symtablestack.stack;
while assigned(stackitem) do
begin
srsymtable:=stackitem^.symtable;
srsym:=tsym(srsymtable.FindWithHash(hashedid));
if assigned(srsym) then
begin
if not(srsymtable.symtabletype in [globalsymtable,staticsymtable]) or
not(srsym.owner.symtabletype in [globalsymtable,staticsymtable]) or
(srsym.typ<>procsym) then
internalerror(2009112005);
{ check whether this procsym includes a helper for this particular class }
for i:=0 to tprocsym(srsym).procdeflist.count-1 do
begin
{ we need to know if a procedure references symbols
in the static symtable, because then it can't be
inlined from outside this unit }
if assigned(current_procinfo) and
(srsym.owner.symtabletype=staticsymtable) then
include(current_procinfo.flags,pi_uses_static_symtable);
{ no need to keep looking. There might be other
methods with the same name, but that doesn't matter
as far as the basic procsym is concerned.
}
srsym:=tprocdef(tprocsym(srsym).procdeflist[i]).procsym;
{ We need the symtable in which the classhelper-like sym
is located, not the objectdef. The reason is that the
callnode will climb the symtablestack until it encounters
this symtable to start looking for overloads (and it won't
find the objectsymtable in which this method sym is
located
srsymtable:=srsym.owner;
}
addsymref(srsym);
result:=true;
exit;
end;
end;
stackitem:=stackitem^.next;
end;
srsym:=nil;
srsymtable:=nil;
result:=false;
end;
function search_struct_member(pd : tabstractrecorddef;const s : string):tsym;
{ searches n in symtable of pd and all anchestors }
var
srsymtable : tsymtable;
begin
{ in case this is a formal class, first find the real definition }
if (oo_is_formal in pd.objectoptions) then
pd:=find_real_class_definition(tobjectdef(pd),true);
if search_objectpascal_helper(pd, pd, s, result, srsymtable) then
exit;
result:=search_struct_member_no_helper(pd,s);
if assigned(result) then
exit;
{ not found, now look for class helpers }
if is_objcclass(pd) then
search_objc_helper(tobjectdef(pd),s,result,srsymtable)
end;
function search_struct_member_no_helper(pd: tabstractrecorddef; const s: string): tsym;
var
hashedid : THashedIDString;
srsym : tsym;
begin
hashedid.id:=s;
while assigned(pd) do
begin
srsym:=tsym(pd.symtable.FindWithHash(hashedid));
if assigned(srsym) then
begin
result:=srsym;
exit;
end;
if pd.typ=objectdef then
pd:=tobjectdef(pd).childof
else
pd:=nil;
end;
result:=nil;
end;
function search_macro(const s : string):tsym;
var
stackitem : psymtablestackitem;
hashedid : THashedIDString;
srsym : tsym;
begin
hashedid.id:=s;
{ First search the localmacrosymtable before searching the
global macrosymtables from the units }
if assigned(current_module) then
begin
srsym:=tsym(current_module.localmacrosymtable.FindWithHash(hashedid));
if assigned(srsym) then
begin
result:= srsym;
exit;
end;
end;
stackitem:=macrosymtablestack.stack;
while assigned(stackitem) do
begin
srsym:=tsym(stackitem^.symtable.FindWithHash(hashedid));
if assigned(srsym) then
begin
result:= srsym;
exit;
end;
stackitem:=stackitem^.next;
end;
result:= nil;
end;
function defined_macro(const s : string):boolean;
var
mac: tmacro;
begin
mac:=tmacro(search_macro(s));
if assigned(mac) then
begin
mac.is_used:=true;
defined_macro:=mac.defined;
end
else
defined_macro:=false;
end;
{****************************************************************************
Object Helpers
****************************************************************************}
function search_default_property(pd : tabstractrecorddef) : tpropertysym;
{ returns the default property of a class, searches also anchestors }
var
_defaultprop : tpropertysym;
helperpd : tobjectdef;
begin
_defaultprop:=nil;
{ first search in helper's hierarchy }
if search_last_objectpascal_helper(pd,nil,helperpd) then
while assigned(helperpd) do
begin
helperpd.symtable.SymList.ForEachCall(@tstoredsymtable(helperpd.symtable).testfordefaultproperty,@_defaultprop);
if assigned(_defaultprop) then
break;
helperpd:=helperpd.childof;
end;
if assigned(_defaultprop) then
begin
search_default_property:=_defaultprop;
exit;
end;
{ now search in the type's hierarchy itself }
while assigned(pd) do
begin
pd.symtable.SymList.ForEachCall(@tstoredsymtable(pd.symtable).testfordefaultproperty,@_defaultprop);
if assigned(_defaultprop) then
break;
if (pd.typ=objectdef) then
pd:=tobjectdef(pd).childof
else
break;
end;
search_default_property:=_defaultprop;
end;
{****************************************************************************
Macro Helpers
****************************************************************************}
procedure def_system_macro(const name : string);
var
mac : tmacro;
s: string;
begin
if name = '' then
internalerror(2004121202);
s:= upper(name);
mac:=tmacro(search_macro(s));
if not assigned(mac) then
begin
mac:=tmacro.create(s);
if assigned(current_module) then
current_module.localmacrosymtable.insertsym(mac)
else
initialmacrosymtable.insertsym(mac);
end;
Message1(parser_c_macro_defined,mac.name);
mac.defined:=true;
end;
procedure set_system_macro(const name, value : string);
var
mac : tmacro;
s: string;
begin
if name = '' then
internalerror(2004121203);
s:= upper(name);
mac:=tmacro(search_macro(s));
if not assigned(mac) then
begin
mac:=tmacro.create(s);
if assigned(current_module) then
current_module.localmacrosymtable.insertsym(mac)
else
initialmacrosymtable.insertsym(mac);
end
else
begin
mac.is_compiler_var:=false;
mac.free_buftext;
end;
mac.is_c_macro:=true;
Message2(parser_c_macro_set_to,mac.name,value);
move(value[1],mac.allocate_buftext(length(value))^,length(value));
mac.defined:=true;
end;
procedure set_system_compvar(const name, value : string);
var
mac : tmacro;
s: string;
begin
if name = '' then
internalerror(2004121204);
s:= upper(name);
mac:=tmacro(search_macro(s));
if not assigned(mac) then
begin
mac:=tmacro.create(s);
mac.is_compiler_var:=true;
if assigned(current_module) then
current_module.localmacrosymtable.insertsym(mac)
else
initialmacrosymtable.insertsym(mac);
end
else
mac.is_compiler_var:=true;
Message2(parser_c_macro_set_to,mac.name,value);
move(value[1],mac.allocate_buftext(length(value))^,length(value));
mac.defined:=true;
end;
procedure undef_system_macro(const name : string);
var
mac : tmacro;
s: string;
begin
if name = '' then
internalerror(2004121205);
s:= upper(name);
mac:=tmacro(search_macro(s));
if not assigned(mac) then
{If not found, then it's already undefined.}
else
begin
Message1(parser_c_macro_undefined,mac.name);
mac.defined:=false;
mac.is_compiler_var:=false;
{ delete old definition }
mac.free_buftext;
end;
end;
{$ifdef UNITALIASES}
{****************************************************************************
TUNIT_ALIAS
****************************************************************************}
constructor tunit_alias.create(const n:string);
var
i : longint;
begin
i:=pos('=',n);
if i=0 then
fail;
inherited createname(Copy(n,1,i-1));
newname:=stringdup(Copy(n,i+1,255));
end;
destructor tunit_alias.destroy;
begin
stringdispose(newname);
inherited destroy;
end;
procedure addunitalias(const n:string);
begin
unitaliases^.insert(tunit_alias,init(Upper(n))));
end;
function getunitalias(const n:string):string;
var
p : punit_alias;
begin
p:=punit_alias(unitaliases^.Find(Upper(n)));
if assigned(p) then
getunitalias:=punit_alias(p).newname^
else
getunitalias:=n;
end;
{$endif UNITALIASES}
{****************************************************************************
Init/Done Symtable
****************************************************************************}
procedure InitSymtable;
begin
{ Reset symbolstack }
symtablestack:=nil;
systemunit:=nil;
{ create error syms and def }
generrorsym:=terrorsym.create;
generrordef:=cerrordef.create;
{ macros }
initialmacrosymtable:=tmacrosymtable.create(false);
macrosymtablestack:=TSymtablestack.create;
macrosymtablestack.push(initialmacrosymtable);
{$ifdef UNITALIASES}
{ unit aliases }
unitaliases:=TFPHashObjectList.create;
{$endif}
dupnr:=0;
end;
procedure DoneSymtable;
begin
generrorsym.owner:=nil;
generrorsym.free;
generrordef.owner:=nil;
generrordef.free;
initialmacrosymtable.free;
macrosymtablestack.free;
{$ifdef UNITALIASES}
unitaliases.free;
{$endif}
end;
end.