lazarus/lcl/graphmath.pp

1055 lines
32 KiB
ObjectPascal

{
/***************************************************************************
GraphMath.pp
------------
Math helper routines for use within Graphics/Drawing & related
Initial Revision : Wed Aug 07 2002
***************************************************************************/
*****************************************************************************
*
* This file is part of the Lazarus Component Library (LCL)
*
* See the file COPYING.modifiedLGPL.txt, included in this distribution,
* for details about the copyright.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
*
*****************************************************************************
}
{
@abstract(A Set of Math Helper routines to simply Cross-Platfrom Canvas,
etc)
@author(Andrew Johnson <AJ_Genius@Hotmail.com>)
@created(2002)
@lastmod(2002)
}
unit GraphMath;
{$Mode OBJFPC} {$H+}
interface
Uses
Types, Classes, SysUtils, Math, LCLProc;
Type
TFloatPoint = Record
X, Y : Extended;
end;
TBezier = Array[0..3] of TFloatPoint;
PPoint = ^TPoint;
procedure Angles2Coords(X,Y, Width, Height : Integer;
Angle1, Angle2 : Extended; var SX, SY, EX, EY : Integer);
procedure Arc2Bezier(X, Y, Width, Height : Longint; Angle1, Angle2,
Rotation : Extended; var Points : TBezier);
function Bezier(const C1,C2,C3,C4 : TFloatPoint): TBezier; Overload;
function Bezier(const C1,C2,C3,C4 : TPoint): TBezier; Overload;
procedure Bezier2Polyline(const Bezier : TBezier; var Points : PPoint;
var Count : Longint);
procedure BezierArcPoints(X, Y, Width, Height : Longint; Angle1, Angle2,
Rotation : Extended; var Points : PPoint; var Count : Longint);
function BezierMidPoint(Bezier : TBezier) : TFloatPoint;
procedure Coords2Angles(X, Y, Width, Height : Integer; SX, SY,
EX, EY : Integer; var Angle1, Angle2 : Extended);
function Distance(PT1,Pt2 : TPoint) : Extended; overload;
function Distance(Pt, SP, EP : TFloatPoint) : Extended; overload;
function EccentricAngle(PT : TPoint; Rect : TRect) : Extended;
function EllipseRadialLength(Rect : TRect; EccentricAngle : Extended) : Longint;
function FloatPoint(AX,AY : Extended): TFloatPoint;
function LineEndPoint(StartPoint : TPoint; Angle, Length : Extended) : TPoint;
procedure PolyBezier2Polyline(Beziers: Array of TBezier;
var Points : PPoint; var Count : Longint); Overload;
procedure PolyBezier2Polyline(Beziers : Array of TPoint;
var Points : PPoint; var Count : Longint;
Continuous : Boolean); Overload;
procedure PolyBezier2Polyline(Beziers : PPoint; BCount : Longint;
var Points : PPoint; var Count : Longint;
Continuous : Boolean); Overload;
procedure PolyBezierArcPoints(X, Y, Width, Height : Longint; Angle1,
Angle2, Rotation : Extended; var Points : PPoint; var Count : Longint);
function Quadrant(PT, Center : TPoint) : Integer;
function RadialPoint(EccentricAngle : Extended; Rect : TRect) : TPoint;
procedure SplitBezier(Bezier : TBezier; var Left, Right : TBezier);
Operator + (Addend1, Addend2 : TFloatPoint) : TFloatPoint;
Operator + (Addend1 : TFloatPoint; Addend2 : Extended) : TFloatPoint;
Operator + (Addend1 : Extended; Addend2 : TFloatPoint) : TFloatPoint;
Operator + (Addend1 : TFloatPoint; Addend2 : TPoint) : TFloatPoint;
Operator + (Addend1 : TPoint; Addend2 : TFloatPoint) : TFloatPoint;
Operator - (Minuend : TFloatPoint; Subtrahend : Extended) : TFloatPoint;
Operator - (Minuend, Subtrahend : TFloatPoint) : TFloatPoint;
Operator - (Minuend : TFloatPoint; Subtrahend : TPoint) : TFloatPoint;
Operator - (Minuend : TPoint; Subtrahend : TFloatPoint) : TFloatPoint;
Operator * (Multiplicand, Multiplier : TFloatPoint) : TFloatPoint;
Operator * (Multiplicand : TFloatPoint; Multiplier : Extended) : TFloatPoint;
Operator * (Multiplicand : Extended; Multiplier : TFloatPoint) : TFloatPoint;
Operator * (Multiplicand : TFloatPoint; Multiplier : TPoint) : TFloatPoint;
Operator * (Multiplicand : TPoint; Multiplier : TFloatPoint) : TFloatPoint;
Operator / (Dividend, Divisor : TFloatPoint) : TFloatPoint;
Operator / (Dividend : TFloatPoint; Divisor : Extended) : TFloatPoint;
Operator / (Dividend : TFloatPoint; Divisor : TPoint) : TFloatPoint;
Operator / (Dividend : TPoint; Divisor : TFloatPoint) : TFloatPoint;
Operator = (Compare1, Compare2 : TPoint) : Boolean;
Operator = (Compare1, Compare2 : TFloatPoint) : Boolean;
Operator := (Value : TFloatPoint) : TPoint;
Operator := (Value : TPoint) : TFloatPoint;
Operator = (Compare1, Compare2 : TRect) : Boolean;
implementation
Operator + (Addend1, Addend2 : TFloatPoint) : TFloatPoint;
Begin
With Result do begin
X := Addend1.X + Addend2.X;
Y := Addend1.Y + Addend2.Y;
end;
end;
Operator + (Addend1 : TFloatPoint; Addend2 : Extended) : TFloatPoint;
Begin
With Result do begin
X := Addend1.X + Addend2;
Y := Addend1.Y + Addend2;
end;
end;
Operator + (Addend1 : Extended; Addend2 : TFloatPoint) : TFloatPoint;
begin
Result := Addend2 + Addend1;
end;
Operator + (Addend1 : TFloatPoint; Addend2 : TPoint) : TFloatPoint;
Begin
With Result do begin
X := Addend1.X + Addend2.X;
Y := Addend1.Y + Addend2.Y;
end;
end;
Operator + (Addend1 : TPoint; Addend2 : TFloatPoint) : TFloatPoint;
begin
Result := Addend2 + Addend1;
end;
Operator - (Minuend, Subtrahend:TFloatPoint) : TFloatPoint;
Begin
With Result do begin
X := Minuend.X - Subtrahend.X;
Y := Minuend.Y - Subtrahend.Y;
end;
end;
Operator - (Minuend : TFloatPoint; Subtrahend : Extended) : TFloatPoint;
Begin
With Result do begin
X := Minuend.X - Subtrahend;
Y := Minuend.Y - Subtrahend;
end;
end;
Operator - (Minuend : TFloatPoint; Subtrahend : TPoint) : TFloatPoint;
begin
With Result do begin
X := Minuend.X - Subtrahend.X;
Y := Minuend.Y - Subtrahend.Y;
end;
end;
Operator - (Minuend : TPoint; Subtrahend : TFloatPoint) : TFloatPoint;
begin
With Result do begin
X := Minuend.X - Subtrahend.X;
Y := Minuend.Y - Subtrahend.Y;
end;
end;
Operator * (Multiplicand, Multiplier : TFloatPoint) : TFloatPoint;
Begin
With Result do begin
X := Multiplicand.X * Multiplier.X;
Y := Multiplicand.Y * Multiplier.Y;
end;
end;
Operator * (Multiplicand : TFloatPoint; Multiplier : Extended) : TFloatPoint;
Begin
With Result do begin
X := Multiplicand.X * Multiplier;
Y := Multiplicand.Y * Multiplier;
end;
end;
Operator * (Multiplicand : Extended; Multiplier : TFloatPoint) : TFloatPoint;
Begin
Result := Multiplier*Multiplicand;
end;
Operator * (Multiplicand : TFloatPoint; Multiplier : TPoint) : TFloatPoint;
begin
With Result do begin
X := Multiplicand.X * Multiplier.X;
Y := Multiplicand.Y * Multiplier.Y;
end;
end;
Operator * (Multiplicand : TPoint; Multiplier : TFloatPoint) : TFloatPoint;
begin
Result := Multiplier*Multiplicand;
end;
Operator / (Dividend, Divisor : TFloatPoint) : TFloatPoint;
Begin
With Result do begin
X := Dividend.X / Divisor.X;
Y := Dividend.Y / Divisor.Y;
end;
end;
Operator / (Dividend : TFloatPoint; Divisor : Extended) : TFloatPoint;
begin
With Result do begin
X := Dividend.X / Divisor;
Y := Dividend.Y / Divisor;
end;
end;
Operator / (Dividend : TFloatPoint; Divisor : TPoint) : TFloatPoint;
begin
With Result do begin
X := Dividend.X / Divisor.X;
Y := Dividend.Y / Divisor.Y;
end;
end;
Operator / (Dividend : TPoint; Divisor : TFloatPoint) : TFloatPoint;
begin
With Result do begin
X := Dividend.X / Divisor.X;
Y := Dividend.Y / Divisor.Y;
end;
end;
Operator = (Compare1, Compare2 : TPoint) : Boolean;
begin
Result := (Compare1.X = Compare2.X) and (Compare1.Y = Compare2.Y);
end;
Operator = (Compare1, Compare2 : TFloatPoint) : Boolean;
begin
Result := (Compare1.X = Compare2.X) and (Compare1.Y = Compare2.Y);
end;
Operator := (Value : TFloatPoint) : TPoint;
begin
With Result do begin
X := Trunc(SimpleRoundTo(Value.X, 0));
Y := Trunc(SimpleRoundTo(Value.Y, 0));
end;
end;
Operator := (Value : TPoint) : TFloatPoint;
begin
With Result do begin
X := Value.X;
Y := Value.Y;
end;
end;
Operator = (Compare1, Compare2 : TRect) : Boolean;
begin
Result := (Compare1.Left = Compare2.Left) and
(Compare1.Top = Compare2.Top) and
(Compare1.Right = Compare2.Right) and
(Compare1.Bottom = Compare2.Bottom);
end;
{------------------------------------------------------------------------------
Method: Angles2Coords
Params: x,y,width,height,angle1,angle2, sx, sy, ex, ey
Returns: Nothing
Use Angles2Coords to convert an Eccentric(aka Radial) Angle and an
Angle-Length, such as are used in X-Windows and GTK, into the coords,
for Start and End Radial-Points, such as are used in the Windows API Arc
Pie and Chord routines. The angles are 1/16th of a degree. For example, a
full circle equals 5760 (16*360). Positive values of Angle and AngleLength
mean counter-clockwise while negative values mean clockwise direction.
Zero degrees is at the 3'o clock position.
------------------------------------------------------------------------------}
procedure Angles2Coords(X, Y, Width, Height : Integer;
Angle1, Angle2 : Extended; var SX, SY, EX, EY : Integer);
var
aRect : TRect;
SP, EP : TPoint;
begin
aRect := Rect(X,Y,X + Width,Y + Height);
SP := RadialPoint(Angle1 , aRect);
If Angle2 + Angle1 > 360*16 then
Angle2 := (Angle2 + Angle1) - 360*16
else
Angle2 := Angle2 + Angle1;
EP := RadialPoint(Angle2, aRect);
SX := SP.X;
SY := SP.Y;
EX := EP.X;
EY := EP.Y;
end;
{------------------------------------------------------------------------------
Method: Arc2Bezier
Params: X, Y, Width, Height, Angle1, Angle2, Rotation, Points, Count
Returns: Nothing
Use Arc2Bezier to convert an Arc and ArcLength into a Bezier Aproximation
of the Arc. The Rotation parameter accepts a Rotation-Angle for a rotated
Ellipse'- for a non-rotated ellipse this value would be 0, or 360. If the
AngleLength is greater than 90 degrees, or is equal to 0, it automatically
exits, as Bezier cannot accurately aproximate any angle greater then 90
degrees, and in fact for best result no angle greater than 45 should be
converted, instead an array of Bezier's should be created, each Bezier
descibing a portion of the total arc no greater than 45 degrees. The angles
are 1/16th of a degree. For example, a full circle equals 5760 (16*360).
Positive values of Angle and AngleLength mean counter-clockwise while
negative values mean clockwise direction. Zero degrees is at the 3'o clock
position.
------------------------------------------------------------------------------}
procedure Arc2Bezier(X, Y, Width, Height : Longint; Angle1, Angle2,
Rotation : Extended; var Points : TBezier);
function Rotate(Point : TFloatPoint; Rotation : Extended) : TFloatPoint;
var
SinA,CosA : Extended;
begin
CosA := cos(Rotation);
SinA := Sin(Rotation);
Result.X := Point.X*CosA + Point.Y*SinA;
Result.Y := Point.X*SinA - Point.Y*CosA;
end;
function Scale(Point : TFloatPoint; ScaleX, ScaleY : Extended) : TFloatPoint;
begin
Result := Point*FloatPoint(ScaleX,ScaleY);
end;
var
Beta : Extended;
P : array[0..3] of TFLoatPoint;
SinA,CosA : Extended;
A,B : Extended;
I : Longint;
PT : TPoint;
ScaleX, ScaleY : Extended;
begin
If ABS(Angle2) > 90*16 then
exit;
If Angle2 = 0 then
exit;
B := Extended(Height) / 2;
A := Extended(Width) / 2;
If (A <> B) and (A <> 0) and (B <> 0) then begin
If A > B then begin
ScaleX := Extended(Width) / Height;
ScaleY := 1;
A := B;
end
else begin
ScaleX := 1;
ScaleY := Extended(Height) / Width;
B := A;
end;
end
else begin
ScaleX := 1;
ScaleY := 1;
end;
Angle1 := DegToRad(Angle1/16);
Angle2 := DegToRad(Angle2/16);
Rotation := -DegToRad(Rotation/16);
Beta := (4/3)*(1 - Cos(Angle2/2))/(Sin(Angle2/2));
PT := CenterPoint(Rect(X, Y, X+Width, Y + Height));
CosA := cos(Angle1);
SinA := sin(Angle1);
P[0].X := A *CosA;
P[0].Y := B *SinA;
P[1].X := P[0].X - Beta * A * SinA;
P[1].Y := P[0].Y + Beta * B * CosA;
CosA := cos(Angle1 + Angle2);
SinA := sin(Angle1 + Angle2);
P[3].X := A *CosA;
P[3].Y := B *SinA;
P[2].X := P[3].X + Beta * A * SinA;
P[2].Y := P[3].Y - Beta * B * CosA;
For I := 0 to 3 do
begin
Points[I] := Scale(P[I],ScaleX, ScaleY); //Scale to proper size
Points[I] := Rotate(Points[I], Rotation); //Rotate Counter-Clockwise
Points[I] := Points[I] + PT; //Translate to Center
end;
end;
{------------------------------------------------------------------------------
Method: Bezier
Params: C1,C2,C3,C4
Returns: TBezier
Use Bezier to get a TBezier. It is Primarily for use with and in Bezier
routines.
------------------------------------------------------------------------------}
function Bezier(const C1,C2,C3,C4 : TFloatPoint): TBezier;
begin
Result[0] := C1;
Result[1] := C2;
Result[2] := C3;
Result[3] := C4;
end;
{------------------------------------------------------------------------------
Method: Bezier
Params: C1,C2,C3,C4
Returns: TBezier
Use Bezier to get a TBezier. It is Primarily for use with and in Bezier
routines.
------------------------------------------------------------------------------}
function Bezier(const C1,C2,C3,C4 : TPoint): TBezier;
begin
Result[0] := FloatPoint(C1.X,C1.Y);
Result[1] := FloatPoint(C2.X,C2.Y);
Result[2] := FloatPoint(C3.X,C3.Y);
Result[3] := FloatPoint(C4.X,C4.Y);
end;
{------------------------------------------------------------------------------
Method: Bezier2Polyline
Params: Bezier, Points, Count
Returns: Nothing
Use BezierToPolyline to convert a 4-Point Bezier into a Pointer Array of
TPoint and a Count variable which can then be used within either a Polyline,
or Polygon routine. It is primarily for use within PolyBezier2Polyline. If
Points is not initialized or Count is less then 0, it is set to nil and
the array starts at 0, otherwise it tries to append points
to the array starting at Count. Points should ALWAYS be Freed when done
by calling to ReallocMem(Points, 0) or FreeMem.
------------------------------------------------------------------------------}
procedure Bezier2Polyline(const Bezier : TBezier; var Points : PPoint;
var Count : Longint);
var
Pt : TPoint;
procedure AddPoint(const Point : TFloatPoint);
var
P : TPoint;
begin
P := Point;
if (Pt <> P) then
begin
Inc(Count);
ReallocMem(Points, SizeOf(TPoint) * Count);
Points[Count - 1] := P;
Pt := P;
end;
end;
function Colinear(BP : TBezier; Tolerance : Extended) : Boolean;
var
D : Extended;
begin
D := SQR(Distance(BP[1], BP[0], BP[3]));
Result := D < Tolerance;
D := SQR(Distance(BP[2], BP[0], BP[3]));
If Result then
Result := Result and (D < Tolerance);
end;
procedure SplitRecursive(B : TBezier);
var
Left,
Right : TBezier;
begin
If Colinear(B, 1) then begin
AddPoint(B[0]);
AddPoint(B[3]);
end
else begin
SplitBezier(B,left,right);
SplitRecursive(left);
SplitRecursive(right);
end;
end;
begin
Pt := Point(-1,-1);
If (not Assigned(Points)) or (Count <= 0) then
begin
Count := 0;
if Assigned(Points) then
ReallocMem(Points, 0);
end;
SplitRecursive(Bezier);
end;
{------------------------------------------------------------------------------
Method: BezierArcPoints
Params: X, Y, Width, Height, Angle1, Angle2, Rotation, Points, Count
Returns: Nothing
Use BezierArcPoints to convert an Arc and ArcLength into a Pointer Array
of TPoints for use with Polyline or Polygon. The Rotation parameter accepts
a Rotation-Angle for a rotated Ellipse'- for a non-rotated ellipse this
value would be 0, or 360. The result is an Aproximation based on 1 or more
Beziers. If the AngleLength is greater than 90 degrees, it calls
PolyBezierArcPoints, otherwise it Converts the angles into a Bezier by
calling to Arc2Bezier, and then converts the Bezier into an array of Points
by calling to Bezier2Polyline. The angles are 1/16th of a degree. For example,
a full circle equals 5760 (16*360). Positive values of Angle and AngleLength
mean counter-clockwise while negative values mean clockwise direction. Zero
degrees is at the 3'o clock position. If Points is not initialized or Count
is less then 0, it is set to nil and the array starts at 0,
otherwise it tries to append points to the array starting at Count. Points
should ALWAYS be Freed when done by calling ReallocMem(Points, 0) or FreeMem.
------------------------------------------------------------------------------}
procedure BezierArcPoints(X, Y, Width, Height : Longint; Angle1, Angle2,
Rotation : Extended; var Points : PPoint; var Count : Longint);
var
B : TBezier;
begin
If ABS(Angle2) > 90*16 then begin
PolyBezierArcPoints(X, Y, Width, Height, Angle1, Angle2, Rotation, Points,
Count);
Exit;
end;
If Angle2 = 0 then
exit;
If (not Assigned(Points)) or (Count <= 0) then
begin
Count := 0;
if Assigned(Points) then
ReallocMem(Points, 0);
end;
Arc2Bezier(X, Y, Width, Height, Angle1, Angle2, Rotation, B);
Bezier2Polyline(B,Points,Count);
end;
{------------------------------------------------------------------------------
Method: BezierMidPoint
Params: Bezier
Returns: TFloatPoint
Use BezierMidPoint to get the Mid-Point of any 4-Point Bezier. It is
primarily for use in SplitBezier.
------------------------------------------------------------------------------}
function BezierMidPoint(Bezier : TBezier) : TFloatPoint;
begin
Result := (Bezier[0] + 3*Bezier[1] + 3*Bezier[2] + Bezier[3]) / 8;
end;
{------------------------------------------------------------------------------
Method: Coords2Angles
Params: x,y,width,height,sx,sy,ex,ey, angle1,angle2
Returns: Nothing
Use Coords2Angles to convert the coords for Start and End Radial-Points, such
as are used in the Windows API Arc Pie and Chord routines, into an Eccentric
(aka Radial) counter clockwise Angle and an Angle-Length, such as are used in
X-Windows and GTK. The angles angle1 and angle2 are returned in 1/16th of a
degree. For example, a full circle equals 5760 (16*360). Zero degrees is at
the 3'o clock position.
------------------------------------------------------------------------------}
procedure Coords2Angles(X, Y, Width, Height : Integer; SX, SY,
EX, EY : Integer; var Angle1, Angle2 : Extended);
var
aRect : TRect;
SP,EP : TPoint;
begin
aRect := Rect(X,Y,X + Width,Y + Height);
SP := Point(SX,SY);
EP := Point(EX,EY);
Angle1 := EccentricAngle(SP, aRect);
Angle2 := EccentricAngle(EP, aRect);
If Angle2 < Angle1 then
Angle2 := 360*16 - (Angle1 - Angle2)
else
Angle2 := Angle2 - Angle1;
end;
{------------------------------------------------------------------------------
Method: Distance
Params: PT1, PT2
Returns: Extended
Use Distance to get the distance between any two Points. It is primarily
for use in other routines such as EccentricAngle.
------------------------------------------------------------------------------}
function Distance(Pt1,Pt2 : TPoint) : Extended;
begin
Result := Sqrt(Sqr(Pt2.X - Pt1.X) + Sqr(Pt2.Y - Pt1.Y));
end;
{------------------------------------------------------------------------------
Method: Distance
Params: PT, SP,EP
Returns: Extended
Use Distance to get the distance between any point(PT) and a line defined
by any two points(SP, EP). Intended for use in Bezier2Polyline, so params
are TFloatPoint's, NOT TPoint's.
------------------------------------------------------------------------------}
function Distance(Pt, SP, EP : TFloatPoint) : Extended;
var
A, B, C : Extended;
function Slope(PT1,Pt2 : TFloatPoint) : Extended;
begin
If Pt2.X <> Pt1.X then
Result := (Pt2.Y - Pt1.Y) / (Pt2.X - Pt1.X)
else
Result := 1;
end;
function YIntercept(PT1,Pt2 : TFloatPoint) : Extended;
begin
Result := Pt1.Y - Slope(Pt1,Pt2)*Pt1.X;
end;
begin
A := -Slope(SP,EP);
B := 1;
C := -YIntercept(SP, EP);
Result := ABS(A*Pt.X + B*Pt.Y + C)/Sqrt(Sqr(A) + Sqr(B));
end;
{------------------------------------------------------------------------------
Method: EccentricAngle
Params: Pt, Rect
Returns: Extended
Use EccentricAngle to get the Eccentric( aka Radial ) Angle of a given
point on any non-rotated ellipse. It is primarily for use in Coords2Angles.
The result is in 1/16th of a degree. For example, a full circle equals
5760 (16*360). Zero degrees is at the 3'o clock position.
------------------------------------------------------------------------------}
function EccentricAngle(PT : TPoint; Rect : TRect) : Extended;
var
CenterPt : TPoint;
Quad : Integer;
Theta : Extended;
begin
CenterPt := CenterPoint(Rect);
Quad := Quadrant(Pt,CenterPt);
Theta := -1;
Case Quad of
1..4:
begin
Theta := Distance(CenterPt,Pt);
If Theta > 0 then
Theta := RadToDeg(ArcSin(ABS(PT.Y - CenterPt.Y) / Theta));
end;
end;
Case Quad of
0:{ 0, 0}
Theta := -1;
1:{ X, Y}
Theta := Theta;
2:{-X, Y}
Theta := 180 - Theta;
3:{-X,-Y}
Theta := 180 + Theta;
4:{ X,-Y}
Theta := 360 - Theta;
5:{ 0, Y}
Theta := 90;
6:{ X, 0}
Theta := 0;
7:{ 0,-Y}
Theta := 270;
8:{-X, 0}
Theta := 180;
end;
Result := Theta*16;
end;
{------------------------------------------------------------------------------
Method: EllipseRadialLength
Params: Rect, EccentricAngle
Returns: Longint
Use EllipseRadialLength to get the Radial-Length of non-rotated ellipse at
any given Eccentric( aka Radial ) Angle. It is primarily for use in other
routines such as RadialPoint. The Eccentric angle is in 1/16th of a degree.
For example, a full circle equals 5760 (16*360). Zero degrees is at the
3'o clock position.
------------------------------------------------------------------------------}
function EllipseRadialLength(Rect : TRect; EccentricAngle : Extended) : Longint;
var
a, b, R : Extended;
begin
a := (Rect.Right - Rect.Left) div 2;
b := (Rect.Bottom - Rect.Top) div 2;
R := Sqr(a)*Sqr(b);
if R <> 0 then
R := Sqrt(R / ((Sqr(b)*Sqr(Cos(DegToRad(EccentricAngle/16)))) +
(Sqr(a)*Sqr(Sin(DegToRad(EccentricAngle/16))))));
Result := TruncToInt(R);
end;
{------------------------------------------------------------------------------
Method: FloatPoint
Params: AX, AY
Returns: TFloatPoint
Use FloatPoint to get a TFloatPoint. It is essentialy like Classes. Point in
use, except that it excepts Extended Parameters. It is Primarily for use with
and in Bezier routines.
------------------------------------------------------------------------------}
function FloatPoint(AX,AY : Extended): TFloatPoint;
begin
With Result do begin
X := AX;
Y := AY;
end;
end;
{------------------------------------------------------------------------------
Method: LineEndPoint
Params: StartPoint, Angle, Length
Returns: TPoint
Use LineEndPoint to get the End-Point of a line of any given Length at
any given angle with any given Start-Point. It is primarily for use in
other routines such as RadialPoint. The angle is in 1/16th of a degree.
For example, a full circle equals 5760 (16*360). Zero degrees is at the
3'o clock position.
------------------------------------------------------------------------------}
function LineEndPoint(StartPoint : TPoint; Angle, Length : Extended) :
TPoint;
begin
if Angle > 360*16 then
Angle := Frac(Angle / 360*16) * 360*16;
if Angle < 0 then
Angle := 360*16 - abs(Angle);
Result.Y := StartPoint.Y - Round(Length*Sin(DegToRad(Angle/16)));
Result.X := StartPoint.X + Round(Length*Cos(DegToRad(Angle/16)));
end;
{------------------------------------------------------------------------------
Method: PolyBezier2Polyline
Params: Beziers, Points, Count
Returns: Nothing
Use BezierToPolyline to convert an array of 4-Point Bezier into a Pointer
Array of TPoint and a Count variable which can then be used within either a
Polyline, or Polygon routine. Points is automatically initialized, so any
existing information is lost, and the array starts at 0. Points should ALWAYS
be Freed when done by calling to ReallocMem(Points, 0).
------------------------------------------------------------------------------}
procedure PolyBezier2Polyline(Beziers: Array of TBezier;
var Points : PPoint; var Count : Longint);
var
I : Integer;
begin
If (High(Beziers) < 1) then
exit;
Count := 0;
If Assigned(Points) then
Try
ReallocMem(Points, 0)
Finally
Points := nil;
end;
For I := 0 to High(Beziers) - 1 do
Bezier2PolyLine(Beziers[I], Points, Count);
end;
{------------------------------------------------------------------------------
Method: PolyBezier2Polyline
Params: Beziers, Points, Count, Continuous
Returns: Nothing
Use BezierToPolyline to convert an array of TPoints descibing 1 or more
4-Point Beziers into a Pointer Array of TPoint and a Count variable which
can then be used within either a Polyline, or Polygon routine. If Continuous
is set to true then the first point of each Bezier is the last point of
the preceding Bezier, so every bezier must have 3 described points, in
addition to the initial Starting Point; otherwise each Bezier must have 4
points. If there are an uneven number of points then the last set of points
is ignored. Points is automatically initialized, so any existing information
is lost, and the array starts at 0. Points should ALWAYS be Freed when done
by calling to ReallocMem(Points, 0).
------------------------------------------------------------------------------}
procedure PolyBezier2Polyline(Beziers : Array of TPoint; var Points : PPoint;
var Count : Longint; Continuous : Boolean);
begin
PolyBezier2Polyline(@Beziers[0],High(Beziers) + 1, Points, Count,
Continuous);
end;
procedure PolyBezier2Polyline(Beziers : PPoint; BCount : Longint;
var Points : PPoint; var Count : Longint; Continuous : Boolean);
var
I : Integer;
NB : Longint;
begin
If BCount < 4 then
exit;
Count := 0;
If Assigned(Points) then
Try
ReallocMem(Points, 0)
Finally
Points := nil;
end;
If Not Continuous then begin
NB := BCount;
NB := Floor(NB div 4);
For I := 0 to NB - 1 do
Bezier2PolyLine(Bezier(Beziers[I*4],Beziers[I*4+1],
Beziers[I*4+2],Beziers[I*4+3]), Points, Count);
end
else begin
NB := BCount - 1;
NB := Floor(NB div 3);
For I := 0 to NB do
Bezier2PolyLine(Bezier(Beziers[(I - 1)*3 + 3],Beziers[I*3 + 1],
Beziers[I*3+2],Beziers[I*3+3]), Points, Count);
end;
end;
{------------------------------------------------------------------------------
Method: PolyBezierArcPoints
Params: X, Y, Width, Height, Angle1, Angle2, Rotation, Points, Count
Returns: Nothing
Use PolyBezierArcPoints to convert an Arc and ArcLength into a Pointer Array
of TPoints for use with Polyline or Polygon. The Rotation parameter accepts
a Rotation-Angle for a rotated Ellipse'- for a non-rotated ellipse this
value would be 0, or 360. The result is an Aproximation based on 1 or more
Beziers. If the AngleLength is greater than 45 degrees, it recursively breaks
the Arc into Arcs of 45 degrees or less, and converts them into Beziers with
BezierArcPoints. The angles are 1/16th of a degree. For example, a full circle
equals 5760 (16*360). Positive values of Angle and AngleLength mean
counter-clockwise while negative values mean clockwise direction. Zero
degrees is at the 3'o clock position. Points is automatically initialized,
so any existing information is lost, and the array starts at 0. Points
should ALWAYS be Freed when done by calling to ReallocMem(Points, 0).
------------------------------------------------------------------------------}
procedure PolyBezierArcPoints(X, Y, Width, Height : Longint; Angle1, Angle2,
Rotation : Extended; var Points : PPoint; var Count : Longint);
var
I,K : Integer;
FullAngle : Extended;
TST : Boolean;
begin
If Abs(Angle2) > 360*16 then begin
Angle2 := 360*16;
Angle1 := 0;
end;
If Abs(Rotation) > 360*16 then
Rotation := Frac(Rotation / 360*16)*360*16;
FullAngle := Angle1 + Angle2;
K := Ceil(ABS(Angle2/16) / 45);
Count := 0;
If Assigned(Points) then
Try
ReallocMem(Points, 0)
Finally
Points := nil;
end;
If Angle2 > 45*16 then
Angle2 := 45*16
else
If Angle2 < -45*16 then
Angle2 := -45*16;
For I := 0 to K - 1 do begin
BezierArcPoints(X, Y, Width,Height,Angle1,Angle2,Rotation,Points,Count);
Angle1 := Angle1 + Angle2;
If Angle2 > 0 then
TST := (FullAngle - Angle1) > 45*16
else
TST := ABS(FullAngle - Angle1) > 45*16;
If TST then begin
If Angle2 > 0 then
Angle2 := 45*16
else
Angle2 := -45*16;
end
else begin
If Angle2 > 0 then
Angle2 := FullAngle - Angle1
else
Angle2 := -(FullAngle - Angle1);
end;
end;
end;
{------------------------------------------------------------------------------
Method: Quadrant
Params: PT, Center
Returns: Integer
Use Quadrant to determine the Quadrant of any point, given the Center.
It is primarily for use in other routines such as EccentricAngle. A result
of 1-4 represents the primary 4 quardants. A result of 5-8 means the point
lies on one of the Axis', 5 = -Y Axis, 6 = +X Axis, 7 = +Y Axis, and
8 = -X Axis. A result of -1 means that it does not fall in any quadrant,
that is, it is the Center.
------------------------------------------------------------------------------}
function Quadrant(Pt,Center : TPoint) : Integer;
var
X,Y,CX,CY : Longint;
begin
X := Pt.X;
Y := Pt.Y;
CX := Center.X;
CY := Center.Y;
Result := -1;
If (Y < CY) then begin
If (X > CX) then begin
Result := 1;
end
else
If (X < CX) then begin
Result := 2;
end
else begin
Result := 5;
end;
end
else
If (Y > CY) then begin
If (X < CX) then begin
Result := 3;
end
else
If (X > CX) then begin
Result := 4;
end
else begin
Result := 7;
end;
end
else
If (Y = CY) then begin
If (X > CX) then begin
Result := 6;
end
else
If (X < CX) then begin
Result := 8;
end;
end;
end;
{------------------------------------------------------------------------------
Method: RadialPointAngle
Params: EccentricAngle, Rect
Returns: TPoint
Use RadialPoint to get the Radial-Point at any given Eccentric( aka Radial )
angle on any non-rotated ellipse. It is primarily for use in Angles2Coords.
The EccentricAngle is in 1/16th of a degree. For example, a full circle
equals 5760 (16*360). Zero degrees is at the 3'o clock position.
------------------------------------------------------------------------------}
function RadialPoint(EccentricAngle : Extended; Rect : TRect) : TPoint;
var
R : Longint;
Begin
R := EllipseRadialLength(Rect,EccentricAngle);
Result := LineEndPoint(CenterPoint(Rect), EccentricAngle, R);
end;
{------------------------------------------------------------------------------
Method: SplitBezier
Params: Bezier, Left, Right
Returns: Nothing
Use SplitBezier to split any 4-Point Bezier into two 4-Point Bezier's :
a 'Left' and a 'Right'. It is primarily for use in Bezier2Polyline.
------------------------------------------------------------------------------}
procedure SplitBezier(Bezier : TBezier; var Left, Right : TBezier);
var
Tmp : TFloatPoint;
begin
Tmp := (Bezier[1] + Bezier[2]) / 2;
left[0] := Bezier[0];
Left[1] := (Bezier[0] + Bezier[1]) / 2;
left[2] := (Left[1] + Tmp) / 2;
Left[3] := BezierMidPoint(Bezier);
right[3] := Bezier[3];
right[2] := (Bezier[2] + Bezier[3]) / 2;
Right[1] := (Right[2] + Tmp) / 2;
right[0] := BezierMidPoint(Bezier);
end;
end.