lazarus/components/tachart/tageometry.pas

979 lines
26 KiB
ObjectPascal

{
*****************************************************************************
See the file COPYING.modifiedLGPL.txt, included in this distribution,
for details about the license.
*****************************************************************************
Authors: Alexander Klenin
}
unit TAGeometry;
{$H+}
{$WARN 6058 off : Call to subroutine "$1" marked as inline is not inlined}
interface
uses
TAChartUtils, Types;
type
TPolygon = object
public
FPoints: TPointArray;
FCount: Integer;
public
constructor Init;
procedure Add(const APoint: TPoint);
procedure AddNoDup(const APoint: TPoint); inline;
function LastPoint: TPoint; inline;
function Purge: TPointArray; inline;
end;
TEllipse = object
public
FC: TDoublePoint;
FR: TDoublePoint;
constructor InitBoundingBox(AX1, AY1, AX2, AY2: Integer);
public
function GetPoint(AParametricAngle: Double): TDoublePoint;
procedure SliceToPolygon(
AAngleStart, AAngleLength: Double; AStep: Integer; var APoly: TPolygon);
function TesselateRadialPie(
AAngleStart, AAngleLength: Double; AStep: Integer): TPointArray;
end;
function CopyPoints(
APoints: array of TPoint; AStartIndex, ANumPts: Integer): TPointArray;
function DotProduct(A, B: TDoublePoint): Double;
function DoublePoint(AX, AY: Double): TDoublePoint; inline; overload;
function DoublePoint(const AP: TPoint): TDoublePoint; inline; overload;
function DoubleRect(AX1, AY1, AX2, AY2: Double): TDoubleRect; inline;
procedure ExpandRect(var ARect: TDoubleRect; const APoint: TDoublePoint); inline;
procedure ExpandRect(var ARect: TRect; const APoint: TPoint); inline;
procedure ExpandRect(
var ARect: TRect; const ACenter: TPoint; ARadius: Integer;
AAngle1, AAngle2: Double); inline;
function IsPointOnLine(const AP, A1, A2: TPoint): Boolean; inline;
function IsPointInPolygon(
const AP: TPoint; const APolygon: array of TPoint): Boolean;
function IsPointInRect(const AP, A1, A2: TPoint): Boolean; inline; overload;
function IsPointInRect(const AP: TPoint; const AR: TRect): Boolean; inline; overload;
function IsRectInRect(const AInner, AOuter: TRect): Boolean; inline;
function IsLineIntersectsLine(const AA, AB, AC, AD: TPoint): Boolean;
function IsPolygonIntersectsPolygon(const AP1, AP2: array of TPoint): Boolean;
function LineIntersectsRect(
var AA, AB: TDoublePoint; const ARect: TDoubleRect): Boolean;
function NormalizeAngle(Angle: Double): Double;
procedure NormalizeRect(var ARect: TRect); overload;
procedure NormalizeRect(var ARect: TDoubleRect); overload;
function MakeSquare(const ARect: TRect): TRect;
function MakeCallout(
const AShape: TPointArray; const ACenter, ATarget: TPoint;
AAngle: Double): TPointArray;
function MaxPoint(const A, B: TPoint): TPoint; inline;
function MeasureRotatedRect(const ASize: TPoint; AAngle: Double): TSize;
function NextNumberSeq(
const APoints: array of TDoublePoint; var AStart, AEnd: Integer): Boolean;
function PointDist(const A, B: TPoint): Integer; inline;
function PointDistX(const A, B: TPoint): Integer; inline;
function PointDistY(const A, B: TPoint): Integer; inline;
function PointLineDist(const P, A, B: TPoint): Integer; overload;
function PointLineDist(const P, A,B: TPoint; out Q: TPoint; out Inside: Boolean): Integer; overload;
function ProjToLine(const P, A, B: TDoublePoint): TDoublePoint; overload;
function ProjToLine(const P, A, B: TPoint): TPoint; overload;
function ProjToRect(
const APt: TDoublePoint; const ARect: TDoubleRect): TDoublePoint;
function RectIntersectsRect(
var ARect: TDoubleRect; const AFixed: TDoubleRect): Boolean;
function RotatePoint(const APoint: TDoublePoint; AAngle: Double): TDoublePoint; overload;
function RotatePoint(const APoint: TPoint; AAngle: Double): TPoint; overload;
function RotatePointX(AX, AAngle: Double): TPoint;
function RoundPoint(APoint: TDoublePoint): TPoint;
function TesselateRect(const ARect: TRect): TPointArray;
function TesselateEllipse(const ABounds: TRect; AStep: Integer): TPointArray;
function TesselateRoundRect(const ARect: TRect; ARadius, AStep: Integer): TPointArray;
operator +(const A: TPoint; B: TSize): TPoint; overload; inline;
operator +(const A, B: TPoint): TPoint; overload; inline;
operator +(const A, B: TDoublePoint): TDoublePoint; overload; inline;
operator -(const A: TPoint): TPoint; overload; inline;
operator -(const A, B: TPoint): TPoint; overload; inline;
operator -(const A, B: TDoublePoint): TDoublePoint; overload; inline;
operator div(const A: TPoint; ADivisor: Integer): TPoint; inline;
operator *(const A: TPoint; AMultiplier: Integer): TPoint; inline;
operator *(const A, B: TPoint): TPoint; inline;
operator *(const A, B: TDoublePoint): TDoublePoint; overload; inline;
operator * (const A: TDoublePoint; B: Double): TDoublePoint; overload; inline;
operator /(const A, B: TDoublePoint): TDoublePoint; overload; inline;
operator = (const A, B: TDoublePoint): Boolean; overload; inline;
operator = (const A, B: TDoubleRect): Boolean; overload; inline;
operator <= (const A, B: TDoublePoint): Boolean; overload; inline;
operator :=(const APoint: TPoint): TSize; inline;
operator :=(const ASize: TSize): TPoint; inline;
implementation
uses
{GraphMath,} Math, TAMath;
function PointLineSide(AP, A1, A2: TPoint): TValueSign; forward;
function CopyPoints(
APoints: array of TPoint; AStartIndex, ANumPts: Integer): TPointArray;
var
i: Integer;
begin
Assert(ANumPts >= 0);
SetLength(Result{%H-}, ANumPts);
for i := 0 to ANumPts - 1 do
Result[i] := APoints[i + AStartIndex];
end;
function DotProduct(A, B: TDoublePoint): Double;
begin
Result := A.X * B.X + A.Y * B.Y;
end;
function DoublePoint(AX, AY: Double): TDoublePoint; inline;
begin
Result.X := AX;
Result.Y := AY;
end;
function DoublePoint(const AP: TPoint): TDoublePoint;
begin
Result.X := AP.X;
Result.Y := AP.Y;
end;
function DoubleRect(AX1, AY1, AX2, AY2: Double): TDoubleRect; inline;
begin
Result.a.X := AX1;
Result.a.Y := AY1;
Result.b.X := AX2;
Result.b.Y := AY2;
end;
procedure ExpandRect(var ARect: TDoubleRect; const APoint: TDoublePoint);
begin
UpdateMinMax(APoint.X, ARect.a.X, ARect.b.X);
UpdateMinMax(APoint.Y, ARect.a.Y, ARect.b.Y);
end;
procedure ExpandRect(var ARect: TRect; const APoint: TPoint);
begin
UpdateMinMax(APoint.X, ARect.Left, ARect.Right);
UpdateMinMax(APoint.Y, ARect.Top, ARect.Bottom);
end;
procedure ExpandRect(
var ARect: TRect; const ACenter: TPoint; ARadius: Integer;
AAngle1, AAngle2: Double);
var
i, j: Integer;
begin
EnsureOrder(AAngle1, AAngle2);
ExpandRect(ARect, RotatePointX(ARadius, AAngle1) + ACenter);
ExpandRect(ARect, RotatePointX(ARadius, AAngle2) + ACenter);
j := Floor(AAngle1 / Pi * 2);
for i := j to j + 4 do
if InRange(Pi / 2 * i, AAngle1, AAngle2) then
ExpandRect(ARect, RotatePointX(ARadius, Pi / 2 * i) + ACenter);
end;
function IsPointOnLine(const AP, A1, A2: TPoint): Boolean;
begin
Result := IsPointInRect(AP, A1, A2) and (PointLineSide(AP, A1, A2) = 0);
end;
function IsPointInPolygon(
const AP: TPoint; const APolygon: array of TPoint): Boolean;
var
i, count: Integer;
p1, p2: TPoint;
s1, s2: TValueSign;
begin
if Length(APolygon) = 0 then exit(false);
p1 := APolygon[High(APolygon)];
for i := 0 to High(APolygon) do begin
p2 := APolygon[i];
if IsPointOnLine(AP, p1, p2) then exit(true);
p1 := p2;
end;
count := 0;
p1 := APolygon[High(APolygon)];
for i := 0 to High(APolygon) do begin
p2 := APolygon[i];
s1 := Sign(p1.Y - AP.Y);
s2 := Sign(p2.Y - AP.Y);
case s1 * s2 of
-1: count += Ord(PointLineSide(AP, p1, p2) = Sign(p1.Y - p2.Y));
0: if s1 + s2 = 1 then begin
if s1 = 0 then
count += Ord(p1.X >= AP.X)
else
count += Ord(p2.X >= AP.X)
end;
end;
p1 := p2;
end;
Result := count mod 2 = 1;
end;
function IsPointInRect(const AP, A1, A2: TPoint): Boolean;
begin
Result := SafeInRange(AP.X, A1.X, A2.X) and SafeInRange(AP.Y, A1.Y, A2.Y);
end;
function IsPointInRect(const AP: TPoint; const AR: TRect): Boolean;
begin
Result :=
SafeInRange(AP.X, AR.Left, AR.Right) and
SafeInRange(AP.Y, AR.Top, AR.Bottom);
end;
function IsRectInRect(const AInner, AOuter: TRect): Boolean;
begin
Result :=
IsPointInRect(AInner.TopLeft, AOuter) and
IsPointInRect(AInner.BottomRight, AOuter);
end;
function IsLineIntersectsLine(const AA, AB, AC, AD: TPoint): Boolean;
var
sa, sb, sc, sd: TValueSign;
begin
sa := PointLineSide(AA, AC, AD);
sb := PointLineSide(AB, AC, AD);
if (sa = 0) and (sb = 0) then
// All points are on the same infinite line.
Result :=
IsPointInRect(AA, AC, AD) or IsPointInRect(AB, AC, AD) or
IsPointInRect(AC, AA, AB) or IsPointInRect(AD, AA, AB)
else begin
sc := PointLineSide(AC, AA, AB);
sd := PointLineSide(AD, AA, AB);
Result := (sa * sb <= 0) and (sc * sd <= 0);
end;
end;
function IsPolygonIntersectsPolygon(const AP1, AP2: array of TPoint): Boolean;
var
i, j: Integer;
p1, p2: TPoint;
begin
if (Length(AP1) = 0) or (Length(AP2) = 0) then exit(false);
if IsPointInPolygon(AP1[0], AP2) or IsPointInPolygon(AP2[0], AP1) then
exit(true);
for i := 0 to High(AP1) do begin
p1 := AP1[i];
p2 := AP1[(i + 1) mod Length(AP1)];
for j := 0 to High(AP2) do
if IsLineIntersectsLine(p1, p2, AP2[j], AP2[(j + 1) mod Length(AP2)]) then
exit(true);
end;
Result := false;
end;
function LineIntersectsRect(
var AA, AB: TDoublePoint; const ARect: TDoubleRect): Boolean;
procedure AdjustX(var AP: TDoublePoint; ANewX: Double); inline;
var
dx: Double;
begin
dx := AB.X - AA.X;
if not IsInfinite(dx) and not IsInfinite(AP.Y) then
AP.Y += (AB.Y - AA.Y) / dx * (ANewX - AP.X);
AP.X := ANewX;
end;
procedure AdjustY(var AP: TDoublePoint; ANewY: Double); inline;
var
dy: Double;
begin
dy := AB.Y - AA.Y;
if not IsInfinite(dy) and not IsInfinite(AP.X) then
AP.X += (AB.X - AA.X) / dy * (ANewY - AP.Y);
AP.Y := ANewY;
end;
begin
case CASE_OF_TWO[AA.X < ARect.a.X, AB.X < ARect.a.X] of
cotFirst: AdjustX(AA, ARect.a.X);
cotSecond: AdjustX(AB, ARect.a.X);
cotBoth: exit(false);
cotNone: ;
end;
case CASE_OF_TWO[AA.X > ARect.b.X, AB.X > ARect.b.X] of
cotFirst: AdjustX(AA, ARect.b.X);
cotSecond: AdjustX(AB, ARect.b.X);
cotBoth: exit(false);
cotNone: ;
end;
case CASE_OF_TWO[AA.Y < ARect.a.Y, AB.Y < ARect.a.Y] of
cotFirst: AdjustY(AA, ARect.a.Y);
cotSecond: AdjustY(AB, ARect.a.Y);
cotBoth: exit(false);
cotNone: ;
end;
case CASE_OF_TWO[AA.Y > ARect.b.Y, AB.Y > ARect.b.Y] of
cotFirst: AdjustY(AA, ARect.b.Y);
cotSecond: AdjustY(AB, ARect.b.Y);
cotBoth: exit(false);
cotNone: ;
end;
Result := true;
end;
function MakeSquare(const ARect: TRect): TRect;
var
c: TPoint;
w, h: Integer;
begin
c := CenterPoint(ARect);
Result := ARect;
w := Abs(Result.Right - Result.Left);
h := Abs(Result.Bottom - Result.Top);
if w > h then begin
Result.Left := c.X - h div 2;
Result.Right := c.X + h div 2;
end
else begin
Result.Top := c.Y - w div 2;
Result.Bottom := c.Y + w div 2;
end;
end;
function MakeCallout(
const AShape: TPointArray; const ACenter, ATarget: TPoint;
AAngle: Double): TPointArray;
var
AVector: TPoint;
function Next(AIndex, ADir: Integer): Integer; inline;
begin
Result := (AIndex + Length(AShape) + ADir) mod Length(AShape);
end;
function NearestSide: Integer;
begin
for Result := 0 to High(AShape) do
if
IsLineIntersectsLine(
ACenter, ATarget, AShape[Result], AShape[Next(Result, 1)])
then
exit;
Result := -1;
end;
function ScalarProduct(const AP1, AP2: TPoint): Double; inline;
begin
Result := Double(AP1.X) * AP2.X + Double(AP1.Y) * AP2.Y;
end;
function CrossProductSign(const AP1, AP2: TPoint): Integer; inline;
begin
Result := Sign(Double(AP1.X) * AP2.Y - Double(AP1.Y) * AP2.X);
end;
function CrossProductSignByIndex(AIndex: Integer): Integer; inline;
begin
Result := CrossProductSign(AVector, AShape[AIndex] - ATarget);
end;
function CosVector(AIndex: Integer): Double;
begin
Result :=
ScalarProduct(AShape[AIndex] - ATarget, AVector) /
Sqrt(Double(PointDist(AShape[AIndex], ATarget)) * PointDist(ACenter, ATarget));
end;
function LineIntersectsRay(
const AFrom: TPoint; const ARay: TDoublePoint; const AA, AB: TPoint): TPoint;
var
line: TDoublePoint;
det, t: Double;
begin
line := DoublePoint(AB - AA);
// x = t * ARay.X + AFrom.X; y = t * ARay.Y + AFrom.Y;
// (x - AA.X) * line.Y = (y - AA.Y) * line.X
// t * ARay.X * line.Y + (AFrom.X - AA.X) * line.Y =
// t * ARay.Y * line.X + (AFrom.Y - AA.Y) * line.X
det := ARay.X * line.Y - ARay.Y * line.X;
if det = 0 then exit(AB);
with (AFrom - AA) do // Workaround for issue #17005.
t := (Y * line.X - X * line.Y) / det;
if t <= 0 then exit(AB);
Result := RoundPoint(DoublePoint(t, t) * ARay) + AFrom;
end;
procedure PointOnAngle(ADir: Integer; var AIndex: Integer; out APt: TPoint);
var
targetCos, c, maxCos: Double;
this, prev: TPoint;
ray: TDoublePoint;
s, n: Integer;
begin
targetCos := Cos(AAngle / 2);
maxCos := 2.0;
while true do begin
// Central vector of the callout passes exactly through the shape vertex.
s := CrossProductSignByIndex(AIndex);
if s <> 0 then break;
AIndex := Next(AIndex, ADir);
end;
prev := AShape[Next(AIndex, -ADir)];
while true do begin
this := AShape[AIndex];
c := CosVector(AIndex);
n := Next(AIndex, ADir);
if
(CrossProductSignByIndex(AIndex) <> s) or (c > maxCos) and
// Imprecision of integer grid may result in short concave segments on
// a convex figure. Skip them by a single-point lookahead.
((CrossProductSignByIndex(n) <> s) or (CosVector(n) > maxCos))
then begin
APt := prev;
AIndex := Next(AIndex, -ADir);
exit;
end;
if c <= targetCos then begin
ray := RotatePoint(DoublePoint(AVector), s * AAngle / 2);
APt := LineIntersectsRay(ATarget, ray, prev, this);
exit;
end;
AIndex := Next(AIndex, ADir);
maxCos := c;
prev := this;
end;
end;
var
cnt: Integer = 0;
procedure Add(const APoint: TPoint);
begin
if (cnt = 0) or (Result[cnt - 1] <> APoint) then begin
Result[cnt] := APoint;
cnt += 1;
end;
end;
var
ni, li, ri, i: Integer;
lp, rp: TPoint;
begin
if
(Length(AShape) < 3) or
IsPointInPolygon(ATarget, AShape) or not IsPointInPolygon(ACenter, AShape)
then
exit(AShape);
ni := NearestSide;
if ni < 0 then exit(AShape);
AVector := ACenter - ATarget;
li := ni;
PointOnAngle(-1, li, lp);
ri := Next(ni, 1);
PointOnAngle(+1, ri, rp);
SetLength(Result, Length(AShape) + 3);
i := ri;
while i <> li do begin
Add(AShape[i]);
i := Next(i, 1);
end;
Add(AShape[li]);
Add(lp);
Add(ATarget);
Add(rp);
SetLength(Result, cnt);
end;
function MaxPoint(const A, B: TPoint): TPoint;
begin
Result.X := Max(A.X, B.X);
Result.Y := Max(A.Y, B.Y);
end;
function MeasureRotatedRect(const ASize: TPoint; AAngle: Double): TSize;
var
pt1, pt2: TPoint;
begin
pt1 := RotatePoint(ASize, AAngle);
pt2 := RotatePoint(Point(ASize.X, -ASize.Y), AAngle);
Result.cx := Max(Abs(pt1.X), Abs(pt2.X));
Result.cy := Max(Abs(pt1.Y), Abs(pt2.Y));
end;
// Normalizes an angle to be in the interval 0 .. 2 pi
function NormalizeAngle(Angle: Double): Double;
const
TWO_PI = 2.0 * pi;
begin
Result := Angle;
while Result > TWO_PI do Result -= TWO_PI;
while Result < 0 do Result += TWO_PI;
end;
procedure NormalizeRect(var ARect: TRect);
begin
with ARect do begin
EnsureOrder(Left, Right);
EnsureOrder(Top, Bottom);
end;
end;
procedure NormalizeRect(var ARect: TDoubleRect); overload;
begin
with ARect do begin
EnsureOrder(a.X, b.X);
EnsureOrder(a.Y, b.Y);
end;
end;
function PointLineSide(AP, A1, A2: TPoint): TValueSign;
var
a1x, a1y: Int64;
begin
a1x := A1.X;
a1y := A1.Y;
Result := Sign((AP.X - a1x) * (A2.Y - a1y) - (AP.Y - a1y) * (A2.X - a1x));
end;
function NextNumberSeq(
const APoints: array of TDoublePoint; var AStart, AEnd: Integer): Boolean;
begin
AStart := AEnd + 2;
while (AStart <= High(APoints)) and IsNan(APoints[AStart]) do
AStart += 1;
AEnd := AStart;
while (AEnd + 1 <= High(APoints)) and not IsNan(APoints[AEnd + 1]) do
AEnd += 1;
Result := AStart <= High(APoints);
end;
function PointDist(const A, B: TPoint): Integer;
begin
Result := Min(Sqr(Int64(A.X) - B.X) + Sqr(Int64(A.Y) - B.Y), MaxInt);
end;
function PointDistX(const A, B: TPoint): Integer;
begin
Result := Min(Abs(Int64(A.X) - B.X), MaxInt);
end;
function PointDistY(const A, B: TPoint): Integer; inline;
begin
Result := Min(Abs(Int64(A.Y) - B.Y), MaxInt);
end;
function PointLineDist(const P, A,B: TPoint): Integer;
var
v, w, Q: TPoint;
dot: Int64;
lv: Integer;
begin
if A = B then
Result := PointDist(A, P)
else begin
v := B - A; // Vector pointing along line from A to B
w := P - A; // Vector pointing from A to P
dot := Int64(v.x) * w.x + Int64(v.y) * w.y; // dot product v . w
lv := PointDist(A, B); // Length of vector AB
Q := (v * dot) div lv; // Projection of P onto line A-B, seen from A
Result := PointDist(Q, w); // Length from A to Q
end;
end;
function PointLineDist(const P, A,B: TPoint; out Q: TPoint;
out Inside: Boolean): Integer;
var
v, w: TPoint;
dot: Int64;
lv: Integer;
aq, bq: Integer;
begin
if A = B then begin
Result := PointDist(A, P);
Inside := false;
Q := A;
end else begin
v := B - A;
w := P - A;
dot := Int64(v.x) * w.x + Int64(v.y) * w.y;
lv := PointDist(A, B);
Q := (v * dot) div lv;
Result := PointDist(Q, w);
// Check whether the projection point Q is inside the A-B line.
// In this case the lengths AQ and BQ are shorter than AB.
aq := sqr(Q.x) + sqr(Q.y); // note: Q is seen from A, not from origin.
bq := PointDist(v, Q);
Inside := (aq <= lv) and (bq <= lv);
Q := Q + A;
end;
end;
function ProjToLine(const P, A,B: TDoublePoint): TDoublePoint;
var
v, s: TDoublePoint;
begin
if P = A then
Result := A
else if P = B then
Result := B
else begin
s := B - A;
v := P - A;
Result := A + s * (DotProduct(v, s) / DotProduct(s, s));
end;
end;
function ProjToLine(const P, A, B: TPoint): TPoint;
begin
Result := RoundPoint(ProjToLine(DoublePoint(P), DoublePoint(A), DoublePoint(B)));
end;
function ProjToRect(
const APt: TDoublePoint; const ARect: TDoubleRect): TDoublePoint;
begin
Result.X := EnsureRange(APt.X, ARect.a.X, ARect.b.X);
Result.Y := EnsureRange(APt.Y, ARect.a.Y, ARect.b.Y);
end;
function RectIntersectsRect(
var ARect: TDoubleRect; const AFixed: TDoubleRect): Boolean;
function RangesIntersect(L1, R1, L2, R2: Double; out L, R: Double): Boolean;
begin
EnsureOrder(L1, R1);
EnsureOrder(L2, R2);
L := Max(L1, L2);
R := Min(R1, R2);
Result := L <= R;
end;
begin
with ARect do
Result :=
RangesIntersect(a.X, b.X, AFixed.a.X, AFixed.b.X, a.X, b.X) and
RangesIntersect(a.Y, b.Y, AFixed.a.Y, AFixed.b.Y, a.Y, b.Y);
end;
function RotatePoint(const APoint: TDoublePoint; AAngle: Double): TDoublePoint;
var
sa, ca: Extended;
begin
SinCos(AAngle, sa, ca);
Result.X := ca * APoint.X - sa * APoint.Y;
Result.Y := sa * APoint.X + ca * APoint.Y;
end;
function RotatePoint(const APoint: TPoint; AAngle: Double): TPoint;
var
sa, ca: Extended;
begin
SinCos(AAngle, sa, ca);
Result.X := Round(ca * APoint.X - sa * APoint.Y);
Result.Y := Round(sa * APoint.X + ca * APoint.Y);
end;
function RotatePointX(AX, AAngle: Double): TPoint;
var
sa, ca: Extended;
begin
SinCos(AAngle, sa, ca);
Result.X := Round(ca * AX);
Result.Y := Round(sa * AX);
end;
function RoundPoint(APoint: TDoublePoint): TPoint;
begin
Result.X := Round(APoint.X);
Result.Y := Round(APoint.Y);
end;
function TesselateRect(const ARect: TRect): TPointArray;
begin
SetLength(Result{%H-}, 4);
with ARect do begin
Result[0] := TopLeft;
Result[1] := Point(Left, Bottom);
Result[2] := BottomRight;
Result[3] := Point(Right, Top);
end;
end;
function TesselateEllipse(const ABounds: TRect; AStep: Integer): TPointArray;
var
e: TEllipse;
p: TPolygon;
begin
with ABounds do
e.InitBoundingBox(Left, Top, Right, Bottom);
p.Init;
e.SliceToPolygon(0, 2 * Pi, AStep, p);
Result := p.Purge;
end;
function TesselateRoundRect(
const ARect: TRect; ARadius, AStep: Integer): TPointArray;
var
e: TEllipse;
p: TPolygon;
begin
with ARect do begin
if Min(Right - Left, Bottom - Top) < 2 * ARadius then exit(nil);
p.Init;
e.FR := DoublePoint(ARadius, ARadius);
p.AddNoDup(Point(Right, Bottom - ARadius));
p.AddNoDup(Point(Right, Top + ARadius));
e.FC := DoublePoint(Right - ARadius, Top + ARadius);
e.SliceToPolygon(0, Pi / 2, AStep, p);
p.AddNoDup(Point(Right - ARadius, Top));
p.AddNoDup(Point(Left + ARadius, Top));
e.FC := DoublePoint(Left + ARadius, Top + ARadius);
e.SliceToPolygon(Pi / 2, Pi / 2, AStep, p);
p.AddNoDup(Point(Left, Top + ARadius));
p.AddNoDup(Point(Left, Bottom - ARadius));
e.FC := DoublePoint(Left + ARadius, Bottom - ARadius);
e.SliceToPolygon(Pi, Pi / 2, AStep, p);
p.AddNoDup(Point(Left + ARadius, Bottom));
p.AddNoDup(Point(Right - ARadius, Bottom));
e.FC := DoublePoint(Right - ARadius, Bottom - ARadius);
e.SliceToPolygon(Pi * 3/2, Pi / 2, AStep, p);
end;
Result := p.Purge;
end;
operator + (const A: TPoint; B: TSize): TPoint;
begin
Result.X := A.X + B.cx;
Result.Y := A.Y + B.cy;
end;
operator + (const A, B: TPoint): TPoint;
begin
Result.X := A.X + B.X;
Result.Y := A.Y + B.Y;
end;
operator + (const A, B: TDoublePoint): TDoublePoint;
begin
Result.X := A.X + B.X;
Result.Y := A.Y + B.Y;
end;
operator - (const A: TPoint): TPoint;
begin
Result.X := - A.X;
Result.Y := - A.Y;
end;
operator - (const A, B: TPoint): TPoint;
begin
Result.X := A.X - B.X;
Result.Y := A.Y - B.Y;
end;
operator - (const A, B: TDoublePoint): TDoublePoint;
begin
Result.X := A.X - B.X;
Result.Y := A.Y - B.Y;
end;
operator div(const A: TPoint; ADivisor: Integer): TPoint;
begin
Result.X := A.X div ADivisor;
Result.Y := A.Y div ADivisor;
end;
operator * (const A: TPoint; AMultiplier: Integer): TPoint;
begin
Result.X := A.X * AMultiplier;
Result.Y := A.Y * AMultiplier;
end;
operator * (const A, B: TPoint): TPoint;
begin
Result.X := A.X * B.X;
Result.Y := A.Y * B.Y;
end;
operator * (const A, B: TDoublePoint): TDoublePoint;
begin
Result.X := A.X * B.X;
Result.Y := A.Y * B.Y;
end;
operator * (const A: TDoublePoint; B: Double): TDoublePoint;
begin
Result.X := A.X * B;
Result.Y := A.Y * B;
end;
operator / (const A, B: TDoublePoint): TDoublePoint;
begin
Result.X := A.X / B.X;
Result.Y := A.Y / B.Y;
end;
operator = (const A, B: TDoublePoint): Boolean;
begin
Result := (A.X = B.X) and (A.Y = B.Y);
end;
operator = (const A, B: TDoubleRect): Boolean;
begin
Result := (A.a = B.a) and (A.b = B.b);
end;
operator <= (const A, B: TDoublePoint): Boolean;
begin
Result := (A.X <= B.X) and (A.Y <= B.Y);
end;
operator := (const APoint: TPoint): TSize;
begin
Result.cx := APoint.X;
Result.cy := APoint.Y;
end;
operator := (const ASize: TSize): TPoint;
begin
Result.X := ASize.cx;
Result.Y := ASize.cy;
end;
{ TPolygon }
procedure TPolygon.Add(const APoint: TPoint);
begin
if FCount > High(FPoints) then
SetLength(FPoints, Max(2 * FCount, 16));
FPoints[FCount] := APoint;
FCount += 1;
end;
procedure TPolygon.AddNoDup(const APoint: TPoint);
begin
if (FCount = 0) or (LastPoint <> APoint) then
Add(APoint);
end;
constructor TPolygon.Init;
begin
FCount := 0;
FPoints := nil;
end;
function TPolygon.LastPoint: TPoint;
begin
Result := FPoints[FCount - 1];
end;
function TPolygon.Purge: TPointArray;
begin
SetLength(FPoints, FCount);
Result := FPoints;
end;
{ TEllipse }
function TEllipse.GetPoint(AParametricAngle: Double): TDoublePoint;
var
s, c: Extended;
begin
SinCos(AParametricAngle, s, c);
Result := DoublePoint(c, -s) * FR + FC;
end;
constructor TEllipse.InitBoundingBox(AX1, AY1, AX2, AY2: Integer);
begin
FC.X := (AX1 + AX2) / 2;
FC.Y := (AY1 + AY2) / 2;
FR.X := Abs(AX1 - AX2) / 2;
FR.Y := Abs(AY1 - AY2) / 2;
end;
procedure TEllipse.SliceToPolygon(
AAngleStart, AAngleLength: Double; AStep: Integer; var APoly: TPolygon);
var
lastAngle: Double;
procedure SafeAddPoint(APoint: TPoint; AAngle: Double);
begin
if APoly.LastPoint <> APoint then begin
APoly.Add(APoint);
lastAngle := AAngle;
end;
end;
procedure Rec(ALo, AHi: Double);
var
pt: TPoint;
begin
pt := RoundPoint(GetPoint(AHi));
if PointDist(APoly.LastPoint, pt) <= Sqr(AStep) then
SafeAddPoint(pt, AHi)
else begin
Rec(ALo, (ALo + AHi) / 2);
Rec(lastAngle, AHi)
end;
end;
procedure Add(AAngle: Double);
begin
SafeAddPoint(RoundPoint(GetPoint(AAngle)), AAngle)
end;
const
HalfPi = Pi / 2;
var
t, tprev, tlast: Double;
begin
tprev := AAngleStart;
tlast := AAngleStart + AAngleLength;
APoly.Add(RoundPoint(GetPoint(tprev)));
if (FR.X < 1) or (FR.Y < 1) then begin
// Ellipse has degenerated into a line.
Add(tlast);
exit;
end;
APoly.Add(RoundPoint(GetPoint(tprev)));
lastAngle := tprev;
t := Ceil(tprev / HalfPi) * HalfPi;
while t < tlast do begin
Add(tprev);
Rec(tprev, t);
tprev := t;
t += HalfPi;
end;
Rec(tprev, tlast);
Add(tlast);
end;
// Represent the ellipse sector with a polygon on an integer grid.
// Polygon vertices are no more then AStep pixels apart.
function TEllipse.TesselateRadialPie(
AAngleStart, AAngleLength: Double; AStep: Integer): TPointArray;
var
resultPoly: TPolygon;
begin
resultPoly.Init;
SliceToPolygon(AAngleStart, AAngleLength, AStep, resultPoly);
resultPoly.AddNoDup(RoundPoint(FC));
Result := resultPoly.Purge;
end;
end.