mirror of
https://gitlab.com/freepascal.org/lazarus/lazarus.git
synced 2025-04-08 06:38:14 +02:00
256 lines
6.8 KiB
ObjectPascal
256 lines
6.8 KiB
ObjectPascal
(*******************************************************************
|
|
*
|
|
* TTCalc.Pas 1.2
|
|
*
|
|
* Arithmetic and Vectorial Computations (specification)
|
|
*
|
|
* Copyright 1996 David Turner, Robert Wilhelm and Werner Lemberg
|
|
*
|
|
* This file is part of the FreeType project, and may only be used
|
|
* modified and distributed under the terms of the FreeType project
|
|
* license, LICENSE.TXT. By continuing to use, modify or distribute
|
|
* this file you indicate that you have read the license and
|
|
* understand and accept it fully.
|
|
*
|
|
* NOTES : All vector operations were moved to the interpreter
|
|
*
|
|
******************************************************************)
|
|
|
|
unit TTCalc;
|
|
|
|
interface
|
|
|
|
{$I TTCONFIG.INC}
|
|
|
|
type
|
|
(* IntN types : *)
|
|
(* *)
|
|
(* These types are used as a way to guarantee the size of some *)
|
|
(* specific integers. *)
|
|
(* *)
|
|
(* Of course, they are equivalent to Short, UShort, Long, etc .. *)
|
|
(* but parts of this unit could be used by different programs. *)
|
|
(* *)
|
|
|
|
(* Define the 16-bit type *)
|
|
{$IFDEF BORLANDPASCAL}
|
|
Int16 = Integer;
|
|
Word16 = Word; (* 16-bits unsigned *)
|
|
{$ENDIF}
|
|
{$IFDEF DELPHI16}
|
|
Int16 = Integer;
|
|
Word16 = Word; (* 16-bits unsigned *)
|
|
{$ENDIF}
|
|
{$IFDEF DELPHI32}
|
|
Int16 = SmallInt;
|
|
Word16 = Word; (* 16-bits unsigned *)
|
|
{$ENDIF}
|
|
{$IFDEF FPC}
|
|
Int16 = SmallInt;
|
|
Word16 = Word; (* 16-bits unsigned *)
|
|
{$ENDIF}
|
|
Int32 = Longint; (* 32 bits integer *)
|
|
|
|
Word32 = Cardinal; (* 32 bits 'unsigned'. Note that there's *)
|
|
(* no unsigned long in Pascal.. *)
|
|
(* As cardinals are only 31 bits !! *)
|
|
|
|
// No need to define our own type, just use the build-in one
|
|
{ Int64 = record (* 64 "" *)
|
|
Lo,
|
|
Hi : LongInt;
|
|
end;}
|
|
|
|
function MulDiv( A, B, C : Int32 ): Int32;
|
|
|
|
function MulDiv_Round( A, B, C : Int32 ): Int32;
|
|
|
|
procedure MulTo64( X, Y : Int32; out Z : Int64 );
|
|
|
|
function Div64by32( X : Int64; Y : Int32 ) : Int32;
|
|
|
|
function Order64( Z : Int64 ) : integer;
|
|
function Order32( Z : Int32 ) : integer;
|
|
|
|
function Sqrt32( L : Int32 ): LongInt;
|
|
function Sqrt64( L : Int64 ): LongInt;
|
|
|
|
{$IFDEF TEST}
|
|
procedure Neg64( var x : Int64 );
|
|
procedure DivMod64by32( X : Int64; Y : Int32; out Q, R : Int32 );
|
|
{$ENDIF}
|
|
|
|
implementation
|
|
|
|
(* add support for Virtual Pascal inline assembly *)
|
|
{$IFDEF VIRTUALPASCAL}
|
|
{$I TTCALC2.INC}
|
|
{$ENDIF}
|
|
|
|
(* add support for Delphi 2 and 3 inline assembly *)
|
|
{$IFDEF DELPHI32}
|
|
{$I TTCALC3.INC}
|
|
{$ENDIF}
|
|
|
|
(* add support for Borland Pascal and Turbo Pascal inline assembly *)
|
|
{$IFDEF BORLANDPASCAL}
|
|
{$I TTCALC1.INC}
|
|
{$ENDIF}
|
|
|
|
(* Delphi 16 uses the same inline assembly than Borland Pascal *)
|
|
{$IFDEF DELPHI16}
|
|
{$I TTCALC1.INC}
|
|
{$ENDIF}
|
|
|
|
(* add support for Free Pascal inline assembly *)
|
|
{$IFDEF FPC}
|
|
{$I TTCALC4.INC}
|
|
{$ENDIF}
|
|
|
|
(*****************************************************************)
|
|
(* *)
|
|
(* MulDiv : computes A*B/C with an intermediate 64 bits *)
|
|
(* precision. *)
|
|
(* *)
|
|
(*****************************************************************)
|
|
|
|
function MulDiv( a, b, c : Int32 ) : Int32; {$IFDEF INLINE} inline; {$ENDIF}
|
|
begin
|
|
{$ifdef CPUI386}
|
|
{$asmmode intel}
|
|
asm
|
|
mov eax, a
|
|
imul b
|
|
idiv c
|
|
mov result, eax
|
|
end;
|
|
{$else}
|
|
MulDiv := int64(a)*int64(b) div c;
|
|
{$endif}
|
|
end;
|
|
|
|
(*****************************************************************)
|
|
(* *)
|
|
(* MulDiv : computes A*B/C with an intermediate 64 bits *)
|
|
(* _Round precision and rounding. *)
|
|
(* *)
|
|
(*****************************************************************)
|
|
|
|
function MulDiv_Round( a, b, c : Int32 ) : Int32;
|
|
var
|
|
temp: Int64;
|
|
begin
|
|
temp := int64(a)*int64(b);
|
|
if c < 0 then
|
|
begin
|
|
c := -c;
|
|
temp := -temp;
|
|
end;
|
|
if temp >= 0 then
|
|
temp += c shr 1
|
|
else
|
|
temp -= c shr 1;
|
|
result := temp div c;
|
|
end;
|
|
|
|
(**********************************************************)
|
|
(* MSB index ( return -1 for 0 ) *)
|
|
|
|
function Order64( Z : Int64 ) : integer;
|
|
var b : integer;
|
|
begin
|
|
b := 0;
|
|
while Z <> 0 do begin Z := Z shr 1; inc( b ); end;
|
|
Result := b-1;
|
|
end;
|
|
|
|
(**********************************************************)
|
|
(* MSB index ( return -1 for 0 ) *)
|
|
|
|
function Order32( Z : Int32 ) : integer;
|
|
var b : integer;
|
|
begin
|
|
b := 0;
|
|
while Z <> 0 do begin Z := Z shr 1; inc( b ); end;
|
|
Order32 := b-1;
|
|
end;
|
|
|
|
|
|
const
|
|
Roots : array[0..62] of LongInt
|
|
= (
|
|
1, 1, 2, 3, 4, 5, 8, 11,
|
|
16, 22, 32, 45, 64, 90, 128, 181,
|
|
256, 362, 512, 724, 1024, 1448, 2048, 2896,
|
|
4096, 5892, 8192, 11585, 16384, 23170, 32768, 46340,
|
|
|
|
65536, 92681, 131072, 185363, 262144, 370727,
|
|
524288, 741455, 1048576, 1482910, 2097152, 2965820,
|
|
4194304, 5931641, 8388608, 11863283, 16777216, 23726566,
|
|
|
|
33554432, 47453132, 67108864, 94906265,
|
|
134217728, 189812531, 268435456, 379625062,
|
|
536870912, 759250125, 1073741824, 1518500250,
|
|
2147483647
|
|
);
|
|
|
|
|
|
(**************************************************)
|
|
(* Integer Square Root *)
|
|
|
|
function Sqrt32( L : Int32 ): LongInt;
|
|
var
|
|
R, S : LongInt;
|
|
begin
|
|
if L<=0 then result:=0 else
|
|
if L=1 then result:=1 else
|
|
begin
|
|
R:=Roots[ Order32(L) ];
|
|
|
|
Repeat
|
|
S:=R;
|
|
R:=( R+ L div R ) shr 1;
|
|
until ( R <= S ) and ( R*R <= L );
|
|
|
|
result:=R;
|
|
end;
|
|
end;
|
|
|
|
|
|
(**************************************************)
|
|
(* Integer Square Root *)
|
|
|
|
function Sqrt64( L : Int64 ): LongInt;
|
|
begin
|
|
Result := Round(sqrt(L));
|
|
end;
|
|
{var
|
|
L2 : Int64;
|
|
R, S : LongInt;
|
|
begin
|
|
if L.Hi < 0 then Sqrt64:=0 else
|
|
begin
|
|
S := Order64(L);
|
|
if S = 0 then Sqrt64:=1 else
|
|
begin
|
|
R := Roots[S];
|
|
|
|
Repeat
|
|
|
|
S := R;
|
|
R := ( R+Div64by32(L,R) ) shr 1;
|
|
|
|
if ( R > S ) then continue;
|
|
|
|
MulTo64( R, R, L2 );
|
|
Sub64 ( L, L2, L2 );
|
|
|
|
until ( L2.Hi >= 0 );
|
|
|
|
Sqrt64 := R;
|
|
end
|
|
end
|
|
end;}
|
|
|
|
end.
|