lazarus/components/fpdebug/fpimgreaderelftypes.pas

384 lines
14 KiB
ObjectPascal
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{
This unit contains the types needed for reading Elf images.
This file was ported from DUBY. See svn log for details
---------------------------------------------------------------------------
***************************************************************************
* *
* This source is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This code is distributed in the hope that it will be useful, but *
* WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU *
* General Public License for more details. *
* *
* A copy of the GNU General Public License is available on the World *
* Wide Web at <http://www.gnu.org/copyleft/gpl.html>. You can also *
* obtain it by writing to the Free Software Foundation, *
* Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1335, USA. *
* *
***************************************************************************
}
unit FpImgReaderElfTypes;
{$mode objfpc}{$H+}
interface
type
Elf32_Addr = LongWord; // Unsigned program address
Elf32_Half = Word; // Unsigned medium integer
Elf32_Off = LongWord; // Usigned file offset
Elf32_Sword = Integer; // Signed large integer
Elf32_Word = LongWord; // Usigned large integer
Elf64_Addr = Qword; // Unsigned program address
Elf64_Off = QWord; // Unsigned file offset
Elf64_Half = Word; // Unsigned medium integer
Elf64_Word = LongWord; // Unsigned integer
Elf64_Sword = Integer; // Signed integer
Elf64_Xword = QWord; // Unsigned long integer
Elf64_Sxword = Int64; // Signed long integer
const
EINDENT = 16;
type
elf_ident = packed record
case byte of
0: (e_ident: array [0..EINDENT-1] of byte);
1: (id_mag : array[0..3] of Char;
id_class : Byte;
id_data : Byte;
id_version : Byte;
id_OSABI : Byte;
id_AbiVersion : Byte;
);
end;
const
EI_MAG0 = 0; // $7F
EI_MAG1 = 1; // E
EI_MAG2 = 2; // L
EI_MAG3 = 3; // F
EI_CLASS = 4;
EI_DATA = 5;
EI_VERSION = 6;
EI_OSABI = 7;
EI_ABIVERSION = 8;
ELFMAGIC = chr($7f)+'ELF';
//elf class
ELFCLASSNONE = 0;
ELFCLASS32 = 1;
ELFCLASS64 = 2;
//byte order
ELFDATANONE = 0;
ELFDATA2LSB = 1;
ELFDATA2MSB = 2;
// Operating System and ABI Identifiers, e_ident[EI_OSABI]
ELFOSABI_SYSV = 0; // System V ABI
ELFOSABI_HPUX = 1; // HP-UX operating system
ELFOSABI_NETBSD = 2;
ELFOSABI_LINUX = 3;
ELFOSABI_STANDALONE = 255; // Standalone (embedded) application
type
//note: it doesn't include Ident block
Elf32_EHdr = packed record
e_ident : elf_ident; { ELF identification }
e_type : Elf32_Half; { Object file type }
e_machine : Elf32_Half; { Machine type }
e_version : Elf32_Word; { Object file version }
e_entry : Elf32_addr; { Entry point address }
e_phoff : Elf32_Off; { Program header offset }
e_shoff : Elf32_Off; { Section header offset }
e_flags : Elf32_Word; { Processor-specific flags }
e_ehsize : Elf32_Half; { ELF header size }
e_phentsize : Elf32_Half; { Size of program header entry }
e_phnum : Elf32_Half; { Number of program header entries }
e_shetsize : Elf32_Half; { Size of section header entry }
e_shnum : Elf32_Half; { Number of section header entries }
e_shstrndx : Elf32_Half; { Section name string table index }
end;
PElf32_EHdr = ^Elf32_EHdr;
Elf64_EHdr = packed record
e_ident : elf_ident; { ELF identification }
e_type : Elf64_Half; { Object file type }
e_machine : Elf64_Half; { Machine type }
e_version : Elf64_Word; { Object file version }
e_entry : Elf64_Addr; { Entry point address }
e_phoff : Elf64_Off; { Program header offset }
e_shoff : Elf64_Off; { Section header offset }
e_flags : Elf64_Word; { Processor-specific flags }
e_ehsize : Elf64_Half; { ELF header size }
e_phentsize : Elf64_Half; { Size of program header entry }
e_phun : Elf64_Half; { Number of program header entries }
e_shentsize : Elf64_Half; { Size of section header entry }
e_shnum : Elf64_Half; { Number of section header entries }
e_shstrndx : Elf64_Half; { Section name string table index }
end;
PElf64_EHdr = ^Elf64_EHdr;
const
// object file type {Elf32_Hdr.e_type}
ET_NONE = 0; // No file type
ET_REL = 1; // Relocatable object file .o
ET_EXEC = 2; // Executable file
ET_DYN = 3; // Shared object file .so
ET_CORE = 4; // Core file
ET_LOOS = $fe00; // os-specific
ET_HIOS = $feff;
ET_LOPROC = $ff00; // processor-specific
ET_HIPROC = $ffff;
// machine type {Elf32_Hdr.e_machine}
EM_NONE = 0;
EM_SPARC = 2;
EM_386 = 3;
EM_68K = 4;
EM_PPC = 20;
EM_PPC64 = 21;
EM_ARM = 40;
EM_OLD_ALPHA = 41;
EM_IA_64 = 50;
EM_X86_64 = 62;
EM_AVR = 83;
EM_ALPHA = $9026; //unofficial, but used by gnu toolchain
//elf version {Elf32_Hdr.e_version}
EV_NONE = 0;
EV_CURRENT = 1;
SHN_UNDEF = $0; // Used to mark an undefined or meaningless section reference
SHN_LORESERVE = $ff00; {This value specifies the lower bound of the range of reserved indexes.}
SHN_LOPROC = $ff00;
SHN_HIPROC = $ff1f;
SHN_ABS = $fff1; // Indicates that the corresponding reference is an absolute value
SHN_COMMON = $fff2; // Indicates a symbol that has been declared as a common block (Fortran COMMON or C tentative declaration)
SHN_HIRESERVE = $ffff;
type
Elf32_shdr = packed record
sh_name : Elf32_Word;
sh_type : Elf32_Word;
sh_flags : Elf32_Word;
sh_addr : Elf32_Addr;
sh_offset : Elf32_Off;
sh_size : Elf32_Word;
sh_link : Elf32_Word;
sh_info : Elf32_Word;
sh_addralign : Elf32_Word;
sh_entsize : Elf32_Word;
end;
PElf32_shdr = ^Elf32_shdr;
Elf64_Shdr = packed record
sh_name : Elf64_Word; // Section name
sh_type : Elf64_Word; // Section type
sh_flags : Elf64_Xword; // Section attributes
sh_address : Elf64_Addr; // Virtual address in memory
sh_offset : Elf64_Off; // Offset in file
sh_size : Elf64_Xword; // Size of section
sh_link : Elf64_Word; // Link to other section
sh_info : Elf64_Word; // Miscellaneous information
sh_addralign : Elf64_Xword; // Address alignment boundary
sh_entsize : Elf64_Xword; // Size of entries, if section has table
end;
PElf64_Shdr = ^Elf64_Shdr;
const
//section type
SHT_NULL = 0; // Marks an unused section header
SHT_PROGBITS = 1; // Contains information defined by the program
SHT_SYMTAB = 2; // Contains a linker symbol table
SHT_STRTAB = 3; // Contains a string table
SHT_RELA = 4; // Contains “Rela” type relocation entries
SHT_HASH = 5; // Contains a symbol hash table
SHT_DYNAMIC = 6; // Contains dynamic linking tables
SHT_NOTE = 7; // Contains note information
SHT_NOBITS = 8; // Contains uninitialized space; does not occupy any space in the file
SHT_REL = 9; // Contains “Rel” type relocation entries
SHT_SHLIB = 10; // Reserved
SHT_DYNSYM = 11; // Contains a dynamic loader symbol table
SHT_LOOS = $60000000; // Environment-specific use
SHT_HIOS = $6fffffff;
SHT_LOPROC = $70000000; // Processor-specific use
SHT_HIPROC = $7fffffff;
//section attribute flags
SHF_WRITE = 1; // Section contains writable data
SHF_ALLOC = 2; // Section is allocated in memory image of program
SHF_EXECINSTR = 4; // Section contains executable instructions
SHF_MASKOS = $0f000000; // Environment-specific use
SHF_MASKPROC = $f0000000; // Processor-specific use
type
Elf32_Sym = packed record
st_name : Elf32_Word;
st_value : Elf32_Addr;
st_size : Elf32_Word;
st_info : byte;
st_other : byte;
st_shndx : Elf32_Half;
end;
PElf32_Sym = ^Elf32_Sym;
Elf64_Sym = packed record
st_name : Elf64_Word; // Symbol name
st_info : Byte; // Type and Binding attributes
st_other : Byte; // Reserved
st_shndx : Elf64_Half; // Section table index
st_value : Elf64_Addr; // Symbol value
st_Size : Elf64_Xword // Size of object (e.g., common)
end;
PElf64_Sym = ^Elf64_Sym;
const
//symbol bindings
STB_LOCAL = 0; // Not visible outside the object file
STB_GLOBAL = 1; // Global symbol, visible to all object files
STB_WEAK = 2; // Global scope, but with lower precedence than global symbols
STB_LOOS = 10; // Environment-specific use
STB_HIOS = 12;
STB_LOPROC = 13; // Processor-specific use
STB_HIPROC = 15;
//symbol types
STT_NOTYPE = 0; // No type specified (e.g., an absolute symbol)
STT_OBJECT = 1; // Data object
STT_FUNC = 2; // Function entry point
STT_SECTION = 3; // Symbol is associated with a section
STT_FILE = 4; // Source file associated with the object file
STT_COMMON = 5;
STT_TLS = 6;
STT_LOOS = 10; // Environment-specific use
STT_HIOS = 12;
STT_LOPROC = 13; // Processor-specific use
STT_SPARC_REGISTER = 13;
STT_HIPROC = 15;
{
Relocation
Relocation is the process of connecting symbolic references with symbolic
definitions. For example, when a program calls a function, the associated call
instruction must transfer control to the proper destination address at execution.
In other words, relocatable files must have information that describes how
to modify their section contents, thus allowing executable and shared object
files to hold the right information for a processs program image.
Relocation entriesare these data.
}
type
Elf32_Rel = packed record
r_offset : Elf32_Addr;
r_info : Elf32_Word;
end;
Elf32_rela = packed record
r_offset : Elf32_Addr;
r_info : Elf32_Word;
r_addend : Elf32_Sword;
end;
{ r_offset This member gives the location at which to apply the relocation action. For a relocatable
file, the value is the byte offset from the beginning of the section to the storage unit affected
by the relocation. For an executable file or a shared object, the value is the virtual address of
the storage unit affected by the relocation.
r_info This member gives both the symbol table index with respect to which the relocation must be
made, and the type of relocation to apply. For example, a call instructions relocation entry
would hold the symbol table index of the function being called. If the index isSTN_UNDEF,
the undefined symbol index, the relocation uses 0 as the symbol value. Relocation types
are processor-specific. When the text refers to a relocation entrys relocation type or symbol
table index, it means the result of applyingELF32_R_TYPEorELF32_R_SYM, respectively,
to the entrysr_infomember }
Elf64_Rel = packed record
r_offset : Elf64_Addr; // Address of reference
r_info : Elf64_Xword; // Symbol index and type of relocation
end;
PElf64_Rel = ^Elf64_Rel;
Elf64_Rela = packed record
r_offset : Elf64_Addr; // Address of reference
r_info : Elf64_Xword; // Symbol index and type of relocation
r_addend : Elf64_Sxword; // Constant part of expression
end;
PElf64_Rela = ^Elf64_Rela;
const
R_386_NONE = 0;
R_386_32 = 1;
R_386_PC32 = 2;
R_386_GOT32 = 3;
R_386_PLT32 = 4;
R_386_COPY = 5;
R_386_GLOB_DAT = 6;
R_386_JMP_SLOT = 7;
R_386_RELATIVE = 8;
R_386_GOTOFF = 9;
R_386_GOTPC = 10;
function Elf32_R_Sym(i: LongWord): LongWord; inline;
function Elf32_R_Type(i: LongWord): LongWord; inline;
function Elf32_R_Info(s, t: LongWord): LongWord; inline;
function Elf64_R_Sym(i: QWord): QWord; inline;
function Elf64_R_Type(i: QWord): QWord; inline;
function Elf64_R_Info(s, t: QWord): QWord; inline;
implementation
function Elf32_R_Sym(i: LongWord): LongWord; inline;
begin
Result := i shr 8;
end;
function Elf32_R_Type(i: LongWord): LongWord; inline;
begin
Result := i and $FF;
end;
function Elf32_R_Info(s, t: LongWord): LongWord; inline;
begin
Result := (s shl 8) + (t and $FF);
end;
function Elf64_R_Info(s, t: QWord): QWord; inline;
begin
Result := (s shl 32) + (t and $FFFFFFFF);
end;
function Elf64_R_Type(i: QWord): QWord; inline;
begin
Result := i and $ffffffff;
end;
function Elf64_R_Sym(i: QWord): QWord; inline;
begin
Result := i shr 32;
end;
end.