unit ParseTreeNode; {(*} (*------------------------------------------------------------------------------ Delphi Code formatter source code The Original Code is ParseTreeNode, released May 2003. The Initial Developer of the Original Code is Anthony Steele. Portions created by Anthony Steele are Copyright (C) 1999-2008 Anthony Steele. All Rights Reserved. Contributor(s): Anthony Steele. The contents of this file are subject to the Mozilla Public License Version 1.1 (the "License"). you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.mozilla.org/NPL/ Software distributed under the License is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License for the specific language governing rights and limitations under the License. Alternatively, the contents of this file may be used under the terms of the GNU General Public License Version 2 or later (the "GPL") See http://www.gnu.org/licenses/gpl.html ------------------------------------------------------------------------------*) {*)} {$I JcfGlobal.inc} interface { AFS 27 October 2002 A node on the parse tree } uses {delphi } Contnrs, Classes, { local } Tokens, ParseTreeNodeType, Nesting; type TParseTreeNode = class(TObject) private fcParent: TParseTreeNode; fcChildNodes: TObjectList; feNodeType: TParseTreeNodeType; fcNestings: TNestingLevelList; fiUserTag: integer; function GetChildNodes(const piIndex: integer): TParseTreeNode; protected public constructor Create; destructor Destroy; override; function ChildNodeCount: integer; procedure SortChildNodes(Compare: TListSortCompare); function RecursiveChildCount: integer; function MaxDepth: integer; function NewChild: TParseTreeNode; procedure AddChild(const pcChild: TParseTreeNode); procedure InsertChild(const piIndex: integer; const pcChild: TParseTreeNode); function RemoveChild(const pcChild: TParseTreeNode): Boolean; overload; function RemoveChild(const piIndex: integer): Boolean; overload; function ExtractChild(const pcChild: TParseTreeNode): TParseTreeNode; function IndexOfChild(const pcChild: TParseTreeNode): integer; function IndexOfSelf: integer; function SolidChildCount: integer; virtual; function FirstLeaf: TParseTreeNode; function FirstSolidLeaf: TParseTreeNode; virtual; function LastLeaf: TParseTreeNode; function PriorLeafNode: TParseTreeNode; function NextLeafNode: TParseTreeNode; function FirstNodeBefore(const pcChild: TParseTreeNode): TParseTreeNode; function FirstNodeAfter(const pcChild: TParseTreeNode): TParseTreeNode; function GetImmediateChild(const peNodeTypes: TParseTreeNodeTypeSet): TParseTreeNode; overload; function GetImmediateChild(const peNodeType: TParseTreeNodeType): TParseTreeNode; overload; function CountImmediateChild(const peNodeTypes: TParseTreeNodeTypeSet): integer; overload; function CountImmediateChild(const peNodeType: TParseTreeNodeType): integer; overload; function Level: integer; function HasChildren: boolean; function IsLeaf: boolean; virtual; function Root: TParseTreeNode; function HasChildNode(const peToken: TTokenType): boolean; overload; function HasChildNode(const peTokens: TTokenTypeSet): boolean; overload; virtual; function HasChildNode(const peTokens: TTokenTypeSet; const piMaxDepth: integer): boolean; overload; virtual; function HasChildNode(const peToken: TTokenType; const piMaxDepth: integer): boolean; overload; virtual; function HasChildNode(const peNodes: TParseTreeNodeTypeSet; const piMaxDepth: integer): boolean; overload; virtual; function HasChildNode(const peNode: TParseTreeNodeType; const piMaxDepth: integer): boolean; overload; virtual; function HasChildNode(const peNode: TParseTreeNodeType): boolean; overload; virtual; function HasParentNode(const peNodeTypes: TParseTreeNodeTypeSet): boolean; overload; function HasParentNode(const peNodeType: TParseTreeNodeType): boolean; overload; function HasParentNode(const peNodeTypes: TParseTreeNodeTypeSet; const piMaxDepth: integer): boolean; overload; function HasParentNode(const peNodeType: TParseTreeNodeType; const piMaxDepth: integer): boolean; overload; function HasParentNode(const pcParentNode: TParseTreeNode): boolean; overload; function GetParentNode(const peNodeTypes: TParseTreeNodeTypeSet): TParseTreeNode; overload; function GetParentNode(const peNodeType: TParseTreeNodeType): TParseTreeNode; overload; function CountParentNodes(const peNodeType: TParseTreeNodeType): integer; { this one needs some explanation. Need to answer questions like 'Is this node in a type decl, on the right of an equal sign So we find if we have a predecessor of one of peWords in the subtree rooted at peNodeTypes } function IsOnRightOf(const peRootNodeTypes: TParseTreeNodeTypeSet; const peTokens: TTokenTypeSet): boolean; overload; function IsOnRightOf(const peRootNodeType: TParseTreeNodeType; const peToken: TTokenType): boolean; overload; { same with parse tree interior nodes } function IsOnRightOf(const peRootNodeTypes, peNodes: TParseTreeNodeTypeSet): boolean; overload; function IsOnRightOf(const peRootNodeType, peNode: TParseTreeNodeType): boolean; overload; function Describe: string; virtual; property Parent: TParseTreeNode Read fcParent Write fcParent; property ChildNodes[const piIndex: integer]: TParseTreeNode Read GetChildNodes; property NodeType: TParseTreeNodeType Read feNodeType Write feNodeType; property Nestings: TNestingLevelList Read fcNestings; { use tag is for temp use of any process. No process is guaranteed any input value here Create for alignment processes } property UserTag: integer Read fiUserTag Write fiUserTag; end; implementation uses SysUtils, Math; constructor TParseTreeNode.Create; begin inherited Create; fcParent := nil; feNodeType := nUnknown; fcChildNodes := TObjectList.Create; fcChildNodes.OwnsObjects := True; fcNestings := TNestingLevelList.Create; end; destructor TParseTreeNode.Destroy; begin FreeAndNil(fcChildNodes); FreeAndNil(fcNestings); { detatch from the tree } if (Parent <> nil) and (Parent.fcChildNodes <> nil) then Parent.fcChildNodes.Extract(self); inherited; end; function TParseTreeNode.ChildNodeCount: integer; begin Result := fcChildNodes.Count; end; procedure TParseTreeNode.SortChildNodes(Compare: TListSortCompare); begin fcChildNodes.Sort(Compare); end; function TParseTreeNode.GetChildNodes(const piIndex: integer): TParseTreeNode; begin Result := TParseTreeNode(fcChildNodes[piIndex]); end; function TParseTreeNode.NewChild: TParseTreeNode; begin // a new child, properly attached parent <-> child Result := TParseTreeNode.Create; fcChildNodes.Add(Result); end; procedure TParseTreeNode.AddChild(const pcChild: TParseTreeNode); begin pcChild.fcParent := self; fcChildNodes.Add(pcChild); end; procedure TParseTreeNode.InsertChild(const piIndex: integer; const pcChild: TParseTreeNode); begin pcChild.fcParent := self; fcChildNodes.Insert(piIndex, pcChild); end; function TParseTreeNode.RemoveChild(const pcChild: TParseTreeNode): Boolean; begin Result := RemoveChild(fcChildNodes.IndexOf(pcChild)); end; function TParseTreeNode.RemoveChild(const piIndex: integer): Boolean; begin Result := (piIndex >= 0) and (piIndex < ChildNodeCount); if Result then begin ChildNodes[piIndex].Parent := nil; fcChildNodes.Delete(piIndex); end; end; function TParseTreeNode.ExtractChild(const pcChild: TParseTreeNode): TParseTreeNode; begin Result := TParseTreeNode(fcChildNodes.Extract(pcChild)); end; function TParseTreeNode.IndexOfChild(const pcChild: TParseTreeNode): integer; begin Result := fcChildNodes.IndexOf(pcChild); end; function TParseTreeNode.IndexOfSelf: integer; begin if Parent = nil then Result := 0 else Result := Parent.IndexOfChild(self); end; { how far down the tree is this node? } function TParseTreeNode.Level: integer; begin if fcParent = nil then Result := 0 else Result := fcParent.Level + 1; end; function TParseTreeNode.HasChildren: boolean; begin Result := (ChildNodeCount > 0); end; function TParseTreeNode.IsLeaf: boolean; begin Result := False; end; function TParseTreeNode.Describe: string; begin Result := NodeTypeToString(NodeType); end; function TParseTreeNode.MaxDepth: integer; var liLoop: integer; liMaxChildDepth, liChildDepth: integer; begin liMaxChildDepth := 0; // one deeper than the deepest child for liLoop := 0 to ChildNodeCount - 1 do begin liChildDepth := ChildNodes[liLoop].MaxDepth; liMaxChildDepth := Max(liMaxChildDepth, liChildDepth); end; Result := liMaxChildDepth + 1; end; function TParseTreeNode.RecursiveChildCount: integer; var liLoop: integer; begin // I am one, and my children are the rest Result := 1; for liLoop := 0 to ChildNodeCount - 1 do Result := Result + ChildNodes[liLoop].RecursiveChildCount; end; function TParseTreeNode.Root: TParseTreeNode; begin // if I have a parent then I am not the root if (fcParent = nil) then Result := self else Result := fcParent.Root; end; function TParseTreeNode.HasChildNode(const peToken: TTokenType): boolean; begin Result := HasChildNode([peToken]); end; function TParseTreeNode.HasChildNode(const peTokens: TTokenTypeSet): boolean; var liLoop: integer; begin Result := False; for liLoop := 0 to ChildNodeCount - 1 do begin Result := ChildNodes[liLoop].HasChildNode(peTokens); if Result then break; end; end; function TParseTreeNode.HasChildNode(const peTokens: TTokenTypeSet; const piMaxDepth: integer): boolean; var liLoop: integer; begin Result := False; if (piMaxDepth > 0) then begin for liLoop := 0 to ChildNodeCount - 1 do begin Result := ChildNodes[liLoop].HasChildNode(peTokens, piMaxDepth - 1); if Result then break; end; end; end; function TParseTreeNode.HasChildNode(const peToken: TTokenType; const piMaxDepth: integer): boolean; begin Result := HasChildNode([peToken], piMaxDepth); end; function TParseTreeNode.HasChildNode(const peNodes: TParseTreeNodeTypeSet; const piMaxDepth: integer): boolean; var liLoop: integer; begin Result := (NodeType in peNodes); if Result then exit; if (piMaxDepth > 0) then begin for liLoop := 0 to ChildNodeCount - 1 do begin Result := ChildNodes[liLoop].HasChildNode(peNodes, piMaxDepth - 1); if Result then break; end; end; end; function TParseTreeNode.HasChildNode(const peNode: TParseTreeNodeType; const piMaxDepth: integer): boolean; begin Result := HasChildNode([peNode], piMaxDepth); end; function TParseTreeNode.HasChildNode(const peNode: TParseTreeNodeType): boolean; begin // get the child down to any depth Result := HasChildNode([peNode], High(integer)); end; function TParseTreeNode.HasParentNode(const peNodeTypes: TParseTreeNodeTypeSet): boolean; begin Result := (NodeType in peNodeTypes); // try above if ( not Result) and (Parent <> nil) then Result := Parent.HasParentNode(peNodeTypes); end; function TParseTreeNode.HasParentNode(const peNodeType: TParseTreeNodeType): boolean; begin Result := HasParentNode([peNodeType]); end; function TParseTreeNode.GetParentNode(const peNodeTypes: TParseTreeNodeTypeSet): TParseTreeNode; begin if (NodeType in peNodeTypes) then begin Result := self; end else begin Result := nil; // try above if (Parent <> nil) then Result := Parent.GetParentNode(peNodeTypes); end; end; function TParseTreeNode.HasParentNode(const peNodeTypes: TParseTreeNodeTypeSet; const piMaxDepth: integer): boolean; begin Result := (NodeType in peNodeTypes); // try above if ( not Result) and (Parent <> nil) and (piMaxDepth > 0) then Result := Parent.HasParentNode(peNodeTypes, (piMaxDepth - 1)); end; function TParseTreeNode.HasParentNode(const peNodeType: TParseTreeNodeType; const piMaxDepth: integer): boolean; begin Result := HasParentNode([peNodeType], piMaxDepth); end; function TParseTreeNode.HasParentNode(const pcParentNode: TParseTreeNode): boolean; begin Result := (Parent = pcParentNode); if (not Result) and (Parent <> nil) then Result := Parent.HasParentNode(pcParentNode); end; function TParseTreeNode.GetParentNode(const peNodeType: TParseTreeNodeType): TParseTreeNode; begin Result := GetParentNode([peNodeType]); end; function TParseTreeNode.CountParentNodes(const peNodeType: TParseTreeNodeType): integer; var lcParent: TParseTreeNode; begin Result := 0; lcParent := GetParentNode(peNodeType); while (lcParent <> nil) do begin inc(Result); if lcParent.Parent <> nil then begin lcParent := lcParent.Parent.GetParentNode(peNodeType); end else begin lcParent := nil; end; end; end; { a copy of the above with different types } function TParseTreeNode.IsOnRightOf(const peRootNodeTypes: TParseTreeNodeTypeSet; const peTokens: TTokenTypeSet): boolean; var lbSearchDone: boolean; function GetFirstMatch(const pcRoot: TParseTreeNode; const peTokens: TTokenTypeSet): TParseTreeNode; var liLoop: integer; lcChild: TParseTreeNode; begin Result := nil; if pcRoot = self then begin lbSearchDone := True; exit; end; // leaf node - matching token using the 'HasChildNode' override to match self if (pcRoot.ChildNodeCount = 0) and pcRoot.HasChildNode(peTokens) then begin lbSearchDone := True; Result := pcRoot; exit; end; // recurse into all children (or until self is encountered) for liLoop := 0 to pcRoot.ChildNodeCount - 1 do begin lcChild := pcRoot.ChildNodes[liLoop]; if lcChild = self then begin lbSearchDone := True; break; end; Result := GetFirstMatch(lcChild, peTokens); if Result <> nil then break; if lbSearchDone then break; end; end; var lcRoot, lcFirstMatch: TParseTreeNode; begin { does it have the required parent } lcRoot := GetParentNode(peRootNodeTypes); if lcRoot = nil then begin Result := False; exit; end; { does the parent have the required child search depth-first, ending when the self node is reached } lbSearchDone := False; lcFirstMatch := GetFirstMatch(lcRoot, peTokens); Result := (lcFirstMatch <> nil); end; function TParseTreeNode.IsOnRightOf(const peRootNodeType: TParseTreeNodeType; const peToken: TTokenType): boolean; begin Result := IsOnRightOf([peRootNodeType], [peToken]); end; function TParseTreeNode.IsOnRightOf(const peRootNodeTypes, peNodes: TParseTreeNodeTypeSet): boolean; var lbSearchDone: boolean; function GetFirstMatch(const pcRoot: TParseTreeNode; const peNodes: TParseTreeNodeTypeSet): TParseTreeNode; var liLoop: integer; lcChild: TParseTreeNode; begin Result := nil; if pcRoot = self then begin lbSearchDone := True; exit; end; if pcRoot.NodeType in peNodes then begin lbSearchDone := True; Result := self; exit; end; // recurse into all children (or until self is encountered) for liLoop := 0 to ChildNodeCount - 1 do begin lcChild := ChildNodes[liLoop]; if lcChild = self then begin lbSearchDone := True; break; end; Result := GetFirstMatch(lcChild, peNodes); if Result <> nil then break; if lbSearchDone then break; end; end; var lcRoot, lcFirstMatch: TParseTreeNode; begin { does it have the required parent } lcRoot := GetParentNode(peRootNodeTypes); if lcRoot = nil then begin Result := False; exit; end; { does the parent have the required child search depth-first, ending when the self node is reached } lbSearchDone := False; lcFirstMatch := GetFirstMatch(lcRoot, peNodes); // not enough - must be before self Result := (lcFirstMatch <> nil); end; function TParseTreeNode.IsOnRightOf(const peRootNodeType, peNode: TParseTreeNodeType): boolean; begin Result := IsOnRightOf([peRootNodeType], [peNode]) end; function TParseTreeNode.FirstLeaf: TParseTreeNode; var liLoop: integer; begin if IsLeaf then Result := Self // I am a leaf else if ChildNodeCount = 0 then begin Result := nil // I am a bare branch. end else begin // child may be a bare branch. Look back until a non-bare child is found liLoop := 0; Result := nil; while (Result = nil) and (liLoop < ChildNodeCount) do begin Result := ChildNodes[liLoop].FirstLeaf; // go down Inc(liLoop) end; end; end; function TParseTreeNode.FirstSolidLeaf: TParseTreeNode; var liLoop: integer; begin Result := nil; for liLoop := 0 to ChildNodeCount - 1 do begin Result := ChildNodes[liLoop].FirstSolidLeaf; // go down if Result <> nil then break; end; end; function TParseTreeNode.LastLeaf: TParseTreeNode; var liLoop: integer; begin if IsLeaf then Result := Self // I am a leaf else if ChildNodeCount = 0 then begin Result := nil // I am a bare branch. end else begin // child may be a bare branch. Look back until a non-bare child is found liLoop := ChildNodeCount - 1; Result := nil; while (Result = nil) and (liLoop >= 0) do begin Result := ChildNodes[liLoop].LastLeaf; // go down Dec(liLoop) end; end; end; { find the first leaf before this one } function TParseTreeNode.PriorLeafNode: TParseTreeNode; var lcFocus, lcParent, lcLeaf: TParseTreeNode; begin // get the node before this one Result := Parent.FirstNodeBefore(Self); if Result = nil then begin { climb the tree until we reach the top or a node with stuff before this } lcParent := Parent; while (Result = nil) and (lcParent <> nil) do begin lcFocus := lcParent; lcParent := lcParent.Parent; if lcParent <> nil then Result := lcParent.FirstNodeBefore(lcFocus); end; end; // result may not be a leaf node if Result <> nil then begin if (Result.ChildNodeCount = 0) and ( not Result.IsLeaf) then // result is a bare branch. Move on Result := Result.PriorLeafNode else begin lcLeaf := Result.LastLeaf; if lcLeaf = nil then // result is a bare branch. Move on Result := Result.PriorLeafNode else Result := lcLeaf; end; end; end; function TParseTreeNode.NextLeafNode: TParseTreeNode; var lcFocus, lcParent: TParseTreeNode; begin // get the node after this one Assert(Parent <> nil); Result := Parent.FirstNodeAfter(Self); if Result = nil then begin { climb the tree until we reach the top or a node with stuff before this } lcParent := Parent; while (Result = nil) and (lcParent <> nil) do begin lcFocus := lcParent; lcParent := lcParent.Parent; if lcParent <> nil then Result := lcParent.FirstNodeAfter(lcFocus); end; end; // result may not be a leaf node if Result <> nil then begin if (Result.ChildNodeCount = 0) and ( not Result.IsLeaf) then // result is a bare branch. Move on Result := Result.NextLeafNode else Result := Result.FirstLeaf; end; end; function TParseTreeNode.FirstNodeBefore(const pcChild: TParseTreeNode): TParseTreeNode; var liIndex: integer; begin liIndex := IndexOfChild(pcChild); if liIndex > 0 then Result := ChildNodes[liIndex - 1] else Result := nil; end; function TParseTreeNode.FirstNodeAfter(const pcChild: TParseTreeNode): TParseTreeNode; var liIndex: integer; begin liIndex := IndexOfChild(pcChild); if (liIndex < (ChildNodeCount - 1)) then Result := ChildNodes[liIndex + 1] else Result := nil; end; function TParseTreeNode.SolidChildCount: integer; var liLoop: integer; begin Result := 0; for liLoop := 0 to ChildNodeCount - 1 do begin Result := Result + ChildNodes[liLoop].SolidChildCount; end; end; function TParseTreeNode.GetImmediateChild(const peNodeTypes: TParseTreeNodeTypeSet): TParseTreeNode; var liLoop: integer; lcNode: TParseTreeNode; begin Result := nil; for liLoop := 0 to ChildNodeCount - 1 do begin lcNode := ChildNodes[liLoop]; if lcNode.NodeType in peNodeTypes then begin Result := lcNode; break; end; end; end; function TParseTreeNode.GetImmediateChild(const peNodeType: TParseTreeNodeType): TParseTreeNode; begin Result := GetImmediateChild([peNodeType]); end; function TParseTreeNode.CountImmediateChild(const peNodeTypes: TParseTreeNodeTypeSet): integer; var liLoop: integer; lcNode: TParseTreeNode; begin Result := 0; for liLoop := 0 to ChildNodeCount - 1 do begin lcNode := ChildNodes[liLoop]; if lcNode.NodeType in peNodeTypes then inc(Result); end; end; function TParseTreeNode.CountImmediateChild(const peNodeType: TParseTreeNodeType): integer; begin Result := CountImmediateChild([peNodeType]); end; end.