lazarus/components/sparta/generics/source/generics.memoryexpanders.pas

228 lines
6.2 KiB
ObjectPascal

{
This file is part of the Free Pascal run time library.
Copyright (c) 2014 by Maciej Izak (hnb)
member of the Free Sparta development team (http://freesparta.com)
Copyright(c) 2004-2014 DaThoX
It contains the Free Pascal generics library
See the file COPYING.FPC, included in this distribution,
for details about the copyright.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
**********************************************************************}
unit Generics.MemoryExpanders;
// Memory expanders
{$mode delphi}
{$MACRO ON}
{$OVERFLOWCHECKS OFF}
{$RANGECHECKS OFF}
{.$WARN 5024 OFF}
{.$WARN 4079 OFF}
interface
uses
Classes, SysUtils;
type
TProbeSequence = class
public
end;
{ TLinearProbing }
TLinearProbing = class(TProbeSequence)
public
class function Probe(I, Hash: UInt32): UInt32; static; inline;
const MAX_LOAD_FACTOR = 1;
const DEFAULT_LOAD_FACTOR = 0.75;
end;
{ TQuadraticProbing }
TQuadraticProbing = class(TProbeSequence)
public
class function Probe(I, Hash: UInt32): UInt32; static; inline;
const MAX_LOAD_FACTOR = 0.5;
const DEFAULT_LOAD_FACTOR = 0.5;
end;
{ TDoubleHashing }
TDoubleHashing = class(TProbeSequence)
public
class function Probe(I, Hash1: UInt32; Hash2: UInt32 = 1): UInt32; static; inline;
const MAX_LOAD_FACTOR = 1;
const DEFAULT_LOAD_FACTOR = 0.85;
end;
const
// http://stackoverflow.com/questions/757059/position-of-least-significant-bit-that-is-set
// MultiplyDeBruijnBitPosition[uint32(((numberInt32 and -numberInt32) * $077CB531)) shr 27]
MultiplyDeBruijnBitPosition: array[0..31] of Int32 =
(
0, 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15, 25, 17, 4, 8,
31, 27, 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9
);
// http://primes.utm.edu/lists/2small/0bit.html
// http://www.math.niu.edu/~rusin/known-math/98/pi_x
// http://oeis.org/A014234/
PrimaryNumbersJustLessThanPowerOfTwo: array[0..31] of UInt32 =
(
0, 1, 3, 7, 13, 31, 61, 127, 251, 509, 1021, 2039, 4093, 8191, 16381, 32749, 65521, 131071,
262139, 524287, 1048573, 2097143, 4194301, 8388593, 16777213, 33554393, 67108859,
134217689, 268435399, 536870909, 1073741789, 2147483647
);
// http://oeis.org/A014210
// http://oeis.org/A203074
PrimaryNumbersJustBiggerThanPowerOfTwo: array[0..31] of UInt32 = (
2,3,5,11,17,37,67,131,257,521,1031,2053,4099,
8209,16411,32771,65537,131101,262147,524309,
1048583,2097169,4194319,8388617,16777259,33554467,
67108879,134217757,268435459,536870923,1073741827,
2147483659);
// Fibonacci numbers
FibonacciNumbers: array[0..44] of UInt32 = (
{0,1,1,2,3,}0,5,8,13,21,34,55,89,144,233,377,610,987,
1597,2584,4181,6765,10946,17711,28657,46368,75025,
121393,196418,317811,514229,832040,1346269,
2178309,3524578,5702887,9227465,14930352,24157817,
39088169, 63245986, 102334155, 165580141, 267914296,
433494437, 701408733, 1134903170, 1836311903, 2971215073,
{! not fib number - this is memory limit} 4294967295);
// Largest prime not exceeding Fibonacci(n)
// http://oeis.org/A138184/list
// http://www.numberempire.com/primenumbers.php
PrimaryNumbersJustLessThanFibonacciNumbers: array[0..44] of UInt32 = (
{! not correlated to fib number. For empty table} 0,
5,7,13,19,31,53,89,139,233,373,607,983,1597,
2579,4177,6763,10939,17707,28657,46351,75017,
121379,196387,317797,514229,832003,1346249,
2178283,3524569,5702867,9227443,14930341,24157811,
39088157,63245971,102334123,165580123,267914279,
433494437,701408717,1134903127,1836311879,2971215073,
{! not correlated to fib number - this is prime memory limit} 4294967291);
// Smallest prime >= n-th Fibonacci number.
// http://oeis.org/A138185
PrimaryNumbersJustBiggerThanFibonacciNumbers: array[0..44] of UInt32 = (
{! not correlated to fib number. For empty table} 0,
5,11,13,23,37,59,89,149,233,379,613,
991,1597,2591,4201,6779,10949,17713,28657,46381,
75029,121403,196429,317827,514229,832063,1346273,
2178313,3524603,5702897,9227479,14930387,24157823,
39088193,63245989,102334157,165580147,267914303,
433494437,701408753,1134903179,1836311951,2971215073,
{! not correlated to fib number - this is prime memory limit} 4294967291);
type
{ TCuckooHashingCfg }
TCuckooHashingCfg = class
public
const D = 2;
const MAX_LOAD_FACTOR = 0.5;
class function LoadFactor(M: Integer): Integer; virtual;
end;
TStdCuckooHashingCfg = class(TCuckooHashingCfg)
public
const MAX_LOOP = 1000;
end;
TDeamortizedCuckooHashingCfg = class(TCuckooHashingCfg)
public
const L = 5;
end;
TDeamortizedCuckooHashingCfg_D2 = TDeamortizedCuckooHashingCfg;
{ TDeamortizedCuckooHashingCfg_D4 }
TDeamortizedCuckooHashingCfg_D4 = class(TDeamortizedCuckooHashingCfg)
public
const D = 4;
const L = 20;
const MAX_LOAD_FACTOR = 0.9;
class function LoadFactor(M: Integer): Integer; override;
end;
{ TDeamortizedCuckooHashingCfg_D6 }
TDeamortizedCuckooHashingCfg_D6 = class(TDeamortizedCuckooHashingCfg)
public
const D = 6;
const L = 170;
const MAX_LOAD_FACTOR = 0.99;
class function LoadFactor(M: Integer): Integer; override;
end;
TL5CuckooHashingCfg = class(TCuckooHashingCfg)
public
end;
implementation
{ TDeamortizedCuckooHashingCfg_D6 }
class function TDeamortizedCuckooHashingCfg_D6.LoadFactor(M: Integer): Integer;
begin
Result:=Pred(Round(MAX_LOAD_FACTOR*M));
end;
{ TDeamortizedCuckooHashingCfg_D4 }
class function TDeamortizedCuckooHashingCfg_D4.LoadFactor(M: Integer): Integer;
begin
Result:=Pred(Round(MAX_LOAD_FACTOR*M));
end;
{ TCuckooHashingCfg }
class function TCuckooHashingCfg.LoadFactor(M: Integer): Integer;
begin
Result := Pred(M shr 1);
end;
{ TLinearProbing }
class function TLinearProbing.Probe(I, Hash: UInt32): UInt32;
begin
Result := (Hash + I)
end;
{ TQuadraticProbing }
class function TQuadraticProbing.Probe(I, Hash: UInt32): UInt32;
begin
Result := (Hash + Sqr(I));
end;
{ TDoubleHashingNoMod }
class function TDoubleHashing.Probe(I, Hash1: UInt32; Hash2: UInt32): UInt32;
begin
Result := Hash1 + I * Hash2;
end;
end.