lazarus/components/jcf2/Parse/ParseTreeNode.pas
paul 75d3718f7d jcf: update to r803 revision of main repository:
- support for c-style fpc operators

git-svn-id: trunk@19236 -
2009-04-06 02:19:13 +00:00

836 lines
21 KiB
ObjectPascal

unit ParseTreeNode;
{(*}
(*------------------------------------------------------------------------------
Delphi Code formatter source code
The Original Code is ParseTreeNode, released May 2003.
The Initial Developer of the Original Code is Anthony Steele.
Portions created by Anthony Steele are Copyright (C) 1999-2008 Anthony Steele.
All Rights Reserved.
Contributor(s): Anthony Steele.
The contents of this file are subject to the Mozilla Public License Version 1.1
(the "License"). you may not use this file except in compliance with the License.
You may obtain a copy of the License at http://www.mozilla.org/NPL/
Software distributed under the License is distributed on an "AS IS" basis,
WITHOUT WARRANTY OF ANY KIND, either express or implied.
See the License for the specific language governing rights and limitations
under the License.
Alternatively, the contents of this file may be used under the terms of
the GNU General Public License Version 2 or later (the "GPL")
See http://www.gnu.org/licenses/gpl.html
------------------------------------------------------------------------------*)
{*)}
{$I JcfGlobal.inc}
interface
{ AFS 27 October 2002
A node on the parse tree
}
uses
{delphi }
Contnrs, Classes,
{ local }
Tokens, ParseTreeNodeType, Nesting;
type
TParseTreeNode = class(TObject)
private
fcParent: TParseTreeNode;
fcChildNodes: TObjectList;
feNodeType: TParseTreeNodeType;
fcNestings: TNestingLevelList;
fiUserTag: integer;
function GetChildNodes(const piIndex: integer): TParseTreeNode;
protected
public
constructor Create;
destructor Destroy; override;
function ChildNodeCount: integer;
procedure SortChildNodes(Compare: TListSortCompare);
function RecursiveChildCount: integer;
function MaxDepth: integer;
function NewChild: TParseTreeNode;
procedure AddChild(const pcChild: TParseTreeNode);
procedure InsertChild(const piIndex: integer; const pcChild: TParseTreeNode);
function RemoveChild(const pcChild: TParseTreeNode): Boolean; overload;
function RemoveChild(const piIndex: integer): Boolean; overload;
function ExtractChild(const pcChild: TParseTreeNode): TParseTreeNode;
function IndexOfChild(const pcChild: TParseTreeNode): integer;
function IndexOfSelf: integer;
function SolidChildCount: integer; virtual;
function FirstLeaf: TParseTreeNode;
function FirstSolidLeaf: TParseTreeNode; virtual;
function LastLeaf: TParseTreeNode;
function PriorLeafNode: TParseTreeNode;
function NextLeafNode: TParseTreeNode;
function FirstNodeBefore(const pcChild: TParseTreeNode): TParseTreeNode;
function FirstNodeAfter(const pcChild: TParseTreeNode): TParseTreeNode;
function GetImmediateChild(const peNodeTypes: TParseTreeNodeTypeSet): TParseTreeNode; overload;
function GetImmediateChild(const peNodeType: TParseTreeNodeType): TParseTreeNode; overload;
function CountImmediateChild(const peNodeTypes: TParseTreeNodeTypeSet): integer; overload;
function CountImmediateChild(const peNodeType: TParseTreeNodeType): integer; overload;
function Level: integer;
function HasChildren: boolean;
function IsLeaf: boolean; virtual;
function Root: TParseTreeNode;
function HasChildNode(const peToken: TTokenType): boolean; overload;
function HasChildNode(const peTokens: TTokenTypeSet): boolean; overload; virtual;
function HasChildNode(const peTokens: TTokenTypeSet;
const piMaxDepth: integer): boolean; overload; virtual;
function HasChildNode(const peToken: TTokenType; const piMaxDepth: integer): boolean; overload; virtual;
function HasChildNode(const peNodes: TParseTreeNodeTypeSet;
const piMaxDepth: integer): boolean; overload; virtual;
function HasChildNode(const peNode: TParseTreeNodeType;
const piMaxDepth: integer): boolean; overload; virtual;
function HasChildNode(const peNode: TParseTreeNodeType): boolean; overload; virtual;
function HasParentNode(const peNodeTypes: TParseTreeNodeTypeSet): boolean; overload;
function HasParentNode(const peNodeType: TParseTreeNodeType): boolean; overload;
function HasParentNode(const peNodeTypes: TParseTreeNodeTypeSet;
const piMaxDepth: integer): boolean; overload;
function HasParentNode(const peNodeType: TParseTreeNodeType;
const piMaxDepth: integer): boolean; overload;
function HasParentNode(const pcParentNode: TParseTreeNode): boolean; overload;
function GetParentNode(const peNodeTypes: TParseTreeNodeTypeSet): TParseTreeNode; overload;
function GetParentNode(const peNodeType: TParseTreeNodeType): TParseTreeNode; overload;
function CountParentNodes(const peNodeType: TParseTreeNodeType): integer;
{ this one needs some explanation. Need to answer questions like
'Is this node in a type decl, on the right of an equal sign
So we find if we have a predecessor of one of peWords in the subtree rooted at peNodeTypes }
function IsOnRightOf(const peRootNodeTypes: TParseTreeNodeTypeSet;
const peTokens: TTokenTypeSet): boolean; overload;
function IsOnRightOf(const peRootNodeType: TParseTreeNodeType;
const peToken: TTokenType): boolean; overload;
{ same with parse tree interior nodes }
function IsOnRightOf(const peRootNodeTypes, peNodes: TParseTreeNodeTypeSet): boolean; overload;
function IsOnRightOf(const peRootNodeType, peNode: TParseTreeNodeType): boolean; overload;
function Describe: string; virtual;
property Parent: TParseTreeNode Read fcParent Write fcParent;
property ChildNodes[const piIndex: integer]: TParseTreeNode Read GetChildNodes;
property NodeType: TParseTreeNodeType Read feNodeType Write feNodeType;
property Nestings: TNestingLevelList Read fcNestings;
{ use tag is for temp use of any process.
No process is guaranteed any input value here
Create for alignment processes }
property UserTag: integer Read fiUserTag Write fiUserTag;
end;
implementation
uses SysUtils, Math;
constructor TParseTreeNode.Create;
begin
inherited Create;
fcParent := nil;
feNodeType := nUnknown;
fcChildNodes := TObjectList.Create;
fcChildNodes.OwnsObjects := True;
fcNestings := TNestingLevelList.Create;
end;
destructor TParseTreeNode.Destroy;
begin
FreeAndNil(fcChildNodes);
FreeAndNil(fcNestings);
{ detatch from the tree }
if (Parent <> nil) and (Parent.fcChildNodes <> nil) then
Parent.fcChildNodes.Extract(self);
inherited;
end;
function TParseTreeNode.ChildNodeCount: integer;
begin
Result := fcChildNodes.Count;
end;
procedure TParseTreeNode.SortChildNodes(Compare: TListSortCompare);
begin
fcChildNodes.Sort(Compare);
end;
function TParseTreeNode.GetChildNodes(const piIndex: integer): TParseTreeNode;
begin
Result := TParseTreeNode(fcChildNodes[piIndex]);
end;
function TParseTreeNode.NewChild: TParseTreeNode;
begin
// a new child, properly attached parent <-> child
Result := TParseTreeNode.Create;
fcChildNodes.Add(Result);
end;
procedure TParseTreeNode.AddChild(const pcChild: TParseTreeNode);
begin
pcChild.fcParent := self;
fcChildNodes.Add(pcChild);
end;
procedure TParseTreeNode.InsertChild(const piIndex: integer;
const pcChild: TParseTreeNode);
begin
pcChild.fcParent := self;
fcChildNodes.Insert(piIndex, pcChild);
end;
function TParseTreeNode.RemoveChild(const pcChild: TParseTreeNode): Boolean;
begin
Result := RemoveChild(fcChildNodes.IndexOf(pcChild));
end;
function TParseTreeNode.RemoveChild(const piIndex: integer): Boolean;
begin
Result := (piIndex >= 0) and (piIndex < ChildNodeCount);
if Result then
begin
ChildNodes[piIndex].Parent := nil;
fcChildNodes.Delete(piIndex);
end;
end;
function TParseTreeNode.ExtractChild(const pcChild: TParseTreeNode): TParseTreeNode;
begin
Result := TParseTreeNode(fcChildNodes.Extract(pcChild));
end;
function TParseTreeNode.IndexOfChild(const pcChild: TParseTreeNode): integer;
begin
Result := fcChildNodes.IndexOf(pcChild);
end;
function TParseTreeNode.IndexOfSelf: integer;
begin
if Parent = nil then
Result := 0
else
Result := Parent.IndexOfChild(self);
end;
{ how far down the tree is this node? }
function TParseTreeNode.Level: integer;
begin
if fcParent = nil then
Result := 0
else
Result := fcParent.Level + 1;
end;
function TParseTreeNode.HasChildren: boolean;
begin
Result := (ChildNodeCount > 0);
end;
function TParseTreeNode.IsLeaf: boolean;
begin
Result := False;
end;
function TParseTreeNode.Describe: string;
begin
Result := NodeTypeToString(NodeType);
end;
function TParseTreeNode.MaxDepth: integer;
var
liLoop: integer;
liMaxChildDepth, liChildDepth: integer;
begin
liMaxChildDepth := 0;
// one deeper than the deepest child
for liLoop := 0 to ChildNodeCount - 1 do
begin
liChildDepth := ChildNodes[liLoop].MaxDepth;
liMaxChildDepth := Max(liMaxChildDepth, liChildDepth);
end;
Result := liMaxChildDepth + 1;
end;
function TParseTreeNode.RecursiveChildCount: integer;
var
liLoop: integer;
begin
// I am one, and my children are the rest
Result := 1;
for liLoop := 0 to ChildNodeCount - 1 do
Result := Result + ChildNodes[liLoop].RecursiveChildCount;
end;
function TParseTreeNode.Root: TParseTreeNode;
begin
// if I have a parent then I am not the root
if (fcParent = nil) then
Result := self
else
Result := fcParent.Root;
end;
function TParseTreeNode.HasChildNode(const peToken: TTokenType): boolean;
begin
Result := HasChildNode([peToken]);
end;
function TParseTreeNode.HasChildNode(const peTokens: TTokenTypeSet): boolean;
var
liLoop: integer;
begin
Result := False;
for liLoop := 0 to ChildNodeCount - 1 do
begin
Result := ChildNodes[liLoop].HasChildNode(peTokens);
if Result then
break;
end;
end;
function TParseTreeNode.HasChildNode(const peTokens: TTokenTypeSet;
const piMaxDepth: integer): boolean;
var
liLoop: integer;
begin
Result := False;
if (piMaxDepth > 0) then
begin
for liLoop := 0 to ChildNodeCount - 1 do
begin
Result := ChildNodes[liLoop].HasChildNode(peTokens, piMaxDepth - 1);
if Result then
break;
end;
end;
end;
function TParseTreeNode.HasChildNode(const peToken: TTokenType;
const piMaxDepth: integer): boolean;
begin
Result := HasChildNode([peToken], piMaxDepth);
end;
function TParseTreeNode.HasChildNode(const peNodes: TParseTreeNodeTypeSet;
const piMaxDepth: integer): boolean;
var
liLoop: integer;
begin
Result := (NodeType in peNodes);
if Result then
exit;
if (piMaxDepth > 0) then
begin
for liLoop := 0 to ChildNodeCount - 1 do
begin
Result := ChildNodes[liLoop].HasChildNode(peNodes, piMaxDepth - 1);
if Result then
break;
end;
end;
end;
function TParseTreeNode.HasChildNode(const peNode: TParseTreeNodeType;
const piMaxDepth: integer): boolean;
begin
Result := HasChildNode([peNode], piMaxDepth);
end;
function TParseTreeNode.HasChildNode(const peNode: TParseTreeNodeType): boolean;
begin
// get the child down to any depth
Result := HasChildNode([peNode], High(integer));
end;
function TParseTreeNode.HasParentNode(const peNodeTypes: TParseTreeNodeTypeSet): boolean;
begin
Result := (NodeType in peNodeTypes);
// try above
if ( not Result) and (Parent <> nil) then
Result := Parent.HasParentNode(peNodeTypes);
end;
function TParseTreeNode.HasParentNode(const peNodeType: TParseTreeNodeType): boolean;
begin
Result := HasParentNode([peNodeType]);
end;
function TParseTreeNode.GetParentNode(const peNodeTypes: TParseTreeNodeTypeSet):
TParseTreeNode;
begin
if (NodeType in peNodeTypes) then
begin
Result := self;
end
else
begin
Result := nil;
// try above
if (Parent <> nil) then
Result := Parent.GetParentNode(peNodeTypes);
end;
end;
function TParseTreeNode.HasParentNode(const peNodeTypes: TParseTreeNodeTypeSet;
const piMaxDepth: integer): boolean;
begin
Result := (NodeType in peNodeTypes);
// try above
if ( not Result) and (Parent <> nil) and (piMaxDepth > 0) then
Result := Parent.HasParentNode(peNodeTypes, (piMaxDepth - 1));
end;
function TParseTreeNode.HasParentNode(const peNodeType: TParseTreeNodeType;
const piMaxDepth: integer): boolean;
begin
Result := HasParentNode([peNodeType], piMaxDepth);
end;
function TParseTreeNode.HasParentNode(const pcParentNode: TParseTreeNode): boolean;
begin
Result := (Parent = pcParentNode);
if (not Result) and (Parent <> nil) then
Result := Parent.HasParentNode(pcParentNode);
end;
function TParseTreeNode.GetParentNode(const peNodeType: TParseTreeNodeType): TParseTreeNode;
begin
Result := GetParentNode([peNodeType]);
end;
function TParseTreeNode.CountParentNodes(const peNodeType: TParseTreeNodeType): integer;
var
lcParent: TParseTreeNode;
begin
Result := 0;
lcParent := GetParentNode(peNodeType);
while (lcParent <> nil) do
begin
inc(Result);
if lcParent.Parent <> nil then
begin
lcParent := lcParent.Parent.GetParentNode(peNodeType);
end
else
begin
lcParent := nil;
end;
end;
end;
{ a copy of the above with different types }
function TParseTreeNode.IsOnRightOf(const peRootNodeTypes: TParseTreeNodeTypeSet;
const peTokens: TTokenTypeSet): boolean;
var
lbSearchDone: boolean;
function GetFirstMatch(const pcRoot: TParseTreeNode;
const peTokens: TTokenTypeSet): TParseTreeNode;
var
liLoop: integer;
lcChild: TParseTreeNode;
begin
Result := nil;
if pcRoot = self then
begin
lbSearchDone := True;
exit;
end;
// leaf node - matching token using the 'HasChildNode' override to match self
if (pcRoot.ChildNodeCount = 0) and pcRoot.HasChildNode(peTokens) then
begin
lbSearchDone := True;
Result := pcRoot;
exit;
end;
// recurse into all children (or until self is encountered)
for liLoop := 0 to pcRoot.ChildNodeCount - 1 do
begin
lcChild := pcRoot.ChildNodes[liLoop];
if lcChild = self then
begin
lbSearchDone := True;
break;
end;
Result := GetFirstMatch(lcChild, peTokens);
if Result <> nil then
break;
if lbSearchDone then
break;
end;
end;
var
lcRoot, lcFirstMatch: TParseTreeNode;
begin
{ does it have the required parent }
lcRoot := GetParentNode(peRootNodeTypes);
if lcRoot = nil then
begin
Result := False;
exit;
end;
{ does the parent have the required child
search depth-first, ending when the self node is reached }
lbSearchDone := False;
lcFirstMatch := GetFirstMatch(lcRoot, peTokens);
Result := (lcFirstMatch <> nil);
end;
function TParseTreeNode.IsOnRightOf(const peRootNodeType: TParseTreeNodeType;
const peToken: TTokenType): boolean;
begin
Result := IsOnRightOf([peRootNodeType], [peToken]);
end;
function TParseTreeNode.IsOnRightOf(const peRootNodeTypes, peNodes: TParseTreeNodeTypeSet): boolean;
var
lbSearchDone: boolean;
function GetFirstMatch(const pcRoot: TParseTreeNode;
const peNodes: TParseTreeNodeTypeSet): TParseTreeNode;
var
liLoop: integer;
lcChild: TParseTreeNode;
begin
Result := nil;
if pcRoot = self then
begin
lbSearchDone := True;
exit;
end;
if pcRoot.NodeType in peNodes then
begin
lbSearchDone := True;
Result := self;
exit;
end;
// recurse into all children (or until self is encountered)
for liLoop := 0 to ChildNodeCount - 1 do
begin
lcChild := ChildNodes[liLoop];
if lcChild = self then
begin
lbSearchDone := True;
break;
end;
Result := GetFirstMatch(lcChild, peNodes);
if Result <> nil then
break;
if lbSearchDone then
break;
end;
end;
var
lcRoot, lcFirstMatch: TParseTreeNode;
begin
{ does it have the required parent }
lcRoot := GetParentNode(peRootNodeTypes);
if lcRoot = nil then
begin
Result := False;
exit;
end;
{ does the parent have the required child
search depth-first, ending when the self node is reached }
lbSearchDone := False;
lcFirstMatch := GetFirstMatch(lcRoot, peNodes);
// not enough - must be before self
Result := (lcFirstMatch <> nil);
end;
function TParseTreeNode.IsOnRightOf(const peRootNodeType, peNode:
TParseTreeNodeType): boolean;
begin
Result := IsOnRightOf([peRootNodeType], [peNode])
end;
function TParseTreeNode.FirstLeaf: TParseTreeNode;
var
liLoop: integer;
begin
if IsLeaf then
Result := Self // I am a leaf
else if ChildNodeCount = 0 then
begin
Result := nil // I am a bare branch.
end
else
begin
// child may be a bare branch. Look back until a non-bare child is found
liLoop := 0;
Result := nil;
while (Result = nil) and (liLoop < ChildNodeCount) do
begin
Result := ChildNodes[liLoop].FirstLeaf; // go down
Inc(liLoop)
end;
end;
end;
function TParseTreeNode.FirstSolidLeaf: TParseTreeNode;
var
liLoop: integer;
begin
Result := nil;
for liLoop := 0 to ChildNodeCount - 1 do
begin
Result := ChildNodes[liLoop].FirstSolidLeaf; // go down
if Result <> nil then
break;
end;
end;
function TParseTreeNode.LastLeaf: TParseTreeNode;
var
liLoop: integer;
begin
if IsLeaf then
Result := Self // I am a leaf
else if ChildNodeCount = 0 then
begin
Result := nil // I am a bare branch.
end
else
begin
// child may be a bare branch. Look back until a non-bare child is found
liLoop := ChildNodeCount - 1;
Result := nil;
while (Result = nil) and (liLoop >= 0) do
begin
Result := ChildNodes[liLoop].LastLeaf; // go down
Dec(liLoop)
end;
end;
end;
{ find the first leaf before this one }
function TParseTreeNode.PriorLeafNode: TParseTreeNode;
var
lcFocus, lcParent, lcLeaf: TParseTreeNode;
begin
// get the node before this one
Result := Parent.FirstNodeBefore(Self);
if Result = nil then
begin
{ climb the tree until we reach the top or a node with stuff before this }
lcParent := Parent;
while (Result = nil) and (lcParent <> nil) do
begin
lcFocus := lcParent;
lcParent := lcParent.Parent;
if lcParent <> nil then
Result := lcParent.FirstNodeBefore(lcFocus);
end;
end;
// result may not be a leaf node
if Result <> nil then
begin
if (Result.ChildNodeCount = 0) and ( not Result.IsLeaf) then
// result is a bare branch. Move on
Result := Result.PriorLeafNode
else
begin
lcLeaf := Result.LastLeaf;
if lcLeaf = nil then
// result is a bare branch. Move on
Result := Result.PriorLeafNode
else
Result := lcLeaf;
end;
end;
end;
function TParseTreeNode.NextLeafNode: TParseTreeNode;
var
lcFocus, lcParent: TParseTreeNode;
begin
// get the node after this one
Assert(Parent <> nil);
Result := Parent.FirstNodeAfter(Self);
if Result = nil then
begin
{ climb the tree until we reach the top or a node with stuff before this }
lcParent := Parent;
while (Result = nil) and (lcParent <> nil) do
begin
lcFocus := lcParent;
lcParent := lcParent.Parent;
if lcParent <> nil then
Result := lcParent.FirstNodeAfter(lcFocus);
end;
end;
// result may not be a leaf node
if Result <> nil then
begin
if (Result.ChildNodeCount = 0) and ( not Result.IsLeaf) then
// result is a bare branch. Move on
Result := Result.NextLeafNode
else
Result := Result.FirstLeaf;
end;
end;
function TParseTreeNode.FirstNodeBefore(const pcChild: TParseTreeNode): TParseTreeNode;
var
liIndex: integer;
begin
liIndex := IndexOfChild(pcChild);
if liIndex > 0 then
Result := ChildNodes[liIndex - 1]
else
Result := nil;
end;
function TParseTreeNode.FirstNodeAfter(const pcChild: TParseTreeNode): TParseTreeNode;
var
liIndex: integer;
begin
liIndex := IndexOfChild(pcChild);
if (liIndex < (ChildNodeCount - 1)) then
Result := ChildNodes[liIndex + 1]
else
Result := nil;
end;
function TParseTreeNode.SolidChildCount: integer;
var
liLoop: integer;
begin
Result := 0;
for liLoop := 0 to ChildNodeCount - 1 do
begin
Result := Result + ChildNodes[liLoop].SolidChildCount;
end;
end;
function TParseTreeNode.GetImmediateChild(const peNodeTypes: TParseTreeNodeTypeSet): TParseTreeNode;
var
liLoop: integer;
lcNode: TParseTreeNode;
begin
Result := nil;
for liLoop := 0 to ChildNodeCount - 1 do
begin
lcNode := ChildNodes[liLoop];
if lcNode.NodeType in peNodeTypes then
begin
Result := lcNode;
break;
end;
end;
end;
function TParseTreeNode.GetImmediateChild(const peNodeType: TParseTreeNodeType):
TParseTreeNode;
begin
Result := GetImmediateChild([peNodeType]);
end;
function TParseTreeNode.CountImmediateChild(const peNodeTypes: TParseTreeNodeTypeSet): integer;
var
liLoop: integer;
lcNode: TParseTreeNode;
begin
Result := 0;
for liLoop := 0 to ChildNodeCount - 1 do
begin
lcNode := ChildNodes[liLoop];
if lcNode.NodeType in peNodeTypes then
inc(Result);
end;
end;
function TParseTreeNode.CountImmediateChild(const peNodeType: TParseTreeNodeType): integer;
begin
Result := CountImmediateChild([peNodeType]);
end;
end.