
git-svn-id: https://svn.code.sf.net/p/lazarus-ccr/svn@2366 8e941d3f-bd1b-0410-a28a-d453659cc2b4
302 lines
13 KiB
ObjectPascal
302 lines
13 KiB
ObjectPascal
//------------------------------------------------------------------------------
|
|
{
|
|
IMPLEMENTATION BY 2000-2001 Alexander Weidauer for the Delphi/V Code.
|
|
|
|
This software is only IMPLEMENTED by Alexander Weidauer.
|
|
This code is based on the work of Nicholas Yue CONREC.C
|
|
and the Paul D. Bourke CONREC.F routine.
|
|
|
|
The authors hereby grant permission to use, copy, and distribute this
|
|
software and its documentation for any purpose, provided that existing
|
|
copyright notices are retained in all copies and that this notice is included
|
|
verbatim in any distributions. Additionally, the authors grant permission to
|
|
modify this software and its documentation for any purpose, provided that
|
|
such modifications are not distributed without the explicit consent of the
|
|
authors and that existing copyright notices are retained in all copies. Some
|
|
of the algorithms implemented by this software are patented, observe all
|
|
applicable patent law.
|
|
|
|
IN NO EVENT SHALL THE AUTHORS OR DISTRIBUTORS BE LIABLE TO ANY PARTY FOR
|
|
DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT
|
|
OF THE USE OF THIS SOFTWARE, ITS DOCUMENTATION, OR ANY DERIVATIVES THEREOF,
|
|
EVEN IF THE AUTHORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
THE AUTHORS AND DISTRIBUTORS SPECIFICALLY DISCLAIM ANY WARRANTIES, INCLUDING,
|
|
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
|
|
PARTICULAR PURPOSE, AND NON-INFRINGEMENT. THIS SOFTWARE IS PROVIDED ON AN
|
|
"AS IS" BASIS, AND THE AUTHORS AND DISTRIBUTORS HAVE NO OBLIGATION TO PROVIDE
|
|
MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
|
|
}
|
|
//------------------------------------------------------------------------------
|
|
|
|
|
|
//==============================================================================
|
|
//
|
|
// CONREC is a contouring subroutine for rectangularily spaced data.
|
|
//
|
|
// It emits calls to a line drawing subroutine supplied by the user
|
|
// which draws a contour map corresponding to float (4 byte) on a randomly
|
|
// spaced rectangular grid. The coordinates emitted are in the same
|
|
// units given in the x[] and y[] arrays as sample:
|
|
//
|
|
// x[0]:=0; x[1]:=1;..x[dimx-1]:=dimx-1; and
|
|
// y[0]:=0; y[1]:=1;..y[dimy-1]:=dimy-1;.
|
|
//
|
|
//
|
|
// Any number of contour levels may be specified but they must be
|
|
// in order of increasing value as sample:
|
|
// z[0]:=-100; z[1]:=-50;..z[dimh-1]:=100;
|
|
// and the number of contur levels must be given as sample dimh.
|
|
//
|
|
//
|
|
// As this code is ported as from FORTRAN-77, ANSI C, Delphi and the
|
|
// procedural is of course a PASCALIAN
|
|
// please be very careful of the various indices like ilb,iub,jlb and jub,
|
|
// remeber that C/C++ and for dynamic arrays in delphi indices
|
|
// starts from zero (0)
|
|
//
|
|
//==============================================================================
|
|
unit CoreConRec;
|
|
|
|
interface
|
|
|
|
uses
|
|
SysUtils, Math;
|
|
|
|
//------------------------------------------------------------------------------
|
|
type
|
|
TMatrix = array of array of Double;
|
|
TVector = array of Double;
|
|
TVectorL4D = array [0..4] of Double;
|
|
TVectorL4I = array [0..4] of Integer;
|
|
TCastArray = array [0..2,0..2,0..2] of Integer;
|
|
|
|
procedure Conrec(D: TMatrix ; // 2D - Data field
|
|
ilb,iub, // west - east ilb lower bound
|
|
// iub upper bound
|
|
jlb,jub : Integer; // north - south jlb lower bound
|
|
// jub upper bound
|
|
x : TVector; // coord. vector west - east
|
|
y : TVector; // coord. vector north - south
|
|
nc: Integer; // nc number of cut levels
|
|
z : TVector); // values of cut levels
|
|
|
|
type
|
|
TContourLineDrawingProc = procedure(z,x1,y1,x2,y2: Double) of object;
|
|
|
|
var
|
|
ContourLineDrawingProc: TContourLineDrawingProc;
|
|
|
|
implementation
|
|
|
|
procedure Conrec(D: TMatrix ; // 2D - Data field
|
|
ilb,iub, // west - east ilb lower bound
|
|
// iub upper bound
|
|
jlb,jub : Integer; // north - south jlb lower bound
|
|
// jub upper bound
|
|
x : TVector; // coord. vector west - east
|
|
y : TVector; // coord. vector north - south
|
|
nc: Integer; // nc number of cut levels
|
|
z : TVector); // values of cut levels
|
|
const
|
|
im : array [0..3] of Integer = (0,1,1,0); // coord. cast array west - east
|
|
jm : array [0..3] of Integer = (0,0,1,1); // coord. cast array north - south
|
|
var
|
|
m1,m2,m3,deside:Integer;
|
|
dmin,dmax,x1,x2,y1,y2:Double;
|
|
lcnt,i,j,k,m:Integer;
|
|
casttab : TCastArray;
|
|
h : TVectorL4D;
|
|
sh : TVectorL4I;
|
|
xh,yh : TVectorL4D;
|
|
temp1,temp2:Double ;
|
|
r:Byte;
|
|
|
|
// ------- service xsec west east lin. interpol -------------------------------
|
|
function xsec(p1,p2:Integer):Double;
|
|
Begin
|
|
result:=(h[p2]*xh[p1]-h[p1]*xh[p2])/(h[p2]-h[p1]);
|
|
End;
|
|
|
|
//------- service ysec north south lin interpol -------------------------------
|
|
Function ysec(p1,p2:Integer):Double;
|
|
Begin
|
|
result := (h[p2]*yh[p1]-h[p1]*yh[p2])/(h[p2]-h[p1]);
|
|
End;
|
|
|
|
begin
|
|
// set casting array
|
|
casttab[0,0,0]:=0;casttab[0,0,1]:=0;casttab[0,0,2]:=8;
|
|
casttab[0,1,0]:=0;casttab[0,1,1]:=2;casttab[0,1,2]:=5;
|
|
casttab[0,2,0]:=7;casttab[0,2,1]:=6;casttab[0,2,2]:=9;
|
|
|
|
casttab[1,0,0]:=0;casttab[1,0,1]:=3;casttab[1,0,2]:=4;
|
|
casttab[1,1,0]:=1;casttab[1,1,1]:=3;casttab[1,1,2]:=1;
|
|
casttab[1,2,0]:=4;casttab[1,2,1]:=3;casttab[1,2,2]:=0;
|
|
|
|
casttab[2,0,0]:=9;casttab[2,0,1]:=6;casttab[2,0,2]:=7;
|
|
casttab[2,1,0]:=5;casttab[2,1,1]:=2;casttab[2,1,2]:=0;
|
|
casttab[2,2,0]:=8;casttab[2,2,1]:=0;casttab[2,2,2]:=0;
|
|
|
|
// set line counter
|
|
lcnt:=0;
|
|
//-----------------------------------------------------------------------------
|
|
For j:=jub-1 DownTo jlb Do // over all north - south and +For j
|
|
begin
|
|
For i:=ilb To iub-1 Do // east - west coordinates of datafield +For i
|
|
begin
|
|
// set casting bounds from array
|
|
temp1 := min(D[i , j],D[i ,j+1]);
|
|
temp2 := min(D[i+1, j],D[i+1,j+1]);
|
|
dmin := min(temp1, temp2);
|
|
temp1 := max(D[i , j],D[i ,j+1]);
|
|
temp2 := max(D[i+1, j],D[i+1,j+1]);
|
|
dmax := max(temp1, temp2);
|
|
If (dmax>=z[0]) And (dmin<=z[nc-1]) Then Begin // ask horzintal cut avail. +If dmin && dmax in z[0] .. z[nc-1]
|
|
For k:=0 To nc-1 Do Begin // over all possible cuts ---- +For k
|
|
If (z[k]>dmin) And (z[k]<=dmax) Then Begin // aks for cut intervall ----- +If z[k] in dmin .. dmax
|
|
//-----------------------------------------------------------------------
|
|
For m:=4 Downto 0 Do Begin // deteriening the cut casts and set the ---- +For m
|
|
If (m>0) Then Begin // height and coordinate vectors
|
|
h[m] := D[i+im[m-1],j+jm[m-1]]-z[k];
|
|
xh[m] := x[i+im[m-1]];
|
|
yh[m] := y[j+jm[m-1]];
|
|
End Else Begin
|
|
h[0] := (h[1]+h[2]+h[3]+h[4])/4;
|
|
xh[0] := (x[i]+x[i+1])/2;
|
|
yh[0] := (y[j]+y[j+1])/2;
|
|
End; // If m>0 then Else
|
|
If h[m]>0 Then sh[m]:=1
|
|
Else If h[m]<0 Then sh[m]:=-1
|
|
Else sh[m]:=0;
|
|
End; // ----------------------------------------------------------------- -For m
|
|
|
|
//-----------------------------------------------------------------------
|
|
For m:=1 to 4 Do Begin // set directional casttable
|
|
//
|
|
// Note: at this stage the relative heights of the corners and the
|
|
// centre are in the h array, and the corresponding coordinates are
|
|
// in the xh and yh arrays. The centre of the box is indexed by 0
|
|
// and the 4 corners by 1 to 4 as shown below.
|
|
// Each triangle is then indexed by the parameter m, and the 3
|
|
// vertices of each triangle are indexed by parameters m1,m2,and
|
|
// m3.
|
|
// It is assumed that the centre of the box is always vertex 2
|
|
// though this isimportant only when all 3 vertices lie exactly on
|
|
// the same contour level, in which case only the side of the box
|
|
// is drawn.
|
|
//
|
|
// AS ANY BODY NOWS IST FROM THE ORIGINAL
|
|
//
|
|
// vertex 4 +-------------------+ vertex 3
|
|
// | \ / |
|
|
// | \ m-3 / |
|
|
// | \ / |
|
|
// | \ / |
|
|
// | m=2 X m=2 | the centre is vertex 0
|
|
// | / \ |
|
|
// | / \ |
|
|
// | / m=1 \ |
|
|
// | / \ |
|
|
// vertex 1 +-------------------+ vertex 2
|
|
//
|
|
//
|
|
//
|
|
// Scan each triangle in the box
|
|
//
|
|
m1 := m; m2 := 0;
|
|
If NOT(m=4) Then m3 := m+1 Else m3 :=1;
|
|
deside := casttab[sh[m1]+1 ,sh[m2]+1, sh[m3]+1];
|
|
if not(deside=0) then // ask is there a desition available -------- +If If NOT(deside=0)
|
|
begin
|
|
Case deside Of // ------- determin the by desided cast cuts ------------ +Case deside;
|
|
1: Begin x1:=xh[m1]; y1:=yh[m1]; x2:=xh[m2]; y2:=yh[m2]; End;
|
|
2: Begin x1:=xh[m2]; y1:=yh[m2]; x2:=xh[m3]; y2:=yh[m3]; End;
|
|
3: Begin x1:=xh[m3]; y1:=yh[m3]; x2:=xh[m1]; y2:=yh[m1]; End;
|
|
4: Begin x1:=xh[m1]; y1:=yh[m1]; x2:=xsec(m2,m3); y2:=ysec(m2,m3);
|
|
End;
|
|
5: Begin x1:=xh[m2]; y1:=yh[m2]; x2:=xsec(m3,m1); y2:=ysec(m3,m1);
|
|
End;
|
|
6: Begin x1:=xh[m3]; y1:=yh[m3]; x2:=xsec(m1,m2); y2:=ysec(m1,m2);
|
|
End;
|
|
7: Begin x1:=xsec(m1,m2); y1:=ysec(m1,m2);
|
|
x2:=xsec(m2,m3); y2:=ysec(m2,m3);
|
|
End;
|
|
8: Begin x1:=xsec(m2,m3); y1:=ysec(m2,m3);
|
|
x2:=xsec(m3,m1); y2:=ysec(m3,m1);
|
|
End;
|
|
9: Begin x1:=xsec(m3,m1); y1:=ysec(m3,m1);
|
|
x2:=xsec(m1,m2); y2:=ysec(m1,m2);
|
|
End;
|
|
End; // --------------------------------------------------------------- -Case deside;
|
|
|
|
// ----------Do someting with the results ----------------------------
|
|
|
|
// Writeln(Format('%2.2f %2.2f %2.2f %2.2f %2.2f',
|
|
// [z[k],x1,y1,x2,y2]));
|
|
ContourLineDrawingProc(z[k],x1,y1,x2,y2);
|
|
|
|
// -------------------------------------------------------------------
|
|
end; // ----------------------------------------------------------------- -If Not(deside=0)
|
|
end; // ------------------------------------------------------------------ -For m
|
|
end; // ------------------------------------------------------------------- -If z[k] in dmin .. dmax
|
|
end; // -------------------------------------------------------------------- -For k
|
|
end; // --------------------------------------------------------------------- -If dmin && dmax in z[0] .. z[nc-1]
|
|
end; // ---------------------------------------------------------------------- -For i
|
|
end; // ----------------------------------------------------------------------- -For j
|
|
end;
|
|
|
|
(*
|
|
//------------------------------------------------------------------------------
|
|
// TestProcedure
|
|
//------------------------------------------------------------------------------
|
|
|
|
Const dimx = 100; // dimension west - east
|
|
dimy = 100; // dimenstion north west
|
|
dimh = 10; // dimension for contour levels
|
|
//------------------------------------------------------------------------------
|
|
Var
|
|
Mat:TMatrix; // 2D - Datafield
|
|
scx:TVector; // scaling vector west - east
|
|
scy:TVector; // scaling vector north - west
|
|
hgt:TVector; // vector for the countur levels
|
|
i,j:Integer; // adress indexes
|
|
x,y:Double; // coord. values
|
|
mi,ma:Double; // for minimum & maximum
|
|
//------------------------------------------------------------------------------
|
|
|
|
Begin
|
|
setlength(scx,dimx); // create dynamicly the vectors and datafield
|
|
setlength(scy,dimy);
|
|
setlength(hgt,dimh);
|
|
setlength(mat,dimx);
|
|
For i:=0 to dimx-1 Do Setlength(mat[i],dimy);
|
|
|
|
For i:=0 to dimx-1 Do scx[i]:= i * 10; // set scaling vector west - east
|
|
For i:=0 to dimy-1 Do scy[i]:= i * 10; // set scaling vector north - south
|
|
|
|
For i:=0 to dimx-1 Do // ----------------------------------- set 2d data field
|
|
For j:=0 to dimy-1 Do Begin
|
|
x:=i-dimx/2;
|
|
y:=j-dimy/2;
|
|
mat[i,j]:= (sin(x/dimx*4*pi) * cos(y/dimy*4*pi)) +
|
|
(sin(x/dimx*2*pi) * cos(y/dimy*2*pi)) +
|
|
(sin(x/dimx*1*pi) * cos(y/dimy*1*pi)) +
|
|
(sin(x/dimx*0.5*pi) * cos(y/dimy*0.5*pi))+
|
|
(sin(x/dimx*0.25*pi) * cos(y/dimy*0.25*pi));
|
|
End; // -----------------------------------------------------------------------
|
|
|
|
mi:=1e16; // ------------ Set the minimunm and maximum fof the data field
|
|
ma:=-1e16;
|
|
For i:=0 to dimx-1 Do
|
|
For j:=0 to dimy-1 Do Begin
|
|
if mat[i,j]<mi then mi:=mat[i,j];
|
|
if mat[i,j]>ma then ma:=mat[i,j];
|
|
End; //----------------------------------------------------------------
|
|
|
|
For i:=0 to dimh-1 Do hgt[i]:=mi+i*(ma-mi)/(dimh-1); // ----- create cut levels
|
|
conrec(mat,0,dimx-1,0,dimy-1,scx,scy,dimh,hgt); // call the contour algorithm*)
|
|
|
|
end.
|
|
|