{ fpvutils.pas Vector graphics document License: The same modified LGPL as the Free Pascal RTL See the file COPYING.modifiedLGPL for more details AUTHORS: Felipe Monteiro de Carvalho Pedro Sol Pegorini L de Lima } unit fpvutils; {$define USE_LCL_CANVAS} {.$define FPVECTORIAL_BEZIERTOPOINTS_DEBUG} {$ifdef fpc} {$mode delphi} {$endif} interface uses Classes, SysUtils, Math, {$ifdef USE_LCL_CANVAS} Graphics, LCLIntf, LCLType, {$endif} fpvectorial, fpimage; type T10Strings = array[0..9] of shortstring; TPointsArray = array of TPoint; // Color Conversion routines function FPColorToRGBHexString(AColor: TFPColor): string; function RGBToFPColor(AR, AG, AB: byte): TFPColor; inline; // Coordinate Conversion routines function CanvasCoordsToFPVectorial(AY: Integer; AHeight: Integer): Integer; inline; function CanvasTextPosToFPVectorial(AY: Integer; ACanvasHeight, ATextHeight: Integer): Integer; function CoordToCanvasX(ACoord: Double; ADestX: Integer; AMulX: Double): Integer; inline; function CoordToCanvasY(ACoord: Double; ADestY: Integer; AMulY: Double): Integer; inline; // Other routines function SeparateString(AString: string; ASeparator: char): T10Strings; // Mathematical routines procedure EllipticalArcToBezier(Xc, Yc, Rx, Ry, startAngle, endAngle: Double; var P1, P2, P3, P4: T3DPoint); procedure CircularArcToBezier(Xc, Yc, R, startAngle, endAngle: Double; var P1, P2, P3, P4: T3DPoint); procedure AddBezierToPoints(P1, P2, P3, P4: T3DPoint; var Points: TPointsArray); procedure ConvertPathToPoints(APath: TPath; ADestX, ADestY: Integer; AMulX, AMulY: Double; var Points: TPointsArray); function Rotate2DPoint(P, RotCenter: TPoint; alpha:double): TPoint; function Rotate3DPointInXY(P, RotCenter: T3DPoint; alpha:double): T3DPoint; // LCL-related routines {$ifdef USE_LCL_CANVAS} function ConvertPathToRegion(APath: TPath; ADestX, ADestY: Integer; AMulX, AMulY: Double): HRGN; {$endif} implementation {@@ This function is utilized by the SVG writer and some other places, so it shouldn't be changed. } function FPColorToRGBHexString(AColor: TFPColor): string; begin Result := Format('%.2x%.2x%.2x', [AColor.Red shr 8, AColor.Green shr 8, AColor.Blue shr 8]); end; function RGBToFPColor(AR, AG, AB: byte): TFPColor; inline; begin Result.Red := (AR shl 8) + AR; Result.Green := (AG shl 8) + AG; Result.Blue := (AB shl 8) + AB; Result.Alpha := $FFFF; end; {@@ Converts the coordinate system from a TCanvas to FPVectorial The basic difference is that the Y axis is positioned differently and points upwards in FPVectorial and downwards in TCanvas. The X axis doesn't change. The fix is trivial and requires only the Height of the Canvas as extra info. @param AHeight Should receive TCanvas.Height } function CanvasCoordsToFPVectorial(AY: Integer; AHeight: Integer): Integer; inline; begin Result := AHeight - AY; end; {@@ LCL Text is positioned based on the top-left corner of the text. Besides that, one also needs to take the general coordinate change into account too. @param ACanvasHeight Should receive TCanvas.Height @param ATextHeight Should receive TFont.Size } function CanvasTextPosToFPVectorial(AY: Integer; ACanvasHeight, ATextHeight: Integer): Integer; begin Result := CanvasCoordsToFPVectorial(AY, ACanvasHeight) - ATextHeight; end; function CoordToCanvasX(ACoord: Double; ADestX: Integer; AMulX: Double): Integer; begin Result := Round(ADestX + AmulX * ACoord); end; function CoordToCanvasY(ACoord: Double; ADestY: Integer; AMulY: Double): Integer; begin Result := Round(ADestY + AmulY * ACoord); end; {@@ Reads a string and separates it in substring using ASeparator to delimite them. Limits: Number of substrings: 10 (indexed 0 to 9) Length of each substring: 255 (they are shortstrings) } function SeparateString(AString: string; ASeparator: char): T10Strings; var i, CurrentPart: integer; begin CurrentPart := 0; { Clears the result } for i := 0 to 9 do Result[i] := ''; { Iterates througth the string, filling strings } for i := 1 to Length(AString) do begin if Copy(AString, i, 1) = ASeparator then begin Inc(CurrentPart); { Verifies if the string capacity wasn't exceeded } if CurrentPart > 9 then Exit; end else Result[CurrentPart] := Result[CurrentPart] + Copy(AString, i, 1); end; end; { Considering a counter-clockwise arc, elliptical and alligned to the axises An elliptical Arc can be converted to the following Cubic Bezier control points: P1 = E(startAngle) <- start point P2 = P1+alfa * dE(startAngle) <- control point P3 = P4−alfa * dE(endAngle) <- control point P4 = E(endAngle) <- end point source: http://www.spaceroots.org/documents/ellipse/elliptical-arc.pdf The equation of an elliptical arc is: X(t) = Xc + Rx * cos(t) Y(t) = Yc + Ry * sin(t) dX(t)/dt = - Rx * sin(t) dY(t)/dt = + Ry * cos(t) } procedure EllipticalArcToBezier(Xc, Yc, Rx, Ry, startAngle, endAngle: Double; var P1, P2, P3, P4: T3DPoint); var halfLength, arcLength, alfa: Double; begin arcLength := endAngle - startAngle; halfLength := (endAngle - startAngle) / 2; alfa := sin(arcLength) * (Sqrt(4 + 3*sqr(tan(halfLength))) - 1) / 3; // Start point P1.X := Xc + Rx * cos(startAngle); P1.Y := Yc + Ry * sin(startAngle); // End point P4.X := Xc + Rx * cos(endAngle); P4.Y := Yc + Ry * sin(endAngle); // Control points P2.X := P1.X + alfa * -1 * Rx * sin(startAngle); P2.Y := P1.Y + alfa * Ry * cos(startAngle); P3.X := P4.X - alfa * -1 * Rx * sin(endAngle); P3.Y := P4.Y - alfa * Ry * cos(endAngle); end; procedure CircularArcToBezier(Xc, Yc, R, startAngle, endAngle: Double; var P1, P2, P3, P4: T3DPoint); begin EllipticalArcToBezier(Xc, Yc, R, R, startAngle, endAngle, P1, P2, P3, P4); end; { This routine converts a Bezier to a Polygon and adds the points of this poligon to the end of the provided Points output variables } procedure AddBezierToPoints(P1, P2, P3, P4: T3DPoint; var Points: TPointsArray); var CurveLength, k, CurX, CurY, LastPoint: Integer; t: Double; begin {$ifdef FPVECTORIAL_BEZIERTOPOINTS_DEBUG} Write(Format('[AddBezierToPoints] P1=%f,%f P2=%f,%f P3=%f,%f P4=%f,%f =>', [P1.X, P1.Y, P2.X, P2.Y, P3.X, P3.Y, P4.X, P4.Y])); {$endif} CurveLength := Round(sqrt(sqr(P2.X - P1.X) + sqr(P2.Y - P1.Y))) + Round(sqrt(sqr(P3.X - P2.X) + sqr(P3.Y - P2.Y))) + Round(sqrt(sqr(P4.X - P4.X) + sqr(P4.Y - P3.Y))); LastPoint := Length(Points)-1; SetLength(Points, Length(Points)+CurveLength); for k := 1 to CurveLength do begin t := k / CurveLength; CurX := Round(sqr(1 - t) * (1 - t) * P1.X + 3 * t * sqr(1 - t) * P2.X + 3 * t * t * (1 - t) * P3.X + t * t * t * P4.X); CurY := Round(sqr(1 - t) * (1 - t) * P1.Y + 3 * t * sqr(1 - t) * P2.Y + 3 * t * t * (1 - t) * P3.Y + t * t * t * P4.Y); Points[LastPoint+k].X := CurX; Points[LastPoint+k].Y := CurY; {$ifdef FPVECTORIAL_BEZIERTOPOINTS_DEBUG} Write(Format(' P=%d,%d', [CurX, CurY])); {$endif} end; {$ifdef FPVECTORIAL_BEZIERTOPOINTS_DEBUG} WriteLn(Format(' CurveLength=%d', [CurveLength])); {$endif} end; procedure ConvertPathToPoints(APath: TPath; ADestX, ADestY: Integer; AMulX, AMulY: Double; var Points: TPointsArray); var i, LastPoint: Integer; CoordX, CoordY: Integer; CoordX2, CoordY2, CoordX3, CoordY3, CoordX4, CoordY4: Integer; // Segments CurSegment: TPathSegment; Cur2DSegment: T2DSegment absolute CurSegment; Cur2DBSegment: T2DBezierSegment absolute CurSegment; begin APath.PrepareForSequentialReading; SetLength(Points, 0); for i := 0 to APath.Len - 1 do begin CurSegment := TPathSegment(APath.Next()); CoordX := CoordToCanvasX(Cur2DSegment.X, ADestX, AMulX); CoordY := CoordToCanvasY(Cur2DSegment.Y, ADestY, AMulY); case CurSegment.SegmentType of st2DBezier, st3DBezier: begin LastPoint := Length(Points)-1; CoordX4 := CoordX; CoordY4 := CoordY; CoordX := Points[LastPoint].X; CoordY := Points[LastPoint].Y; CoordX2 := CoordToCanvasX(Cur2DBSegment.X2, ADestX, AMulX); CoordY2 := CoordToCanvasY(Cur2DBSegment.Y2, ADestY, AMulY); CoordX3 := CoordToCanvasX(Cur2DBSegment.X3, ADestX, AMulX); CoordY3 := CoordToCanvasY(Cur2DBSegment.Y3, ADestY, AMulY); AddBezierToPoints( Make2DPoint(CoordX, CoordY), Make2DPoint(CoordX2, CoordY2), Make2DPoint(CoordX3, CoordY3), Make2DPoint(CoordX4, CoordY4), Points); end; else LastPoint := Length(Points); SetLength(Points, Length(Points)+1); Points[LastPoint].X := CoordX; Points[LastPoint].Y := CoordY; end; end; end; // Rotates a point P around RotCenter function Rotate2DPoint(P, RotCenter: TPoint; alpha:double): TPoint; var sinus, cosinus : Extended; begin SinCos(alpha, sinus, cosinus); P.x := P.x - RotCenter.x; P.y := P.y - RotCenter.y; result.x := Round(p.x*cosinus + p.y*sinus) + RotCenter.x ; result.y := Round(-p.x*sinus + p.y*cosinus) + RotCenter.y; end; // Rotates a point P around RotCenter function Rotate3DPointInXY(P, RotCenter: T3DPoint; alpha:double): T3DPoint; var sinus, cosinus : Extended; begin SinCos(alpha, sinus, cosinus); P.x := P.x - RotCenter.x; P.y := P.y - RotCenter.y; result.x := Round(p.x*cosinus + p.y*sinus) + RotCenter.x; result.y := Round(-p.x*sinus + p.y*cosinus) + RotCenter.y; end; {$ifdef USE_LCL_CANVAS} function ConvertPathToRegion(APath: TPath; ADestX, ADestY: Integer; AMulX, AMulY: Double): HRGN; var WindingMode: Integer; Points: array of TPoint; begin APath.PrepareForSequentialReading; SetLength(Points, 0); ConvertPathToPoints(APath, ADestX, ADestY, AMulX, AMulY, Points); if APath.ClipMode = vcmEvenOddRule then WindingMode := LCLType.ALTERNATE else WindingMode := LCLType.WINDING; Result := LCLIntf.CreatePolygonRgn(@Points[0], Length(Points), WindingMode); end; {$endif} end.