
git-svn-id: https://svn.code.sf.net/p/lazarus-ccr/svn@6159 8e941d3f-bd1b-0410-a28a-d453659cc2b4
2907 lines
72 KiB
ObjectPascal
2907 lines
72 KiB
ObjectPascal
// Upgraded to Delphi 2009: Sebastian Zierer
|
|
|
|
(* ***** BEGIN LICENSE BLOCK *****
|
|
* Version: MPL 1.1
|
|
*
|
|
* The contents of this file are subject to the Mozilla Public License Version
|
|
* 1.1 (the "License"); you may not use this file except in compliance with
|
|
* the License. You may obtain a copy of the License at
|
|
* http://www.mozilla.org/MPL/
|
|
*
|
|
* Software distributed under the License is distributed on an "AS IS" basis,
|
|
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
|
|
* for the specific language governing rights and limitations under the
|
|
* License.
|
|
*
|
|
* The Original Code is TurboPower SysTools
|
|
*
|
|
* The Initial Developer of the Original Code is
|
|
* TurboPower Software
|
|
*
|
|
* Portions created by the Initial Developer are Copyright (C) 1996-2002
|
|
* the Initial Developer. All Rights Reserved.
|
|
*
|
|
* Contributor(s):
|
|
*
|
|
* ***** END LICENSE BLOCK ***** *)
|
|
|
|
{*********************************************************}
|
|
{* SysTools: StBCD.pas 4.04 *}
|
|
{*********************************************************}
|
|
{* SysTools: BCD arithmetic functions *}
|
|
{*********************************************************}
|
|
|
|
{$IFDEF FPC}
|
|
{$mode DELPHI}
|
|
{$ENDIF}
|
|
|
|
//{$I StDefine.inc}
|
|
|
|
{Notes:
|
|
The BCD format matches that defined by Turbo Pascal 3.0. It is as follows:
|
|
|
|
LSB MSB (most significant byte at end)
|
|
|<------ Mantissa ------>|
|
|
1 2 3 4 5 6 7 8 9 10 <- Byte #
|
|
sE ML ML ML ML ML ML ML ML ML
|
|
^ ^^--- Less significant digit
|
|
| |---- More significant digit
|
|
|
|
|
v
|
|
7 6 5 4 3 2 1 0 <-- Bit # (in Byte 1)
|
|
s E E E E E E E
|
|
^ <--exponent->
|
|
| |
|
|
| |--- exponent has offset of $3F (eg, $41 means 10^2 = 100)
|
|
|----------- sign bit (0 = positive, 1 = negative)
|
|
|
|
Unpacked BCD format
|
|
-------------------
|
|
Many of the routines that follow work with these reals in an unpacked
|
|
format. That is, before an arithmetic operation is performed, the mantissas
|
|
are expanded (unpacked) so that there is one digit per byte. After unpacking,
|
|
the reals look like this:
|
|
|
|
LSB MSB
|
|
|<------------------ mantissa --------------------->|
|
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
|
|
sE 0d 0d 0d 0d 0d 0d 0d 0d 0d 0d 0d 0d 0d 0d 0d 0d 0d 0d 00
|
|
^^
|
|
||---- Digit
|
|
|----- 0
|
|
Byte 1 is unchanged.
|
|
Bytes 2-19 contain the digits in the mantissa, LSB first. The high
|
|
nibble of each byte is 0, and the low nibble contains the digit.
|
|
Byte 20, sometimes used to keep track of overflow, is set to 0.
|
|
|
|
The constant BcdSize determines the size and accuracy of the Bcd
|
|
routines. It can be any value in the range 4-20 bytes. The default
|
|
value of 10 gives 18 digits of accuracy. A size of 20 gives 38 digits
|
|
of accuracy.
|
|
|
|
The BCD routines are thread-aware; all temporary variables are local.
|
|
|
|
STBCD uses the DecimalSeparator global variable from the SYSUTILS unit
|
|
wherever it needs a decimal point. As such the formatting of BCD
|
|
strings is aware of international differences.
|
|
|
|
The transcendental routines (Sqrt, Ln, Exp, Pow) are accurate for
|
|
all but 1 or 2 of the available digits of storage. For BcdSize =
|
|
10, this means 16-17 accurate digits; for BcdSize = 20, this means
|
|
36-37 accurate digits. The last digit or two is lost to roundoff
|
|
errors during the calculations.
|
|
|
|
Algorithms used for transcendental routines (depending on BcdSize):
|
|
Sqrt:
|
|
Herron's iterative approximation
|
|
Exp:
|
|
<= 10 bytes, Chebyshev polynomials per Cody and Waite
|
|
> 10 bytes, traditional series expansion
|
|
Ln:
|
|
<= 10 bytes, Chebyshev polynomials of rational approximation
|
|
per Cody and Waite
|
|
> 10 bytes, Carlson's iterative approximation
|
|
Pow:
|
|
straight multiplication for integer powers
|
|
use of Exp and Ln for non-integer powers
|
|
|
|
Computation of Exp and Ln for BcdSize > 10 bytes is quite slow. Exp
|
|
takes up to 30 terms to fill in all the digits when BcdSize = 20.
|
|
Ln takes 9 iterations for BcdSize = 20, but each iteration is complicated
|
|
and involves a sqrt, a divide, and other simpler operations.
|
|
|
|
FormatBcd mimics the FormatFloat routine from the SYSUTILS unit.
|
|
StrGeneralBcd mimics the FloatToStrF routine with the ffGeneral option.
|
|
See the documentation for those routines for more information.
|
|
}
|
|
|
|
|
|
unit StBCD;
|
|
|
|
interface
|
|
|
|
uses
|
|
{$IFNDEF FPC}
|
|
Windows,
|
|
{$ENDIF}
|
|
SysUtils,
|
|
StConst,
|
|
StBase,
|
|
StStrL;
|
|
|
|
const
|
|
BcdSize = 10; {bytes in BCD, valid range 4-20}
|
|
{.Z+}
|
|
MantissaDigits = 2*(BcdSize-1); {digits in mantissa}
|
|
OverflowChar = '*'; {character used to fill an overflow string}
|
|
{.Z-}
|
|
|
|
type
|
|
TBcd = array[0..BcdSize-1] of Byte;
|
|
|
|
var
|
|
{these values are set up by the initialization block}
|
|
ZeroBcd : TBcd;
|
|
MinBcd : TBcd;
|
|
MaxBcd : TBcd;
|
|
BadBcd : TBcd;
|
|
PiBcd : TBcd;
|
|
eBcd : TBcd;
|
|
Ln10Bcd : TBcd;
|
|
|
|
{$IFNDEF CBuilder}
|
|
function AddBcd(const B1, B2 : TBcd) : TBcd;
|
|
{-Return B1+B2}
|
|
function SubBcd(const B1, B2 : TBcd) : TBcd;
|
|
{-Return B1-B2}
|
|
function MulBcd(const B1, B2 : TBcd) : TBcd;
|
|
{-Return B1*B2}
|
|
function DivBcd(const B1, B2 : TBcd) : TBcd;
|
|
{-Return B1/B2}
|
|
function ModBcd(const B1, B2 : TBcd) : TBcd;
|
|
{-Return B1 mod B2}
|
|
function NegBcd(const B : TBcd) : TBcd;
|
|
{-Return the negative of B}
|
|
function AbsBcd(const B : TBcd) : TBcd;
|
|
{-Return the absolute value of B}
|
|
function FracBcd(const B : TBcd) : TBcd;
|
|
{-Return the fractional part of B}
|
|
function IntBcd(const B : TBcd) : TBcd;
|
|
{-Return the integer part of B, as a BCD real}
|
|
function RoundDigitsBcd(const B : TBcd; Digits : Cardinal) : TBcd;
|
|
{-Return B rounded to specified total digits of accuracy}
|
|
function RoundPlacesBcd(const B : TBcd; Places : Cardinal) : TBcd;
|
|
{-Return B rounded to specified decimal places of accuracy}
|
|
function ValBcd(const S : string) : TBcd;
|
|
{-Convert a string to a BCD}
|
|
function LongBcd(L : LongInt) : TBcd;
|
|
{-Convert a long integer to a BCD}
|
|
function ExtBcd(E : Extended) : TBcd;
|
|
{-Convert an extended real to a BCD}
|
|
function ExpBcd(const B : TBcd) : TBcd;
|
|
{-Return e**B}
|
|
function LnBcd(const B : TBcd) : TBcd;
|
|
{-Return natural log of B}
|
|
function IntPowBcd(const B : TBcd; E : LongInt) : TBcd;
|
|
{-Return B**E, where E is an integer}
|
|
function PowBcd(const B, E : TBcd) : TBcd;
|
|
{-Return B**E}
|
|
function SqrtBcd(const B : TBcd) : TBcd;
|
|
{-Return the square root of B}
|
|
{$ENDIF}
|
|
|
|
function CmpBcd(const B1, B2 : TBcd) : Integer;
|
|
{-Return <0 if B1<B2, =0 if B1=B2, >0 if B1>B2}
|
|
function EqDigitsBcd(const B1, B2 : TBcd; Digits : Cardinal) : Boolean;
|
|
{-Return True if B1 and B2 are equal after rounding to specified digits}
|
|
function EqPlacesBcd(const B1, B2 : TBcd; Digits : Cardinal) : Boolean;
|
|
{-Return True if B1 and B2 are equal after rounding to specified decimal places}
|
|
function IsIntBcd(const B : TBcd) : Boolean;
|
|
{-Return True if B has no fractional part (may still not fit into a LongInt)}
|
|
function TruncBcd(const B : TBcd) : LongInt;
|
|
{-Return B after discarding its fractional part}
|
|
function BcdExt(const B : TBcd) : Extended;
|
|
{-Convert B to an extended real}
|
|
function RoundBcd(const B : TBcd) : LongInt;
|
|
{-Round B rounded to the nearest integer}
|
|
function StrBcd(const B : TBcd; Width, Places : Cardinal) : string;
|
|
{-Convert BCD to a string in floating point format}
|
|
function StrExpBcd(const B : TBcd; Width : Cardinal) : string;
|
|
{-Convert BCD to a string in scientific format}
|
|
function FormatBcd(const Format: string; const B : TBcd): string;
|
|
{-Format a BCD like FormatFloat does for Extended}
|
|
function StrGeneralBcd(const B : TBcd) : string;
|
|
{-Format a BCD like FloatToStrF does with ffGeneral format, MantissaDigits
|
|
for Precision, and zero for Digits}
|
|
function FloatFormBcd(const Mask : string; B : TBCD;
|
|
const LtCurr, RtCurr : string;
|
|
Sep, DecPt : Char) : string;
|
|
{-Returns a formatted string with digits from B merged into the Mask}
|
|
procedure ConvertBcd(const SrcB; SrcSize : Byte; var DestB; DestSize : Byte);
|
|
{-Convert a BCD of one size to another size}
|
|
|
|
{the following routines are provided to support C++Builder}
|
|
{$IFDEF CBuilder}
|
|
procedure AddBcd_C(const B1, B2 : TBcd; var Res : TBcd);
|
|
procedure SubBcd_C(const B1, B2 : TBcd; var Res : TBcd);
|
|
procedure MulBcd_C(const B1, B2 : TBcd; var Res : TBcd);
|
|
procedure DivBcd_C(const B1, B2 : TBcd; var Res : TBcd);
|
|
procedure ModBcd_C(const B1, B2 : TBcd; var Res : TBcd);
|
|
procedure NegBcd_C(const B : TBcd; var Res : TBcd);
|
|
procedure AbsBcd_C(const B : TBcd; var Res : TBcd);
|
|
procedure FracBcd_C(const B : TBcd; var Res : TBcd);
|
|
procedure IntBcd_C(const B : TBcd; var Res : TBcd);
|
|
procedure RoundDigitsBcd_C(const B : TBcd; Digits : Cardinal; var Res : TBcd);
|
|
procedure RoundPlacesBcd_C(const B : TBcd; Places : Cardinal; var Res : TBcd);
|
|
procedure ValBcd_C(const S : string; var Res : TBcd);
|
|
procedure LongBcd_C(L : LongInt; var Res : TBcd);
|
|
procedure ExtBcd_C(E : Extended; var Res : TBcd);
|
|
procedure ExpBcd_C(const B : TBcd; var Res : TBcd);
|
|
procedure LnBcd_C(const B : TBcd; var Res : TBcd);
|
|
procedure IntPowBcd_C(const B : TBcd; E : LongInt; var Res : TBcd);
|
|
procedure PowBcd_C(const B, E : TBcd; var Res : TBcd);
|
|
procedure SqrtBcd_C(const B : TBcd; var Res : TBcd);
|
|
{$ENDIF}
|
|
|
|
{the following function is interfaced to avoid hints from the compiler}
|
|
{for its non use when the BcdSize constant is set a value less than 11}
|
|
{$IFNDEF CBuilder}
|
|
function LnBcd20(const B : TBcd) : TBcd;
|
|
{$ENDIF}
|
|
|
|
{=========================================================}
|
|
|
|
implementation
|
|
|
|
{Define to use assembly language in primitive routines below}
|
|
{$DEFINE UseAsm}
|
|
|
|
const
|
|
NoSignBit = $7F; {mask to get just the exponent}
|
|
SignBit = $80; {mask to get just the sign}
|
|
ExpBias = $3F; {bias added to actual exponent value}
|
|
SigDigits = MantissaDigits+1; {counts overflow digit}
|
|
|
|
type
|
|
TUnpBcd = array[0..SigDigits] of Byte; {unpacked BCD}
|
|
PUnpBcd = ^TUnpBcd;
|
|
TIntBcd = array[0..4*BcdSize-1] of Byte; {double size buffer for mult/div}
|
|
|
|
{$IFDEF CBuilder}
|
|
function AddBcd(const B1, B2 : TBcd) : TBcd; forward;
|
|
function SubBcd(const B1, B2 : TBcd) : TBcd; forward;
|
|
function MulBcd(const B1, B2 : TBcd) : TBcd; forward;
|
|
function DivBcd(const B1, B2 : TBcd) : TBcd; forward;
|
|
function ModBcd(const B1, B2 : TBcd) : TBcd; forward;
|
|
function NegBcd(const B : TBcd) : TBcd; forward;
|
|
function AbsBcd(const B : TBcd) : TBcd; forward;
|
|
function FracBcd(const B : TBcd) : TBcd; forward;
|
|
function IntBcd(const B : TBcd) : TBcd; forward;
|
|
function RoundDigitsBcd(const B : TBcd; Digits : Cardinal) : TBcd; forward;
|
|
function RoundPlacesBcd(const B : TBcd; Places : Cardinal) : TBcd; forward;
|
|
function ValBcd(const S : string) : TBcd; forward;
|
|
function LongBcd(L : LongInt) : TBcd; forward;
|
|
function ExtBcd(E : Extended) : TBcd; forward;
|
|
function ExpBcd(const B : TBcd) : TBcd; forward;
|
|
function LnBcd(const B : TBcd) : TBcd; forward;
|
|
function IntPowBcd(const B : TBcd; E : LongInt) : TBcd; forward;
|
|
function PowBcd(const B, E : TBcd) : TBcd; forward;
|
|
function SqrtBcd(const B : TBcd) : TBcd; forward;
|
|
{$ENDIF}
|
|
|
|
function FastValPrep(S : String) : String;
|
|
var
|
|
I : LongInt;
|
|
begin
|
|
I := Pos('.', S);
|
|
if I > 0 then
|
|
S[I] := {$IFDEF DELPHIXE2}FormatSettings.{$ENDIF}DecimalSeparator;
|
|
Result := S;
|
|
end;
|
|
|
|
procedure RaiseBcdError(Code : LongInt);
|
|
var
|
|
E : EStBCDError;
|
|
begin
|
|
E := EStBCDError.CreateResTP(Code, 0);
|
|
E.ErrorCode := Code;
|
|
raise E;
|
|
end;
|
|
|
|
procedure AddMantissas(const UB1 : TUnpBcd; var UB2 : TUnpBcd);
|
|
{$IFDEF UseAsm}
|
|
asm
|
|
push esi
|
|
push edi
|
|
mov esi,UB1
|
|
mov edi,UB2
|
|
{inc esi}
|
|
{inc edi}
|
|
mov ecx,SigDigits
|
|
clc
|
|
@1: mov al,[esi] {UB1}
|
|
inc esi
|
|
adc al,[edi] {UB1+UB2+CF}
|
|
aaa
|
|
mov [edi],al {update UB2}
|
|
inc edi
|
|
dec ecx
|
|
jnz @1
|
|
jnc @2
|
|
inc byte ptr [edi]
|
|
@2: pop edi
|
|
pop esi
|
|
end;
|
|
{$ELSE}
|
|
var
|
|
I : Integer;
|
|
T, C : Byte;
|
|
begin
|
|
C := 0;
|
|
for I := 0 to MantissaDigits do begin
|
|
T := UB2[I]+UB1[I]+C;
|
|
if T > 9 then begin
|
|
C := 1;
|
|
dec(T, 10);
|
|
end else
|
|
C := 0;
|
|
UB2[I] := T;
|
|
end;
|
|
UB2[SigDigits] := C;
|
|
end;
|
|
{$ENDIF}
|
|
|
|
function IsZeroMantissa(const UB : TUnpBcd) : Boolean;
|
|
{$IFDEF UseAsm}
|
|
asm
|
|
push edi
|
|
mov edi,UB
|
|
{inc edi}
|
|
xor al,al
|
|
mov ecx,SigDigits
|
|
repe scasb
|
|
jne @1
|
|
inc al
|
|
@1:pop edi
|
|
end;
|
|
{$ELSE}
|
|
var
|
|
I : Integer;
|
|
begin
|
|
for I := 0 to MantissaDigits do
|
|
if UB[I] <> 0 then begin
|
|
Result := False;
|
|
Exit;
|
|
end;
|
|
Result := True;
|
|
end;
|
|
{$ENDIF}
|
|
|
|
procedure NegMantissa(var UB : TUnpBcd);
|
|
{$IFDEF UseAsm}
|
|
asm
|
|
push edi
|
|
mov edi,UB
|
|
{inc edi}
|
|
mov ecx,SigDigits
|
|
xor dh,dh
|
|
clc
|
|
@1: mov al,dh
|
|
sbb al,[edi]
|
|
aas
|
|
mov [edi],al
|
|
inc edi
|
|
dec ecx
|
|
jnz @1
|
|
pop edi
|
|
end;
|
|
{$ELSE}
|
|
var
|
|
I : Integer;
|
|
C : Byte;
|
|
begin
|
|
C := 1;
|
|
for I := 0 to MantissaDigits do begin
|
|
UB[I] := 9+C-UB[I];
|
|
if UB[I] > 9 then begin
|
|
dec(UB[I], 10);
|
|
C := 1;
|
|
end else
|
|
C := 0;
|
|
end;
|
|
end;
|
|
{$ENDIF}
|
|
|
|
procedure NormalizeMantissa(var UB : TunpBcd; var E : Integer);
|
|
var
|
|
I, Shift : Integer;
|
|
begin
|
|
{find most significant non-zero digit}
|
|
for I := MantissaDigits downto 0 do
|
|
if UB[I] <> 0 then begin
|
|
Shift := MantissaDigits-I;
|
|
if Shift >= E then begin
|
|
{number disappears}
|
|
E := 0;
|
|
FillChar(UB[0], SigDigits, 0);
|
|
end else if Shift <> 0 then begin
|
|
dec(E, Shift);
|
|
move(UB[0], UB[Shift], SigDigits-Shift);
|
|
FillChar(UB[0], Shift, 0);
|
|
end;
|
|
Exit;
|
|
end;
|
|
{mantissa is all zeros}
|
|
E := 0;
|
|
end;
|
|
|
|
procedure SetZero(var B : TBcd);
|
|
begin
|
|
FillChar(B, SizeOf(TBcd), 0);
|
|
end;
|
|
|
|
procedure Pack(const UB : TUnpBcd; Exponent : Integer; Sign : Byte;
|
|
var B : TBcd);
|
|
{$IFNDEF UseAsm}
|
|
var
|
|
I : Integer;
|
|
{$ENDIF}
|
|
begin
|
|
if Exponent <= 0 then
|
|
SetZero(B)
|
|
|
|
else begin
|
|
B[0] := Sign or Exponent;
|
|
{repack digits}
|
|
{$IFDEF UseAsm}
|
|
asm
|
|
push esi
|
|
push edi
|
|
mov esi,UB
|
|
mov edi,B
|
|
inc esi
|
|
inc edi
|
|
mov ecx,BcdSize-1
|
|
@1: mov ax,[esi]
|
|
inc esi
|
|
inc esi
|
|
shl ah,4
|
|
or al,ah
|
|
mov [edi],al
|
|
inc edi
|
|
dec ecx
|
|
jnz @1
|
|
pop edi
|
|
pop esi
|
|
end;
|
|
{$ELSE}
|
|
for I := 1 to BcdSize-1 do
|
|
B[I] := UB[2*I-1] or (UB[2*I] shl 4);
|
|
{overflow digit ignored}
|
|
{$ENDIF}
|
|
end;
|
|
end;
|
|
|
|
procedure RoundMantissa(var UB : TUnpBcd; Start : Integer);
|
|
var
|
|
{$IFNDEF UseAsm}
|
|
I : Integer;
|
|
{$ENDIF}
|
|
C : Byte;
|
|
begin
|
|
if Start > MantissaDigits then begin
|
|
Start := SigDigits;
|
|
C := 0;
|
|
end else
|
|
C := UB[Start];
|
|
FillChar(UB[1], Start, 0);
|
|
if C < 5 then
|
|
Exit;
|
|
{$IFDEF UseAsm}
|
|
asm
|
|
push edi
|
|
mov edi,UB
|
|
mov eax,Start
|
|
add edi,eax
|
|
inc edi
|
|
mov ecx,MantissaDigits
|
|
sub ecx,eax
|
|
jle @2
|
|
stc
|
|
@1: mov al,[edi]
|
|
adc al,0
|
|
aaa
|
|
mov [edi],al
|
|
inc edi
|
|
jnc @3
|
|
dec ecx
|
|
jnz @1
|
|
@2: inc byte ptr [edi]
|
|
@3: pop edi
|
|
end;
|
|
{$ELSE}
|
|
C := 1;
|
|
for I := Start+1 to MantissaDigits do begin
|
|
inc(UB[I], C);
|
|
if UB[I] > 9 then begin
|
|
dec(UB[I], 10);
|
|
C := 1;
|
|
end else
|
|
{done rounding}
|
|
Exit;
|
|
end;
|
|
{set overflow digit if we get here}
|
|
inc(UB[SigDigits]);
|
|
{$ENDIF}
|
|
end;
|
|
|
|
procedure ShiftMantissaDown(var UB : TUnpBcd; Shift : Integer);
|
|
begin
|
|
if Shift > MantissaDigits then
|
|
{UB disappears when shifted}
|
|
FillChar(UB[0], SigDigits+1, 0)
|
|
|
|
else if Shift > 0 then begin
|
|
Move(UB[Shift], UB[0], SigDigits+1-Shift);
|
|
FillChar(UB[SigDigits+1-Shift], Shift, 0);
|
|
end;
|
|
end;
|
|
|
|
procedure SubMantissas(const UB1 : TUnpBcd; var UB2 : TUnpBcd);
|
|
{$IFDEF UseAsm}
|
|
asm
|
|
push esi
|
|
push edi
|
|
mov esi,UB1
|
|
mov edi,UB2
|
|
{inc esi}
|
|
{inc edi}
|
|
mov ecx,SigDigits
|
|
clc
|
|
@1: mov al,[edi] {UB2}
|
|
sbb al,[esi] {UB2-UB1-CF}
|
|
aas
|
|
mov [edi],al {update UB2}
|
|
inc edi
|
|
inc esi
|
|
dec ecx
|
|
jnz @1
|
|
jnc @2
|
|
inc byte ptr [edi]
|
|
@2: pop edi
|
|
pop esi
|
|
end;
|
|
{$ELSE}
|
|
var
|
|
I : Integer;
|
|
T, C : ShortInt;
|
|
begin
|
|
C := 0;
|
|
for I := 0 to MantissaDigits do begin
|
|
T := UB2[I]-UB1[I]-C;
|
|
if T < 0 then begin
|
|
C := 1;
|
|
inc(T, 10);
|
|
end else
|
|
C := 0;
|
|
UB2[I] := T;
|
|
end;
|
|
UB2[SigDigits] := C;
|
|
end;
|
|
{$ENDIF}
|
|
|
|
procedure Unpack(const B : TBcd; var UB : TUnpBcd;
|
|
var Exponent : Integer; var Sign : Byte);
|
|
{$IFNDEF UseAsm}
|
|
var
|
|
I : Integer;
|
|
{$ENDIF}
|
|
begin
|
|
{$IFDEF UseAsm}
|
|
asm
|
|
{$IFDEF VER140}
|
|
push ecx { get round a compiler bug in D6 }
|
|
{$ENDIF}
|
|
push esi
|
|
push edi
|
|
mov esi,B
|
|
mov edi,UB
|
|
inc esi
|
|
inc edi
|
|
mov ecx,BcdSize-1
|
|
@1: mov al,[esi]
|
|
inc esi
|
|
mov ah,al
|
|
and al,$0F
|
|
shr ah,4
|
|
mov [edi],ax
|
|
inc edi
|
|
inc edi
|
|
dec ecx
|
|
jnz @1
|
|
xor al,al
|
|
mov [edi],al
|
|
pop edi
|
|
pop esi
|
|
{$IFDEF VER140}
|
|
pop ecx { get round a compiler bug in D6 }
|
|
{$ENDIF}
|
|
end;
|
|
{$ELSE}
|
|
{unpack digits}
|
|
for I := 1 to BcdSize-1 do begin
|
|
UB[2*I-1] := B[I] and $F;
|
|
UB[2*I] := B[I] shr 4;
|
|
end;
|
|
{set last overflow digit to zero}
|
|
UB[2*BcdSize-1] := 0;
|
|
{$ENDIF}
|
|
|
|
{copy sign/exponent}
|
|
UB[0] := 0;
|
|
Exponent := B[0] and NoSignBit;
|
|
Sign := B[0] and SignBit;
|
|
end;
|
|
|
|
{----------------------------------------------------------------------}
|
|
|
|
function AbsBcd(const B : TBcd) : TBcd;
|
|
begin
|
|
Result := B;
|
|
Result[0] := B[0] and noSignBit;
|
|
end;
|
|
|
|
function AddBcd(const B1, B2 : TBcd) : TBcd;
|
|
var
|
|
E1, E2 : Integer;
|
|
S1, S2 : Byte;
|
|
UB1, UB2 : TUnpBcd;
|
|
begin
|
|
if B1[0] = 0 then
|
|
Result := B2
|
|
|
|
else if B2[0] = 0 then
|
|
Result := B1
|
|
|
|
else begin
|
|
Unpack(B1, UB1, E1, S1);
|
|
Unpack(B2, UB2, E2, S2);
|
|
|
|
If E1 < E2 then begin
|
|
{shift UB1's mantissa to account for smaller exponent}
|
|
RoundMantissa(UB1, E2-E1-1);
|
|
ShiftMantissaDown(UB1, E2-E1);
|
|
end else if E1 > E2 then begin
|
|
{shift UB2's mantissa to account for smaller exponent}
|
|
RoundMantissa(UB2, E1-E2-1);
|
|
ShiftMantissaDown(UB2, E1-E2);
|
|
E2 := E1;
|
|
end;
|
|
|
|
if S1 <> S2 then begin
|
|
{differing signs}
|
|
SubMantissas(UB1, UB2);
|
|
if UB2[SigDigits] <> 0 then begin
|
|
{negative result}
|
|
S2 := S2 xor SignBit;
|
|
UB2[SigDigits] := 0;
|
|
NegMantissa(UB2);
|
|
end;
|
|
{shift to get rid of any leading zeros}
|
|
NormalizeMantissa(UB2, E2);
|
|
end else begin
|
|
{same signs}
|
|
AddMantissas(UB1, UB2);
|
|
if UB2[SigDigits] = 0 then
|
|
RoundMantissa(UB2, 0);
|
|
if UB2[SigDigits] <> 0 then begin
|
|
{temporary overflow}
|
|
RoundMantissa(UB2, 1);
|
|
ShiftMantissaDown(UB2, 1);
|
|
inc(E2);
|
|
if E2 > NoSignBit then
|
|
{numeric overflow}
|
|
RaiseBcdError(stscBcdOverflow);
|
|
end;
|
|
end;
|
|
|
|
{set sign and exponent}
|
|
if E2 = 0 then
|
|
UB2[0] := 0
|
|
else
|
|
UB2[0] := S2 or E2;
|
|
|
|
Pack(UB2, E2, S2, Result);
|
|
end;
|
|
end;
|
|
|
|
function BcdExt(const B : TBcd) : Extended;
|
|
var
|
|
Code : Integer;
|
|
S : string[59];
|
|
begin
|
|
S := StrExpBcd(B, 0);
|
|
if ({$IFDEF DELPHIXE2}FormatSettings.{$ENDIF}DecimalSeparator <> '.') then begin
|
|
while (pos({$IFDEF DELPHIXE2}FormatSettings.{$ENDIF}DecimalSeparator, S) > 0) do
|
|
S[pos({$IFDEF DELPHIXE2}FormatSettings.{$ENDIF}DecimalSeparator, S)] := '.';
|
|
end;
|
|
Val(S, Result, Code);
|
|
end;
|
|
|
|
procedure ConvertBcd(const SrcB; SrcSize : Byte; var DestB; DestSize : Byte);
|
|
label
|
|
Repack;
|
|
type
|
|
TBA = array[0..40] of Byte; {largest BCD size times 2}
|
|
PBA = ^TBA;
|
|
var
|
|
I, O, Exponent : Integer;
|
|
PS : PBA;
|
|
C : Byte;
|
|
begin
|
|
if (SrcSize = 0) or (DestSize = 0) then
|
|
exit;
|
|
|
|
Exponent := TBA(SrcB)[0] and NoSignBit;
|
|
|
|
{transfer mantissa}
|
|
if SrcSize <= DestSize then begin
|
|
{dest is at least as big as src}
|
|
FillChar(TBA(DestB)[1], DestSize-SrcSize, 0);
|
|
Move(TBA(SrcB)[1], TBA(DestB)[DestSize-SrcSize+1], SrcSize-1);
|
|
|
|
end else begin
|
|
{need to round src before copying to dest}
|
|
GetMem(PS, 2*SrcSize);
|
|
|
|
{unpack digits}
|
|
for I := 1 to SrcSize-1 do begin
|
|
PS^[2*I-1] := TBA(SrcB)[I] and $F;
|
|
PS^[2*I] := TBA(SrcB)[I] shr 4;
|
|
end;
|
|
{set last overflow digit to zero}
|
|
PS^[2*SrcSize-1] := 0;
|
|
{O is a shift used when rounding causes an overflow}
|
|
O := 0;
|
|
|
|
{round src starting at most significant lost digit}
|
|
if PS^[SrcSize-DestSize] >= 5 then begin
|
|
{rounding has an effect}
|
|
C := 1;
|
|
for I := SrcSize-DestSize+1 to 2*(SrcSize-1) do begin
|
|
inc(PS^[I], C);
|
|
if PS^[I] > 9 then begin
|
|
dec(PS^[I], 10);
|
|
C := 1;
|
|
end else
|
|
{done rounding}
|
|
goto Repack;
|
|
end;
|
|
{set overflow digit if we get here}
|
|
PS^[2*SrcSize-1] := 1;
|
|
inc(Exponent);
|
|
O := 1;
|
|
end;
|
|
|
|
Repack:
|
|
{repack into same buffer taking account of overflow offset}
|
|
for I := 1 to SrcSize-1 do
|
|
PS^[I] := PS^[2*I-1+O] or (PS^[2*I+O] shl 4);
|
|
|
|
{copy rounded src into dest}
|
|
Move(PS^[SrcSize-DestSize+1], TBA(DestB)[1], DestSize-1);
|
|
|
|
FreeMem(PS, 2*SrcSize);
|
|
end;
|
|
|
|
{copy sign/exponent}
|
|
TBA(DestB)[0] := Exponent or (TBA(SrcB)[0] and SignBit);
|
|
end;
|
|
|
|
function EqDigitsBcd(const B1, B2 : TBcd; Digits : Cardinal) : Boolean;
|
|
begin
|
|
Result := (CmpBcd(RoundDigitsBcd(B1, Digits), RoundDigitsBcd(B2, Digits)) = 0);
|
|
end;
|
|
|
|
function EqPlacesBcd(const B1, B2 : TBcd; Digits : Cardinal) : Boolean;
|
|
begin
|
|
Result := (CmpBcd(RoundPlacesBcd(B1, Digits), RoundPlacesBcd(B2, Digits)) = 0);
|
|
end;
|
|
|
|
function CmpBcd(const B1, B2 : TBcd) : Integer;
|
|
var
|
|
{$IFNDEF UseAsm}
|
|
I : Integer;
|
|
{$ENDIF}
|
|
E1, E2 : Integer;
|
|
S1, S2 : Byte;
|
|
UB1, UB2 : TUnpBcd;
|
|
begin
|
|
Unpack(B1, UB1, E1, S1);
|
|
Unpack(B2, UB2, E2, S2);
|
|
|
|
if S1 <> S2 then
|
|
{signs differ}
|
|
Result := Integer(S2)-S1
|
|
|
|
else begin
|
|
{signs the same}
|
|
if E1 <> E2 then
|
|
{exponents differ}
|
|
Result := E1-E2
|
|
|
|
else if E1 = 0 then
|
|
{both numbers are zero}
|
|
Result := 0
|
|
|
|
else begin
|
|
{exponents the same, compare the mantissas}
|
|
{$IFDEF UseAsm}
|
|
asm
|
|
push esi
|
|
push edi
|
|
lea esi,UB1+MantissaDigits
|
|
lea edi,UB2+MantissaDigits
|
|
mov ecx,MantissaDigits
|
|
@1: mov al,[esi]
|
|
sub al,[edi]
|
|
jnz @2
|
|
dec esi
|
|
dec edi
|
|
dec ecx
|
|
jnz @1
|
|
@2: movsx eax,al
|
|
mov Result,eax
|
|
pop edi
|
|
pop esi
|
|
end;
|
|
{$ELSE}
|
|
for I := MantissaDigits downto 1 do begin
|
|
Result := Integer(UB1[I])-UB2[I];
|
|
if Result <> 0 then
|
|
break;
|
|
end;
|
|
{$ENDIF}
|
|
end;
|
|
|
|
if S1 <> 0 then
|
|
{both numbers negative, reverse the result}
|
|
Result := -Result;
|
|
end;
|
|
end;
|
|
|
|
function ModBcd(const B1, B2 : TBcd) : TBcd;
|
|
{-Return B1 mod B2}
|
|
begin
|
|
Result := IntBcd(DivBcd(B1, B2));
|
|
end;
|
|
|
|
function DivBcd(const B1, B2 : TBcd) : TBcd;
|
|
{$IFNDEF UseAsm}
|
|
label
|
|
StoreDigit;
|
|
{$ENDIF}
|
|
var
|
|
{$IFNDEF UseAsm}
|
|
DivIntoCount, I, R : Integer;
|
|
T, C : ShortInt;
|
|
DDigit, NDigit : Byte;
|
|
{$ENDIF}
|
|
E1, E2, DivDigits, N : Integer;
|
|
S1, S2 : Byte;
|
|
UB1, UB2 : TUnpBcd;
|
|
TB : TIntBcd;
|
|
begin
|
|
if B2[0] = 0 then
|
|
{divide by zero}
|
|
RaiseBcdError(stscBcdDivByZero);
|
|
|
|
if B1[0] = 0 then
|
|
{numerator is zero, return zero}
|
|
SetZero(Result)
|
|
|
|
else begin
|
|
Unpack(B1, UB1, E1, S1);
|
|
Unpack(B2, UB2, E2, S2);
|
|
|
|
{TB is the extended numerator}
|
|
FillChar(TB, 2*BcdSize, 0);
|
|
Move(UB1[1], TB[2*BcdSize], SigDigits);
|
|
|
|
{UB1 is now used to store the result}
|
|
|
|
{count significant mantissa digits in divisor}
|
|
{$IFDEF UseAsm}
|
|
asm
|
|
push edi
|
|
lea edi,UB2+1
|
|
mov ecx,SigDigits
|
|
xor al,al
|
|
repe scasb
|
|
mov DivDigits,ecx
|
|
pop edi
|
|
end;
|
|
{$ELSE}
|
|
DivDigits := 0;
|
|
for I := 1 to MantissaDigits do
|
|
if UB2[I] <> 0 then begin
|
|
DivDigits := SigDigits-I;
|
|
break;
|
|
end;
|
|
{$ENDIF}
|
|
|
|
if DivDigits = 0 then
|
|
{divide by zero, shouldn't have gotten here, but just in case...}
|
|
RaiseBcdError(stscBcdDivByZero);
|
|
|
|
{$IFDEF UseAsm}
|
|
asm
|
|
push ebx
|
|
push esi
|
|
push edi
|
|
mov ecx,SigDigits {number of digits in result}
|
|
lea edi,UB1+SigDigits {edi points to MSD of result}
|
|
lea esi,TB+2*MantissaDigits+1 {esi points to MSD of numerator}
|
|
mov dh,byte ptr DivDigits {keep DivDigits in dh}
|
|
|
|
@1: push ecx {save result counter}
|
|
push edi {save result position}
|
|
mov ebx,esi {save numerator position}
|
|
xor dl,dl {dl = number of times divisor fits into numerator}
|
|
|
|
@2: cmp byte ptr [esi+1],0 {check for remainder in numerator}
|
|
jnz @4 {divisor guaranteed to fit again}
|
|
xor ecx,ecx
|
|
mov cl,dh {ecx = number of divisor digits}
|
|
lea edi,UB2+MantissaDigits {last digit of divisor}
|
|
|
|
@3: mov al,[esi] {al = numerator digit}
|
|
dec esi
|
|
mov ah,[edi] {ah = divisor digit}
|
|
dec edi
|
|
cmp al,ah
|
|
ja @4 {divisor fits if numerator digit > divisor}
|
|
jb @7 {doesn't fit if numerator digit < divisor}
|
|
dec ecx
|
|
jnz @3
|
|
|
|
@4: inc dl {increment number of times divisor fits}
|
|
mov edi,ebx {restore numerator position to edi}
|
|
xor ecx,ecx
|
|
mov cl,dh {ecx = number of divisor digits}
|
|
lea esi,UB2+MantissaDigits {esi points to MSD of divisor}
|
|
dec ecx
|
|
sub esi,ecx {first significant digit of divisor}
|
|
sub edi,ecx {first active digit of numerator}
|
|
inc ecx
|
|
clc {no carry to start}
|
|
|
|
@5: mov al,[edi] {al = digit from numerator}
|
|
sbb al,[esi] {subtract divisor from numerator}
|
|
aas
|
|
mov [edi],al {store back to numerator}
|
|
inc esi
|
|
inc edi
|
|
dec ecx
|
|
jnz @5
|
|
jnc @6
|
|
dec byte ptr [edi] {reduce last digit for borrow}
|
|
|
|
@6: mov esi,ebx {restore numerator position to esi}
|
|
jmp @2 {see if divisor fits in numerator again}
|
|
|
|
@7: mov esi,ebx {restore numerator position to esi}
|
|
pop edi {restore result position}
|
|
pop ecx {restore result counter}
|
|
mov [edi],dl {store times divisor went into numerator}
|
|
dec edi {next result digit}
|
|
dec esi {next numerator digit}
|
|
dec ecx
|
|
jnz @1 {compute next result digit}
|
|
|
|
pop edi
|
|
pop esi
|
|
pop ebx
|
|
end;
|
|
{$ELSE}
|
|
{start with most significant digit of numerator}
|
|
N := 2*MantissaDigits+1;
|
|
|
|
{iterate until the result mantissa is filled}
|
|
for R := SigDigits downto 1 do begin
|
|
DivIntoCount := 0;
|
|
|
|
repeat
|
|
{subtract divisor from current numerator position as many times as possible}
|
|
if TB[N+1] = 0 then begin
|
|
{no overflow digit in this position of numerator}
|
|
for I := 0 to DivDigits-1 do begin
|
|
DDigit := UB2[MantissaDigits-I];
|
|
NDigit := TB[N-I];
|
|
if DDigit < NDigit then
|
|
{divisor still fits}
|
|
break
|
|
else if DDigit > NDigit then
|
|
{divisor doesn't fit}
|
|
goto StoreDigit;
|
|
end;
|
|
end;
|
|
inc(DivIntoCount);
|
|
|
|
{subtract divisor once from numerator}
|
|
C := 0;
|
|
for I := DivDigits-1 downto 0 do begin
|
|
T := TB[N-I]-UB2[MantissaDigits-I]-C;
|
|
if T < 0 then begin
|
|
C := 1;
|
|
inc(T, 10);
|
|
end else
|
|
C := 0;
|
|
TB[N-I] := T;
|
|
end;
|
|
{reduce last digit for borrow}
|
|
dec(TB[N+1], C);
|
|
until False;
|
|
|
|
StoreDigit:
|
|
{store this digit of result}
|
|
UB1[R] := DivIntoCount;
|
|
{next numerator digit}
|
|
dec(N);
|
|
end;
|
|
{$ENDIF}
|
|
|
|
if UB1[SigDigits] <> 0 then begin
|
|
{round away the temporary digit}
|
|
RoundMantissa(UB1, 1);
|
|
ShiftMantissaDown(UB1, 1);
|
|
inc(E1);
|
|
end;
|
|
|
|
{compute exponent}
|
|
N := E1-E2+ExpBias;
|
|
if N > NoSignBit then
|
|
{numeric overflow}
|
|
RaiseBcdError(stscBcdOverflow);
|
|
Pack(UB1, N, S1 xor S2, Result);
|
|
end;
|
|
end;
|
|
|
|
function FastVal(const S : string) : TBcd;
|
|
{-Internal routine to quickly convert a string constant to a Bcd}
|
|
{Assumes no leading spaces,
|
|
no leading '+',
|
|
no leading '.',
|
|
always contains decimal point defined by international DecimalSeparator,
|
|
no invalid characters,
|
|
no exponent,
|
|
< MantissaDigits before decimal point}
|
|
var
|
|
I, O, Digits, Exponent : Integer;
|
|
Sign : Byte;
|
|
Rounded : Boolean;
|
|
UB : TUnpBcd;
|
|
|
|
procedure AddDigit(Ch : Char);
|
|
begin
|
|
if O > 0 then begin
|
|
UB[O] := Byte(Ch)-Byte('0');
|
|
dec(O);
|
|
end else if not Rounded then begin
|
|
{got more significant digits than will fit, must round}
|
|
Rounded := True;
|
|
UB[0] := Byte(Ch)-Byte('0');
|
|
RoundMantissa(UB, 0);
|
|
if UB[SigDigits] <> 0 then begin
|
|
ShiftMantissaDown(UB, 1);
|
|
inc(Digits);
|
|
end;
|
|
end;
|
|
end;
|
|
|
|
begin
|
|
FillChar(UB, SizeOf(TUnpBcd), 0);
|
|
|
|
O := MantissaDigits;
|
|
Rounded := False;
|
|
Digits := 0;
|
|
|
|
{get sign if any}
|
|
if S[1] = '-' then begin
|
|
Sign := SignBit;
|
|
I := 2;
|
|
end else begin
|
|
Sign := 0;
|
|
I := 1;
|
|
end;
|
|
|
|
{skip leading zeros}
|
|
while S[I] = '0' do
|
|
inc(I);
|
|
|
|
{add significant digits}
|
|
while S[I] <> '.' do begin
|
|
AddDigit(S[I]);
|
|
inc(I);
|
|
inc(Digits);
|
|
end;
|
|
|
|
{handle dot}
|
|
inc(I);
|
|
if Digits = 0 then
|
|
{no digits before dot, skip zeros after dot}
|
|
while (I <= length(S)) and (S[I] = '0') do begin
|
|
inc(I);
|
|
dec(Digits);
|
|
end;
|
|
|
|
{add significant digits}
|
|
while I <= Length(S) do begin
|
|
AddDigit(S[I]);
|
|
if Rounded then
|
|
break;
|
|
inc(I);
|
|
end;
|
|
|
|
{compute final exponent}
|
|
Exponent := Digits+ExpBias;
|
|
|
|
if (Exponent <= 0) or IsZeroMantissa(UB) then
|
|
{return zero}
|
|
Exponent := 0;
|
|
|
|
{Return packed result}
|
|
Pack(UB, Exponent, Sign, Result);
|
|
end;
|
|
|
|
function ExpBcd(const B : TBcd) : TBcd;
|
|
var
|
|
MI, Exponent : LongInt;
|
|
B1, B2, B3, B4, B5 : TBcd;
|
|
begin
|
|
if CmpBcd(B, FastVal('147.36')) > 0 then
|
|
{numeric overflow}
|
|
RaiseBcdError(stscBcdOverflow);
|
|
|
|
if CmpBcd(B, FastVal('-145.06')) < 0 then begin
|
|
{return zero}
|
|
SetZero(Result);
|
|
Exit;
|
|
end;
|
|
|
|
if B[0] = 0 then begin
|
|
{return one}
|
|
Result := FastVal('1.0');
|
|
Exit;
|
|
end;
|
|
|
|
{If BcdSize > 10, Delphi 2.0 generates a hint (if hints on) about B3 during compile}
|
|
{this can be ignored or you can suppress warnings in STDEFINE.INC}
|
|
{or suppress hints and warning for the IF..THEN block}
|
|
|
|
if BcdSize <= 10 then begin
|
|
{Burns (Cody-Waite) approximation}
|
|
Exponent := RoundBcd(MulBcd(B, FastVal('0.868588963806503655')));
|
|
MI := Exponent; {prevent D32 from generating a hint}
|
|
B5 := LongBcd(MI);
|
|
|
|
B3 := AddBcd(B, MulBcd(B5, FastVal('-1.151')));
|
|
B1 := AddBcd(B3, MulBcd(B5, FastVal('-0.000292546497022842009')));
|
|
B2 := MulBcd(B1, B1);
|
|
|
|
B3 := MulBcd(B2, FastVal('42.0414268137450315'));
|
|
B3 := MulBcd(B2, AddBcd(B3, FastVal('10097.4148724273918')));
|
|
B4 := MulBcd(B1, AddBcd(B3, FastVal('333267.029226801611')));
|
|
|
|
B3 := MulBcd(B2, AddBcd(B2, FastVal('841.243584514154545')));
|
|
B3 := MulBcd(B2, AddBcd(B3, FastVal('75739.3346159883444')));
|
|
B3 := AddBcd(B3, FastVal('666534.058453603223'));
|
|
B3 := DivBcd(B4, SubBcd(B3, B4));
|
|
Result := MulBcd(AddBcd(B3, FastVal('0.5')), FastVal('2.0'));
|
|
|
|
if Odd(MI) then begin
|
|
if MI < 0 then
|
|
Result := DivBcd(Result, FastVal('3.16227766016837933'))
|
|
else
|
|
Result := MulBcd(Result, FastVal('3.16227766016837933'));
|
|
end;
|
|
|
|
inc(ShortInt(Result[0]), MI div 2);
|
|
|
|
end else begin
|
|
{series approximation}
|
|
{compute B2, a number whose exp is close to 1.0}
|
|
{and MI, a number whose exp is a power of 10}
|
|
B2 := DivBcd(B, Ln10Bcd);
|
|
if B[0] and SignBit <> 0 then
|
|
B2 := SubBcd(B2, FastVal('0.5'))
|
|
else
|
|
B2 := AddBcd(B2, FastVal('0.5'));
|
|
MI := TruncBcd(B2);
|
|
B2 := SubBcd(B, MulBcd(IntBcd(B2), Ln10Bcd));
|
|
|
|
{compute exp(B2)}
|
|
B1 := FastVal('1.0');
|
|
B4 := B1;
|
|
Result := B1;
|
|
B5 := B2;
|
|
while B5[0] and NoSignBit > ExpBias-MantissaDigits-1 do begin
|
|
Result := AddBcd(Result, B5);
|
|
B4 := AddBcd(B4, B1);
|
|
B5 := DivBcd(MulBcd(B5, B2), B4);
|
|
end;
|
|
|
|
{correct exponent for 10**MI}
|
|
Exponent := Result[0] and NoSignBit;
|
|
inc(Exponent, MI);
|
|
if Exponent > NoSignBit then
|
|
{numeric overflow}
|
|
RaiseBcdError(stscBcdOverflow);
|
|
if Exponent <= 0 then
|
|
{underflow}
|
|
SetZero(Result);
|
|
Result[0] := Exponent;
|
|
end;
|
|
end;
|
|
|
|
function ExtBcd(E : Extended) : TBcd;
|
|
var
|
|
S : string;
|
|
begin
|
|
Str(e:0:MantissaDigits, S);
|
|
Result := ValBcd(FastValPrep(S));
|
|
end;
|
|
|
|
function StrGeneralBcd(const B : TBcd) : string;
|
|
var
|
|
I, EndI, Exponent : Integer;
|
|
|
|
procedure RemoveTrailingZeros(StartI, EndI : Integer);
|
|
var
|
|
I : Integer;
|
|
begin
|
|
I := StartI;
|
|
while (I > 0) and (Result[I] = '0') and (Result[I] <> {$IFDEF DELPHIXE2}FormatSettings.{$ENDIF}DecimalSeparator) do
|
|
dec(I);
|
|
if Result[I] = {$IFDEF DELPHIXE2}FormatSettings.{$ENDIF}DecimalSeparator then
|
|
dec(I);
|
|
Delete(Result, I+1, EndI-I);
|
|
end;
|
|
|
|
begin
|
|
Exponent := B[0] and NoSignBit;
|
|
|
|
if (Exponent = 0) or
|
|
((Exponent <= MantissaDigits+ExpBias) and (Exponent >= ExpBias-4)) then begin
|
|
{use fixed point format for zero, digits to left of decimal point greater
|
|
than or equal to MantissaDigits, or value greater than 0.00001}
|
|
Result := StrBcd(B, 0, MantissaDigits);
|
|
RemoveTrailingZeros(Length(Result), Length(Result));
|
|
|
|
end else begin
|
|
{otherwise use scientific format}
|
|
Result := StrExpBcd(B, 0);
|
|
if Result[1] = ' ' then
|
|
Delete(Result, 1, 1);
|
|
I := Length(Result)-1;
|
|
EndI := I-3;
|
|
while (I <= Length(Result)) and (Result[I] = '0') do
|
|
Delete(Result, I, 1);
|
|
if I > Length(Result) then begin
|
|
{exponent was all zero}
|
|
Delete(Result, Length(Result)-1, 2);
|
|
I := Length(Result);
|
|
end else
|
|
{skip back over "e+"}
|
|
I := EndI;
|
|
RemoveTrailingZeros(I, EndI);
|
|
end;
|
|
end;
|
|
|
|
function FormatBcd(const Format: string; const B : TBcd): string;
|
|
label
|
|
Restart;
|
|
var
|
|
SectNum, SectOfs, I, ExpDigits, ActPlaces : Integer;
|
|
DigitCount, DecimalIndex, FirstDigit, LastDigit : Integer;
|
|
DigitPlace, DigitDelta, Exponent : Integer;
|
|
BufOfs, UBOfs : Integer;
|
|
ThousandSep, Scientific : Boolean;
|
|
Ch : Char;
|
|
Sign : Byte;
|
|
UB : TUnpBcd;
|
|
SExponent : string;//[4];
|
|
Buffer : array[0..255] of Char;
|
|
|
|
function FindSection(SectNum : Integer) : Integer;
|
|
{-Return the offset into Format for the given section number}
|
|
var
|
|
Ch : Char;
|
|
begin
|
|
if SectNum > 0 then begin
|
|
Result := 1;
|
|
while Result <= Length(Format) do begin
|
|
Ch := Format[Result];
|
|
case Ch of
|
|
{labels in ASCII order so 32-bit compiler generates better code}
|
|
'"', '''' : {skip literal}
|
|
begin
|
|
inc(Result);
|
|
while (Result <= Length(Format)) and (Format[Result] <> Ch) do
|
|
inc(Result);
|
|
if Result > Length(Format) then
|
|
break;
|
|
end;
|
|
';' : {end of section}
|
|
begin
|
|
dec(SectNum);
|
|
if SectNum = 0 then begin
|
|
inc(Result);
|
|
if (Result > Length(Format)) or (Format[Result] = ';') then
|
|
{empty section}
|
|
break
|
|
else
|
|
{found the section, return its offset}
|
|
exit;
|
|
end;
|
|
end;
|
|
end;
|
|
inc(Result);
|
|
end;
|
|
end;
|
|
|
|
{arrive here if desired section is empty, not found, or ill-formed}
|
|
if (Length(Format) = 0) or (Format[1] = ';') then
|
|
{first section is empty, use general format}
|
|
Result := 0
|
|
else
|
|
{use first section}
|
|
Result := 1;
|
|
end;
|
|
|
|
procedure ScanSection(SectOfs : Integer);
|
|
{-Initialize DigitCount, DecimalIndex, ThousandSep,
|
|
Scientific, FirstDigit, LastDigit}
|
|
var
|
|
FirstZero, LastZero : Integer;
|
|
Ch : Char;
|
|
begin
|
|
FirstZero := 32767;
|
|
LastZero := 0;
|
|
DigitCount := 0;
|
|
DecimalIndex := -1;
|
|
ThousandSep := False;
|
|
Scientific := False;
|
|
|
|
repeat
|
|
Ch := Format[SectOfs];
|
|
case Ch of
|
|
{labels in ASCII order so 32-bit compiler generates better code}
|
|
'"' :
|
|
begin
|
|
inc(SectOfs);
|
|
while (SectOfs <= Length(Format)) and (Format[SectOfs] <> Ch) do
|
|
inc(SectOfs);
|
|
if SectOfs > Length(Format) then
|
|
break;
|
|
end;
|
|
|
|
'#' :
|
|
inc(DigitCount);
|
|
|
|
'''' :
|
|
begin
|
|
inc(SectOfs);
|
|
while (SectOfs <= Length(Format)) and (Format[SectOfs] <> Ch) do
|
|
inc(SectOfs);
|
|
if SectOfs > Length(Format) then
|
|
break;
|
|
end;
|
|
|
|
'0' :
|
|
begin
|
|
if DigitCount < FirstZero then
|
|
FirstZero := DigitCount;
|
|
inc(DigitCount);
|
|
LastZero := DigitCount;
|
|
end;
|
|
|
|
';' :
|
|
break;
|
|
|
|
'E', 'e' :
|
|
if SectOfs < Length(Format) then begin
|
|
inc(SectOfs);
|
|
case Format[SectOfs] of
|
|
'-', '+' :
|
|
begin
|
|
Scientific := True;
|
|
repeat
|
|
inc(SectOfs);
|
|
until (SectOfs > Length(Format)) or (Format[SectOfs] <> '0');
|
|
end;
|
|
else
|
|
{back up and look at character after 'e' again}
|
|
dec(SectOfs);
|
|
end;
|
|
end;
|
|
else
|
|
if Ch = {$IFDEF DELPHIXE2}FormatSettings.{$ENDIF}ThousandSeparator then
|
|
ThousandSep := True;
|
|
|
|
if Ch = {$IFDEF DELPHIXE2}FormatSettings.{$ENDIF}DecimalSeparator then
|
|
if DecimalIndex = -1 then
|
|
DecimalIndex := DigitCount;
|
|
end;
|
|
|
|
inc(SectOfs);
|
|
if SectOfs > Length(Format) then
|
|
break;
|
|
until False;
|
|
|
|
if DecimalIndex = -1 then
|
|
DecimalIndex := DigitCount;
|
|
LastDigit := DecimalIndex-LastZero;
|
|
if LastDigit > 0 then
|
|
LastDigit := 0;
|
|
FirstDigit := DecimalIndex-FirstZero;
|
|
if FirstDigit < 0 then
|
|
FirstDigit := 0;
|
|
end;
|
|
|
|
procedure StoreChar(Ch : Char);
|
|
begin
|
|
if BufOfs >= Length(Buffer) then
|
|
{buffer overrun}
|
|
RaiseBcdError(stscBcdBufOverflow);
|
|
Buffer[BufOfs] := Ch;
|
|
inc(BufOfs);
|
|
end;
|
|
|
|
procedure StoreDigitReally(ReadUB : Boolean);
|
|
var
|
|
BVal : Byte;
|
|
begin
|
|
if ReadUB then begin
|
|
if UBOfs >= 0 then begin
|
|
BVal := UB[UBOfs];
|
|
dec(UBOfs);
|
|
end else if DigitPlace <= LastDigit then begin
|
|
dec(DigitPlace);
|
|
Exit;
|
|
end else
|
|
BVal := 0;
|
|
end else
|
|
BVal := 0;
|
|
|
|
if DigitPlace = 0 then begin
|
|
StoreChar({$IFDEF DELPHIXE2}FormatSettings.{$ENDIF}DecimalSeparator);
|
|
StoreChar(Char(BVal+Byte('0')));
|
|
end else begin
|
|
StoreChar(Char(BVal+Byte('0')));
|
|
if ThousandSep then
|
|
if DigitPlace > 1 then
|
|
if DigitPlace mod 3 = 1 then
|
|
StoreChar({$IFDEF DELPHIXE2}FormatSettings.{$ENDIF}ThousandSeparator);
|
|
end;
|
|
|
|
dec(DigitPlace);
|
|
end;
|
|
|
|
procedure StoreDigit;
|
|
begin
|
|
if DigitDelta = 0 then
|
|
StoreDigitReally(True)
|
|
else if DigitDelta < 0 then begin
|
|
inc(DigitDelta);
|
|
if DigitPlace <= FirstDigit then
|
|
StoreDigitReally(False)
|
|
else
|
|
dec(DigitPlace);
|
|
end else begin
|
|
repeat
|
|
StoreDigitReally(True);
|
|
dec(DigitDelta);
|
|
until DigitDelta = 0;
|
|
StoreDigitReally(True);
|
|
end;
|
|
end;
|
|
|
|
begin
|
|
Unpack(B, UB, Exponent, Sign);
|
|
|
|
Restart:
|
|
if Exponent = 0 then
|
|
{zero}
|
|
SectNum := 2
|
|
else if Sign <> 0 then
|
|
{negative}
|
|
SectNum := 1
|
|
else
|
|
{positive}
|
|
SectNum := 0;
|
|
SectOfs := FindSection(SectNum);
|
|
|
|
if SectOfs = 0 then
|
|
{general floating point format}
|
|
Result := StrGeneralBcd(B)
|
|
|
|
else begin
|
|
{scan the section once to determine critical format properties}
|
|
ScanSection(SectOfs);
|
|
|
|
if Exponent <> 0 then begin
|
|
{round based on number of displayed digits}
|
|
ActPlaces := Integer(MantissaDigits)-Exponent+ExpBias;
|
|
if DigitCount-DecimalIndex < ActPlaces then begin
|
|
RoundMantissa(UB, ActPlaces-(DigitCount-DecimalIndex));
|
|
if UB[SigDigits] <> 0 then begin
|
|
ShiftMantissaDown(UB, 1);
|
|
inc(Exponent);
|
|
end else if IsZeroMantissa(UB) then begin
|
|
{rounded to zero, possibly use a different mask}
|
|
Exponent := 0;
|
|
goto Restart;
|
|
end;
|
|
end;
|
|
end;
|
|
|
|
{apply formatting}
|
|
if Scientific then begin
|
|
DigitPlace := DecimalIndex;
|
|
DigitDelta := 0;
|
|
if Exponent = 0 then
|
|
{for input = 0, display E+00}
|
|
Exponent := ExpBias+1
|
|
end else begin
|
|
if Exponent = 0 then
|
|
{special case for input = 0}
|
|
Exponent := ExpBias
|
|
else if Exponent-ExpBias > MantissaDigits then begin
|
|
{all digits are integer part}
|
|
Result := StrGeneralBcd(B);
|
|
Exit;
|
|
end;
|
|
DigitPlace := Exponent-ExpBias;
|
|
DigitDelta := DigitPlace-DecimalIndex;
|
|
if DigitPlace < DecimalIndex then
|
|
DigitPlace := DecimalIndex;
|
|
end;
|
|
|
|
BufOfs := 0;
|
|
UBOfs := MantissaDigits;
|
|
|
|
if Sign <> 0 then
|
|
if SectOfs = 1 then
|
|
StoreChar('-');
|
|
|
|
repeat
|
|
Ch := Format[SectOfs];
|
|
case Ch of
|
|
{labels in ASCII order so 32-bit compiler generates better code}
|
|
'"' :
|
|
begin
|
|
inc(SectOfs);
|
|
while (SectOfs <= Length(Format)) and (Format[SectOfs] <> Ch) do begin
|
|
StoreChar(Format[SectOfs]);
|
|
inc(SectOfs);
|
|
end;
|
|
if SectOfs > Length(Format) then
|
|
break;
|
|
end;
|
|
'#' :
|
|
StoreDigit;
|
|
|
|
'''' :
|
|
begin
|
|
inc(SectOfs);
|
|
while (SectOfs <= Length(Format)) and (Format[SectOfs] <> Ch) do begin
|
|
StoreChar(Format[SectOfs]);
|
|
inc(SectOfs);
|
|
end;
|
|
if SectOfs > Length(Format) then
|
|
break;
|
|
end;
|
|
|
|
'0' :
|
|
StoreDigit;
|
|
|
|
';' :
|
|
break;
|
|
|
|
'E', 'e' :
|
|
if SectOfs < Length(Format) then begin
|
|
inc(SectOfs);
|
|
case Format[SectOfs] of
|
|
'-', '+' :
|
|
begin
|
|
StoreChar(Ch);
|
|
Ch := Format[SectOfs];
|
|
ExpDigits := -1;
|
|
repeat
|
|
inc(ExpDigits);
|
|
inc(SectOfs);
|
|
until (SectOfs > Length(Format)) or (Format[SectOfs] <> '0');
|
|
if ExpDigits > 4 then
|
|
ExpDigits := 4;
|
|
dec(Exponent, ExpBias+DecimalIndex);
|
|
if (Exponent >= 0) and (Ch = '+') then
|
|
StoreChar('+');
|
|
if Exponent < 0 then begin
|
|
StoreChar('-');
|
|
Exponent := Abs(Exponent);
|
|
end;
|
|
Str(Exponent:ExpDigits, SExponent);
|
|
for I := 1 to ExpDigits do
|
|
if SExponent[I] = ' ' then
|
|
StoreChar('0')
|
|
else
|
|
StoreChar(SExponent[I]);
|
|
end;
|
|
else
|
|
StoreChar(Ch);
|
|
StoreChar(Format[SectOfs]);
|
|
end;
|
|
end else
|
|
StoreChar(Ch);
|
|
else
|
|
{these characters are automatically inserted in StoreDigit};
|
|
if not (Ch in [{$IFDEF DELPHIXE2}FormatSettings.{$ENDIF}ThousandSeparator, {$IFDEF DELPHIXE2}FormatSettings.{$ENDIF}DecimalSeparator]) then
|
|
StoreChar(Ch);
|
|
end;
|
|
|
|
inc(SectOfs);
|
|
if SectOfs > Length(Format) then
|
|
break;
|
|
until False;
|
|
|
|
SetLength(Result, BufOfs);
|
|
move(Buffer[0], Result[1], BufOfs * SizeOf(Char));
|
|
end;
|
|
end;
|
|
|
|
function FracBcd(const B : TBcd) : TBcd;
|
|
begin
|
|
Result := SubBcd(B, IntBcd(B));
|
|
end;
|
|
|
|
function IsIntBcd(const B : TBcd) : Boolean;
|
|
var
|
|
{$IFNDEF UseAsm}
|
|
I : Integer;
|
|
{$ENDIF}
|
|
Exponent : Integer;
|
|
Sign : Byte;
|
|
UB : TUnpBcd;
|
|
begin
|
|
Unpack(B, UB, Exponent, Sign);
|
|
|
|
if Exponent = 0 then
|
|
{0.0 has no fractional part}
|
|
Result := True
|
|
|
|
else if Exponent <= ExpBias then
|
|
{value is less than one, but non-zero}
|
|
Result := False
|
|
|
|
else if Exponent-ExpBias >= MantissaDigits then
|
|
{entire mantissa is non-fractional}
|
|
Result := True
|
|
|
|
else begin
|
|
{see if any non-zero digits to left of decimal point}
|
|
{$IFDEF UseAsm}
|
|
asm
|
|
push edi
|
|
lea edi,UB+1
|
|
mov ecx,MantissaDigits+ExpBias
|
|
sub ecx,Exponent
|
|
xor al,al
|
|
cld
|
|
repe scasb
|
|
jne @1
|
|
inc al
|
|
@1: mov Result,al
|
|
pop edi
|
|
end;
|
|
{$ELSE}
|
|
for I := 1 to MantissaDigits-(Exponent-ExpBias) do
|
|
if UB[I] <> 0 then begin
|
|
Result := False;
|
|
Exit;
|
|
end;
|
|
Result := True;
|
|
{$ENDIF}
|
|
end;
|
|
end;
|
|
|
|
function IntBcd(const B : TBcd) : TBcd;
|
|
var
|
|
Exponent : Integer;
|
|
Sign : Byte;
|
|
UB : TUnpBcd;
|
|
begin
|
|
Unpack(B, UB, Exponent, Sign);
|
|
|
|
if Exponent <= ExpBias then
|
|
{value is less than one}
|
|
SetZero(Result)
|
|
|
|
else if Exponent-ExpBias >= MantissaDigits then
|
|
{entire mantissa is integer part}
|
|
Result := B
|
|
|
|
else begin
|
|
{clear fractional digits}
|
|
FillChar(UB[1], MantissaDigits-(Exponent-ExpBias), 0);
|
|
Pack(UB, Exponent, Sign, Result);
|
|
end;
|
|
end;
|
|
|
|
function IntPowBcd(const B : TBcd; E : LongInt) : TBcd;
|
|
var
|
|
I : LongInt;
|
|
B1 : TBcd;
|
|
begin
|
|
B1 := FastVal('1.0');
|
|
Result := B1;
|
|
for I := 1 to Abs(E) do
|
|
Result := MulBcd(Result, B);
|
|
if E < 0 then
|
|
Result := DivBcd(B1, Result);
|
|
end;
|
|
|
|
function LnBcd20(const B : TBcd) : TBcd;
|
|
const
|
|
Iterations = 9;
|
|
var
|
|
Exponent, N, K : integer;
|
|
BN, B025, B05, B1, AN, GN, Pow : TBcd;
|
|
DN1, DN : array[0..Iterations] of TBcd;
|
|
begin
|
|
{normalize input in range 0.10-0.99...}
|
|
Exponent := B[0]-ExpBias;
|
|
BN := B;
|
|
BN[0] := ExpBias;
|
|
|
|
{initialize some constants}
|
|
B025 := FastVal('0.25');
|
|
B05 := FastVal('0.5');
|
|
B1 := FastVal('1.0');
|
|
|
|
{compute initial terms of approximation}
|
|
AN := MulBcd(B05, AddBcd(BN, B1));
|
|
GN := SqrtBcd(BN);
|
|
DN1[0] := AN;
|
|
|
|
{converge on exact value}
|
|
for N := 1 to Iterations do begin
|
|
AN := MulBcd(B05, AddBcd(AN, GN));
|
|
DN[0] := AN;
|
|
Pow := B025;
|
|
for K := 1 to N do begin
|
|
DN[K] := DivBcd(SubBcd(DN[K-1], MulBcd(Pow, DN1[K-1])), SubBcd(B1, Pow));
|
|
if K = N then
|
|
break;
|
|
Pow := MulBcd(Pow, B025);
|
|
end;
|
|
|
|
if N = Iterations then
|
|
break;
|
|
GN := SqrtBcd(MulBcd(AN, GN));
|
|
DN1 := DN;
|
|
end;
|
|
Result := DivBcd(SubBcd(BN, B1), DN[Iterations]);
|
|
|
|
{correct for normalization}
|
|
Result := AddBcd(Result, MulBcd(LongBcd(Exponent), Ln10Bcd));
|
|
end;
|
|
|
|
function LnBcd10(const B : TBcd) : TBcd;
|
|
var
|
|
Exponent : Integer;
|
|
BN, B1, S, W, T, AW, BW : TBcd;
|
|
begin
|
|
{normalize input in range 0.10-0.99...}
|
|
Exponent := B[0]-ExpBias;
|
|
BN := B;
|
|
BN[0] := ExpBias;
|
|
|
|
if CmpBcd(BN, FastVal('0.316227766016837933')) < 0 then begin
|
|
{renormalize in range .316-3.16}
|
|
dec(Exponent);
|
|
inc(BN[0]);
|
|
end;
|
|
|
|
B1 := FastVal('1.0');
|
|
S := DivBcd(SubBcd(BN, B1), AddBcd(BN, B1));
|
|
W := MulBcd(S, S);
|
|
|
|
T := MulBcd(W, FastVal('-0.741010784161919239'));
|
|
T := MulBcd(W, AddBcd(T, FastVal('10.3338571514793865')));
|
|
T := MulBcd(W, AddBcd(T, FastVal('-39.273741020315625')));
|
|
T := MulBcd(W, AddBcd(T, FastVal('55.4085912041205931')));
|
|
AW := AddBcd(T, FastVal('-26.0447002405557636'));
|
|
|
|
T := MulBcd(W, AddBcd(W, FastVal('-19.3732345832854786')));
|
|
T := MulBcd(W, AddBcd(T, FastVal('107.109789115668009')));
|
|
T := MulBcd(W, AddBcd(T, FastVal('-244.303035341829542')));
|
|
T := MulBcd(W, AddBcd(T, FastVal('245.347618868489348')));
|
|
BW := AddBcd(T, FastVal('-89.9552077881033117'));
|
|
|
|
T := MulBcd(W, DivBcd(AW, BW));
|
|
T := MulBcd(S, AddBcd(T, FastVal('0.868588963806503655')));
|
|
|
|
Result := MulBcd(AddBcd(T, LongBcd(Exponent)), Ln10Bcd);
|
|
end;
|
|
|
|
function LnBcd(const B : TBcd) : TBcd;
|
|
begin
|
|
if (B[0] = 0) or (B[0] and SignBit <> 0) then
|
|
{ln of zero or a negative number}
|
|
RaiseBcdError(stscBcdBadInput);
|
|
|
|
if BcdSize <= 10 then
|
|
Result := LnBcd10(B)
|
|
else
|
|
Result := LnBcd20(B);
|
|
end;
|
|
|
|
function LongBcd(L : LongInt) : TBcd;
|
|
var
|
|
S : string;
|
|
begin
|
|
Str(L, S);
|
|
Result := ValBcd(FastValPrep(S));
|
|
end;
|
|
|
|
function MulBcd(const B1, B2 : TBcd) : TBcd;
|
|
var
|
|
E1, E2, Digits : Integer;
|
|
S1, S2 : Byte;
|
|
{$IFNDEF UseAsm}
|
|
I1, I2 : Integer;
|
|
CP, CN : Byte;
|
|
T, T1, T2 : Byte;
|
|
{$ENDIF}
|
|
PB : PUnpBcd;
|
|
UB1, UB2 : TUnpBcd;
|
|
TB : TIntBcd;
|
|
begin
|
|
if (B1[0] = 0) or (B2[0] = 0) then
|
|
SetZero(Result)
|
|
|
|
else begin
|
|
Unpack(B1, UB1, E1, S1);
|
|
Unpack(B2, UB2, E2, S2);
|
|
|
|
FillChar(TB, SizeOf(TIntBcd), 0);
|
|
|
|
{multiply and sum the mantissas}
|
|
{$IFDEF UseAsm}
|
|
asm
|
|
push ebx
|
|
push esi
|
|
push edi
|
|
lea ebx,UB1 {multiplier}
|
|
lea edi,TB {result}
|
|
mov ecx,MantissaDigits
|
|
|
|
@1: inc ebx {next multiplier digit}
|
|
inc edi {next output digit}
|
|
mov al,[ebx] {get next multiplier digit}
|
|
or al,al {if zero, nothing to do}
|
|
jz @3
|
|
|
|
push ecx {save digit counter}
|
|
mov dl,al {save multiplier}
|
|
lea esi,UB2+1 {multiplicand}
|
|
mov ecx,MantissaDigits
|
|
xor dh,dh
|
|
|
|
@2: mov al,[esi] {next multiplicand digit}
|
|
inc esi
|
|
mul dl {multiply by multiplier, overflow in ah}
|
|
aam
|
|
add al,[edi] {add previous result}
|
|
aaa
|
|
add al,dh {add previous overflow}
|
|
aaa
|
|
mov [edi],al {store temporary result}
|
|
inc edi
|
|
mov dh,ah {save overflow for next time}
|
|
dec ecx
|
|
jnz @2
|
|
mov [edi],dh {save last overflow in next digit}
|
|
sub edi,MantissaDigits {reset output offset for next multiplier}
|
|
pop ecx
|
|
|
|
@3: dec ecx {next multiplier digit}
|
|
jnz @1
|
|
pop edi
|
|
pop esi
|
|
pop ebx
|
|
end;
|
|
{$ELSE}
|
|
for I1 := 1 to MantissaDigits do begin
|
|
T1 := UB1[I1];
|
|
if T1 <> 0 then begin
|
|
CP := 0;
|
|
for I2 := 1 to MantissaDigits do begin
|
|
T := T1*UB2[I2];
|
|
T2 := T mod 10;
|
|
CN := T div 10;
|
|
inc(T2, TB[I1+I2-1]);
|
|
if T2 > 9 then begin
|
|
dec(T2, 10);
|
|
inc(CN);
|
|
end;
|
|
inc(T2, CP);
|
|
if T2 > 9 then begin
|
|
dec(T2, 10);
|
|
inc(CN);
|
|
end;
|
|
TB[I1+I2-1] := T2;
|
|
CP := CN;
|
|
end;
|
|
{store last carry in next digit of buffer}
|
|
TB[I1+MantissaDigits] := CP;
|
|
end;
|
|
end;
|
|
{$ENDIF}
|
|
|
|
{normalize the product}
|
|
if TB[2*MantissaDigits] <> 0 then begin
|
|
PB := PUnpBcd(@TB[MantissaDigits]);
|
|
Digits := 0;
|
|
end else begin
|
|
PB := PUnpBcd(@TB[MantissaDigits-1]);
|
|
Digits := -1;
|
|
end;
|
|
RoundMantissa(PB^, 0);
|
|
if PB^[SigDigits] <> 0 then begin
|
|
inc(PByte(PB));
|
|
inc(Digits);
|
|
end;
|
|
{copy back to UB2}
|
|
UB2 := PB^;
|
|
|
|
{set sign and exponent}
|
|
inc(E2, E1+Digits-ExpBias);
|
|
if E2 > NoSignBit then
|
|
{numeric overflow}
|
|
RaiseBcdError(stscBcdOverflow);
|
|
|
|
Pack(UB2, E2, S1 xor S2, Result);
|
|
end;
|
|
end;
|
|
|
|
function NegBcd(const B : TBcd) : TBcd;
|
|
begin
|
|
Result := B;
|
|
if B[0] <> 0 then
|
|
Result[0] := B[0] xor SignBit;
|
|
end;
|
|
|
|
function PowBcd(const B, E : TBcd) : TBcd;
|
|
begin
|
|
if E[0] = 0 then
|
|
{anything raised to the zero power is 1.0}
|
|
Result := FastVal('1.0')
|
|
|
|
else if IsIntBcd(E) then
|
|
{compute the power by simple multiplication}
|
|
Result := IntPowBcd(B, TruncBcd(E))
|
|
|
|
else begin
|
|
if B[0] and SignBit <> 0 then
|
|
{negative number raised to a non-integer power}
|
|
RaiseBcdError(stscBcdBadInput);
|
|
|
|
Result := ExpBcd(MulBcd(E, LnBcd(B)));
|
|
end;
|
|
end;
|
|
|
|
function RoundBcd(const B : TBcd) : LongInt;
|
|
var
|
|
Exponent, I : Integer;
|
|
Sign : Byte;
|
|
UB : TUnpBcd;
|
|
begin
|
|
Unpack(B, UB, Exponent, Sign);
|
|
|
|
Result := 0;
|
|
if Exponent <> 0 then begin
|
|
{Bcd is not zero}
|
|
I := MantissaDigits;
|
|
{add digits to left of decimal point}
|
|
while (I >= 1) and (Exponent > ExpBias) do begin
|
|
if Abs(Result) > MaxLongInt div 10 then
|
|
{numeric overflow}
|
|
RaiseBcdError(stscBcdOverflow);
|
|
Result := 10*Result;
|
|
if Sign <> 0 then begin
|
|
if Result < -MaxLongInt-1+UB[I] then
|
|
{numeric overflow}
|
|
RaiseBcdError(stscBcdOverflow);
|
|
dec(Result, UB[I]);
|
|
end else begin
|
|
if Result > MaxLongInt-UB[I] then
|
|
{numeric overflow}
|
|
RaiseBcdError(stscBcdOverflow);
|
|
inc(Result, UB[I]);
|
|
end;
|
|
dec(I);
|
|
dec(Exponent);
|
|
end;
|
|
|
|
{round last digit}
|
|
if (I >= 1) and (Exponent = ExpBias) and (UB[I] >= 5) then begin
|
|
if Sign <> 0 then begin
|
|
if Result = -MaxLongInt-1 then
|
|
{numeric overflow}
|
|
RaiseBcdError(stscBcdOverflow);
|
|
dec(Result);
|
|
end else begin
|
|
if Result = MaxLongInt then
|
|
{numeric overflow}
|
|
RaiseBcdError(stscBcdOverflow);
|
|
inc(Result);
|
|
end;
|
|
end;
|
|
|
|
end;
|
|
end;
|
|
|
|
function RoundDigitsBcd(const B : TBcd; Digits : Cardinal) : TBcd;
|
|
var
|
|
Exponent : Integer;
|
|
Sign : Byte;
|
|
UB : TUnpBcd;
|
|
begin
|
|
if B[0] = 0 then
|
|
{input is zero}
|
|
SetZero(Result)
|
|
|
|
else if Digits >= MantissaDigits then
|
|
{no actual rounding}
|
|
Result := B
|
|
|
|
else begin
|
|
Unpack(B, UB, Exponent, Sign);
|
|
|
|
{treat 0 digits same as 1}
|
|
if Digits = 0 then
|
|
Digits := 1;
|
|
|
|
RoundMantissa(UB, MantissaDigits-Digits);
|
|
if UB[SigDigits] <> 0 then begin
|
|
ShiftMantissaDown(UB, 1);
|
|
inc(Exponent);
|
|
end else if IsZeroMantissa(UB) then
|
|
Exponent := 0;
|
|
|
|
Pack(UB, Exponent, Sign, Result);
|
|
end;
|
|
end;
|
|
|
|
function RoundPlacesBcd(const B : TBcd; Places : Cardinal) : TBcd;
|
|
var
|
|
Exponent, ActPlaces : Integer;
|
|
Sign : Byte;
|
|
UB : TUnpBcd;
|
|
begin
|
|
if B[0] = 0 then
|
|
{input is zero}
|
|
SetZero(Result)
|
|
|
|
else begin
|
|
ActPlaces := Integer(MantissaDigits)-(B[0] and NoSignBit)+ExpBias;
|
|
|
|
if LongInt(Places) >= ActPlaces then
|
|
{no actual rounding}
|
|
Result := B
|
|
|
|
else begin
|
|
Unpack(B, UB, Exponent, Sign);
|
|
|
|
RoundMantissa(UB, ActPlaces-LongInt(Places));
|
|
if UB[SigDigits] <> 0 then begin
|
|
ShiftMantissaDown(UB, 1);
|
|
inc(Exponent);
|
|
end else if IsZeroMantissa(UB) then
|
|
Exponent := 0;
|
|
|
|
Pack(UB, Exponent, Sign, Result);
|
|
end;
|
|
end;
|
|
end;
|
|
|
|
function SqrtBcd(const B : TBcd) : TBcd;
|
|
var
|
|
Exponent, I, Iterations : Integer;
|
|
BN, B05 : TBcd;
|
|
begin
|
|
if B[0] and SignBit <> 0 then
|
|
{square root of a negative number}
|
|
RaiseBcdError(stscBcdBadInput);
|
|
|
|
if B[0] = 0 then begin
|
|
{done for input of zero}
|
|
SetZero(Result);
|
|
Exit;
|
|
end;
|
|
|
|
{normalize input}
|
|
Exponent := B[0]-ExpBias;
|
|
BN := B;
|
|
BN[0] := ExpBias;
|
|
|
|
{create reused constant bcd}
|
|
B05 := FastVal('0.5');
|
|
|
|
{compute initial approximation of sqrt}
|
|
Result := AddBcd(MulBcd(FastVal('0.894470'), BN),
|
|
FastVal('0.223607'));
|
|
|
|
if BcdSize <= 10 then
|
|
Iterations := 3
|
|
else
|
|
Iterations := 5;
|
|
|
|
{iterate to accurate normalized sqrt, Result = 0.5*((BN/Result)+Result)}
|
|
for I := 1 to Iterations do
|
|
Result := MulBcd(AddBcd(DivBcd(BN, Result), Result), B05);
|
|
|
|
{final correction Result = (0.5*(BN/Result-Result))+Result}
|
|
Result := AddBcd(MulBcd(SubBcd(DivBcd(BN, Result), Result), B05), Result);
|
|
|
|
if Odd(Exponent) then begin
|
|
Result := MulBcd(Result,
|
|
FastVal('0.31622776601683793319988935444327185337')); {Sqrt(0.1)}
|
|
inc(Exponent);
|
|
end;
|
|
|
|
inc(Result[0], Exponent shr 1);
|
|
end;
|
|
|
|
function StrBcd(const B : TBcd; Width, Places : Cardinal) : string;
|
|
var
|
|
I, O, Exponent, ActWidth, Digits, DecimalPos : Integer;
|
|
Sign : Byte;
|
|
UB : TUnpBcd;
|
|
|
|
procedure AddChar(Ch : Char);
|
|
begin
|
|
Result[O] := Ch;
|
|
inc(O);
|
|
end;
|
|
|
|
begin
|
|
Unpack(B, UB, Exponent, Sign);
|
|
|
|
if Exponent = 0 then begin
|
|
{ensure mantissa is set to zero}
|
|
FillChar(UB[1], SigDigits, 0);
|
|
{fool the rest of the function}
|
|
Exponent := ExpBias+1;
|
|
end;
|
|
|
|
{ActWidth is the non-padded width}
|
|
{it has at least one digit before decimal point}
|
|
ActWidth := 1;
|
|
if Exponent > ExpBias+1 then
|
|
{add other digits before decimal point}
|
|
inc(ActWidth, Exponent-ExpBias-1);
|
|
|
|
{add digits after decimal point}
|
|
inc(ActWidth, Places);
|
|
|
|
{see how many digits from mantissa to use}
|
|
if Exponent < ExpBias+1 then begin
|
|
Digits := LongInt(Places)-(ExpBias-Exponent);
|
|
if Digits < 0 then
|
|
Digits := 0;
|
|
end else
|
|
Digits := ActWidth;
|
|
|
|
if Places <> 0 then
|
|
{add one for decimal point}
|
|
inc(ActWidth);
|
|
|
|
if Sign <> 0 then
|
|
{add one for minus sign}
|
|
inc(ActWidth);
|
|
|
|
if Digits < MantissaDigits then begin
|
|
{need to round}
|
|
RoundMantissa(UB, MantissaDigits-Digits);
|
|
if UB[SigDigits] <> 0 then begin
|
|
ShiftMantissaDown(UB, 1);
|
|
inc(Exponent);
|
|
inc(Digits);
|
|
if Exponent > ExpBias+1 then
|
|
inc(ActWidth);
|
|
end;
|
|
end else
|
|
{use all mantissa digits}
|
|
Digits := MantissaDigits;
|
|
|
|
{adjust and limit Width}
|
|
if Width = 0 then
|
|
Width := ActWidth;
|
|
{$IFDEF WStrings}
|
|
if Width > 255 then
|
|
Width := 255;
|
|
{$ENDIF}
|
|
SetLength(Result, Width);
|
|
|
|
if LongInt(Width) < ActWidth then begin
|
|
{result won't fit in specified width}
|
|
Result := StringOfChar(OverflowChar, Length(Result)); //FillChar(Result[1], Length(Result) * SizeOf(Char), OverflowChar);
|
|
Exit;
|
|
end;
|
|
|
|
if LongInt(Width) > ActWidth then begin
|
|
{store leading spaces}
|
|
StrPCopy(PChar(Result), StringOfChar(' ', LongInt(Width)-ActWidth)); //FillChar(Result[1], LongInt(Width)-ActWidth, ' ');
|
|
O := LongInt(Width)-ActWidth+1;
|
|
end else
|
|
O := 1;
|
|
|
|
if Sign <> 0 then
|
|
AddChar('-');
|
|
|
|
if Exponent < ExpBias+1 then begin
|
|
{number is less than 1}
|
|
AddChar('0');
|
|
if Exponent <> 0 then begin
|
|
AddChar({$IFDEF DELPHIXE2}FormatSettings.{$ENDIF}DecimalSeparator);
|
|
for I := 1 to ExpBias-Exponent do
|
|
if O <= LongInt(Width) then
|
|
AddChar('0');
|
|
end;
|
|
end;
|
|
|
|
if Places = 0 then
|
|
{no decimal point}
|
|
DecimalPos := 0
|
|
else
|
|
DecimalPos := Width-Places;
|
|
|
|
{add digits from the mantissa}
|
|
if Digits <> 0 then begin
|
|
I := SigDigits;
|
|
if UB[I] = 0 then
|
|
dec(I);
|
|
while (Digits > 0) and (O <= LongInt(Width)) do begin
|
|
if O = DecimalPos then
|
|
AddChar({$IFDEF DELPHIXE2}FormatSettings.{$ENDIF}DecimalSeparator);
|
|
AddChar(Char(UB[I]+Byte('0')));
|
|
dec(I);
|
|
dec(Digits);
|
|
end;
|
|
end;
|
|
|
|
{add trailing zeros, if any}
|
|
while O <= LongInt(Width) do begin
|
|
if O = DecimalPos then
|
|
AddChar({$IFDEF DELPHIXE2}FormatSettings.{$ENDIF}DecimalSeparator);
|
|
if O <= LongInt(Width) then
|
|
AddChar('0');
|
|
end;
|
|
end;
|
|
|
|
function StrExpBcd(const B : TBcd; Width : Cardinal) : string;
|
|
const
|
|
MinWidth = 8;
|
|
MaxWidth = MantissaDigits+6;
|
|
var
|
|
I, O, Exponent : Integer;
|
|
Sign : Byte;
|
|
UB : TUnpBcd;
|
|
|
|
procedure AddChar(Ch : Char);
|
|
begin
|
|
Result[O] := Ch;
|
|
inc(O);
|
|
end;
|
|
|
|
begin
|
|
Unpack(B, UB, Exponent, Sign);
|
|
|
|
{validate and adjust Width}
|
|
if Width = 0 then
|
|
Width := MaxWidth
|
|
else if Width < MinWidth then
|
|
Width := MinWidth;
|
|
{$IFDEF WStrings}
|
|
if Width > 255 then
|
|
Width := 255;
|
|
{$ENDIF}
|
|
SetLength(Result, Width);
|
|
|
|
{store leading spaces}
|
|
if Width > MaxWidth then begin
|
|
StrPCopy(PChar(Result), StringOfChar(' ', Width-MaxWidth)); //FillChar(Result[1], Width-MaxWidth, ' ');
|
|
O := Width-MaxWidth+1;
|
|
end else
|
|
O := 1;
|
|
|
|
{store sign}
|
|
if Sign <> 0 then
|
|
AddChar('-')
|
|
else
|
|
AddChar(' ');
|
|
|
|
if Exponent = 0 then begin
|
|
{ensure mantissa is set to zero}
|
|
FillChar(UB[1], SigDigits, 0);
|
|
{force Exponent to display as 0}
|
|
Exponent := ExpBias+1;
|
|
|
|
end else if Width < MaxWidth then begin
|
|
{need to round}
|
|
RoundMantissa(UB, MaxWidth-Width);
|
|
if UB[SigDigits] <> 0 then begin
|
|
ShiftMantissaDown(UB, 1);
|
|
inc(Exponent);
|
|
end;
|
|
end;
|
|
|
|
{copy mantissa to string}
|
|
I := MantissaDigits;
|
|
AddChar(Char(UB[I]+Byte('0')));
|
|
dec(I);
|
|
AddChar({$IFDEF DELPHIXE2}FormatSettings.{$ENDIF}DecimalSeparator);
|
|
while O < LongInt(Width-3) do begin
|
|
AddChar(Char(UB[I]+Byte('0')));
|
|
dec(I);
|
|
end;
|
|
|
|
{store exponent}
|
|
AddChar('E');
|
|
if Exponent < ExpBias+1 then begin
|
|
AddChar('-');
|
|
Exponent := ExpBias+1-Exponent;
|
|
end else begin
|
|
AddChar('+');
|
|
dec(Exponent, ExpBias+1);
|
|
end;
|
|
AddChar(Char((Exponent div 10)+Byte('0')));
|
|
AddChar(Char((Exponent mod 10)+Byte('0')));
|
|
end;
|
|
|
|
function SubBcd(const B1, B2 : TBcd) : TBcd;
|
|
begin
|
|
Result := AddBcd(B1, NegBcd(B2));
|
|
end;
|
|
|
|
function TruncBcd(const B : TBcd) : LongInt;
|
|
var
|
|
Exponent, I : Integer;
|
|
Sign : Byte;
|
|
UB : TUnpBcd;
|
|
begin
|
|
Unpack(B, UB, Exponent, Sign);
|
|
|
|
Result := 0;
|
|
if Exponent <> 0 then begin
|
|
{Bcd is not zero}
|
|
I := MantissaDigits;
|
|
{Add digits to left of decimal point}
|
|
while (I >= 1) and (Exponent > ExpBias) do begin
|
|
if Abs(Result) > MaxLongInt div 10 then
|
|
{numeric overflow}
|
|
RaiseBcdError(stscBcdOverflow);
|
|
Result := 10*Result;
|
|
if Sign <> 0 then begin
|
|
if Result < -MaxLongInt-1+UB[I] then
|
|
{numeric overflow}
|
|
RaiseBcdError(stscBcdOverflow);
|
|
dec(Result, UB[I]);
|
|
end else begin
|
|
if Result > MaxLongInt-UB[I] then
|
|
{numeric overflow}
|
|
RaiseBcdError(stscBcdOverflow);
|
|
inc(Result, UB[I]);
|
|
end;
|
|
|
|
dec(I);
|
|
dec(Exponent);
|
|
end;
|
|
end;
|
|
end;
|
|
|
|
function ValBcd(const S : string) : TBcd;
|
|
var
|
|
I, O, Digits, Exponent : Integer;
|
|
Sign : Byte;
|
|
ExpSigned, Rounded : Boolean;
|
|
UB : TUnpBcd;
|
|
|
|
function SChar(I : Integer) : Char;
|
|
begin
|
|
if I > Length(S) then
|
|
Result := #0
|
|
else
|
|
Result := S[I];
|
|
end;
|
|
|
|
function IsDigit(Ch : Char) : Boolean;
|
|
begin
|
|
Result := (Ch >= '0') and (Ch <= '9');
|
|
end;
|
|
|
|
procedure AddDigit(Ch : Char);
|
|
begin
|
|
if O > 0 then begin
|
|
UB[O] := Byte(Ch)-Byte('0');
|
|
dec(O);
|
|
end else if not Rounded then begin
|
|
{got more significant digits than will fit, must round}
|
|
Rounded := True;
|
|
UB[0] := Byte(Ch)-Byte('0');
|
|
RoundMantissa(UB, 0);
|
|
if UB[SigDigits] <> 0 then begin
|
|
ShiftMantissaDown(UB, 1);
|
|
inc(Digits);
|
|
end;
|
|
end;
|
|
end;
|
|
|
|
begin
|
|
FillChar(UB, SizeOf(TUnpBcd), 0);
|
|
|
|
I := 1; {input position}
|
|
O := MantissaDigits; {output position}
|
|
Exponent := 0;
|
|
Sign := 0;
|
|
Rounded := False;
|
|
|
|
{digits before dot, or negative digits after dot in case of 0.0000n}
|
|
Digits := 0;
|
|
|
|
{skip leading spaces}
|
|
while SChar(I) = ' ' do
|
|
inc(I);
|
|
|
|
{get sign if any}
|
|
case SChar(I) of
|
|
'+' :
|
|
{skip +}
|
|
inc(I);
|
|
'-' :
|
|
begin
|
|
{negative number}
|
|
Sign := SignBit;
|
|
inc(I);
|
|
end;
|
|
end;
|
|
|
|
{handle first digit}
|
|
if SChar(I) <> {$IFDEF DELPHIXE2}FormatSettings.{$ENDIF}DecimalSeparator then begin
|
|
if not IsDigit(SChar(I)) then
|
|
RaiseBcdError(stscBcdBadFormat);
|
|
|
|
{skip leading zeros}
|
|
while SChar(I) = '0' do
|
|
inc(I);
|
|
|
|
{add significant digits}
|
|
while IsDigit(SChar(I)) do begin
|
|
AddDigit(SChar(I));
|
|
inc(I);
|
|
inc(Digits);
|
|
end;
|
|
end;
|
|
|
|
{handle dot}
|
|
if SChar(I) = {$IFDEF DELPHIXE2}FormatSettings.{$ENDIF}DecimalSeparator then begin
|
|
inc(I);
|
|
if Digits = 0 then begin
|
|
{no digits before dot, skip zeros after dot}
|
|
while SChar(I) = '0' do begin
|
|
inc(I);
|
|
dec(Digits);
|
|
end;
|
|
end;
|
|
|
|
{add significant digits}
|
|
while IsDigit(SChar(I)) do begin
|
|
AddDigit(SChar(I));
|
|
inc(I);
|
|
end;
|
|
end;
|
|
|
|
{handle exponent}
|
|
case SChar(I) of
|
|
'e', 'E' :
|
|
begin
|
|
inc(I);
|
|
ExpSigned := False;
|
|
case SChar(I) of
|
|
'+' :
|
|
{skip +}
|
|
inc(I);
|
|
'-' :
|
|
begin
|
|
{negative exponent}
|
|
ExpSigned := True;
|
|
inc(I);
|
|
end;
|
|
end;
|
|
if not IsDigit(SChar(I)) then
|
|
{digit must follow 'e', invalid format}
|
|
RaiseBcdError(stscBcdBadFormat);
|
|
|
|
{collect exponent value}
|
|
while IsDigit(SChar(I)) do begin
|
|
Exponent := 10*Exponent+Byte(SChar(I))-Byte('0');
|
|
inc(I);
|
|
end;
|
|
|
|
if ExpSigned then
|
|
Exponent := -Exponent;
|
|
end;
|
|
end;
|
|
|
|
if SChar(I) <> #0 then
|
|
{should be end of string, otherwise invalid format}
|
|
RaiseBcdError(stscBcdBadFormat);
|
|
|
|
{compute final exponent}
|
|
Inc(Exponent, Digits+ExpBias);
|
|
|
|
if Exponent > NoSignBit then
|
|
{numeric overflow}
|
|
RaiseBcdError(stscBcdOverflow);
|
|
|
|
if (Exponent <= 0) or IsZeroMantissa(UB) then
|
|
{return zero}
|
|
Exponent := 0;
|
|
|
|
{Return packed result}
|
|
Pack(UB, Exponent, Sign, Result);
|
|
end;
|
|
|
|
function FloatFormBcd(const Mask : string; B : TBCD;
|
|
const LtCurr, RtCurr : string;
|
|
Sep, DecPt : Char) : string;
|
|
{-Returns a formatted string with digits from B merged into the Mask}
|
|
const
|
|
Blank = 0;
|
|
Asterisk = 1;
|
|
Zero = 2;
|
|
const
|
|
FormChars : string = '#@*$-+,.';
|
|
PlusArray : array[Boolean] of Char = ('+', '-');
|
|
MinusArray : array[Boolean] of Char = (' ', '-');
|
|
FillArray : array[Blank..Zero] of Char = (' ', '*', '0');
|
|
var
|
|
ExpB : Byte absolute B; {B's sign/exponent byte}
|
|
S : string; {temporary string}
|
|
Filler : integer; {char for unused digit slots: ' ', '*', '0'}
|
|
WontFit, {true if number won't fit in the mask}
|
|
AddMinus, {true if minus sign needs to be added}
|
|
Dollar, {true if floating dollar sign is desired}
|
|
Negative : Boolean; {true if B is negative}
|
|
StartF, {starting point of the numeric field}
|
|
EndF : Word; {end of numeric field}
|
|
RtChars, {# of chars to add to right}
|
|
LtChars, {# of chars to add to left}
|
|
DotPos, {position of '.' in Mask}
|
|
Digits, {total # of digits}
|
|
Places, {# of digits after the '.'}
|
|
Blanks, {# of blanks returned by StrBcd}
|
|
FirstDigit, {pos. of first digit returned by Str}
|
|
Extras, {# of extra digits needed for special cases}
|
|
DigitPtr : Byte; {pointer into temporary string of digits}
|
|
I : Word;
|
|
label
|
|
EndFound,
|
|
RedoCase,
|
|
Done;
|
|
begin
|
|
Result := Mask;
|
|
|
|
RtChars := 0;
|
|
LtChars := 0;
|
|
|
|
{check for empty string}
|
|
if Length(Mask) = 0 then
|
|
goto Done;
|
|
|
|
{initialize variables}
|
|
Filler := Blank;
|
|
DotPos := 0;
|
|
Places := 0;
|
|
Digits := 0;
|
|
Dollar := False;
|
|
AddMinus := True;
|
|
StartF := 1;
|
|
|
|
{store the sign of the real and make it positive}
|
|
Negative := (ExpB and $80) <> 0;
|
|
ExpB := ExpB and $7F;
|
|
|
|
{strip and count c's}
|
|
for I := Length(Result) downto 1 do begin
|
|
if Result[I] = 'C' then begin
|
|
Inc(RtChars);
|
|
System.Delete(Result, I, 1);
|
|
end else if Result[I] = 'c' then begin
|
|
Inc(LtChars);
|
|
System.Delete(Result, I, 1);
|
|
end;
|
|
end;
|
|
|
|
{find the starting point for the field}
|
|
while (StartF <= Length(Result)) and
|
|
not CharExistsL(FormChars, Result[StartF]) do
|
|
Inc(StartF);
|
|
if StartF > Length(Mask) then
|
|
goto Done;
|
|
|
|
{find the end point for the field}
|
|
EndF := StartF;
|
|
for I := StartF to Length(Result) do
|
|
begin
|
|
case Result[I] of
|
|
'*' : Filler := Asterisk;
|
|
'@' : Filler := Zero;
|
|
'$' : Dollar := True;
|
|
'-',
|
|
'+' : AddMinus := False;
|
|
'#' : {ignore} ;
|
|
',',
|
|
'.' : DotPos := I;
|
|
else
|
|
goto EndFound;
|
|
end;
|
|
Inc(EndF);
|
|
end;
|
|
|
|
{if we get here at all, the last char was part of the field}
|
|
Inc(EndF);
|
|
|
|
EndFound:
|
|
{if we jumped to here instead, it wasn't}
|
|
Dec(EndF);
|
|
|
|
{disallow Dollar if Filler is Zero}
|
|
if Filler = Zero then
|
|
Dollar := False;
|
|
|
|
{we need an extra slot if Dollar is True}
|
|
Extras := Ord(Dollar);
|
|
|
|
{get total # of digits and # after the decimal point}
|
|
if EndF > Length(Result) then {!!.02}
|
|
EndF := Length(Result); {!!.02}
|
|
|
|
for I := StartF to EndF do
|
|
case Result[I] of
|
|
'#', '@',
|
|
'*', '$' :
|
|
begin
|
|
Inc(Digits);
|
|
if (I > DotPos) and (DotPos <> 0) then
|
|
Inc(Places);
|
|
end;
|
|
end;
|
|
|
|
{need one more 'digit' if Places > 0}
|
|
Inc(Digits, Ord(Places > 0));
|
|
|
|
{also need an extra blank if (1) Negative is true, and (2) Filler is Blank,
|
|
and (3) AddMinus is true}
|
|
if Negative and AddMinus and (Filler = Blank) then
|
|
Inc(Extras)
|
|
else
|
|
AddMinus := False;
|
|
|
|
{translate the BCD to a string}
|
|
S := StrBCD(B, Digits, Places);
|
|
|
|
|
|
{count number of initial blanks}
|
|
Blanks := 1;
|
|
while S[Blanks] = ' ' do
|
|
Inc(Blanks);
|
|
FirstDigit := Blanks;
|
|
Dec(Blanks);
|
|
|
|
{the number won't fit if (a) S is longer than Digits or (b) the number of
|
|
initial blanks is less than Extras}
|
|
WontFit := (Length(S) > Digits) or (Blanks < Extras);
|
|
|
|
{if it won't fit, fill decimal slots with '*'}
|
|
if WontFit then begin
|
|
for I := StartF to EndF do
|
|
case Result[I] of
|
|
'#', '@', '*', '$' : Result[I] := '*';
|
|
'+' : Result[I] := PlusArray[Negative];
|
|
'-' : Result[I] := MinusArray[Negative];
|
|
end;
|
|
goto Done;
|
|
end;
|
|
|
|
{fill initial blanks in S with Filler; insert floating dollar sign}
|
|
if Blanks > 0 then begin
|
|
StrPCopy(PChar(S), StringOfChar(FillArray[Filler], Blanks)); // FillChar(S[1], Blanks, FillArray[Filler]);
|
|
|
|
{put floating dollar sign in last blank slot if necessary}
|
|
if Dollar then begin
|
|
S[Blanks] := LtCurr[1];
|
|
Dec(Blanks);
|
|
end;
|
|
|
|
{insert a minus sign if necessary}
|
|
if AddMinus then
|
|
S[Blanks] := '-';
|
|
end;
|
|
|
|
{put in the digits / signs}
|
|
DigitPtr := Length(S);
|
|
for I := EndF downto StartF do begin
|
|
RedoCase:
|
|
case Result[I] of
|
|
'#', '@', '*', '$' :
|
|
if DigitPtr <> 0 then begin
|
|
Result[I] := S[DigitPtr];
|
|
Dec(DigitPtr);
|
|
if (DigitPtr <> 0) and (S[DigitPtr] = '.') then {!!.02}
|
|
// if (S[DigitPtr] = '.') and (DigitPtr <> 0) then
|
|
Dec(DigitPtr);
|
|
end
|
|
else
|
|
Result[I] := FillArray[Filler];
|
|
',' : begin
|
|
Result[I] := Sep;
|
|
if (I < DotPos) and (DigitPtr < FirstDigit) then begin
|
|
Result[I] := '#';
|
|
goto RedoCase;
|
|
end;
|
|
end;
|
|
'.' : begin
|
|
Result[I] := DecPt;
|
|
if (I < DotPos) and (DigitPtr < FirstDigit) then begin
|
|
Result[I] := '#';
|
|
goto RedoCase;
|
|
end;
|
|
end;
|
|
'+' : Result[I] := PlusArray[Negative];
|
|
'-' : Result[I] := MinusArray[Negative];
|
|
end;
|
|
end;
|
|
|
|
Done:
|
|
if RtChars > 0 then begin
|
|
S := RtCurr;
|
|
if Length(S) > RtChars then
|
|
SetLength(S, RtChars)
|
|
else
|
|
S := LeftPadL(S, RtChars);
|
|
Result := Result + S;
|
|
end;
|
|
|
|
if LtChars > 0 then begin
|
|
S := LtCurr;
|
|
if Length(S) > LtChars then
|
|
SetLength(S, LtChars)
|
|
else
|
|
S := PadL(S, LtChars);
|
|
Result := S + Result;
|
|
end;
|
|
|
|
end;
|
|
|
|
{routines to support C++Builder}
|
|
{$IFDEF CBuilder}
|
|
procedure AddBcd_C(const B1, B2 : TBcd; var Res : TBcd);
|
|
begin
|
|
Res := AddBcd(B1, B2);
|
|
end;
|
|
|
|
procedure SubBcd_C(const B1, B2 : TBcd; var Res : TBcd);
|
|
begin
|
|
Res := SubBcd(B1, B2);
|
|
end;
|
|
|
|
procedure MulBcd_C(const B1, B2 : TBcd; var Res : TBcd);
|
|
begin
|
|
Res := MulBcd(B1, B2);
|
|
end;
|
|
|
|
procedure DivBcd_C(const B1, B2 : TBcd; var Res : TBcd);
|
|
begin
|
|
Res := DivBcd(B1, B2);
|
|
end;
|
|
|
|
procedure ModBcd_C(const B1, B2 : TBcd; var Res : TBcd);
|
|
begin
|
|
Res := ModBcd(B1, B2);
|
|
end;
|
|
|
|
procedure NegBcd_C(const B : TBcd; var Res : TBcd);
|
|
begin
|
|
Res := NegBcd(B);
|
|
end;
|
|
|
|
procedure AbsBcd_C(const B : TBcd; var Res : TBcd);
|
|
begin
|
|
Res := AbsBcd(B);
|
|
end;
|
|
|
|
procedure FracBcd_C(const B : TBcd; var Res : TBcd);
|
|
begin
|
|
Res := FracBcd(B);
|
|
end;
|
|
|
|
procedure IntBcd_C(const B : TBcd; var Res : TBcd);
|
|
begin
|
|
Res := IntBcd(B);
|
|
end;
|
|
|
|
procedure RoundDigitsBcd_C(const B : TBcd; Digits : Cardinal; var Res : TBcd);
|
|
begin
|
|
Res := RoundDigitsBcd(B, Digits);
|
|
end;
|
|
|
|
procedure RoundPlacesBcd_C(const B : TBcd; Places : Cardinal; var Res : TBcd);
|
|
begin
|
|
Res := RoundPlacesBcd(B, Places);
|
|
end;
|
|
|
|
procedure ValBcd_C(const S : string; var Res : TBcd);
|
|
begin
|
|
Res := ValBcd(S);
|
|
end;
|
|
|
|
procedure LongBcd_C(L : LongInt; var Res : TBcd);
|
|
begin
|
|
Res := LongBcd(L);
|
|
end;
|
|
|
|
procedure ExtBcd_C(E : Extended; var Res : TBcd);
|
|
begin
|
|
Res := ExtBcd(E);
|
|
end;
|
|
|
|
procedure ExpBcd_C(const B : TBcd; var Res : TBcd);
|
|
begin
|
|
Res := ExpBcd(B);
|
|
end;
|
|
|
|
procedure LnBcd_C(const B : TBcd; var Res : TBcd);
|
|
begin
|
|
Res := LnBcd(B);
|
|
end;
|
|
|
|
procedure IntPowBcd_C(const B : TBcd; E : LongInt; var Res : TBcd);
|
|
begin
|
|
Res := IntPowBcd(B, E);
|
|
end;
|
|
|
|
procedure PowBcd_C(const B, E : TBcd; var Res : TBcd);
|
|
begin
|
|
Res := PowBcd(B, E);
|
|
end;
|
|
|
|
procedure SqrtBcd_C(const B : TBcd; var Res : TBcd);
|
|
begin
|
|
Res := SqrtBcd(B);
|
|
end;
|
|
{$ENDIF}
|
|
|
|
initialization
|
|
ZeroBcd := FastVal('0.0');
|
|
MinBcd := ValBcd('-9'+{$IFDEF DELPHIXE2}FormatSettings.{$ENDIF}DecimalSeparator+'9E+63');
|
|
BadBcd := MinBcd;
|
|
MaxBcd := ValBcd('9'+{$IFDEF DELPHIXE2}FormatSettings.{$ENDIF}DecimalSeparator+'9E+63');
|
|
PiBcd := FastVal('3.1415926535897932384626433832795028841971');
|
|
Ln10Bcd := FastVal('2.3025850929940456840179914546843642076011');
|
|
eBcd := FastVal('2.7182818284590452353602874713526624977572');
|
|
end.
|