{ fpvutils.pas Vector graphics document License: The same modified LGPL as the Free Pascal RTL See the file COPYING.modifiedLGPL for more details AUTHORS: Felipe Monteiro de Carvalho Pedro Sol Pegorini L de Lima } unit fpvutils; {$define USE_LCL_CANVAS} {.$define FPVECTORIAL_BEZIERTOPOINTS_DEBUG} {.$define FPVECTORIAL_DEFLATE_DEBUG} {$ifdef fpc} {$mode delphi} {$endif} interface uses Classes, SysUtils, Math, Types, {$ifdef USE_LCL_CANVAS} Graphics, LCLIntf, LCLType, {$endif} base64, fpvectorial, fpimage, zstream; type T10Strings = array[0..9] of shortstring; // TPointsArray = array of TPoint; TFPVUByteArray = array of Byte; TNumericalEquation = function (AParameter: Double): Double of object; // return the error TFPVUDebugOutCallback = procedure (AStr: string) of object; // Color Conversion routines function FPColorToRGBHexString(AColor: TFPColor): string; function RGBToFPColor(AR, AG, AB: byte): TFPColor; inline; function MixColors(AColor1, AColor2: TFPColor; APos, AMax: Double): TFPColor; function GradientColor(AColors: TvGradientColors; AValue: Double): TFPColor; function AlphaBlendColor(AColorBase, AColor: TFPColor): TFPColor; // Coordinate Conversion routines function CanvasCoordsToFPVectorial(AY: Integer; AHeight: Integer): Integer; inline; function CanvasTextPosToFPVectorial(AY: Integer; ACanvasHeight, ATextHeight: Integer): Integer; function CoordToCanvasX(ACoord: Double; ADestX: Integer; AMulX: Double): Integer; inline; function CoordToCanvasY(ACoord: Double; ADestY: Integer; AMulY: Double): Integer; inline; // Other routines function SeparateString(AString: string; ASeparator: char): T10Strings; procedure SeparateStringInTwo(AString: string; ASeparator: char; out AStart, AEnd: string); function Make3DPoint(AX, AY, AZ: Double): T3DPoint; overload; inline; function Make3DPoint(AX, AY: Double): T3DPoint; overload; inline; function Point2D(AX, AY: Double): T2DPoint; inline; function IsGradientBrush(ABrush: TvBrush): Boolean; // Mathematical routines function LineEquation_GetPointAndTangentForLength(AStart, AEnd: T3DPoint; ADistance: Double; out AX, AY, ATangentAngle: Double): Boolean; procedure EllipticalArcToBezier(Xc, Yc, Rx, Ry, startAngle, endAngle: Double; var P1, P2, P3, P4: T3DPoint); procedure CircularArcToBezier(Xc, Yc, R, startAngle, endAngle: Double; var P1, P2, P3, P4: T3DPoint); procedure AddBezierToPoints(P1, P2, P3, P4: T3DPoint; var Points: TPointsArray); function BezierEquation_GetPoint(t: Double; P1, P2, P3, P4: T3DPoint): T3DPoint; function BezierEquation_GetTangent(t: Double; P1, P2, P3, P4: T3DPoint): Double; function BezierEquation_GetLength(P1, P2, P3, P4: T3DPoint; AMaxT: Double = 1; ASteps: Integer = 30): Double; function BezierEquation_GetT_ForLength(P1, P2, P3, P4: T3DPoint; ALength: Double; ASteps: Integer = 30): Double; function BezierEquation_GetPointAndTangentForLength(P1, P2, P3, P4: T3DPoint; ADistance: Double; out AX, AY, ATangentAngle: Double; ASteps: Integer = 30): Boolean; function CalcEllipseCenter(x1,y1, x2,y2, rx,ry, phi: Double; fa, fs: Boolean; out cx,cy, lambda: Double): Boolean; function CalcEllipsePointAngle(x,y, rx,ry, cx,cy, phi: Double): Double; procedure CalcEllipsePoint(t, rx,ry, cx,cy, phi: Double; out x,y: Double); procedure ConvertPathToPolygons(APath: TPath; ADestX, ADestY: Integer; AMulX, AMulY: Double; var PolygonPoints: TPointsArray; var PolygonStartIndexes: TIntegerDynArray); procedure ConvertPathToPoints(APath: TPath; ADestX, ADestY: Integer; AMulX, AMulY: Double; var Points: TPointsArray); function GetLinePolygonIntersectionPoints(ACoord: Double; const APoints: T2DPointsArray; const APolyStarts: TIntegerDynArray; ACoordIsX: Boolean): T2DPointsArray; overload; function GetLinePolygonIntersectionPoints(ACoord: Double; const APoints: T2DPointsArray; ACoordIsX: Boolean): T2DPointsArray; overload; function Rotate2DPoint(P, RotCenter: TPoint; alpha:double): TPoint; function Rotate3DPointInXY(P, RotCenter: T3DPoint; alpha:double): T3DPoint; function SamePoint(P1, P2: T3DPoint; Epsilon: Double = 0.0): Boolean; overload; function SamePoint(P1, P2: TPoint): Boolean; overload; procedure NormalizeRect(var ARect: TRect); // Transformation matrix operations // See http://www.useragentman.com/blog/2011/01/07/css3-matrix-transform-for-the-mathematically-challenged/ procedure ConvertTransformationMatrixToOperations(AA, AB, AC, AD, AE, AF: Double; out ATranslateX, ATranslateY, AScaleX, AScaleY, ASkewX, ASkewY, ARotate: Double); procedure InvertMatrixOperations(var ATranslateX, ATranslateY, AScaleX, AScaleY, ASkewX, ASkewY, ARotate: Double); // Numerical Calculus function SolveNumericallyAngle(ANumericalEquation: TNumericalEquation; ADesiredMaxError: Double; ADesiredMaxIterations: Integer = 10): Double; // Compression/Decompression procedure DeflateBytes(var ASource, ADest: TFPVUByteArray); procedure DeflateStream(ASource, ADest: TStream); // Binary to Text encodings procedure DecodeASCII85(ASource: string; var ADest: TFPVUByteArray); procedure DecodeBase64(ASource: string; ADest: TStream); // Byte array to stream conversion procedure ByteArrayToStream(ASource: TFPVUByteArray; ADest: TStream); // Debug procedure FPVUDebug(AStr: string); procedure FPVUDebugLn(AStr: string); // LCL-related routines {$ifdef USE_LCL_CANVAS} function ConvertPathToRegion(APath: TPath; ADestX, ADestY: Integer; AMulX, AMulY: Double): HRGN; {$endif} var FPVUDebugOutCallback: TFPVUDebugOutCallback; // executes DebugLn FPVDebugBuffer: string; ScreenDpiX: Integer = 96; ScreenDpiY: Integer = 96; implementation {@@ This function is utilized by the SVG writer and some other places, so it shouldn't be changed. } function FPColorToRGBHexString(AColor: TFPColor): string; begin Result := Format('%.2x%.2x%.2x', [AColor.Red shr 8, AColor.Green shr 8, AColor.Blue shr 8]); end; function RGBToFPColor(AR, AG, AB: byte): TFPColor; inline; begin Result.Red := (AR shl 8) + AR; Result.Green := (AG shl 8) + AG; Result.Blue := (AB shl 8) + AB; Result.Alpha := $FFFF; end; {@@ Returns AColor1 if APos = 0, AColor2 if APos = AMax, or interpolates between } function MixColors(AColor1, AColor2: TFPColor; APos, AMax: Double): TFPColor; var f1, f2: Double; begin f1 := (AMax - APos) / AMax; f2 := APos / AMax; Result.Alpha := Round(AColor1.Alpha * f1 + AColor2.Alpha * f2); Result.Red := Round(AColor1.Red * f1 + AColor2.Red * f2); Result.Green := Round(AColor1.Green * f1 + AColor2.Green * f2); Result.Blue := Round(AColor1.Blue * f1 + AColor2.Blue * f2); end; {@@ Assigns a color to the specified value. The color is interpolated between the colors defined in AColors. } function GradientColor(AColors: TvGradientColors; AValue: Double): TFPColor; var i: Integer; c1, c2: TFPColor; p1, p2: Double; begin // Return first color if AValue is below the first color position if AValue <= AColors[0].Position then Result := AColors[0].Color else // Return last color if AValue is above the last color position if AValue >= AColors[High(AColors)].Position then Result := AColors[High(AColors)].Color else // Find pair of colors positions which bracket the specified value and // interpolate color for i:= High(AColors)-1 downto 0 do if AValue >= AColors[i].Position then begin c1 := AColors[i].Color; c2 := AColors[i+1].Color; p1 := AColors[i].Position; p2 := AColors[i+1].Position; Result := MixColors(c1, c2, AValue - p1, p2 - p1); exit; end; end; function AlphaBlendColor(AColorBase, AColor: TFPColor): TFPColor; var f1, f2: Double; begin f1 := 1 - f2; f2 := AColor.Alpha / alphaOpaque; Result.Alpha := Round(AColorBase.Alpha * f1 + AColor.Alpha * f2); Result.Red := Round(AColorBase.Red * f1 + AColor.Red * f2); Result.Green := Round(AColorBase.Green * f1 + AColor.Green * f2); Result.Blue := Round(AColorBase.Blue * f1 + AColor.Blue * f2); end; {@@ Converts the coordinate system from a TCanvas to FPVectorial The basic difference is that the Y axis is positioned differently and points upwards in FPVectorial and downwards in TCanvas. The X axis doesn't change. The fix is trivial and requires only the Height of the Canvas as extra info. @param AHeight Should receive TCanvas.Height } function CanvasCoordsToFPVectorial(AY: Integer; AHeight: Integer): Integer; inline; begin Result := AHeight - AY; end; {@@ LCL Text is positioned based on the top-left corner of the text. Besides that, one also needs to take the general coordinate change into account too. @param ACanvasHeight Should receive TCanvas.Height @param ATextHeight Should receive TFont.Size } function CanvasTextPosToFPVectorial(AY: Integer; ACanvasHeight, ATextHeight: Integer): Integer; begin Result := CanvasCoordsToFPVectorial(AY, ACanvasHeight) - ATextHeight; end; function CoordToCanvasX(ACoord: Double; ADestX: Integer; AMulX: Double): Integer; begin Result := Round(ADestX + AmulX * ACoord); end; function CoordToCanvasY(ACoord: Double; ADestY: Integer; AMulY: Double): Integer; begin Result := Round(ADestY + AmulY * ACoord); end; {@@ Reads a string and separates it in substring using ASeparator to delimite them. Limits: Number of substrings: 10 (indexed 0 to 9) Length of each substring: 255 (they are shortstrings) } function SeparateString(AString: string; ASeparator: char): T10Strings; var i, CurrentPart: integer; begin CurrentPart := 0; { Clears the result } for i := 0 to 9 do Result[i] := ''; { Iterates througth the string, filling strings } for i := 1 to Length(AString) do begin if Copy(AString, i, 1) = ASeparator then begin Inc(CurrentPart); { Verifies if the string capacity wasn't exceeded } if CurrentPart > 9 then Exit; end else Result[CurrentPart] := Result[CurrentPart] + Copy(AString, i, 1); end; end; function Point2D(AX, AY: Double): T2DPoint; begin Result.X := AX; Result.Y := AY; end; procedure SeparateStringInTwo(AString: string; ASeparator: char; out AStart, AEnd: string); var lPosSep: SizeInt; begin lPosSep := Pos(ASeparator, AString); AStart := Copy(AString, 0, lPosSep-1); AEnd := Copy(AString, lPosSep+1, Length(AString)); end; function Make3DPoint(AX, AY, AZ: Double): T3DPoint; begin Result.X := AX; Result.Y := AY; Result.Z := AZ; end; function Make3DPoint(AX, AY: Double): T3DPoint; begin Result.X := AX; Result.Y := AY; Result.Z := 0; end; function IsGradientBrush(ABrush: TvBrush): Boolean; begin Result := ABrush.Kind in [bkHorizontalGradient, bkVerticalGradient, bkOtherLinearGradient, bkRadialGradient]; end; { Considering a counter-clockwise arc, elliptical and alligned to the axises An elliptical Arc can be converted to the following Cubic Bezier control points: P1 = E(startAngle) <- start point P2 = P1+alfa * dE(startAngle) <- control point P3 = P4−alfa * dE(endAngle) <- control point P4 = E(endAngle) <- end point source: http://www.spaceroots.org/documents/ellipse/elliptical-arc.pdf The equation of an elliptical arc is: X(t) = Xc + Rx * cos(t) Y(t) = Yc + Ry * sin(t) dX(t)/dt = - Rx * sin(t) dY(t)/dt = + Ry * cos(t) } procedure EllipticalArcToBezier(Xc, Yc, Rx, Ry, startAngle, endAngle: Double; var P1, P2, P3, P4: T3DPoint); var halfLength, arcLength, alfa: Double; begin arcLength := endAngle - startAngle; halfLength := (endAngle - startAngle) / 2; alfa := sin(arcLength) * (Sqrt(4 + 3*sqr(tan(halfLength))) - 1) / 3; // Start point P1.X := Xc + Rx * cos(startAngle); P1.Y := Yc + Ry * sin(startAngle); // End point P4.X := Xc + Rx * cos(endAngle); P4.Y := Yc + Ry * sin(endAngle); // Control points P2.X := P1.X + alfa * -1 * Rx * sin(startAngle); P2.Y := P1.Y + alfa * Ry * cos(startAngle); P3.X := P4.X - alfa * -1 * Rx * sin(endAngle); P3.Y := P4.Y - alfa * Ry * cos(endAngle); end; // (x2,y2)=(x1+L⋅cos(a),y1+L⋅sin(a)). // ATangentAngle - in Radians function LineEquation_GetPointAndTangentForLength(AStart, AEnd: T3DPoint; ADistance: Double; out AX, AY, ATangentAngle: Double): Boolean; var lLineAngle: Double; // to X axis begin Result := False; // lLineAngle := arctan((AEnd.Y-AStart.Y) / (AEnd.X - AStart.X)); lLineAngle := arctan2(AEnd.Y - AStart.Y, AEnd.X - AStart.X); AX := AStart.X + ADistance * Cos(lLineAngle); AY := AStart.Y + ADistance * Sin(lLineAngle); end; procedure CircularArcToBezier(Xc, Yc, R, startAngle, endAngle: Double; var P1, P2, P3, P4: T3DPoint); begin EllipticalArcToBezier(Xc, Yc, R, R, startAngle, endAngle, P1, P2, P3, P4); end; { This routine converts a Bezier to a Polygon and adds the points of this polygon to the end of the provided Points output variables } procedure AddBezierToPoints(P1, P2, P3, P4: T3DPoint; var Points: TPointsArray); var CurveLength, k, LastPoint: Integer; CurPoint: T3DPoint; t: Double; begin {$ifdef FPVECTORIAL_BEZIERTOPOINTS_DEBUG} Write(Format('[AddBezierToPoints] P1=%f,%f P2=%f,%f P3=%f,%f P4=%f,%f =>', [P1.X, P1.Y, P2.X, P2.Y, P3.X, P3.Y, P4.X, P4.Y])); {$endif} // there is no problem here using a number larger than the real one // so to be fast, just connect the 4 points... CurveLength := Round(sqrt(sqr(P2.X - P1.X) + sqr(P2.Y - P1.Y))) + Round(sqrt(sqr(P3.X - P2.X) + sqr(P3.Y - P2.Y))) + Round(sqrt(sqr(P4.X - P4.X) + sqr(P4.Y - P3.Y))); LastPoint := Length(Points)-1; SetLength(Points, Length(Points)+CurveLength); for k := 1 to CurveLength do begin t := k / CurveLength; CurPoint := BezierEquation_GetPoint(t, P1, P2, P3, P4); Points[LastPoint+k].X := Round(CurPoint.X); Points[LastPoint+k].Y := Round(CurPoint.Y); {$ifdef FPVECTORIAL_BEZIERTOPOINTS_DEBUG} Write(Format(' P=%d,%d', [CurPoint.X, CurPoint.Y])); {$endif} end; {$ifdef FPVECTORIAL_BEZIERTOPOINTS_DEBUG} WriteLn(Format(' CurveLength=%d', [CurveLength])); {$endif} end; // B(t) = (1-t)³ [Prev.X, Prev.Y] + 3 (1-t)² t [X2, Y2] + 3 (1-t) t² [X3, Y3] + t³ [X,Y], 0<=t<=1 function BezierEquation_GetPoint(t: Double; P1, P2, P3, P4: T3DPoint): T3DPoint; begin Result.X := sqr(1 - t) * (1 - t) * P1.X + 3 * t * sqr(1 - t) * P2.X + 3 * t * t * (1 - t) * P3.X + t * t * t * P4.X; Result.Y := sqr(1 - t) * (1 - t) * P1.Y + 3 * t * sqr(1 - t) * P2.Y + 3 * t * t * (1 - t) * P3.Y + t * t * t * P4.Y; end; // B'(t) = 3 (1-t)² [X2-Prev.X, Y2-Prev.Y] + 6 (1-t) t [X3-X2, Y3-Y2] + 3 t² [X-X3,Y-Y3] function BezierEquation_GetTangent(t: Double; P1, P2, P3, P4: T3DPoint): Double; var lDerivateVector: T3DPoint; begin lDerivateVector.X := 3 * sqr(1 - t) * (P2.X-P1.X) + 6 * t * (1 - t) * (P3.X-P2.X) + 3 * t * t * (P4.X - P3.X); lDerivateVector.Y := 3 * sqr(1 - t) * (P2.Y-P1.Y) + 6 * t * (1 - t) * (P3.Y-P2.Y) + 3 * t * t * (P4.Y - P3.Y); Result := arctan(lDerivateVector.Y / lDerivateVector.X) end; // See http://www.lemoda.net/maths/bezier-length/index.html // See http://steve.hollasch.net/cgindex/curves/cbezarclen.html for a more complex method function BezierEquation_GetLength(P1, P2, P3, P4: T3DPoint; AMaxT: Double; ASteps: Integer): Double; var lCurT, x_diff, y_diff: Double; i, lCurStep: Integer; lCurPoint, lPrevPoint: T3DPoint; begin Result := 0.0; for i := 0 to ASteps do begin lCurT := i / ASteps; if lCurT > AMaxT then Exit; lCurPoint := BezierEquation_GetPoint(lCurT, P1, P2, P3, P4); if i = 0 then begin lPrevPoint := lCurPoint; Continue; end; x_diff := lCurPoint.x - lPrevPoint.x; y_diff := lCurPoint.y - lPrevPoint.y; Result := Result + sqrt(sqr(x_diff) + sqr(y_diff)); lPrevPoint := lCurPoint; end; end; function BezierEquation_GetT_ForLength(P1, P2, P3, P4: T3DPoint; ALength: Double; ASteps: Integer): Double; var i: Integer; LeftT, RightT: Double; function IsLeftBetter(): Boolean; var lLeftLen, lRightLen: Double; begin lLeftLen := BezierEquation_GetLength(P1, P2, P3, P4, LeftT, ASteps); lRightLen := BezierEquation_GetLength(P1, P2, P3, P4, RightT, ASteps); Result := Abs(lLeftLen - ALength) < Abs(lRightLen - ALength); end; begin LeftT := 0; RightT := 1; for i := 0 to ASteps do begin if IsLeftBetter() then RightT := (RightT + LeftT) / 2 else LeftT := (RightT + LeftT) / 2; end; if IsLeftBetter() then Result := RightT else Result := LeftT; end; function BezierEquation_GetPointAndTangentForLength(P1, P2, P3, P4: T3DPoint; ADistance: Double; out AX, AY, ATangentAngle: Double; ASteps: Integer): Boolean; var lCurT: Double; lCurPoint: T3DPoint; begin Result := False; lCurT := BezierEquation_GetT_ForLength(P1, P2, P3, P4, ADistance, ASteps); lCurPoint := BezierEquation_GetPoint(lCurT, P1, P2, P3, P4); AX := lCurPoint.X; AY := lCurPoint.Y; ATangentAngle := BezierEquation_GetTangent(lCurT, P1, P2, P3, P4); Result := True; end; // Calculate center of ellipse defined by two points on its perimeter, the // major and minor axes, and the "sweep" and "large-angle" flags. // Calculation follows the SVG implementation notes // see: http://www.w3.org/TR/SVG/implnote.html#ArcImplementationNotes // - (x1, y1) absolute coordinates of start point of arc // - (x2, y2) absolute coordinates of end point of arc // - rx, ry: radii of major and minor ellipse axes. Must be > 0. Use abs() if necessary. // - phi: rotation angle of ellipse // - fa: large arc flag (false = small arc, true = large arc) // - fs: sweep flag (false = counterclockwise, true = clockwise) // - cx, cy: Center coordinates of ellipse // - Function result is false if the center cannot be calculated function CalcEllipseCenter(x1,y1, x2,y2, rx,ry, phi: Double; fa, fs: Boolean; out cx,cy, lambda: Double): Boolean; const EPS = 1E-9; var sinphi, cosphi: Extended; x1p, x2p, y1p, y2p: Double; // x1', x2', y1', y2' cxp, cyp: Double; // cx', cy' m: Double; begin Result := false; if (rx = 0) or (ry = 0) then exit; rx := abs(rx); // only positive radii! ry := abs(ry); SinCos(phi, sinphi, cosphi); // (F.6.5.1) in above document x1p := ( cosphi*(x1-x2) + sinphi*(y1-y2)) / 2; y1p := (-sinphi*(x1-x2) + cosphi*(y1-y2)) / 2; lambda := sqr(x1p/rx) + sqr(y1p/ry); if lambda > 1 then begin // If the distance of the points is too large in relation to the ellipse // size there is no solution. SVG Implemantation Notes request in this case // that the ellipse is magnified so much that a solution exists. lambda := sqrt(lambda); rx := rx * lambda; ry := ry * lambda; end else lambda := 1.0; // (F.6.5.2) m := (sqr(rx*ry) - sqr(rx*y1p) - sqr(ry*x1p)) / (sqr(rx*y1p) + sqr(ry*x1p)); if SameValue(m, 0.0, EPS) then // Prevent a crash caused by a tiny negative sqrt argument due to rounding error. m := 0 else if m < 0 then exit; // Exit if point distance is too large and return "false" - but this // should no happen after having applied lambda! m := sqrt(m); // Positive root for fa <> fs if fa = fs then m := -m; // Negative root for fa = fs. cxp := m * rx / ry * y1p; cyp := -m * ry / rx * x1p; // (F.6.5.3) cx := cosphi*cxp - sinphi*cyp + (x1 + x2) / 2; cy := sinphi*cxp + cosphi*cyp + (y1 + y2) / 2; // If the function gets here we have a valid ellipse center in cx,cy Result := true; end; { Calculates the arc angle (in radians) of the point (x,y) on the perimeter of an ellipse with radii rx,ry and center cx,cy. phi is the rotation angle of the ellipse major axis with the x axis. The result is in the range 0 .. 2pi} function CalcEllipsePointAngle(x,y, rx,ry, cx,cy, phi: Double): Double; var p: T3DPoint; begin // Rotate ellipse back to align its major axis with the x axis P := Rotate3dPointInXY(Make3dPoint(x-cx, y-cy, 0), Make3dPoint(0, 0, 0), phi); // Correctly speaking, above line should use -phi, instead of phi. But // Rotate3DPointInXY seems to define the angle in the opposite way. Result := arctan2(P.Y/ry, P.X/rx); if Result < 0 then Result := TWO_PI + Result; end; { Calculates the x,y coordinates of a point on an ellipse defined by these parameters: - rx, ry: major and minor radius - phi: rotation angle of the ellipse (angle between major axis and x axis) - t: angle between x axis and line from ellipse center to point parameterized: x = cx + rx*cos(t)*cos(phi) - ry*sin(t)*sin(phi) [1] y = cy + ry*sin(t)*cos(phi) + rx*cos(t)*sin(phi) [2] } procedure CalcEllipsePoint(t, rx,ry, cx,cy, phi: Double; out x,y: Double); var P: T3dPoint; cost, sint: Extended; cosphi, sinphi: Extended; begin SinCos(t, sint, cost); SinCos(phi, sinphi, cosphi); x := cx + rx*cost*cosphi - ry*sint*sinphi; y := cy + ry*sint*cosphi + rx*cost*sinphi; end; { Converts a path to one or more polygons. The polygon vertices are returned in "PolygonPoints"; they are given in canvas units (pixels). Since the path can contain several polygons the start index of each polygon is returned in "PolygonStartIndexes". } procedure ConvertPathToPolygons(APath: TPath; ADestX, ADestY: Integer; AMulX, AMulY: Double; var PolygonPoints: TPointsArray; var PolygonStartIndexes: TIntegerDynArray); const POINT_BUFFER = 100; var i, j: Integer; numPoints: Integer; numPolygons: Integer; coordX, coordY: Integer; coordX2, coordY2, coordX3, coordY3, coordX4, coordY4: Integer; // temporary point arrays pts: array of TPoint; pts3D: T3dPointsArray; // Segments curSegment: TPathSegment; cur2DSegment: T2DSegment absolute curSegment; cur2DBSegment: T2DBezierSegment absolute curSegment; cur2DArcSegment: T2DEllipticalArcSegment absolute curSegment; begin if (APath = nil) then begin SetLength(PolygonPoints, 0); SetLength(PolygonStartIndexes, 0); exit; end; SetLength(PolygonPoints, POINT_BUFFER); SetLength(PolygonStartIndexes, POINT_BUFFER); numPoints := 0; numPolygons := 0; APath.PrepareForSequentialReading; for i := 0 to APath.Len - 1 do begin curSegment := TPathSegment(APath.Next); if (i = 0) and (curSegment.SegmentType <> stMoveTo) then raise Exception.Create('Path must start with a "MoveTo" command'); case curSegment.SegmentType of stMoveTo: begin // Store current length of points array as polygon start index if numPolygons >= Length(PolygonStartIndexes) then SetLength(PolygonstartIndexes, Length(PolygonStartIndexes) + POINT_BUFFER); PolygonStartIndexes[numPolygons] := numPoints; inc(numPolygons); // Store current point as first point of a new polygon coordX := CoordToCanvasX(cur2DSegment.X, ADestX, AMulX); coordY := CoordToCanvasY(cur2DSegment.Y, ADestY, AMulY); if numPoints >= Length(PolygonPoints) then SetLength(PolygonPoints, Length(PolygonPoints) + POINT_BUFFER); PolygonPoints[numPoints] := Point(coordX, coordY); inc(numPoints); end; st2DLine, st3DLine, st2DLineWithPen: begin // Add current point to current polygon coordX := CoordToCanvasX(cur2DSegment.X, ADestX, AMulX); coordY := CoordToCanvasY(cur2DSegment.Y, ADestY, AMulY); if numPoints >= Length(PolygonPoints) then SetLength(PolygonPoints, Length(PolygonPoints) + POINT_BUFFER); PolygonPoints[numPoints] := Point(coordX, coordY); inc(numPoints); end; st2DBezier, st3DBezier, st2DEllipticalArc: begin SetLength(PolygonPoints, numPoints); curSegment.AddToPoints(ADestX, ADestY, AMulX, AMulY, PolygonPoints); numPoints := Length(PolygonPoints); end; end; end; SetLength(PolygonPoints, numPoints); SetLength(PolygonStartIndexes, numPolygons); end; procedure ConvertPathToPoints(APath: TPath; ADestX, ADestY: Integer; AMulX, AMulY: Double; var Points: TPointsArray); var i, LastPoint: Integer; CoordX, CoordY: Integer; CoordX2, CoordY2, CoordX3, CoordY3, CoordX4, CoordY4: Integer; // Segments CurSegment: TPathSegment; Cur2DSegment: T2DSegment absolute CurSegment; Cur2DBSegment: T2DBezierSegment absolute CurSegment; begin APath.PrepareForSequentialReading; SetLength(Points, 0); for i := 0 to APath.Len - 1 do begin CurSegment := TPathSegment(APath.Next()); CoordX := CoordToCanvasX(Cur2DSegment.X, ADestX, AMulX); CoordY := CoordToCanvasY(Cur2DSegment.Y, ADestY, AMulY); case CurSegment.SegmentType of st2DBezier, st3DBezier: begin LastPoint := Length(Points)-1; CoordX4 := CoordX; CoordY4 := CoordY; CoordX := Points[LastPoint].X; CoordY := Points[LastPoint].Y; CoordX2 := CoordToCanvasX(Cur2DBSegment.X2, ADestX, AMulX); CoordY2 := CoordToCanvasY(Cur2DBSegment.Y2, ADestY, AMulY); CoordX3 := CoordToCanvasX(Cur2DBSegment.X3, ADestX, AMulX); CoordY3 := CoordToCanvasY(Cur2DBSegment.Y3, ADestY, AMulY); AddBezierToPoints( Make3DPoint(CoordX, CoordY, 0), Make3DPoint(CoordX2, CoordY2, 0), Make3DPoint(CoordX3, CoordY3, 0), Make3DPoint(CoordX4, CoordY4, 0), Points); end; else LastPoint := Length(Points); SetLength(Points, Length(Points)+1); Points[LastPoint].X := CoordX; Points[LastPoint].Y := CoordY; end; end; end; function CompareDbl(P1, P2: Pointer): Integer; var val1, val2: ^Double; begin val1 := P1; val2 := P2; Result := CompareValue(val1^, val2^); end; function GetLinePolygonIntersectionPoints(ACoord: Double; const APoints: T2DPointsArray; ACoordIsX: Boolean): T2DPointsArray; var polystarts: TIntegerDynArray; begin SetLength(polystarts, 1); polystarts[0] := 0; Result := GetLinePolygonIntersectionPoints(ACoord, APoints, ACoordIsX); end; {@@ Calculates the intersection points of a vertical (ACoordIsX = true) or horizontal (ACoordIsX = false) line with border of the polygon specified by APoints. Returns the coordinates of the intersection points } function GetLinePolygonIntersectionPoints(ACoord: Double; const APoints: T2DPointsArray; const APolyStarts: TIntegerDynArray; ACoordIsX: Boolean): T2DPointsArray; const EPS = 1e-9; var j, p: Integer; firstj,lastj: Integer; dx, dy: Double; xval, yval: Double; val: ^Double; list: TFPList; begin list := TFPList.Create; if ACoordIsX then begin for p := 0 to High(APolyStarts) do begin firstj := APolyStarts[p]; lastj := IfThen(p = High(APolyStarts), High(APoints), APolyStarts[p+1]-1); // Skip non-closed polygons if (APoints[firstj].X <> APoints[lastj].x) or (APoints[lastj].Y <> APoints[lastj].Y) then continue; for j := firstj to lastj-1 do if ((APoints[j].X <= ACoord) and (ACoord < APoints[j+1].X)) or ((APoints[j+1].X <= ACoord) and (ACoord < APoints[j].X)) then begin dx := APoints[j+1].X - APoints[j].X; // can't be zero here dy := APoints[j+1].Y - APoints[j].Y; New(val); val^ := APoints[j].Y + (ACoord - APoints[j].X) * dy / dx; list.Add(val); end; end; end else begin for p := 0 to High(APolyStarts) do begin firstj := APolyStarts[p]; lastj := IfThen(p = High(APolyStarts), High(APoints), APolyStarts[p+1]-1); // Skip non-closed polygons if (APoints[firstj].X <> APoints[lastj].x) or (APoints[lastj].Y <> APoints[lastj].Y) then continue; for j := firstj to lastj-1 do if ((APoints[j].Y <= ACoord) and (ACoord < APoints[j+1].Y)) or ((APoints[j+1].Y <= ACoord) and (ACoord < APoints[j].Y)) then begin dy := APoints[j+1].Y - APoints[j].Y; // can't be zero here dx := APoints[j+1].X - APoints[j].X; New(val); val^ := APoints[j].X + (ACoord - APoints[j].Y) * dx / dy; list.Add(val); end; end; end; // Sort intersection coordinates in ascending order list.Sort(@CompareDbl); // When scanning across an non-contiguous polygon the scan may produce an // odd number of points where the scan finds irregular points due to interaction // with the other polygon curves. I don't have a general solution, only for // the case of 3 points. (* if list.Count = 3 then begin // this can't be --> use ony outer points SetLength(Result, 2); if ACoordIsX then begin Result[0] := Point2D(ACoord, Double(list[0]^)); Result[1] := Point2D(ACoord, Double(list[2]^)); end else begin Result[0] := Point2D(Double(list[0]^), ACoord); Result[1] := Point2D(Double(list[2]^), ACoord); end; end else *) begin // regular case SetLength(Result, list.Count); if ACoordIsX then for j:=0 to list.Count-1 do Result[j] := Point2D(ACoord, Double(list[j]^)) else for j:=0 to list.Count-1 do Result[j] := Point2D(Double(list[j]^), ACoord); end; // Clean-up for j:=list.Count-1 downto 0 do begin val := List[j]; Dispose(val); end; list.Free; end; // Rotates a point P around RotCenter function Rotate2DPoint(P, RotCenter: TPoint; alpha:double): TPoint; var sinus, cosinus : Extended; begin SinCos(alpha, sinus, cosinus); P.x := P.x - RotCenter.x; P.y := P.y - RotCenter.y; result.x := Round(p.x*cosinus + p.y*sinus) + RotCenter.x ; result.y := Round(-p.x*sinus + p.y*cosinus) + RotCenter.y; end; // Rotates a point P around RotCenter // alpha angle in radians // Be CAREFUL: the angle used here grows in clockwise direction. This is // against mathematical convention! function Rotate3DPointInXY(P, RotCenter: T3DPoint; alpha:double): T3DPoint; var sinus, cosinus : Extended; begin SinCos(alpha, sinus, cosinus); P.x := P.x - RotCenter.x; P.y := P.y - RotCenter.y; result.x := Round( p.x*cosinus + p.y*sinus) + RotCenter.x; result.y := Round(-p.x*sinus + p.y*cosinus) + RotCenter.y; result.z := P.z; end; function SamePoint(P1, P2: TPoint): Boolean; begin Result := (P1.X = P2.X) and (P1.Y = P2.Y); end; function SamePoint(P1, P2: T3DPoint; Epsilon: Double = 0.0): Boolean; begin Result := SameValue(P1.X, P2.X, Epsilon) and SameValue(P1.Y, P2.Y, Epsilon) and SameValue(P1.Z, P2.Z, Epsilon); end; procedure NormalizeRect(var ARect: TRect); var tmp: Integer; begin if ARect.Left > ARect.Right then begin tmp := ARect.Left; ARect.left := ARect.Right; ARect.Right := tmp; end; if ARect.Top > ARect.Bottom then begin tmp := ARect.Top; ARect.Top := ARect.Bottom; ARect.Bottom := tmp; end; end; // Current Transformation Matrix // This has 6 numbers, which means this: // (a c e) // [a, b, c, d, e, f] = (b d f) // (0 0 1) // scale(Num) => a,d=Num rest=0 // scaleX(Num) => a=Num d=1 rest=0 // scaleY(Num) => a=1 d=Num rest=0 // TranslateX(Num) => a,d=1 e=Num rest=0 // TranslateY(Num) => a,d=1 f=Num rest=0 // Translate(NumX,NumY) => a,d=1 e=NumX f=NumY rest=0 // skewX(TX) => a=1 b=0 c=tan(TX) d=1 rest=0 // skewY(TY) => a=1 b=tan(TY) c=0 d=1 rest=0 // skew(TX,TY) => a=1 b=tan(TY) c=tan(TX) d=1 rest=0 // rotate(T) => a=cos(T) b=sin(T) c=-sin(T) d=cos(T) rest=0 // // Example: // 0.860815 0 -0 1.07602 339.302 489.171 // Which has a Scale and Translate // procedure ConvertTransformationMatrixToOperations(AA, AB, AC, AD, AE, AF: Double; out ATranslateX, ATranslateY, AScaleX, AScaleY, ASkewX, ASkewY, ARotate: Double); begin ATranslateX := 0; ATranslateY := 0; AScaleX := 1; AScaleY := 1; ASkewX := 0; ASkewY := 0; ARotate := 0; // This is valid if AB=AC=0 ATranslateX := AE; ATranslateY := AF; AScaleX := AA; AScaleY := AD; end; {$ifdef USE_LCL_CANVAS} procedure InvertMatrixOperations(var ATranslateX, ATranslateY, AScaleX, AScaleY, ASkewX, ASkewY, ARotate: Double); begin ATranslateX := -1 * ATranslateX; ATranslateY := -1 * ATranslateY; AScaleX := 1 / AScaleX; AScaleY := 1 / AScaleY; ASkewX := -1 * ATranslateX; ASkewY := -1 * ATranslateX; ARotate := -1 * ATranslateX; end; function SolveNumericallyAngle(ANumericalEquation: TNumericalEquation; ADesiredMaxError: Double; ADesiredMaxIterations: Integer = 10): Double; var lError, lErr1, lErr2, lErr3, lErr4: Double; lParam1, lParam2: Double; lCount: Integer; begin lErr1 := ANumericalEquation(0); lErr2 := ANumericalEquation(Pi/2); lErr3 := ANumericalEquation(Pi); lErr4 := ANumericalEquation(3*Pi/2); // Choose the place to start if (lErr1 < lErr2) and (lErr1 < lErr3) and (lErr1 < lErr4) then begin lParam1 := -Pi/2; lParam2 := Pi/2; end else if (lErr2 < lErr3) and (lErr2 < lErr4) then begin lParam1 := 0; lParam2 := Pi; end else if (lErr2 < lErr3) and (lErr2 < lErr4) then // wp: same as above! begin lParam1 := Pi/2; lParam2 := 3*Pi/2; end else begin lParam1 := Pi; lParam2 := TWO_PI; end; // Iterate as many times necessary to get the best answer! lCount := 0; lError := $FFFFFFFF; while ((ADesiredMaxError < 0 ) or (lError > ADesiredMaxError)) and (lParam1 <> lParam2) and ((ADesiredMaxIterations < 0) or (lCount < ADesiredMaxIterations)) do begin lErr1 := ANumericalEquation(lParam1); lErr2 := ANumericalEquation(lParam2); if lErr1 < lErr2 then lParam2 := (lParam1+lParam2)/2 else lParam1 := (lParam1+lParam2)/2; lError := Min(lErr1, lErr2); Inc(lCount); end; // Choose the best of the last two if lErr1 < lErr2 then Result := lParam1 else Result := lParam2 end; procedure DeflateBytes(var ASource, ADest: TFPVUByteArray); var SourceMem, DestMem: TMemoryStream; i: Integer; begin SourceMem := TMemoryStream.Create; DestMem := TMemoryStream.Create; try // copy the source to the stream {$ifdef FPVECTORIAL_DEFLATE_DEBUG} FPVUDebug('[DeflateBytes] ASource= '); {$endif} for i := 0 to Length(ASource)-1 do begin SourceMem.WriteByte(ASource[i]); {$ifdef FPVECTORIAL_DEFLATE_DEBUG} FPVUDebug(Format('%.2x ', [ASource[i]])); {$endif} end; {$ifdef FPVECTORIAL_DEFLATE_DEBUG} FPVUDebugLn(''); {$endif} SourceMem.Position := 0; DeflateStream(SourceMem, DestMem); // copy the dest from the stream DestMem.Position := 0; SetLength(ADest, DestMem.Size); for i := 0 to DestMem.Size-1 do ADest[i] := DestMem.ReadByte(); finally SourceMem.Free; DestMem.Free; end; end; procedure DeflateStream(ASource, ADest: TStream); var DeCompressionStream: TDecompressionStream; readCount: Integer; Buf: array[0..1023]of Byte; FirstChar: Char; begin ASource.Read(FirstChar, 1); if FirstChar <> #120 then raise Exception.Create('File is not a zLib archive'); ASource.Position := 0; DecompressionStream := TDecompressionStream.Create(ASource); repeat readCount := DecompressionStream.Read(Buf, SizeOf(Buf)); if readCount <> 0 then ADest.Write(Buf, readCount); until readCount < SizeOf(Buf); DecompressionStream.Free; end; procedure DecodeASCII85(ASource: string; var ADest: TFPVUByteArray); var CurSrcPos, CurDestPos: Integer; lDataDWordPtr: PCardinal; lDataCurChar: Char; begin SetLength(ADest, 0); CurDestPos := 0; CurSrcPos := 1; while CurSrcPos <= Length(ASource) do begin lDataCurChar := ASource[CurSrcPos]; // Compressed block of zeroes if lDataCurChar = 'z' then begin SetLength(ADest, Length(ADest)+4); ADest[CurDestPos] := 0; ADest[CurDestPos+1] := 0; ADest[CurDestPos+2] := 0; ADest[CurDestPos+3] := 0; Inc(CurDestPos, 4); Inc(CurSrcPos, 1); Continue; end; // Common block of data: 5 input bytes generate 4 output bytes SetLength(ADest, Length(ADest)+4); lDataDWordPtr := @(ADest[CurDestPos]); if CurSrcPos+4 <= Length(ASource) then begin lDataDWordPtr^ := (Byte(ASource[CurSrcPos])-33)*85*85*85*85 + (Byte(ASource[CurSrcPos+1])-33)*85*85*85 + (Byte(ASource[CurSrcPos+2])-33)*85*85 + (Byte(ASource[CurSrcPos+3])-33)*85 + (Byte(ASource[CurSrcPos+4])-33); lDataDWordPtr^ := NToBE(lDataDWordPtr^); end else if CurSrcPos+3 <= Length(ASource) then begin lDataDWordPtr^ := (Byte(ASource[CurSrcPos])-33)*85*85*85*85 + (Byte(ASource[CurSrcPos+1])-33)*85*85*85 + (Byte(ASource[CurSrcPos+2])-33)*85*85 + (Byte(ASource[CurSrcPos+3])-33)*85 + (Byte('u')-33); lDataDWordPtr^ := NToBE(lDataDWordPtr^); SetLength(ADest, Length(ADest)-1); end else if CurSrcPos+2 <= Length(ASource) then begin lDataDWordPtr^ := (Byte(ASource[CurSrcPos])-33)*85*85*85*85 + (Byte(ASource[CurSrcPos+1])-33)*85*85*85 + (Byte(ASource[CurSrcPos+2])-33)*85*85 + (Byte('u')-33)*85 + (Byte('u')-33); lDataDWordPtr^ := NToBE(lDataDWordPtr^); SetLength(ADest, Length(ADest)-2); end else if CurSrcPos+1 <= Length(ASource) then begin lDataDWordPtr^ := (Byte(ASource[CurSrcPos])-33)*85*85*85*85 + (Byte(ASource[CurSrcPos+1])-33)*85*85*85 + (Byte('u')-33)*85*85 + (Byte('u')-33)*85 + (Byte('u')-33); lDataDWordPtr^ := NToBE(lDataDWordPtr^); SetLength(ADest, Length(ADest)-3); end else begin raise Exception.Create('[DecodeASCII85] Too few bytes remaining to decode!'); end; Inc(CurDestPos, 4); Inc(CurSrcPos, 5); end; end; procedure DecodeBase64(ASource: string; ADest: TStream); var lSourceStream: TStringStream; lDecoder: TBase64DecodingStream; begin lSourceStream := TStringStream.Create(ASource); lDecoder := TBase64DecodingStream.Create(lSourceStream); try ADest.CopyFrom(lDecoder, lDecoder.Size); finally lDecoder.Free; lSourceStream.Free; end; end; procedure ByteArrayToStream(ASource: TFPVUByteArray; ADest: TStream); var i: Integer; begin for i := 0 to Length(ASource)-1 do ADest.WriteByte(ASource[i]); end; procedure FPVUDebug(AStr: string); begin FPVDebugBuffer := FPVDebugBuffer + AStr; end; procedure FPVUDebugLn(AStr: string); begin if Assigned(FPVUDebugOutCallback) then FPVUDebugOutCallback(FPVDebugBuffer + AStr); FPVDebugBuffer := ''; end; function ConvertPathToRegion(APath: TPath; ADestX, ADestY: Integer; AMulX, AMulY: Double): HRGN; var WindingMode: Integer; Points: array of TPoint; begin APath.PrepareForSequentialReading; SetLength(Points, 0); ConvertPathToPoints(APath, ADestX, ADestY, AMulX, AMulY, Points); if APath.ClipMode = vcmEvenOddRule then WindingMode := LCLType.ALTERNATE else WindingMode := LCLType.WINDING; Result := LCLIntf.CreatePolygonRgn(@Points[0], Length(Points), WindingMode); end; {$endif} end.