diff --git a/components/fpvectorial/fpvectorial.pas b/components/fpvectorial/fpvectorial.pas index 830128985b..0abb7262bd 100644 --- a/components/fpvectorial/fpvectorial.pas +++ b/components/fpvectorial/fpvectorial.pas @@ -2881,10 +2881,12 @@ function T2DEllipticalArcSegment.AlignedEllipseCenterEquationT1( AParam: Double): Double; var lLeftSide, lRightSide, lArg: Double; + sinParam, cosParam: Double; begin // E1.Y - RY*sin(t1) = E2.Y - RY*sin(arccos((- E1.X + RX*cos(t1) + E2.X)/RX)) - lLeftSide := E1.Y - RY*sin(AParam); - lArg := (- E1.X + RX*cos(AParam) + E2.X)/RX; + SinCos(AParam, sinParam, cosParam); + lLeftSide := E1.Y - RY*sinParam; + lArg := (- E1.X + RX*cosParam + E2.X)/RX; if (lArg > 1) or (lArg < -1) then Exit($FFFFFFFF); lRightSide := E2.Y - RY*sin(arccos(lArg)); Result := lLeftSide - lRightSide; @@ -3027,6 +3029,7 @@ procedure T2DEllipticalArcSegment.CalculateCenter; var XStart, YStart, lT1: Double; CX1, CY1, CX2, CY2, LeftMostX, LeftMostY, RightMostX, RightMostY: Double; + Sin0, Cos0, SinXRot, CosXRot, SinLT1, CosLT1: Double; RotatedCenter: T3DPoint; begin if CenterSetByUser then Exit; @@ -3040,8 +3043,10 @@ begin if Previous = nil then begin - CX := X - RX*Cos(0)*Cos(XRotation) + RY*Sin(0)*Sin(XRotation); - CY := Y - RY*Sin(0)*Cos(XRotation) - RX*Cos(0)*Sin(XRotation); + SinCos(0.0, Sin0, Cos0); + SinCos(XRotation, SinXRot, CosXRot); + CX := X - RX*Cos0*CosXRot + RY*Sin0*SinXRot; + CY := Y - RY*Sin0*CosXRot - RX*Cos0*SinXRot; Exit; end; @@ -3069,9 +3074,10 @@ begin // SolveNumerically lT1 := SolveNumericallyAngle(@AlignedEllipseCenterEquationT1, 0.0001, 20); + SinCos(lT1, SinLT1, CosLT1); - CX1 := E1.X - RX*cos(lt1); - CY1 := E1.Y - RY*sin(lt1); + CX1 := E1.X - RX*CosLT1; + CY1 := E1.Y - RY*SinLT1; // Rotate back! RotatedCenter := Rotate3DPointInXY(Make3DPoint(CX1,CY1), Make3DPoint(0,0),XRotation); @@ -3122,6 +3128,7 @@ var t1, t2, t3: Double; x1, x2, x3: Double; y1, y2, y3: Double; + SinXRot, CosXRot, SinT1, CosT1, SinT2, CosT2: Double; begin ALeft := 0; ATop := 0; @@ -3171,8 +3178,12 @@ begin t2 := arctan(-RY*tan(XRotation)/RX) + pi; //Pi/2; // why add pi/2 ?? // t3 := arctan(-RY*tan(XRotation)/RX) + Pi; - x1 := Cx + RX*Cos(t1)*Cos(XRotation)-RY*Sin(t1)*Sin(XRotation); - x2 := Cx + RX*Cos(t2)*Cos(XRotation)-RY*Sin(t2)*Sin(XRotation); + SinCos(t1, SinT1, CosT1); + SinCos(t2, SinT2, CosT2); + SinCos(XRotation, SinXRot, CosXRot); + + x1 := Cx + RX*CosT1*CosXRot - RY*SinT1*SinXRot; + x2 := Cx + RX*CosT2*CosXRot - RY*SinT2*SinXRot; // x3 := Cx + RX*Cos(t3)*Cos(XRotation)-RY*Sin(t3)*Sin(XRotation); ALeft := Min(x1, x2); @@ -3187,8 +3198,11 @@ begin t2 := arctan(RY*cotan(XRotation)/RX) + pi; //Pi/2; // why add pi/2 ?? // t3 := arctan(RY*cotan(XRotation)/RX) + 3*Pi/2; - y1 := CY + RY*Sin(t1)*Cos(XRotation)+RX*Cos(t1)*Sin(XRotation); - y2 := CY + RY*Sin(t2)*Cos(XRotation)+RX*Cos(t2)*Sin(XRotation); + SinCos(t1, SinT1, CosT1); + SinCos(t2, SinT2, CosT2); + + y1 := CY + RY*SinT1*CosXRot + RX*CosT1*SinXRot; + y2 := CY + RY*SinT2*CosXRot + RX*CosT2*SinXRot; // y3 := CY + RY*Sin(t3)*Cos(XRotation)+RX*Cos(t3)*Sin(XRotation); ATop := Max(y1, y2); @@ -4133,6 +4147,8 @@ procedure TvEntityWithPenAndBrush.DrawPolygonBrushLinearGradient( var ARenderInfo: TvRenderInfo; const APoints: TPointsArray; const APolyStarts: TIntegerDynArray; ARect: TRect; AGradientStart, AGradientEnd: T2DPoint); +const + sinPi4 = sin(pi/4); var ADest: TFPCustomCanvas absolute ARenderInfo.Canvas; // @@ -4141,7 +4157,7 @@ var pf: Double; // fraction of path travelled along gradient vector px, py: Double; phi: Double; - sinphi, cosphi: float; + sinphi, cosphi: Double; coord, coord1, coord2, dcoord: Double; coordIsX: Boolean; p1, p2: T2dPoint; @@ -4203,7 +4219,7 @@ begin begin // Run along gradient vector, lines perpendicular to gradient vector phi := arctan2(gv.y, gv.x); Sincos(phi, sinphi, cosphi); - coordIsX := (abs(sinphi) <= sin(pi/4)); + coordIsX := (abs(sinphi) <= sinPi4); // sinPi4 = sin(pi/4) if not coordIsX then begin phi := -(pi/2 - phi); Sincos(phi, sinphi, cosphi); @@ -6132,6 +6148,7 @@ procedure TvEllipse.CalculateBoundingBox(constref ARenderInfo: TvRenderInfo; out ALeft, ATop, ARight, ABottom: Double); var t, tmp: Double; + sint, cost, sinAngle, cosAngle: Double; begin { To calculate the bounding rectangle we can do this: @@ -6157,11 +6174,14 @@ begin if Angle <> 0.0 then begin t := arctan(-VertHalfAxis*tan(Angle)/HorzHalfAxis); - tmp := abs(HorzHalfAxis*cos(t)*cos(Angle) - VertHalfAxis*sin(t)*sin(Angle)); + SinCos(t, sint, cost); + SinCos(Angle, sinAngle, cosAngle); + tmp := abs(HorzHalfAxis*cost*cosAngle - VertHalfAxis*sint*sinAngle); ALeft := X - Round(tmp); ARight := X + Round(tmp); t := arctan(VertHalfAxis*cot(Angle) / HorzHalfAxis); - tmp := abs(VertHalfAxis*sin(t)*cos(Angle) + HorzHalfAxis*cos(t)*sin(Angle)); + SinCos(t, sint, cost); + tmp := abs(VertHalfAxis*sint*cosAngle + HorzHalfAxis*cost*sinAngle); tmp := tmp * ARenderInfo.Page.GetTopLeftCoords_Adjustment; ATop := Y - Round(tmp); ABottom := Y + Round(tmp); @@ -6932,6 +6952,7 @@ var Points: array of TPoint = nil; lTriangleCenter, lTriangleCorner: T3DPoint; txt: String; + sinAngle, cosAngle: Double; begin ADest.Pen.FPColor := colYellow;//AdjustColorToBackground(colBlack, ARenderInfo); ADest.Pen.Width := 1; @@ -6957,8 +6978,9 @@ begin // Left Arrow Points[0] := Point(CoordToCanvasX(ArcLeft.X), CoordToCanvasY(ArcLeft.Y)); - lTriangleCenter.X := Cos(AngleLeft+Pi/2) * -(ArcRadius/10) + ArcLeft.X; - lTriangleCenter.Y := Sin(AngleLeft+Pi/2) * -(ArcRadius/10) + ArcLeft.Y; + SinCos(AngleLeft + pi/2, SinAngle, CosAngle); + lTriangleCenter.X := CosAngle * -(ArcRadius/10) + ArcLeft.X; + lTriangleCenter.Y := SinAngle * -(ArcRadius/10) + ArcLeft.Y; lTriangleCorner := Rotate3DPointInXY(lTriangleCenter, ArcLeft, Pi * 10 / 180); Points[1] := Point(CoordToCanvasX(lTriangleCorner.X), CoordToCanvasY(lTriangleCorner.Y)); lTriangleCorner := Rotate3DPointInXY(lTriangleCenter, ArcLeft, - Pi * 10 / 180); @@ -6968,8 +6990,9 @@ begin // Right Arrow Points[0] := Point(CoordToCanvasX(ArcRight.X), CoordToCanvasY(ArcRight.Y)); - lTriangleCenter.X := Cos(AngleRight+Pi/2) * (ArcRadius/10) + ArcRight.X; - lTriangleCenter.Y := Sin(AngleRight+Pi/2) * (ArcRadius/10) + ArcRight.Y; + SinCos(AngleRight + Pi/2, SinAngle, CosAngle); + lTriangleCenter.X := CosAngle * (ArcRadius/10) + ArcRight.X; + lTriangleCenter.Y := SinAngle * (ArcRadius/10) + ArcRight.Y; lTriangleCorner := Rotate3DPointInXY(lTriangleCenter, ArcRight, Pi * 10 / 180); Points[1] := Point(CoordToCanvasX(lTriangleCorner.X), CoordToCanvasY(lTriangleCorner.Y)); lTriangleCorner := Rotate3DPointInXY(lTriangleCenter, ArcRight, - Pi * 10 / 180); @@ -6990,6 +7013,8 @@ begin end; procedure TvArcDimension.CalculateExtraArcInfo; +var + SinAngle, CosAngle: Double; begin // Line equation of the Left line AngleLeft := arctan(Abs(BaseLeft.Y-DimensionLeft.Y)/Abs(BaseLeft.X-DimensionLeft.X)); @@ -7008,10 +7033,12 @@ begin AngleBase.Y := al * AngleBase.X + bl; // And also now the left and right points of the arc - ArcLeft.X := Cos(AngleLeft) * ArcRadius + AngleBase.X; - ArcLeft.Y := Sin(AngleLeft) * ArcRadius + AngleBase.Y; - ArcRight.X := Cos(AngleRight) * ArcRadius + AngleBase.X; - ArcRight.Y := Sin(AngleRight) * ArcRadius + AngleBase.Y; + SinCos(AngleLeft, SinAngle, CosAngle); + ArcLeft.X := CosAngle * ArcRadius + AngleBase.X; + ArcLeft.Y := SinAngle * ArcRadius + AngleBase.Y; + SinCos(AngleRight, SinAngle, CosAngle); + ArcRight.X := CosAngle * ArcRadius + AngleBase.X; + ArcRight.Y := SinAngle * ArcRadius + AngleBase.Y; end; function TvArcDimension.GenerateDebugTree(ADestRoutine: TvDebugAddItemProc; @@ -7276,6 +7303,7 @@ var lPointD, lPointE, lPointF: T3DPoint; lPoints: array[0..2] of TPoint; AlfaAngle: Double; + SinAlfa, CosAlfa: Double; begin ApplyPenToCanvas(ARenderInfo); ApplyBrushToCanvas(ARenderInfo); @@ -7329,12 +7357,13 @@ begin AlfaAngle := 0 else AlfaAngle := ArcTan((Base.Y - Y) / (Base.X - X)); - lPointD.Y := Sin(AlfaAngle) * ArrowLength + Y; - lPointD.X := Cos(AlfaAngle) * ArrowLength + X; - lPointE.X := Sin(AlfaAngle) * (ArrowBaseLength/2) + lPointD.X; - lPointE.Y := Cos(AlfaAngle) * (ArrowBaseLength/2) + lPointD.Y; - lPointF.X := - Sin(AlfaAngle) * (ArrowBaseLength/2) + lPointD.X; - lPointF.Y := - Cos(AlfaAngle) * (ArrowBaseLength/2) + lPointD.Y; + SinCos(AlfaAngle, SinAlfa, CosAlfa); + lPointD.Y := SinAlfa * ArrowLength + Y; + lPointD.X := CosAlfa * ArrowLength + X; + lPointE.X := SinAlfa * (ArrowBaseLength/2) + lPointD.X; + lPointE.Y := CosAlfa * (ArrowBaseLength/2) + lPointD.Y; + lPointF.X := - SinAlfa * (ArrowBaseLength/2) + lPointD.X; + lPointF.Y := - CosAlfa * (ArrowBaseLength/2) + lPointD.Y; lPoints[1].X := CoordToCanvasX(lPointE.X); lPoints[1].Y := CoordToCanvasY(lPointE.Y); lPoints[2].X := CoordToCanvasX(lPointF.X); diff --git a/components/fpvectorial/fpvutils.pas b/components/fpvectorial/fpvutils.pas index d3309911b0..d9b3faef48 100644 --- a/components/fpvectorial/fpvutils.pas +++ b/components/fpvectorial/fpvutils.pas @@ -327,25 +327,28 @@ procedure EllipticalArcToBezier(Xc, Yc, Rx, Ry, startAngle, endAngle: Double; var P1, P2, P3, P4: T3DPoint); var halfLength, arcLength, alfa: Double; + sinStartAngle, cosStartAngle, sinEndAngle, cosEndAngle: Double; begin arcLength := endAngle - startAngle; halfLength := (endAngle - startAngle) / 2; alfa := sin(arcLength) * (Sqrt(4 + 3*sqr(tan(halfLength))) - 1) / 3; // Start point - P1.X := Xc + Rx * cos(startAngle); - P1.Y := Yc + Ry * sin(startAngle); + SinCos(startAngle, sinStartAngle, cosStartAngle); + P1.X := Xc + Rx * cosStartAngle; + P1.Y := Yc + Ry * sinStartAngle; // End point - P4.X := Xc + Rx * cos(endAngle); - P4.Y := Yc + Ry * sin(endAngle); + SinCos(endAngle, sinEndAngle, cosEndAngle); + P4.X := Xc + Rx * cosEndAngle; + P4.Y := Yc + Ry * sinEndAngle; // Control points - P2.X := P1.X + alfa * -1 * Rx * sin(startAngle); - P2.Y := P1.Y + alfa * Ry * cos(startAngle); + P2.X := P1.X + alfa * -1 * Rx * sinStartAngle; + P2.Y := P1.Y + alfa * Ry * cosStartAngle; - P3.X := P4.X - alfa * -1 * Rx * sin(endAngle); - P3.Y := P4.Y - alfa * Ry * cos(endAngle); + P3.X := P4.X - alfa * -1 * Rx * sinEndAngle; + P3.Y := P4.Y - alfa * Ry * cosEndAngle; end; // (x2,y2)=(x1+L⋅cos(a),y1+L⋅sin(a)). @@ -353,12 +356,14 @@ end; function LineEquation_GetPointAndTangentForLength(AStart, AEnd: T3DPoint; ADistance: Double; out AX, AY, ATangentAngle: Double): Boolean; var lLineAngle: Double; // to X axis + sinAngle, cosAngle: Double; begin Result := False; // lLineAngle := arctan((AEnd.Y-AStart.Y) / (AEnd.X - AStart.X)); lLineAngle := arctan2(AEnd.Y - AStart.Y, AEnd.X - AStart.X); - AX := AStart.X + ADistance * Cos(lLineAngle); - AY := AStart.Y + ADistance * Sin(lLineAngle); + SinCos(lLineAngle, sinAngle, cosAngle); + AX := AStart.X + ADistance * cosAngle; + AY := AStart.Y + ADistance * sinAngle; end; procedure CircularArcToBezier(Xc, Yc, R, startAngle, endAngle: Double; var P1, diff --git a/components/fpvectorial/odgvectorialreader.pas b/components/fpvectorial/odgvectorialreader.pas index dabcddaede..6d2e239bfa 100644 --- a/components/fpvectorial/odgvectorialreader.pas +++ b/components/fpvectorial/odgvectorialreader.pas @@ -921,6 +921,7 @@ procedure TvODGVectorialReader.ConvertPathStringToTPath(AStr: string; var x1, y1, x2, y2: double; t1, t2, lSrcX, lSrcY, lDestX, lDestY: Double; + sin1, cos1, sin2, cos2: Double; j: Integer; lTokenizer: TSVGPathTokenizer; CurToken: TSVGToken; @@ -1013,10 +1014,12 @@ begin ConvertViewBoxDeltaToFPVDelta(AInfo, x2, y2, x2, y2); // Parametrized Ellipse equation - lSrcX := x2 * Cos(t1) + x1; - lSrcY := y2 * Sin(t1) + y1; - lDestX := x2 * Cos(t2) + x1; - lDestY := y2 * Sin(t2) + y1; + SinCos(t1, sin1, cos1); + SinCos(t2, sin2, cos2); + lSrcX := x2 * cos1 + x1; + lSrcY := y2 * sin1 + y1; + lDestX := x2 * cos2 + x1; + lDestY := y2 * sin2 + y1; // See http://www.w3.org/TR/SVG/paths.html#PathDataEllipticalArcCommands ADest.AppendMoveToSegment(lSrcX, lSrcY);