lazarus/components/fpvectorial/fpvutils.pas

1231 lines
39 KiB
ObjectPascal
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{
fpvutils.pas
Vector graphics document
License: The same modified LGPL as the Free Pascal RTL
See the file COPYING.modifiedLGPL for more details
AUTHORS: Felipe Monteiro de Carvalho
Pedro Sol Pegorini L de Lima
}
unit fpvutils;
{$define USE_LCL_CANVAS}
{.$define FPVECTORIAL_BEZIERTOPOINTS_DEBUG}
{.$define FPVECTORIAL_DEFLATE_DEBUG}
{$ifdef fpc}
{$mode delphi}
{$endif}
interface
uses
Classes, SysUtils, Math, Types,
{$ifdef USE_LCL_CANVAS}
Graphics, LCLIntf, LCLType,
{$endif}
base64,
fpvectorial, fpimage, zstream;
type
T10Strings = array[0..9] of shortstring;
// TPointsArray = array of TPoint;
TFPVUByteArray = array of Byte;
TNumericalEquation = function (AParameter: Double): Double of object; // return the error
TFPVUDebugOutCallback = procedure (AStr: string) of object;
// Color Conversion routines
function FPColorToRGBHexString(AColor: TFPColor): string;
function RGBToFPColor(AR, AG, AB: byte): TFPColor; inline;
function MixColors(AColor1, AColor2: TFPColor; APos, AMax: Double): TFPColor;
function GradientColor(AColors: TvGradientColors; AValue: Double): TFPColor;
function AlphaBlendColor(AColorBase, AColor: TFPColor): TFPColor;
// Coordinate Conversion routines
function CanvasCoordsToFPVectorial(AY: Integer; AHeight: Integer): Integer; inline;
function CanvasTextPosToFPVectorial(AY: Integer; ACanvasHeight, ATextHeight: Integer): Integer;
function CoordToCanvasX(ACoord: Double; ADestX: Integer; AMulX: Double): Integer; inline;
function CoordToCanvasY(ACoord: Double; ADestY: Integer; AMulY: Double): Integer; inline;
function FPVSizeToCanvas(ASize, AMul: Double): Integer;
// Other routines
function SeparateString(AString: string; ASeparator: char): T10Strings;
procedure SeparateStringInTwo(AString: string; ASeparator: char; out AStart, AEnd: string);
function Make3DPoint(AX, AY, AZ: Double): T3DPoint; overload; inline;
function Make3DPoint(AX, AY: Double): T3DPoint; overload; inline;
function Point2D(AX, AY: Double): T2DPoint; inline;
function IsGradientBrush(ABrush: TvBrush): Boolean;
// Mathematical routines
function LineEquation_GetPointAndTangentForLength(AStart, AEnd: T3DPoint; ADistance: Double; out AX, AY, ATangentAngle: Double): Boolean;
procedure EllipticalArcToBezier(Xc, Yc, Rx, Ry, startAngle, endAngle: Double; var P1, P2, P3, P4: T3DPoint);
procedure CircularArcToBezier(Xc, Yc, R, startAngle, endAngle: Double; var P1, P2, P3, P4: T3DPoint);
procedure AddBezierToPoints(P1, P2, P3, P4: T3DPoint; var Points: TPointsArray);
function BezierEquation_GetPoint(t: Double; P1, P2, P3, P4: T3DPoint): T3DPoint;
function BezierEquation_GetTangent(t: Double; P1, P2, P3, P4: T3DPoint): Double;
function BezierEquation_GetLength(P1, P2, P3, P4: T3DPoint; AMaxT: Double = 1; ASteps: Integer = 30): Double;
function BezierEquation_GetT_ForLength(P1, P2, P3, P4: T3DPoint; ALength: Double; ASteps: Integer = 30): Double;
function BezierEquation_GetPointAndTangentForLength(P1, P2, P3, P4: T3DPoint;
ADistance: Double; out AX, AY, ATangentAngle: Double; ASteps: Integer = 30): Boolean;
function CalcEllipseCenter(x1,y1, x2,y2, rx,ry, phi: Double; fa, fs: Boolean;
out cx,cy, lambda: Double): Boolean;
function CalcEllipsePointAngle(x,y, rx,ry, cx,cy, phi: Double): Double;
procedure CalcEllipsePoint(t, rx,ry, cx,cy, phi: Double; out x,y: Double);
procedure ConvertPathToPolygons(APath: TPath; ADestX, ADestY: Integer; AMulX, AMulY: Double;
var PolygonPoints: TPointsArray; var PolygonStartIndexes: TIntegerDynArray);
procedure ConvertPathToPoints(APath: TPath; ADestX, ADestY: Integer; AMulX, AMulY: Double; var Points: TPointsArray);
function GetLinePolygonIntersectionPoints(ACoord: Double;
const APoints: T2DPointsArray; const APolyStarts: TIntegerDynArray;
ACoordIsX: Boolean): T2DPointsArray; overload;
function GetLinePolygonIntersectionPoints(ACoord: Double;
const APoints: T2DPointsArray; ACoordIsX: Boolean): T2DPointsArray; overload;
function Offset3DPoint(P, Delta: T3DPoint): T3DPoint;
function Rotate2DPoint(P, RotCenter: TPoint; alpha:double): TPoint;
function Rotate3DPointInXY(P, RotCenter: T3DPoint; alpha:double): T3DPoint;
function SamePoint(P1, P2: T3DPoint; Epsilon: Double = 0.0): Boolean; overload;
function SamePoint(P1, P2: TPoint): Boolean; overload;
procedure NormalizeRect(var ARect: TRect);
// Transformation matrix operations
// See http://www.useragentman.com/blog/2011/01/07/css3-matrix-transform-for-the-mathematically-challenged/
procedure ConvertTransformationMatrixToOperations(AA, AB, AC, AD, AE, AF: Double; out ATranslateX, ATranslateY, AScaleX, AScaleY, ASkewX, ASkewY, ARotate: Double);
procedure InvertMatrixOperations(var ATranslateX, ATranslateY, AScaleX, AScaleY, ASkewX, ASkewY, ARotate: Double);
// Numerical Calculus
function SolveNumericallyAngle(ANumericalEquation: TNumericalEquation;
ADesiredMaxError: Double; ADesiredMaxIterations: Integer = 10): Double;
// Compression/Decompression
procedure DeflateBytes(var ASource, ADest: TFPVUByteArray);
procedure DeflateStream(ASource, ADest: TStream);
// Binary to Text encodings
procedure DecodeASCII85(ASource: string; var ADest: TFPVUByteArray);
procedure DecodeBase64(ASource: string; ADest: TStream);
// Byte array to stream conversion
procedure ByteArrayToStream(ASource: TFPVUByteArray; ADest: TStream);
// Debug
procedure FPVUDebug(AStr: string);
procedure FPVUDebugLn(AStr: string);
// LCL-related routines
{$ifdef USE_LCL_CANVAS}
function ConvertPathToRegion(APath: TPath; ADestX, ADestY: Integer; AMulX, AMulY: Double): HRGN;
{$endif}
procedure AddStringToArray(var A: TStringArray; const B: String);
procedure AddStringsToArray(var A: TStringArray; const B: TStringArray);
var
FPVUDebugOutCallback: TFPVUDebugOutCallback; // executes DebugLn
FPVDebugBuffer: string;
ScreenDpiX: Integer = 96;
ScreenDpiY: Integer = 96;
implementation
{@@ This function is utilized by the SVG writer and some other places, so
it shouldn't be changed.
}
function FPColorToRGBHexString(AColor: TFPColor): string;
begin
Result := Format('%.2x%.2x%.2x', [AColor.Red shr 8, AColor.Green shr 8, AColor.Blue shr 8]);
end;
function RGBToFPColor(AR, AG, AB: byte): TFPColor; inline;
begin
Result.Red := (AR shl 8) + AR;
Result.Green := (AG shl 8) + AG;
Result.Blue := (AB shl 8) + AB;
Result.Alpha := $FFFF;
end;
{@@ Returns AColor1 if APos = 0, AColor2 if APos = AMax, or interpolates between }
function MixColors(AColor1, AColor2: TFPColor; APos, AMax: Double): TFPColor;
var
f1, f2: Double;
begin
f1 := (AMax - APos) / AMax;
f2 := APos / AMax;
Result.Alpha := Round(AColor1.Alpha * f1 + AColor2.Alpha * f2);
Result.Red := Round(AColor1.Red * f1 + AColor2.Red * f2);
Result.Green := Round(AColor1.Green * f1 + AColor2.Green * f2);
Result.Blue := Round(AColor1.Blue * f1 + AColor2.Blue * f2);
end;
{@@ Assigns a color to the specified value. The color is interpolated between
the colors defined in AColors.
}
function GradientColor(AColors: TvGradientColors; AValue: Double): TFPColor;
var
i: Integer;
c1, c2: TFPColor;
p1, p2: Double;
begin
// Return first color if AValue is below the first color position
if AValue <= AColors[0].Position then
Result := AColors[0].Color
else
// Return last color if AValue is above the last color position
if AValue >= AColors[High(AColors)].Position then
Result := AColors[High(AColors)].Color
else
// Find pair of colors positions which bracket the specified value and
// interpolate color
for i:= High(AColors)-1 downto 0 do
if AValue >= AColors[i].Position then
begin
c1 := AColors[i].Color;
c2 := AColors[i+1].Color;
p1 := AColors[i].Position;
p2 := AColors[i+1].Position;
Result := MixColors(c1, c2, AValue - p1, p2 - p1);
exit;
end;
end;
function AlphaBlendColor(AColorBase, AColor: TFPColor): TFPColor;
var
f1, f2: Double;
begin
f2 := AColor.Alpha / alphaOpaque;
f1 := 1 - f2;
Result.Alpha := Round(AColorBase.Alpha * f1 + AColor.Alpha * f2);
Result.Red := Round(AColorBase.Red * f1 + AColor.Red * f2);
Result.Green := Round(AColorBase.Green * f1 + AColor.Green * f2);
Result.Blue := Round(AColorBase.Blue * f1 + AColor.Blue * f2);
end;
{@@ Converts the coordinate system from a TCanvas to FPVectorial
The basic difference is that the Y axis is positioned differently and
points upwards in FPVectorial and downwards in TCanvas.
The X axis doesn't change. The fix is trivial and requires only the Height of
the Canvas as extra info.
@param AHeight Should receive TCanvas.Height
}
function CanvasCoordsToFPVectorial(AY: Integer; AHeight: Integer): Integer; inline;
begin
Result := AHeight - AY;
end;
{@@
LCL Text is positioned based on the top-left corner of the text.
Besides that, one also needs to take the general coordinate change into account too.
@param ACanvasHeight Should receive TCanvas.Height
@param ATextHeight Should receive TFont.Size
}
function CanvasTextPosToFPVectorial(AY: Integer; ACanvasHeight, ATextHeight: Integer): Integer;
begin
Result := CanvasCoordsToFPVectorial(AY, ACanvasHeight) - ATextHeight;
end;
function CoordToCanvasX(ACoord: Double; ADestX: Integer; AMulX: Double): Integer;
begin
Result := Round(ADestX + AmulX * ACoord);
end;
function CoordToCanvasY(ACoord: Double; ADestY: Integer; AMulY: Double): Integer;
begin
Result := Round(ADestY + AmulY * ACoord);
end;
function FPVSizeToCanvas(ASize, AMul: Double): Integer;
begin
Result := Round(ASize * abs(AMul));
end;
{@@
Reads a string and separates it in substring
using ASeparator to delimite them.
Limits:
Number of substrings: 10 (indexed 0 to 9)
Length of each substring: 255 (they are shortstrings)
}
function SeparateString(AString: string; ASeparator: char): T10Strings;
var
i, CurrentPart: integer;
begin
CurrentPart := 0;
{ Clears the result }
for i := 0 to 9 do
Result[i] := '';
{ Iterates through the string, filling strings }
for i := 1 to Length(AString) do
begin
if Copy(AString, i, 1) = ASeparator then
begin
Inc(CurrentPart);
{ Verifies if the string capacity wasn't exceeded }
if CurrentPart > 9 then
Exit;
end
else
Result[CurrentPart] := Result[CurrentPart] + Copy(AString, i, 1);
end;
end;
function Point2D(AX, AY: Double): T2DPoint;
begin
Result.X := AX;
Result.Y := AY;
end;
procedure SeparateStringInTwo(AString: string; ASeparator: char; out AStart,
AEnd: string);
var
lPosSep: SizeInt;
begin
lPosSep := Pos(ASeparator, AString);
AStart := Copy(AString, 0, lPosSep-1);
AEnd := Copy(AString, lPosSep+1, Length(AString));
end;
function Make3DPoint(AX, AY, AZ: Double): T3DPoint;
begin
Result.X := AX;
Result.Y := AY;
Result.Z := AZ;
end;
function Make3DPoint(AX, AY: Double): T3DPoint;
begin
Result.X := AX;
Result.Y := AY;
Result.Z := 0;
end;
function IsGradientBrush(ABrush: TvBrush): Boolean;
begin
Result := ABrush.Kind in [bkHorizontalGradient, bkVerticalGradient,
bkOtherLinearGradient, bkRadialGradient];
end;
{ Considering a counter-clockwise arc, elliptical and alligned to the axises
An elliptical Arc can be converted to
the following Cubic Bezier control points:
P1 = E(startAngle) <- start point
P2 = P1+alfa * dE(startAngle) <- control point
P3 = P4alfa * dE(endAngle) <- control point
P4 = E(endAngle) <- end point
source: http://www.spaceroots.org/documents/ellipse/elliptical-arc.pdf
The equation of an elliptical arc is:
X(t) = Xc + Rx * cos(t)
Y(t) = Yc + Ry * sin(t)
dX(t)/dt = - Rx * sin(t)
dY(t)/dt = + Ry * cos(t)
}
procedure EllipticalArcToBezier(Xc, Yc, Rx, Ry, startAngle, endAngle: Double;
var P1, P2, P3, P4: T3DPoint);
var
halfLength, arcLength, alfa: Double;
begin
arcLength := endAngle - startAngle;
halfLength := (endAngle - startAngle) / 2;
alfa := sin(arcLength) * (Sqrt(4 + 3*sqr(tan(halfLength))) - 1) / 3;
// Start point
P1.X := Xc + Rx * cos(startAngle);
P1.Y := Yc + Ry * sin(startAngle);
// End point
P4.X := Xc + Rx * cos(endAngle);
P4.Y := Yc + Ry * sin(endAngle);
// Control points
P2.X := P1.X + alfa * -1 * Rx * sin(startAngle);
P2.Y := P1.Y + alfa * Ry * cos(startAngle);
P3.X := P4.X - alfa * -1 * Rx * sin(endAngle);
P3.Y := P4.Y - alfa * Ry * cos(endAngle);
end;
// (x2,y2)=(x1+L⋅cos(a),y1+L⋅sin(a)).
// ATangentAngle - in Radians
function LineEquation_GetPointAndTangentForLength(AStart, AEnd: T3DPoint; ADistance: Double; out AX, AY, ATangentAngle: Double): Boolean;
var
lLineAngle: Double; // to X axis
begin
Result := False;
// lLineAngle := arctan((AEnd.Y-AStart.Y) / (AEnd.X - AStart.X));
lLineAngle := arctan2(AEnd.Y - AStart.Y, AEnd.X - AStart.X);
AX := AStart.X + ADistance * Cos(lLineAngle);
AY := AStart.Y + ADistance * Sin(lLineAngle);
end;
procedure CircularArcToBezier(Xc, Yc, R, startAngle, endAngle: Double; var P1,
P2, P3, P4: T3DPoint);
begin
EllipticalArcToBezier(Xc, Yc, R, R, startAngle, endAngle, P1, P2, P3, P4);
end;
{ This routine converts a Bezier to a Polygon and adds the points of this polygon
to the end of the provided Points output variables }
procedure AddBezierToPoints(P1, P2, P3, P4: T3DPoint; var Points: TPointsArray);
var
CurveLength, k, LastPoint: Integer;
CurPoint: T3DPoint;
t: Double;
begin
{$ifdef FPVECTORIAL_BEZIERTOPOINTS_DEBUG}
Write(Format('[AddBezierToPoints] P1=%f,%f P2=%f,%f P3=%f,%f P4=%f,%f =>', [P1.X, P1.Y, P2.X, P2.Y, P3.X, P3.Y, P4.X, P4.Y]));
{$endif}
// there is no problem here using a number larger than the real one
// so to be fast, just connect the 4 points...
CurveLength :=
Round(sqrt(sqr(P2.X - P1.X) + sqr(P2.Y - P1.Y))) +
Round(sqrt(sqr(P3.X - P2.X) + sqr(P3.Y - P2.Y))) +
Round(sqrt(sqr(P4.X - P4.X) + sqr(P4.Y - P3.Y)));
LastPoint := Length(Points)-1;
SetLength(Points, Length(Points)+CurveLength);
for k := 1 to CurveLength do
begin
t := k / CurveLength;
CurPoint := BezierEquation_GetPoint(t, P1, P2, P3, P4);
Points[LastPoint+k].X := Round(CurPoint.X);
Points[LastPoint+k].Y := Round(CurPoint.Y);
{$ifdef FPVECTORIAL_BEZIERTOPOINTS_DEBUG}
Write(Format(' P=%d,%d', [CurPoint.X, CurPoint.Y]));
{$endif}
end;
{$ifdef FPVECTORIAL_BEZIERTOPOINTS_DEBUG}
WriteLn(Format(' CurveLength=%d', [CurveLength]));
{$endif}
end;
// B(t) = (1-t)³ [Prev.X, Prev.Y] + 3 (1-t)² t [X2, Y2] + 3 (1-t) t² [X3, Y3] + t³ [X,Y], 0<=t<=1
function BezierEquation_GetPoint(t: Double; P1, P2, P3, P4: T3DPoint): T3DPoint;
begin
Result.X := sqr(1 - t) * (1 - t) * P1.X + 3 * t * sqr(1 - t) * P2.X + 3 * t * t * (1 - t) * P3.X + t * t * t * P4.X;
Result.Y := sqr(1 - t) * (1 - t) * P1.Y + 3 * t * sqr(1 - t) * P2.Y + 3 * t * t * (1 - t) * P3.Y + t * t * t * P4.Y;
end;
// B'(t) = 3 (1-t)² [X2-Prev.X, Y2-Prev.Y] + 6 (1-t) t [X3-X2, Y3-Y2] + 3 t² [X-X3,Y-Y3]
function BezierEquation_GetTangent(t: Double; P1, P2, P3, P4: T3DPoint): Double;
var
lDerivateVector: T3DPoint;
begin
lDerivateVector.X := 3 * sqr(1 - t) * (P2.X-P1.X) + 6 * t * (1 - t) * (P3.X-P2.X) + 3 * t * t * (P4.X - P3.X);
lDerivateVector.Y := 3 * sqr(1 - t) * (P2.Y-P1.Y) + 6 * t * (1 - t) * (P3.Y-P2.Y) + 3 * t * t * (P4.Y - P3.Y);
Result := arctan(lDerivateVector.Y / lDerivateVector.X)
end;
// See http://www.lemoda.net/maths/bezier-length/index.html
// See http://steve.hollasch.net/cgindex/curves/cbezarclen.html for a more complex method
function BezierEquation_GetLength(P1, P2, P3, P4: T3DPoint; AMaxT: Double; ASteps: Integer): Double;
var
lCurT, x_diff, y_diff: Double;
i, lCurStep: Integer;
lCurPoint, lPrevPoint: T3DPoint;
begin
Result := 0.0;
for i := 0 to ASteps do
begin
lCurT := i / ASteps;
if lCurT > AMaxT then Exit;
lCurPoint := BezierEquation_GetPoint(lCurT, P1, P2, P3, P4);
if i = 0 then
begin
lPrevPoint := lCurPoint;
Continue;
end;
x_diff := lCurPoint.x - lPrevPoint.x;
y_diff := lCurPoint.y - lPrevPoint.y;
Result := Result + sqrt(sqr(x_diff) + sqr(y_diff));
lPrevPoint := lCurPoint;
end;
end;
function BezierEquation_GetT_ForLength(P1, P2, P3, P4: T3DPoint; ALength: Double; ASteps: Integer): Double;
var
i: Integer;
LeftT, RightT: Double;
function IsLeftBetter(): Boolean;
var
lLeftLen, lRightLen: Double;
begin
lLeftLen := BezierEquation_GetLength(P1, P2, P3, P4, LeftT, ASteps);
lRightLen := BezierEquation_GetLength(P1, P2, P3, P4, RightT, ASteps);
Result := Abs(lLeftLen - ALength) < Abs(lRightLen - ALength);
end;
begin
LeftT := 0;
RightT := 1;
for i := 0 to ASteps do
begin
if IsLeftBetter() then
RightT := (RightT + LeftT) / 2
else
LeftT := (RightT + LeftT) / 2;
end;
if IsLeftBetter() then
Result := RightT
else
Result := LeftT;
end;
function BezierEquation_GetPointAndTangentForLength(P1, P2, P3, P4: T3DPoint;
ADistance: Double; out AX, AY, ATangentAngle: Double; ASteps: Integer): Boolean;
var
lCurT: Double;
lCurPoint: T3DPoint;
begin
Result := False;
lCurT := BezierEquation_GetT_ForLength(P1, P2, P3, P4, ADistance, ASteps);
lCurPoint := BezierEquation_GetPoint(lCurT, P1, P2, P3, P4);
AX := lCurPoint.X;
AY := lCurPoint.Y;
ATangentAngle := BezierEquation_GetTangent(lCurT, P1, P2, P3, P4);
Result := True;
end;
// Calculate center of ellipse defined by two points on its perimeter, the
// major and minor axes, and the "sweep" and "large-angle" flags.
// Calculation follows the SVG implementation notes
// see: http://www.w3.org/TR/SVG/implnote.html#ArcImplementationNotes
// - (x1, y1) absolute coordinates of start point of arc
// - (x2, y2) absolute coordinates of end point of arc
// - rx, ry: radii of major and minor ellipse axes. Must be > 0. Use abs() if necessary.
// - phi: rotation angle of ellipse
// - fa: large arc flag (false = small arc, true = large arc)
// - fs: sweep flag (false = counterclockwise, true = clockwise)
// - cx, cy: Center coordinates of ellipse
// - Function result is false if the center cannot be calculated
function CalcEllipseCenter(x1,y1, x2,y2, rx,ry, phi: Double; fa, fs: Boolean;
out cx,cy, lambda: Double): Boolean;
const
EPS = 1E-9;
var
sinphi, cosphi: Extended;
x1p, x2p, y1p, y2p: Double; // x1', x2', y1', y2'
cxp, cyp: Double; // cx', cy'
m: Double;
begin
Result := false;
if (rx = 0) or (ry = 0) then
exit;
rx := abs(rx); // only positive radii!
ry := abs(ry);
SinCos(phi, sinphi, cosphi);
// (F.6.5.1) in above document
x1p := ( cosphi*(x1-x2) + sinphi*(y1-y2)) / 2;
y1p := (-sinphi*(x1-x2) + cosphi*(y1-y2)) / 2;
lambda := sqr(x1p/rx) + sqr(y1p/ry);
if lambda > 1 then
begin
// If the distance of the points is too large in relation to the ellipse
// size there is no solution. SVG Implemantation Notes request in this case
// that the ellipse is magnified so much that a solution exists.
lambda := sqrt(lambda);
rx := rx * lambda;
ry := ry * lambda;
end else
lambda := 1.0;
// (F.6.5.2)
m := (sqr(rx*ry) - sqr(rx*y1p) - sqr(ry*x1p)) / (sqr(rx*y1p) + sqr(ry*x1p));
if SameValue(m, 0.0, EPS) then
// Prevent a crash caused by a tiny negative sqrt argument due to rounding error.
m := 0
else if m < 0 then
exit;
// Exit if point distance is too large and return "false" - but this
// should no happen after having applied lambda!
m := sqrt(m); // Positive root for fa <> fs
if fa = fs then m := -m; // Negative root for fa = fs.
cxp := m * rx / ry * y1p;
cyp := -m * ry / rx * x1p;
// (F.6.5.3)
cx := cosphi*cxp - sinphi*cyp + (x1 + x2) / 2;
cy := sinphi*cxp + cosphi*cyp + (y1 + y2) / 2;
// If the function gets here we have a valid ellipse center in cx,cy
Result := true;
end;
{ Calculates the arc angle (in radians) of the point (x,y) on the perimeter of
an ellipse with radii rx,ry and center cx,cy. phi is the rotation angle of
the ellipse major axis with the x axis.
The result is in the range 0 .. 2pi}
function CalcEllipsePointAngle(x,y, rx,ry, cx,cy, phi: Double): Double;
var
p: T3DPoint;
begin
// Rotate ellipse back to align its major axis with the x axis
P := Rotate3dPointInXY(Make3dPoint(x-cx, y-cy, 0), Make3dPoint(0, 0, 0), phi);
// Correctly speaking, above line should use -phi, instead of phi. But
// Rotate3DPointInXY seems to define the angle in the opposite way.
Result := arctan2(P.Y/ry, P.X/rx);
if Result < 0 then Result := TWO_PI + Result;
end;
{ Calculates the x,y coordinates of a point on an ellipse defined by these
parameters:
- rx, ry: major and minor radius
- phi: rotation angle of the ellipse (angle between major axis and x axis)
- t: angle between x axis and line from ellipse center to point
parameterized:
x = cx + rx*cos(t)*cos(phi) - ry*sin(t)*sin(phi) [1]
y = cy + ry*sin(t)*cos(phi) + rx*cos(t)*sin(phi) [2] }
procedure CalcEllipsePoint(t, rx,ry, cx,cy, phi: Double; out x,y: Double);
var
P: T3dPoint;
cost, sint: Extended;
cosphi, sinphi: Extended;
begin
SinCos(t, sint, cost);
SinCos(phi, sinphi, cosphi);
x := cx + rx*cost*cosphi - ry*sint*sinphi;
y := cy + ry*sint*cosphi + rx*cost*sinphi;
end;
{ Converts a path to one or more polygons. The polygon vertices are returned
in "PolygonPoints"; they are given in canvas units (pixels).
Since the path can contain several polygons the start index of each polygon
is returned in "PolygonStartIndexes". }
procedure ConvertPathToPolygons(APath: TPath;
ADestX, ADestY: Integer; AMulX, AMulY: Double;
var PolygonPoints: TPointsArray;
var PolygonStartIndexes: TIntegerDynArray);
const
POINT_BUFFER = 100;
var
i, j: Integer;
numPoints: Integer;
numPolygons: Integer;
coordX, coordY: Integer;
coordX2, coordY2, coordX3, coordY3, coordX4, coordY4: Integer;
// temporary point arrays
pts: array of TPoint;
pts3D: T3dPointsArray;
// Segments
curSegment: TPathSegment;
cur2DSegment: T2DSegment absolute curSegment;
cur2DBSegment: T2DBezierSegment absolute curSegment;
cur2DArcSegment: T2DEllipticalArcSegment absolute curSegment;
begin
if (APath = nil) then
begin
SetLength(PolygonPoints, 0);
SetLength(PolygonStartIndexes, 0);
exit;
end;
SetLength(PolygonPoints, POINT_BUFFER);
SetLength(PolygonStartIndexes, POINT_BUFFER);
numPoints := 0;
numPolygons := 0;
APath.PrepareForSequentialReading;
for i := 0 to APath.Len - 1 do
begin
curSegment := TPathSegment(APath.Next);
if (i = 0) and (curSegment.SegmentType <> stMoveTo) then
raise Exception.Create('Path must start with a "MoveTo" command');
case curSegment.SegmentType of
stMoveTo:
begin
// Store current length of points array as polygon start index
if numPolygons >= Length(PolygonStartIndexes) then
SetLength(PolygonstartIndexes, Length(PolygonStartIndexes) + POINT_BUFFER);
PolygonStartIndexes[numPolygons] := numPoints;
inc(numPolygons);
// Store current point as first point of a new polygon
coordX := CoordToCanvasX(cur2DSegment.X, ADestX, AMulX);
coordY := CoordToCanvasY(cur2DSegment.Y, ADestY, AMulY);
if numPoints >= Length(PolygonPoints) then
SetLength(PolygonPoints, Length(PolygonPoints) + POINT_BUFFER);
PolygonPoints[numPoints] := Point(coordX, coordY);
inc(numPoints);
end;
st2DLine, st3DLine, st2DLineWithPen:
begin
// Add current point to current polygon
coordX := CoordToCanvasX(cur2DSegment.X, ADestX, AMulX);
coordY := CoordToCanvasY(cur2DSegment.Y, ADestY, AMulY);
if numPoints >= Length(PolygonPoints) then
SetLength(PolygonPoints, Length(PolygonPoints) + POINT_BUFFER);
PolygonPoints[numPoints] := Point(coordX, coordY);
inc(numPoints);
end;
st2DBezier, st3DBezier, st2DEllipticalArc:
begin
SetLength(PolygonPoints, numPoints);
curSegment.AddToPoints(ADestX, ADestY, AMulX, AMulY, PolygonPoints);
numPoints := Length(PolygonPoints);
end;
end;
end;
SetLength(PolygonPoints, numPoints);
SetLength(PolygonStartIndexes, numPolygons);
end;
procedure ConvertPathToPoints(APath: TPath; ADestX, ADestY: Integer; AMulX, AMulY: Double; var Points: TPointsArray);
var
i, LastPoint: Integer;
CoordX, CoordY: Integer;
CoordX2, CoordY2, CoordX3, CoordY3, CoordX4, CoordY4: Integer;
// Segments
CurSegment: TPathSegment;
Cur2DSegment: T2DSegment absolute CurSegment;
Cur2DBSegment: T2DBezierSegment absolute CurSegment;
begin
APath.PrepareForSequentialReading;
SetLength(Points, 0);
for i := 0 to APath.Len - 1 do
begin
CurSegment := TPathSegment(APath.Next());
CoordX := CoordToCanvasX(Cur2DSegment.X, ADestX, AMulX);
CoordY := CoordToCanvasY(Cur2DSegment.Y, ADestY, AMulY);
case CurSegment.SegmentType of
st2DBezier, st3DBezier:
begin
LastPoint := Length(Points)-1;
CoordX4 := CoordX;
CoordY4 := CoordY;
CoordX := Points[LastPoint].X;
CoordY := Points[LastPoint].Y;
CoordX2 := CoordToCanvasX(Cur2DBSegment.X2, ADestX, AMulX);
CoordY2 := CoordToCanvasY(Cur2DBSegment.Y2, ADestY, AMulY);
CoordX3 := CoordToCanvasX(Cur2DBSegment.X3, ADestX, AMulX);
CoordY3 := CoordToCanvasY(Cur2DBSegment.Y3, ADestY, AMulY);
AddBezierToPoints(
Make3DPoint(CoordX, CoordY, 0),
Make3DPoint(CoordX2, CoordY2, 0),
Make3DPoint(CoordX3, CoordY3, 0),
Make3DPoint(CoordX4, CoordY4, 0),
Points);
end;
else
LastPoint := Length(Points);
SetLength(Points, Length(Points)+1);
Points[LastPoint].X := CoordX;
Points[LastPoint].Y := CoordY;
end;
end;
end;
function CompareDbl(P1, P2: Pointer): Integer;
var
val1, val2: ^Double;
begin
val1 := P1;
val2 := P2;
Result := CompareValue(val1^, val2^);
end;
function GetLinePolygonIntersectionPoints(ACoord: Double;
const APoints: T2DPointsArray; ACoordIsX: Boolean): T2DPointsArray;
var
polystarts: TIntegerDynArray;
begin
SetLength(polystarts, 1);
polystarts[0] := 0;
Result := GetLinePolygonIntersectionPoints(ACoord, APoints, ACoordIsX);
end;
{@@ Calculates the intersection points of a vertical (ACoordIsX = true) or
horizontal (ACoordIsX = false) line with border of the polygon specified
by APoints. Returns the coordinates of the intersection points }
function GetLinePolygonIntersectionPoints(ACoord: Double;
const APoints: T2DPointsArray; const APolyStarts: TIntegerDynArray;
ACoordIsX: Boolean): T2DPointsArray;
const
EPS = 1e-9;
var
j, p: Integer;
firstj,lastj: Integer;
dx, dy: Double;
xval, yval: Double;
val: ^Double;
list: TFPList;
begin
list := TFPList.Create;
if ACoordIsX then
begin
for p := 0 to High(APolyStarts) do
begin
firstj := APolyStarts[p];
lastj := IfThen(p = High(APolyStarts), High(APoints), APolyStarts[p+1]-1);
// Skip non-closed polygons
if (APoints[firstj].X <> APoints[lastj].x) or (APoints[lastj].Y <> APoints[lastj].Y) then
continue;
for j := firstj to lastj-1 do
if ((APoints[j].X <= ACoord) and (ACoord < APoints[j+1].X)) or
((APoints[j+1].X <= ACoord) and (ACoord < APoints[j].X)) then
begin
dx := APoints[j+1].X - APoints[j].X; // can't be zero here
dy := APoints[j+1].Y - APoints[j].Y;
New(val);
val^ := APoints[j].Y + (ACoord - APoints[j].X) * dy / dx;
list.Add(val);
end;
end;
end else
begin
for p := 0 to High(APolyStarts) do begin
firstj := APolyStarts[p];
lastj := IfThen(p = High(APolyStarts), High(APoints), APolyStarts[p+1]-1);
// Skip non-closed polygons
if (APoints[firstj].X <> APoints[lastj].x) or (APoints[lastj].Y <> APoints[lastj].Y) then
continue;
for j := firstj to lastj-1 do
if ((APoints[j].Y <= ACoord) and (ACoord < APoints[j+1].Y)) or
((APoints[j+1].Y <= ACoord) and (ACoord < APoints[j].Y)) then
begin
dy := APoints[j+1].Y - APoints[j].Y; // can't be zero here
dx := APoints[j+1].X - APoints[j].X;
New(val);
val^ := APoints[j].X + (ACoord - APoints[j].Y) * dx / dy;
list.Add(val);
end;
end;
end;
// Sort intersection coordinates in ascending order
list.Sort(@CompareDbl);
// When scanning across an non-contiguous polygon the scan may produce an
// odd number of points where the scan finds irregular points due to interaction
// with the other polygon curves. I don't have a general solution, only for
// the case of 3 points.
(*
if list.Count = 3 then begin // this can't be --> use ony outer points
SetLength(Result, 2);
if ACoordIsX then begin
Result[0] := Point2D(ACoord, Double(list[0]^));
Result[1] := Point2D(ACoord, Double(list[2]^));
end else begin
Result[0] := Point2D(Double(list[0]^), ACoord);
Result[1] := Point2D(Double(list[2]^), ACoord);
end;
end else
*)
begin // regular case
SetLength(Result, list.Count);
if ACoordIsX then
for j:=0 to list.Count-1 do
Result[j] := Point2D(ACoord, Double(list[j]^))
else
for j:=0 to list.Count-1 do
Result[j] := Point2D(Double(list[j]^), ACoord);
end;
// Clean-up
for j:=list.Count-1 downto 0 do
begin
val := List[j];
Dispose(val);
end;
list.Free;
end;
// Offset the point P by the vector Delta
function Offset3DPoint(P, Delta: T3DPoint): T3DPoint;
begin
Result.x := P.x + Delta.x;
Result.y := P.y + Delta.y;
Result.z := P.z;
end;
// Rotates a point P around RotCenter
function Rotate2DPoint(P, RotCenter: TPoint; alpha:double): TPoint;
var
sinus, cosinus : Extended;
begin
SinCos(alpha, sinus, cosinus);
P.x := P.x - RotCenter.x;
P.y := P.y - RotCenter.y;
result.x := Round(p.x*cosinus + p.y*sinus) + RotCenter.x ;
result.y := Round(-p.x*sinus + p.y*cosinus) + RotCenter.y;
end;
// Rotates a point P around RotCenter
// alpha angle in radians
// Be CAREFUL: the angle used here grows in clockwise direction. This is
// against mathematical convention!
function Rotate3DPointInXY(P, RotCenter: T3DPoint; alpha:double): T3DPoint;
var
sinus, cosinus : Extended;
begin
SinCos(alpha, sinus, cosinus);
P.x := P.x - RotCenter.x;
P.y := P.y - RotCenter.y;
result.x := Round( p.x*cosinus + p.y*sinus) + RotCenter.x;
result.y := Round(-p.x*sinus + p.y*cosinus) + RotCenter.y;
result.z := P.z;
end;
function SamePoint(P1, P2: TPoint): Boolean;
begin
Result := (P1.X = P2.X) and (P1.Y = P2.Y);
end;
function SamePoint(P1, P2: T3DPoint; Epsilon: Double = 0.0): Boolean;
begin
Result := SameValue(P1.X, P2.X, Epsilon) and
SameValue(P1.Y, P2.Y, Epsilon) and
SameValue(P1.Z, P2.Z, Epsilon);
end;
procedure NormalizeRect(var ARect: TRect);
var
tmp: Integer;
begin
if ARect.Left > ARect.Right then
begin
tmp := ARect.Left;
ARect.left := ARect.Right;
ARect.Right := tmp;
end;
if ARect.Top > ARect.Bottom then
begin
tmp := ARect.Top;
ARect.Top := ARect.Bottom;
ARect.Bottom := tmp;
end;
end;
// Current Transformation Matrix
// This has 6 numbers, which means this:
// (a c e)
// [a, b, c, d, e, f] = (b d f)
// (0 0 1)
// scale(Num) => a,d=Num rest=0
// scaleX(Num) => a=Num d=1 rest=0
// scaleY(Num) => a=1 d=Num rest=0
// TranslateX(Num) => a,d=1 e=Num rest=0
// TranslateY(Num) => a,d=1 f=Num rest=0
// Translate(NumX,NumY) => a,d=1 e=NumX f=NumY rest=0
// skewX(TX) => a=1 b=0 c=tan(TX) d=1 rest=0
// skewY(TY) => a=1 b=tan(TY) c=0 d=1 rest=0
// skew(TX,TY) => a=1 b=tan(TY) c=tan(TX) d=1 rest=0
// rotate(T) => a=cos(T) b=sin(T) c=-sin(T) d=cos(T) rest=0
//
// Example:
// 0.860815 0 -0 1.07602 339.302 489.171
// Which has a Scale and Translate
//
procedure ConvertTransformationMatrixToOperations(AA, AB, AC, AD, AE,
AF: Double; out ATranslateX, ATranslateY, AScaleX, AScaleY, ASkewX, ASkewY,
ARotate: Double);
begin
ATranslateX := 0;
ATranslateY := 0;
AScaleX := 1;
AScaleY := 1;
ASkewX := 0;
ASkewY := 0;
ARotate := 0;
// This is valid if AB=AC=0
ATranslateX := AE;
ATranslateY := AF;
AScaleX := AA;
AScaleY := AD;
end;
{$ifdef USE_LCL_CANVAS}
procedure InvertMatrixOperations(var ATranslateX, ATranslateY, AScaleX,
AScaleY, ASkewX, ASkewY, ARotate: Double);
begin
ATranslateX := -1 * ATranslateX;
ATranslateY := -1 * ATranslateY;
AScaleX := 1 / AScaleX;
AScaleY := 1 / AScaleY;
ASkewX := -1 * ATranslateX;
ASkewY := -1 * ATranslateX;
ARotate := -1 * ATranslateX;
end;
function SolveNumericallyAngle(ANumericalEquation: TNumericalEquation;
ADesiredMaxError: Double; ADesiredMaxIterations: Integer = 10): Double;
var
lError, lErr1, lErr2, lErr3, lErr4: Double;
lParam1, lParam2: Double;
lCount: Integer;
begin
lErr1 := ANumericalEquation(0);
lErr2 := ANumericalEquation(Pi/2);
lErr3 := ANumericalEquation(Pi);
lErr4 := ANumericalEquation(3*Pi/2);
// Choose the place to start
if (lErr1 < lErr2) and (lErr1 < lErr3) and (lErr1 < lErr4) then
begin
lParam1 := -Pi/2;
lParam2 := Pi/2;
end
else if (lErr2 < lErr3) and (lErr2 < lErr4) then
begin
lParam1 := 0;
lParam2 := Pi;
end
else if (lErr2 < lErr3) and (lErr2 < lErr4) then // wp: same as above!
begin
lParam1 := Pi/2;
lParam2 := 3*Pi/2;
end
else
begin
lParam1 := Pi;
lParam2 := TWO_PI;
end;
// Iterate as many times necessary to get the best answer!
lCount := 0;
lError := $FFFFFFFF;
while ((ADesiredMaxError < 0 ) or (lError > ADesiredMaxError))
and (lParam1 <> lParam2)
and ((ADesiredMaxIterations < 0) or (lCount < ADesiredMaxIterations)) do
begin
lErr1 := ANumericalEquation(lParam1);
lErr2 := ANumericalEquation(lParam2);
if lErr1 < lErr2 then
lParam2 := (lParam1+lParam2)/2
else
lParam1 := (lParam1+lParam2)/2;
lError := Min(lErr1, lErr2);
Inc(lCount);
end;
// Choose the best of the last two
if lErr1 < lErr2 then
Result := lParam1
else
Result := lParam2
end;
procedure DeflateBytes(var ASource, ADest: TFPVUByteArray);
var
SourceMem, DestMem: TMemoryStream;
i: Integer;
begin
SourceMem := TMemoryStream.Create;
DestMem := TMemoryStream.Create;
try
// copy the source to the stream
{$ifdef FPVECTORIAL_DEFLATE_DEBUG}
FPVUDebug('[DeflateBytes] ASource= ');
{$endif}
for i := 0 to Length(ASource)-1 do
begin
SourceMem.WriteByte(ASource[i]);
{$ifdef FPVECTORIAL_DEFLATE_DEBUG}
FPVUDebug(Format('%.2x ', [ASource[i]]));
{$endif}
end;
{$ifdef FPVECTORIAL_DEFLATE_DEBUG}
FPVUDebugLn('');
{$endif}
SourceMem.Position := 0;
DeflateStream(SourceMem, DestMem);
// copy the dest from the stream
DestMem.Position := 0;
SetLength(ADest, DestMem.Size);
for i := 0 to DestMem.Size-1 do
ADest[i] := DestMem.ReadByte();
finally
SourceMem.Free;
DestMem.Free;
end;
end;
procedure DeflateStream(ASource, ADest: TStream);
var
DeCompressionStream: TDecompressionStream;
readCount: Integer;
Buf: array[0..1023]of Byte;
FirstChar: Char;
begin
ASource.Read(FirstChar, 1);
if FirstChar <> #120 then
raise Exception.Create('File is not a zLib archive');
ASource.Position := 0;
DecompressionStream := TDecompressionStream.Create(ASource);
repeat
readCount := DecompressionStream.Read(Buf, SizeOf(Buf));
if readCount <> 0 then ADest.Write(Buf, readCount);
until readCount < SizeOf(Buf);
DecompressionStream.Free;
end;
procedure DecodeASCII85(ASource: string; var ADest: TFPVUByteArray);
var
CurSrcPos, CurDestPos: Integer;
lDataDWordPtr: PCardinal;
lDataCurChar: Char;
begin
SetLength(ADest, 0);
CurDestPos := 0;
CurSrcPos := 1;
while CurSrcPos <= Length(ASource) do
begin
lDataCurChar := ASource[CurSrcPos];
// Compressed block of zeroes
if lDataCurChar = 'z' then
begin
SetLength(ADest, Length(ADest)+4);
ADest[CurDestPos] := 0;
ADest[CurDestPos+1] := 0;
ADest[CurDestPos+2] := 0;
ADest[CurDestPos+3] := 0;
Inc(CurDestPos, 4);
Inc(CurSrcPos, 1);
Continue;
end;
// Common block of data: 5 input bytes generate 4 output bytes
SetLength(ADest, Length(ADest)+4);
lDataDWordPtr := @(ADest[CurDestPos]);
if CurSrcPos+4 <= Length(ASource) then
begin
lDataDWordPtr^ := (Byte(ASource[CurSrcPos])-33)*85*85*85*85
+ (Byte(ASource[CurSrcPos+1])-33)*85*85*85 + (Byte(ASource[CurSrcPos+2])-33)*85*85
+ (Byte(ASource[CurSrcPos+3])-33)*85 + (Byte(ASource[CurSrcPos+4])-33);
lDataDWordPtr^ := NToBE(lDataDWordPtr^);
end
else if CurSrcPos+3 <= Length(ASource) then
begin
lDataDWordPtr^ := (Byte(ASource[CurSrcPos])-33)*85*85*85*85
+ (Byte(ASource[CurSrcPos+1])-33)*85*85*85 + (Byte(ASource[CurSrcPos+2])-33)*85*85
+ (Byte(ASource[CurSrcPos+3])-33)*85 + (Byte('u')-33);
lDataDWordPtr^ := NToBE(lDataDWordPtr^);
SetLength(ADest, Length(ADest)-1);
end
else if CurSrcPos+2 <= Length(ASource) then
begin
lDataDWordPtr^ := (Byte(ASource[CurSrcPos])-33)*85*85*85*85
+ (Byte(ASource[CurSrcPos+1])-33)*85*85*85 + (Byte(ASource[CurSrcPos+2])-33)*85*85
+ (Byte('u')-33)*85 + (Byte('u')-33);
lDataDWordPtr^ := NToBE(lDataDWordPtr^);
SetLength(ADest, Length(ADest)-2);
end
else if CurSrcPos+1 <= Length(ASource) then
begin
lDataDWordPtr^ := (Byte(ASource[CurSrcPos])-33)*85*85*85*85
+ (Byte(ASource[CurSrcPos+1])-33)*85*85*85 + (Byte('u')-33)*85*85
+ (Byte('u')-33)*85 + (Byte('u')-33);
lDataDWordPtr^ := NToBE(lDataDWordPtr^);
SetLength(ADest, Length(ADest)-3);
end
else
begin
raise Exception.Create('[DecodeASCII85] Too few bytes remaining to decode!');
end;
Inc(CurDestPos, 4);
Inc(CurSrcPos, 5);
end;
end;
procedure DecodeBase64(ASource: string; ADest: TStream);
var
lSourceStream: TStringStream;
lDecoder: TBase64DecodingStream;
begin
lSourceStream := TStringStream.Create(ASource);
lDecoder := TBase64DecodingStream.Create(lSourceStream);
try
ADest.CopyFrom(lDecoder, lDecoder.Size);
finally
lDecoder.Free;
lSourceStream.Free;
end;
end;
procedure ByteArrayToStream(ASource: TFPVUByteArray; ADest: TStream);
var
i: Integer;
begin
for i := 0 to Length(ASource)-1 do
ADest.WriteByte(ASource[i]);
end;
procedure FPVUDebug(AStr: string);
begin
FPVDebugBuffer := FPVDebugBuffer + AStr;
end;
procedure FPVUDebugLn(AStr: string);
begin
if Assigned(FPVUDebugOutCallback) then
FPVUDebugOutCallback(FPVDebugBuffer + AStr);
FPVDebugBuffer := '';
end;
function ConvertPathToRegion(APath: TPath; ADestX, ADestY: Integer; AMulX, AMulY: Double): HRGN;
var
WindingMode: Integer;
Points: array of TPoint;
begin
APath.PrepareForSequentialReading;
SetLength(Points, 0);
ConvertPathToPoints(APath, ADestX, ADestY, AMulX, AMulY, Points);
if APath.ClipMode = vcmEvenOddRule then WindingMode := LCLType.ALTERNATE
else WindingMode := LCLType.WINDING;
Result := LCLIntf.CreatePolygonRgn(@Points[0], Length(Points), WindingMode);
end;
{$endif}
procedure AddStringToArray(var A: TStringArray; const B: String);
begin
SetLength(A, Length(A) + 1);
A[High(A)] := B;
end;
procedure AddStringsToArray(var A: TStringArray; const B: TStringArray);
var
n, i: Integer;
begin
n := Length(A);
SetLength(A, n + Length(B));
for i:=0 to High(B) do
A[i + n] := B[i];
end;
end.