mirror of
https://gitlab.com/freepascal.org/lazarus/lazarus.git
synced 2025-04-27 03:33:41 +02:00
979 lines
26 KiB
ObjectPascal
979 lines
26 KiB
ObjectPascal
{
|
|
*****************************************************************************
|
|
See the file COPYING.modifiedLGPL.txt, included in this distribution,
|
|
for details about the license.
|
|
*****************************************************************************
|
|
|
|
Authors: Alexander Klenin
|
|
|
|
}
|
|
unit TAGeometry;
|
|
|
|
{$H+}
|
|
{$WARN 6058 off : Call to subroutine "$1" marked as inline is not inlined}
|
|
|
|
interface
|
|
|
|
uses
|
|
TAChartUtils, Types;
|
|
|
|
type
|
|
TPolygon = object
|
|
public
|
|
FPoints: TPointArray;
|
|
FCount: Integer;
|
|
public
|
|
constructor Init;
|
|
procedure Add(const APoint: TPoint);
|
|
procedure AddNoDup(const APoint: TPoint); inline;
|
|
function LastPoint: TPoint; inline;
|
|
function Purge: TPointArray; inline;
|
|
end;
|
|
|
|
TEllipse = object
|
|
public
|
|
FC: TDoublePoint;
|
|
FR: TDoublePoint;
|
|
constructor InitBoundingBox(AX1, AY1, AX2, AY2: Integer);
|
|
public
|
|
function GetPoint(AParametricAngle: Double): TDoublePoint;
|
|
procedure SliceToPolygon(
|
|
AAngleStart, AAngleLength: Double; AStep: Integer; var APoly: TPolygon);
|
|
function TesselateRadialPie(
|
|
AAngleStart, AAngleLength: Double; AStep: Integer): TPointArray;
|
|
end;
|
|
|
|
function CopyPoints(
|
|
APoints: array of TPoint; AStartIndex, ANumPts: Integer): TPointArray;
|
|
function DotProduct(A, B: TDoublePoint): Double;
|
|
function DoublePoint(AX, AY: Double): TDoublePoint; inline; overload;
|
|
function DoublePoint(const AP: TPoint): TDoublePoint; inline; overload;
|
|
function DoubleRect(AX1, AY1, AX2, AY2: Double): TDoubleRect; inline;
|
|
procedure ExpandRect(var ARect: TDoubleRect; const APoint: TDoublePoint); inline;
|
|
procedure ExpandRect(var ARect: TRect; const APoint: TPoint); inline;
|
|
procedure ExpandRect(
|
|
var ARect: TRect; const ACenter: TPoint; ARadius: Integer;
|
|
AAngle1, AAngle2: Double); inline;
|
|
function IsPointOnLine(const AP, A1, A2: TPoint): Boolean; inline;
|
|
function IsPointInPolygon(
|
|
const AP: TPoint; const APolygon: array of TPoint): Boolean;
|
|
function IsPointInRect(const AP, A1, A2: TPoint): Boolean; inline; overload;
|
|
function IsPointInRect(const AP: TPoint; const AR: TRect): Boolean; inline; overload;
|
|
function IsRectInRect(const AInner, AOuter: TRect): Boolean; inline;
|
|
function IsLineIntersectsLine(const AA, AB, AC, AD: TPoint): Boolean;
|
|
function IsPolygonIntersectsPolygon(const AP1, AP2: array of TPoint): Boolean;
|
|
function LineIntersectsRect(
|
|
var AA, AB: TDoublePoint; const ARect: TDoubleRect): Boolean;
|
|
function NormalizeAngle(Angle: Double): Double;
|
|
procedure NormalizeRect(var ARect: TRect); overload;
|
|
procedure NormalizeRect(var ARect: TDoubleRect); overload;
|
|
function MakeSquare(const ARect: TRect): TRect;
|
|
function MakeCallout(
|
|
const AShape: TPointArray; const ACenter, ATarget: TPoint;
|
|
AAngle: Double): TPointArray;
|
|
function MaxPoint(const A, B: TPoint): TPoint; inline;
|
|
function MeasureRotatedRect(const ASize: TPoint; AAngle: Double): TSize;
|
|
function NextNumberSeq(
|
|
const APoints: array of TDoublePoint; var AStart, AEnd: Integer): Boolean;
|
|
function PointDist(const A, B: TPoint): Integer; inline;
|
|
function PointDistX(const A, B: TPoint): Integer; inline;
|
|
function PointDistY(const A, B: TPoint): Integer; inline;
|
|
function PointLineDist(const P, A, B: TPoint): Integer; overload;
|
|
function PointLineDist(const P, A,B: TPoint; out Q: TPoint; out Inside: Boolean): Integer; overload;
|
|
function ProjToLine(const P, A, B: TDoublePoint): TDoublePoint; overload;
|
|
function ProjToLine(const P, A, B: TPoint): TPoint; overload;
|
|
function ProjToRect(
|
|
const APt: TDoublePoint; const ARect: TDoubleRect): TDoublePoint;
|
|
function RectIntersectsRect(
|
|
var ARect: TDoubleRect; const AFixed: TDoubleRect): Boolean;
|
|
function RotatePoint(const APoint: TDoublePoint; AAngle: Double): TDoublePoint; overload;
|
|
function RotatePoint(const APoint: TPoint; AAngle: Double): TPoint; overload;
|
|
function RotatePointX(AX, AAngle: Double): TPoint;
|
|
function RoundPoint(APoint: TDoublePoint): TPoint;
|
|
function TesselateRect(const ARect: TRect): TPointArray;
|
|
function TesselateEllipse(const ABounds: TRect; AStep: Integer): TPointArray;
|
|
function TesselateRoundRect(const ARect: TRect; ARadius, AStep: Integer): TPointArray;
|
|
|
|
operator +(const A: TPoint; B: TSize): TPoint; overload; inline;
|
|
operator +(const A, B: TPoint): TPoint; overload; inline;
|
|
operator +(const A, B: TDoublePoint): TDoublePoint; overload; inline;
|
|
operator -(const A: TPoint): TPoint; overload; inline;
|
|
operator -(const A, B: TPoint): TPoint; overload; inline;
|
|
operator -(const A, B: TDoublePoint): TDoublePoint; overload; inline;
|
|
operator div(const A: TPoint; ADivisor: Integer): TPoint; inline;
|
|
operator *(const A: TPoint; AMultiplier: Integer): TPoint; inline;
|
|
operator *(const A, B: TPoint): TPoint; inline;
|
|
operator *(const A, B: TDoublePoint): TDoublePoint; overload; inline;
|
|
operator * (const A: TDoublePoint; B: Double): TDoublePoint; overload; inline;
|
|
operator /(const A, B: TDoublePoint): TDoublePoint; overload; inline;
|
|
operator = (const A, B: TDoublePoint): Boolean; overload; inline;
|
|
operator = (const A, B: TDoubleRect): Boolean; overload; inline;
|
|
operator <= (const A, B: TDoublePoint): Boolean; overload; inline;
|
|
operator :=(const APoint: TPoint): TSize; inline;
|
|
operator :=(const ASize: TSize): TPoint; inline;
|
|
|
|
implementation
|
|
|
|
uses
|
|
{GraphMath,} Math, TAMath;
|
|
|
|
function PointLineSide(AP, A1, A2: TPoint): TValueSign; forward;
|
|
|
|
function CopyPoints(
|
|
APoints: array of TPoint; AStartIndex, ANumPts: Integer): TPointArray;
|
|
var
|
|
i: Integer;
|
|
begin
|
|
Assert(ANumPts >= 0);
|
|
SetLength(Result{%H-}, ANumPts);
|
|
for i := 0 to ANumPts - 1 do
|
|
Result[i] := APoints[i + AStartIndex];
|
|
end;
|
|
|
|
function DotProduct(A, B: TDoublePoint): Double;
|
|
begin
|
|
Result := A.X * B.X + A.Y * B.Y;
|
|
end;
|
|
|
|
function DoublePoint(AX, AY: Double): TDoublePoint; inline;
|
|
begin
|
|
Result.X := AX;
|
|
Result.Y := AY;
|
|
end;
|
|
|
|
function DoublePoint(const AP: TPoint): TDoublePoint;
|
|
begin
|
|
Result.X := AP.X;
|
|
Result.Y := AP.Y;
|
|
end;
|
|
|
|
function DoubleRect(AX1, AY1, AX2, AY2: Double): TDoubleRect; inline;
|
|
begin
|
|
Result.a.X := AX1;
|
|
Result.a.Y := AY1;
|
|
Result.b.X := AX2;
|
|
Result.b.Y := AY2;
|
|
end;
|
|
|
|
procedure ExpandRect(var ARect: TDoubleRect; const APoint: TDoublePoint);
|
|
begin
|
|
UpdateMinMax(APoint.X, ARect.a.X, ARect.b.X);
|
|
UpdateMinMax(APoint.Y, ARect.a.Y, ARect.b.Y);
|
|
end;
|
|
|
|
procedure ExpandRect(var ARect: TRect; const APoint: TPoint);
|
|
begin
|
|
UpdateMinMax(APoint.X, ARect.Left, ARect.Right);
|
|
UpdateMinMax(APoint.Y, ARect.Top, ARect.Bottom);
|
|
end;
|
|
|
|
procedure ExpandRect(
|
|
var ARect: TRect; const ACenter: TPoint; ARadius: Integer;
|
|
AAngle1, AAngle2: Double);
|
|
var
|
|
i, j: Integer;
|
|
begin
|
|
EnsureOrder(AAngle1, AAngle2);
|
|
ExpandRect(ARect, RotatePointX(ARadius, AAngle1) + ACenter);
|
|
ExpandRect(ARect, RotatePointX(ARadius, AAngle2) + ACenter);
|
|
j := Floor(AAngle1 / Pi * 2);
|
|
for i := j to j + 4 do
|
|
if InRange(Pi / 2 * i, AAngle1, AAngle2) then
|
|
ExpandRect(ARect, RotatePointX(ARadius, Pi / 2 * i) + ACenter);
|
|
end;
|
|
|
|
function IsPointOnLine(const AP, A1, A2: TPoint): Boolean;
|
|
begin
|
|
Result := IsPointInRect(AP, A1, A2) and (PointLineSide(AP, A1, A2) = 0);
|
|
end;
|
|
|
|
function IsPointInPolygon(
|
|
const AP: TPoint; const APolygon: array of TPoint): Boolean;
|
|
var
|
|
i, count: Integer;
|
|
p1, p2: TPoint;
|
|
s1, s2: TValueSign;
|
|
begin
|
|
if Length(APolygon) = 0 then exit(false);
|
|
p1 := APolygon[High(APolygon)];
|
|
for i := 0 to High(APolygon) do begin
|
|
p2 := APolygon[i];
|
|
if IsPointOnLine(AP, p1, p2) then exit(true);
|
|
p1 := p2;
|
|
end;
|
|
count := 0;
|
|
p1 := APolygon[High(APolygon)];
|
|
for i := 0 to High(APolygon) do begin
|
|
p2 := APolygon[i];
|
|
s1 := Sign(p1.Y - AP.Y);
|
|
s2 := Sign(p2.Y - AP.Y);
|
|
case s1 * s2 of
|
|
-1: count += Ord(PointLineSide(AP, p1, p2) = Sign(p1.Y - p2.Y));
|
|
0: if s1 + s2 = 1 then begin
|
|
if s1 = 0 then
|
|
count += Ord(p1.X >= AP.X)
|
|
else
|
|
count += Ord(p2.X >= AP.X)
|
|
end;
|
|
end;
|
|
p1 := p2;
|
|
end;
|
|
Result := count mod 2 = 1;
|
|
end;
|
|
|
|
function IsPointInRect(const AP, A1, A2: TPoint): Boolean;
|
|
begin
|
|
Result := SafeInRange(AP.X, A1.X, A2.X) and SafeInRange(AP.Y, A1.Y, A2.Y);
|
|
end;
|
|
|
|
function IsPointInRect(const AP: TPoint; const AR: TRect): Boolean;
|
|
begin
|
|
Result :=
|
|
SafeInRange(AP.X, AR.Left, AR.Right) and
|
|
SafeInRange(AP.Y, AR.Top, AR.Bottom);
|
|
end;
|
|
|
|
function IsRectInRect(const AInner, AOuter: TRect): Boolean;
|
|
begin
|
|
Result :=
|
|
IsPointInRect(AInner.TopLeft, AOuter) and
|
|
IsPointInRect(AInner.BottomRight, AOuter);
|
|
end;
|
|
|
|
function IsLineIntersectsLine(const AA, AB, AC, AD: TPoint): Boolean;
|
|
var
|
|
sa, sb, sc, sd: TValueSign;
|
|
begin
|
|
sa := PointLineSide(AA, AC, AD);
|
|
sb := PointLineSide(AB, AC, AD);
|
|
if (sa = 0) and (sb = 0) then
|
|
// All points are on the same infinite line.
|
|
Result :=
|
|
IsPointInRect(AA, AC, AD) or IsPointInRect(AB, AC, AD) or
|
|
IsPointInRect(AC, AA, AB) or IsPointInRect(AD, AA, AB)
|
|
else begin
|
|
sc := PointLineSide(AC, AA, AB);
|
|
sd := PointLineSide(AD, AA, AB);
|
|
Result := (sa * sb <= 0) and (sc * sd <= 0);
|
|
end;
|
|
end;
|
|
|
|
function IsPolygonIntersectsPolygon(const AP1, AP2: array of TPoint): Boolean;
|
|
var
|
|
i, j: Integer;
|
|
p1, p2: TPoint;
|
|
begin
|
|
if (Length(AP1) = 0) or (Length(AP2) = 0) then exit(false);
|
|
if IsPointInPolygon(AP1[0], AP2) or IsPointInPolygon(AP2[0], AP1) then
|
|
exit(true);
|
|
for i := 0 to High(AP1) do begin
|
|
p1 := AP1[i];
|
|
p2 := AP1[(i + 1) mod Length(AP1)];
|
|
for j := 0 to High(AP2) do
|
|
if IsLineIntersectsLine(p1, p2, AP2[j], AP2[(j + 1) mod Length(AP2)]) then
|
|
exit(true);
|
|
end;
|
|
Result := false;
|
|
end;
|
|
|
|
function LineIntersectsRect(
|
|
var AA, AB: TDoublePoint; const ARect: TDoubleRect): Boolean;
|
|
|
|
procedure AdjustX(var AP: TDoublePoint; ANewX: Double); inline;
|
|
var
|
|
dx: Double;
|
|
begin
|
|
dx := AB.X - AA.X;
|
|
if not IsInfinite(dx) and not IsInfinite(AP.Y) then
|
|
AP.Y += (AB.Y - AA.Y) / dx * (ANewX - AP.X);
|
|
AP.X := ANewX;
|
|
end;
|
|
|
|
procedure AdjustY(var AP: TDoublePoint; ANewY: Double); inline;
|
|
var
|
|
dy: Double;
|
|
begin
|
|
dy := AB.Y - AA.Y;
|
|
if not IsInfinite(dy) and not IsInfinite(AP.X) then
|
|
AP.X += (AB.X - AA.X) / dy * (ANewY - AP.Y);
|
|
AP.Y := ANewY;
|
|
end;
|
|
|
|
begin
|
|
case CASE_OF_TWO[AA.X < ARect.a.X, AB.X < ARect.a.X] of
|
|
cotFirst: AdjustX(AA, ARect.a.X);
|
|
cotSecond: AdjustX(AB, ARect.a.X);
|
|
cotBoth: exit(false);
|
|
cotNone: ;
|
|
end;
|
|
case CASE_OF_TWO[AA.X > ARect.b.X, AB.X > ARect.b.X] of
|
|
cotFirst: AdjustX(AA, ARect.b.X);
|
|
cotSecond: AdjustX(AB, ARect.b.X);
|
|
cotBoth: exit(false);
|
|
cotNone: ;
|
|
end;
|
|
case CASE_OF_TWO[AA.Y < ARect.a.Y, AB.Y < ARect.a.Y] of
|
|
cotFirst: AdjustY(AA, ARect.a.Y);
|
|
cotSecond: AdjustY(AB, ARect.a.Y);
|
|
cotBoth: exit(false);
|
|
cotNone: ;
|
|
end;
|
|
case CASE_OF_TWO[AA.Y > ARect.b.Y, AB.Y > ARect.b.Y] of
|
|
cotFirst: AdjustY(AA, ARect.b.Y);
|
|
cotSecond: AdjustY(AB, ARect.b.Y);
|
|
cotBoth: exit(false);
|
|
cotNone: ;
|
|
end;
|
|
Result := true;
|
|
end;
|
|
|
|
function MakeSquare(const ARect: TRect): TRect;
|
|
var
|
|
c: TPoint;
|
|
w, h: Integer;
|
|
begin
|
|
c := CenterPoint(ARect);
|
|
Result := ARect;
|
|
w := Abs(Result.Right - Result.Left);
|
|
h := Abs(Result.Bottom - Result.Top);
|
|
if w > h then begin
|
|
Result.Left := c.X - h div 2;
|
|
Result.Right := c.X + h div 2;
|
|
end
|
|
else begin
|
|
Result.Top := c.Y - w div 2;
|
|
Result.Bottom := c.Y + w div 2;
|
|
end;
|
|
end;
|
|
|
|
function MakeCallout(
|
|
const AShape: TPointArray; const ACenter, ATarget: TPoint;
|
|
AAngle: Double): TPointArray;
|
|
var
|
|
AVector: TPoint;
|
|
|
|
function Next(AIndex, ADir: Integer): Integer; inline;
|
|
begin
|
|
Result := (AIndex + Length(AShape) + ADir) mod Length(AShape);
|
|
end;
|
|
|
|
function NearestSide: Integer;
|
|
begin
|
|
for Result := 0 to High(AShape) do
|
|
if
|
|
IsLineIntersectsLine(
|
|
ACenter, ATarget, AShape[Result], AShape[Next(Result, 1)])
|
|
then
|
|
exit;
|
|
Result := -1;
|
|
end;
|
|
|
|
function ScalarProduct(const AP1, AP2: TPoint): Double; inline;
|
|
begin
|
|
Result := Double(AP1.X) * AP2.X + Double(AP1.Y) * AP2.Y;
|
|
end;
|
|
|
|
function CrossProductSign(const AP1, AP2: TPoint): Integer; inline;
|
|
begin
|
|
Result := Sign(Double(AP1.X) * AP2.Y - Double(AP1.Y) * AP2.X);
|
|
end;
|
|
|
|
function CrossProductSignByIndex(AIndex: Integer): Integer; inline;
|
|
begin
|
|
Result := CrossProductSign(AVector, AShape[AIndex] - ATarget);
|
|
end;
|
|
|
|
function CosVector(AIndex: Integer): Double;
|
|
begin
|
|
Result :=
|
|
ScalarProduct(AShape[AIndex] - ATarget, AVector) /
|
|
Sqrt(Double(PointDist(AShape[AIndex], ATarget)) * PointDist(ACenter, ATarget));
|
|
end;
|
|
|
|
function LineIntersectsRay(
|
|
const AFrom: TPoint; const ARay: TDoublePoint; const AA, AB: TPoint): TPoint;
|
|
var
|
|
line: TDoublePoint;
|
|
det, t: Double;
|
|
begin
|
|
line := DoublePoint(AB - AA);
|
|
// x = t * ARay.X + AFrom.X; y = t * ARay.Y + AFrom.Y;
|
|
// (x - AA.X) * line.Y = (y - AA.Y) * line.X
|
|
// t * ARay.X * line.Y + (AFrom.X - AA.X) * line.Y =
|
|
// t * ARay.Y * line.X + (AFrom.Y - AA.Y) * line.X
|
|
det := ARay.X * line.Y - ARay.Y * line.X;
|
|
if det = 0 then exit(AB);
|
|
with (AFrom - AA) do // Workaround for issue #17005.
|
|
t := (Y * line.X - X * line.Y) / det;
|
|
if t <= 0 then exit(AB);
|
|
Result := RoundPoint(DoublePoint(t, t) * ARay) + AFrom;
|
|
end;
|
|
|
|
procedure PointOnAngle(ADir: Integer; var AIndex: Integer; out APt: TPoint);
|
|
var
|
|
targetCos, c, maxCos: Double;
|
|
this, prev: TPoint;
|
|
ray: TDoublePoint;
|
|
s, n: Integer;
|
|
begin
|
|
targetCos := Cos(AAngle / 2);
|
|
maxCos := 2.0;
|
|
while true do begin
|
|
// Central vector of the callout passes exactly through the shape vertex.
|
|
s := CrossProductSignByIndex(AIndex);
|
|
if s <> 0 then break;
|
|
AIndex := Next(AIndex, ADir);
|
|
end;
|
|
prev := AShape[Next(AIndex, -ADir)];
|
|
while true do begin
|
|
this := AShape[AIndex];
|
|
c := CosVector(AIndex);
|
|
n := Next(AIndex, ADir);
|
|
if
|
|
(CrossProductSignByIndex(AIndex) <> s) or (c > maxCos) and
|
|
// Imprecision of integer grid may result in short concave segments on
|
|
// a convex figure. Skip them by a single-point lookahead.
|
|
((CrossProductSignByIndex(n) <> s) or (CosVector(n) > maxCos))
|
|
then begin
|
|
APt := prev;
|
|
AIndex := Next(AIndex, -ADir);
|
|
exit;
|
|
end;
|
|
if c <= targetCos then begin
|
|
ray := RotatePoint(DoublePoint(AVector), s * AAngle / 2);
|
|
APt := LineIntersectsRay(ATarget, ray, prev, this);
|
|
exit;
|
|
end;
|
|
AIndex := Next(AIndex, ADir);
|
|
maxCos := c;
|
|
prev := this;
|
|
end;
|
|
end;
|
|
|
|
var
|
|
cnt: Integer = 0;
|
|
|
|
procedure Add(const APoint: TPoint);
|
|
begin
|
|
if (cnt = 0) or (Result[cnt - 1] <> APoint) then begin
|
|
Result[cnt] := APoint;
|
|
cnt += 1;
|
|
end;
|
|
end;
|
|
|
|
var
|
|
ni, li, ri, i: Integer;
|
|
lp, rp: TPoint;
|
|
begin
|
|
if
|
|
(Length(AShape) < 3) or
|
|
IsPointInPolygon(ATarget, AShape) or not IsPointInPolygon(ACenter, AShape)
|
|
then
|
|
exit(AShape);
|
|
ni := NearestSide;
|
|
if ni < 0 then exit(AShape);
|
|
AVector := ACenter - ATarget;
|
|
li := ni;
|
|
PointOnAngle(-1, li, lp);
|
|
ri := Next(ni, 1);
|
|
PointOnAngle(+1, ri, rp);
|
|
SetLength(Result, Length(AShape) + 3);
|
|
i := ri;
|
|
while i <> li do begin
|
|
Add(AShape[i]);
|
|
i := Next(i, 1);
|
|
end;
|
|
Add(AShape[li]);
|
|
Add(lp);
|
|
Add(ATarget);
|
|
Add(rp);
|
|
SetLength(Result, cnt);
|
|
end;
|
|
|
|
function MaxPoint(const A, B: TPoint): TPoint;
|
|
begin
|
|
Result.X := Max(A.X, B.X);
|
|
Result.Y := Max(A.Y, B.Y);
|
|
end;
|
|
|
|
function MeasureRotatedRect(const ASize: TPoint; AAngle: Double): TSize;
|
|
var
|
|
pt1, pt2: TPoint;
|
|
begin
|
|
pt1 := RotatePoint(ASize, AAngle);
|
|
pt2 := RotatePoint(Point(ASize.X, -ASize.Y), AAngle);
|
|
Result.cx := Max(Abs(pt1.X), Abs(pt2.X));
|
|
Result.cy := Max(Abs(pt1.Y), Abs(pt2.Y));
|
|
end;
|
|
|
|
// Normalizes an angle to be in the interval 0 .. 2 pi
|
|
function NormalizeAngle(Angle: Double): Double;
|
|
const
|
|
TWO_PI = 2.0 * pi;
|
|
begin
|
|
Result := Angle;
|
|
while Result > TWO_PI do Result -= TWO_PI;
|
|
while Result < 0 do Result += TWO_PI;
|
|
end;
|
|
|
|
procedure NormalizeRect(var ARect: TRect);
|
|
begin
|
|
with ARect do begin
|
|
EnsureOrder(Left, Right);
|
|
EnsureOrder(Top, Bottom);
|
|
end;
|
|
end;
|
|
|
|
procedure NormalizeRect(var ARect: TDoubleRect); overload;
|
|
begin
|
|
with ARect do begin
|
|
EnsureOrder(a.X, b.X);
|
|
EnsureOrder(a.Y, b.Y);
|
|
end;
|
|
end;
|
|
|
|
function PointLineSide(AP, A1, A2: TPoint): TValueSign;
|
|
var
|
|
a1x, a1y: Int64;
|
|
begin
|
|
a1x := A1.X;
|
|
a1y := A1.Y;
|
|
Result := Sign((AP.X - a1x) * (A2.Y - a1y) - (AP.Y - a1y) * (A2.X - a1x));
|
|
end;
|
|
|
|
function NextNumberSeq(
|
|
const APoints: array of TDoublePoint; var AStart, AEnd: Integer): Boolean;
|
|
begin
|
|
AStart := AEnd + 2;
|
|
while (AStart <= High(APoints)) and IsNan(APoints[AStart]) do
|
|
AStart += 1;
|
|
AEnd := AStart;
|
|
while (AEnd + 1 <= High(APoints)) and not IsNan(APoints[AEnd + 1]) do
|
|
AEnd += 1;
|
|
Result := AStart <= High(APoints);
|
|
end;
|
|
|
|
function PointDist(const A, B: TPoint): Integer;
|
|
begin
|
|
Result := Min(Sqr(Int64(A.X) - B.X) + Sqr(Int64(A.Y) - B.Y), MaxInt);
|
|
end;
|
|
|
|
function PointDistX(const A, B: TPoint): Integer;
|
|
begin
|
|
Result := Min(Abs(Int64(A.X) - B.X), MaxInt);
|
|
end;
|
|
|
|
function PointDistY(const A, B: TPoint): Integer; inline;
|
|
begin
|
|
Result := Min(Abs(Int64(A.Y) - B.Y), MaxInt);
|
|
end;
|
|
|
|
function PointLineDist(const P, A,B: TPoint): Integer;
|
|
var
|
|
v, w, Q: TPoint;
|
|
dot: Int64;
|
|
lv: Integer;
|
|
begin
|
|
if A = B then
|
|
Result := PointDist(A, P)
|
|
else begin
|
|
v := B - A; // Vector pointing along line from A to B
|
|
w := P - A; // Vector pointing from A to P
|
|
dot := Int64(v.x) * w.x + Int64(v.y) * w.y; // dot product v . w
|
|
lv := PointDist(A, B); // Length of vector AB
|
|
Q := (v * dot) div lv; // Projection of P onto line A-B, seen from A
|
|
Result := PointDist(Q, w); // Length from A to Q
|
|
end;
|
|
end;
|
|
|
|
function PointLineDist(const P, A,B: TPoint; out Q: TPoint;
|
|
out Inside: Boolean): Integer;
|
|
var
|
|
v, w: TPoint;
|
|
dot: Int64;
|
|
lv: Integer;
|
|
|
|
aq, bq: Integer;
|
|
begin
|
|
if A = B then begin
|
|
Result := PointDist(A, P);
|
|
Inside := false;
|
|
Q := A;
|
|
end else begin
|
|
v := B - A;
|
|
w := P - A;
|
|
dot := Int64(v.x) * w.x + Int64(v.y) * w.y;
|
|
lv := PointDist(A, B);
|
|
Q := (v * dot) div lv;
|
|
Result := PointDist(Q, w);
|
|
|
|
// Check whether the projection point Q is inside the A-B line.
|
|
// In this case the lengths AQ and BQ are shorter than AB.
|
|
aq := sqr(Q.x) + sqr(Q.y); // note: Q is seen from A, not from origin.
|
|
bq := PointDist(v, Q);
|
|
Inside := (aq <= lv) and (bq <= lv);
|
|
Q := Q + A;
|
|
end;
|
|
end;
|
|
|
|
function ProjToLine(const P, A,B: TDoublePoint): TDoublePoint;
|
|
var
|
|
v, s: TDoublePoint;
|
|
begin
|
|
if P = A then
|
|
Result := A
|
|
else if P = B then
|
|
Result := B
|
|
else begin
|
|
s := B - A;
|
|
v := P - A;
|
|
Result := A + s * (DotProduct(v, s) / DotProduct(s, s));
|
|
end;
|
|
end;
|
|
|
|
function ProjToLine(const P, A, B: TPoint): TPoint;
|
|
begin
|
|
Result := RoundPoint(ProjToLine(DoublePoint(P), DoublePoint(A), DoublePoint(B)));
|
|
end;
|
|
|
|
function ProjToRect(
|
|
const APt: TDoublePoint; const ARect: TDoubleRect): TDoublePoint;
|
|
begin
|
|
Result.X := EnsureRange(APt.X, ARect.a.X, ARect.b.X);
|
|
Result.Y := EnsureRange(APt.Y, ARect.a.Y, ARect.b.Y);
|
|
end;
|
|
|
|
function RectIntersectsRect(
|
|
var ARect: TDoubleRect; const AFixed: TDoubleRect): Boolean;
|
|
|
|
function RangesIntersect(L1, R1, L2, R2: Double; out L, R: Double): Boolean;
|
|
begin
|
|
EnsureOrder(L1, R1);
|
|
EnsureOrder(L2, R2);
|
|
L := Max(L1, L2);
|
|
R := Min(R1, R2);
|
|
Result := L <= R;
|
|
end;
|
|
|
|
begin
|
|
with ARect do
|
|
Result :=
|
|
RangesIntersect(a.X, b.X, AFixed.a.X, AFixed.b.X, a.X, b.X) and
|
|
RangesIntersect(a.Y, b.Y, AFixed.a.Y, AFixed.b.Y, a.Y, b.Y);
|
|
end;
|
|
|
|
function RotatePoint(const APoint: TDoublePoint; AAngle: Double): TDoublePoint;
|
|
var
|
|
sa, ca: Extended;
|
|
begin
|
|
SinCos(AAngle, sa, ca);
|
|
Result.X := ca * APoint.X - sa * APoint.Y;
|
|
Result.Y := sa * APoint.X + ca * APoint.Y;
|
|
end;
|
|
|
|
function RotatePoint(const APoint: TPoint; AAngle: Double): TPoint;
|
|
var
|
|
sa, ca: Extended;
|
|
begin
|
|
SinCos(AAngle, sa, ca);
|
|
Result.X := Round(ca * APoint.X - sa * APoint.Y);
|
|
Result.Y := Round(sa * APoint.X + ca * APoint.Y);
|
|
end;
|
|
|
|
function RotatePointX(AX, AAngle: Double): TPoint;
|
|
var
|
|
sa, ca: Extended;
|
|
begin
|
|
SinCos(AAngle, sa, ca);
|
|
Result.X := Round(ca * AX);
|
|
Result.Y := Round(sa * AX);
|
|
end;
|
|
|
|
function RoundPoint(APoint: TDoublePoint): TPoint;
|
|
begin
|
|
Result.X := Round(APoint.X);
|
|
Result.Y := Round(APoint.Y);
|
|
end;
|
|
|
|
function TesselateRect(const ARect: TRect): TPointArray;
|
|
begin
|
|
SetLength(Result{%H-}, 4);
|
|
with ARect do begin
|
|
Result[0] := TopLeft;
|
|
Result[1] := Point(Left, Bottom);
|
|
Result[2] := BottomRight;
|
|
Result[3] := Point(Right, Top);
|
|
end;
|
|
end;
|
|
|
|
function TesselateEllipse(const ABounds: TRect; AStep: Integer): TPointArray;
|
|
var
|
|
e: TEllipse;
|
|
p: TPolygon;
|
|
begin
|
|
with ABounds do
|
|
e.InitBoundingBox(Left, Top, Right, Bottom);
|
|
p.Init;
|
|
e.SliceToPolygon(0, 2 * Pi, AStep, p);
|
|
Result := p.Purge;
|
|
end;
|
|
|
|
function TesselateRoundRect(
|
|
const ARect: TRect; ARadius, AStep: Integer): TPointArray;
|
|
var
|
|
e: TEllipse;
|
|
p: TPolygon;
|
|
begin
|
|
with ARect do begin
|
|
if Min(Right - Left, Bottom - Top) < 2 * ARadius then exit(nil);
|
|
|
|
p.Init;
|
|
e.FR := DoublePoint(ARadius, ARadius);
|
|
|
|
p.AddNoDup(Point(Right, Bottom - ARadius));
|
|
p.AddNoDup(Point(Right, Top + ARadius));
|
|
e.FC := DoublePoint(Right - ARadius, Top + ARadius);
|
|
e.SliceToPolygon(0, Pi / 2, AStep, p);
|
|
|
|
p.AddNoDup(Point(Right - ARadius, Top));
|
|
p.AddNoDup(Point(Left + ARadius, Top));
|
|
e.FC := DoublePoint(Left + ARadius, Top + ARadius);
|
|
e.SliceToPolygon(Pi / 2, Pi / 2, AStep, p);
|
|
|
|
p.AddNoDup(Point(Left, Top + ARadius));
|
|
p.AddNoDup(Point(Left, Bottom - ARadius));
|
|
e.FC := DoublePoint(Left + ARadius, Bottom - ARadius);
|
|
e.SliceToPolygon(Pi, Pi / 2, AStep, p);
|
|
|
|
p.AddNoDup(Point(Left + ARadius, Bottom));
|
|
p.AddNoDup(Point(Right - ARadius, Bottom));
|
|
e.FC := DoublePoint(Right - ARadius, Bottom - ARadius);
|
|
e.SliceToPolygon(Pi * 3/2, Pi / 2, AStep, p);
|
|
end;
|
|
|
|
Result := p.Purge;
|
|
end;
|
|
|
|
operator + (const A: TPoint; B: TSize): TPoint;
|
|
begin
|
|
Result.X := A.X + B.cx;
|
|
Result.Y := A.Y + B.cy;
|
|
end;
|
|
|
|
operator + (const A, B: TPoint): TPoint;
|
|
begin
|
|
Result.X := A.X + B.X;
|
|
Result.Y := A.Y + B.Y;
|
|
end;
|
|
|
|
operator + (const A, B: TDoublePoint): TDoublePoint;
|
|
begin
|
|
Result.X := A.X + B.X;
|
|
Result.Y := A.Y + B.Y;
|
|
end;
|
|
|
|
operator - (const A: TPoint): TPoint;
|
|
begin
|
|
Result.X := - A.X;
|
|
Result.Y := - A.Y;
|
|
end;
|
|
|
|
operator - (const A, B: TPoint): TPoint;
|
|
begin
|
|
Result.X := A.X - B.X;
|
|
Result.Y := A.Y - B.Y;
|
|
end;
|
|
|
|
operator - (const A, B: TDoublePoint): TDoublePoint;
|
|
begin
|
|
Result.X := A.X - B.X;
|
|
Result.Y := A.Y - B.Y;
|
|
end;
|
|
|
|
operator div(const A: TPoint; ADivisor: Integer): TPoint;
|
|
begin
|
|
Result.X := A.X div ADivisor;
|
|
Result.Y := A.Y div ADivisor;
|
|
end;
|
|
|
|
operator * (const A: TPoint; AMultiplier: Integer): TPoint;
|
|
begin
|
|
Result.X := A.X * AMultiplier;
|
|
Result.Y := A.Y * AMultiplier;
|
|
end;
|
|
|
|
operator * (const A, B: TPoint): TPoint;
|
|
begin
|
|
Result.X := A.X * B.X;
|
|
Result.Y := A.Y * B.Y;
|
|
end;
|
|
|
|
operator * (const A, B: TDoublePoint): TDoublePoint;
|
|
begin
|
|
Result.X := A.X * B.X;
|
|
Result.Y := A.Y * B.Y;
|
|
end;
|
|
|
|
operator * (const A: TDoublePoint; B: Double): TDoublePoint;
|
|
begin
|
|
Result.X := A.X * B;
|
|
Result.Y := A.Y * B;
|
|
end;
|
|
|
|
operator / (const A, B: TDoublePoint): TDoublePoint;
|
|
begin
|
|
Result.X := A.X / B.X;
|
|
Result.Y := A.Y / B.Y;
|
|
end;
|
|
|
|
operator = (const A, B: TDoublePoint): Boolean;
|
|
begin
|
|
Result := (A.X = B.X) and (A.Y = B.Y);
|
|
end;
|
|
|
|
operator = (const A, B: TDoubleRect): Boolean;
|
|
begin
|
|
Result := (A.a = B.a) and (A.b = B.b);
|
|
end;
|
|
|
|
operator <= (const A, B: TDoublePoint): Boolean;
|
|
begin
|
|
Result := (A.X <= B.X) and (A.Y <= B.Y);
|
|
end;
|
|
|
|
operator := (const APoint: TPoint): TSize;
|
|
begin
|
|
Result.cx := APoint.X;
|
|
Result.cy := APoint.Y;
|
|
end;
|
|
|
|
operator := (const ASize: TSize): TPoint;
|
|
begin
|
|
Result.X := ASize.cx;
|
|
Result.Y := ASize.cy;
|
|
end;
|
|
|
|
{ TPolygon }
|
|
|
|
procedure TPolygon.Add(const APoint: TPoint);
|
|
begin
|
|
if FCount > High(FPoints) then
|
|
SetLength(FPoints, Max(2 * FCount, 16));
|
|
FPoints[FCount] := APoint;
|
|
FCount += 1;
|
|
end;
|
|
|
|
procedure TPolygon.AddNoDup(const APoint: TPoint);
|
|
begin
|
|
if (FCount = 0) or (LastPoint <> APoint) then
|
|
Add(APoint);
|
|
end;
|
|
|
|
constructor TPolygon.Init;
|
|
begin
|
|
FCount := 0;
|
|
FPoints := nil;
|
|
end;
|
|
|
|
function TPolygon.LastPoint: TPoint;
|
|
begin
|
|
Result := FPoints[FCount - 1];
|
|
end;
|
|
|
|
function TPolygon.Purge: TPointArray;
|
|
begin
|
|
SetLength(FPoints, FCount);
|
|
Result := FPoints;
|
|
end;
|
|
|
|
{ TEllipse }
|
|
|
|
function TEllipse.GetPoint(AParametricAngle: Double): TDoublePoint;
|
|
var
|
|
s, c: Extended;
|
|
begin
|
|
SinCos(AParametricAngle, s, c);
|
|
Result := DoublePoint(c, -s) * FR + FC;
|
|
end;
|
|
|
|
constructor TEllipse.InitBoundingBox(AX1, AY1, AX2, AY2: Integer);
|
|
begin
|
|
FC.X := (AX1 + AX2) / 2;
|
|
FC.Y := (AY1 + AY2) / 2;
|
|
FR.X := Abs(AX1 - AX2) / 2;
|
|
FR.Y := Abs(AY1 - AY2) / 2;
|
|
end;
|
|
|
|
procedure TEllipse.SliceToPolygon(
|
|
AAngleStart, AAngleLength: Double; AStep: Integer; var APoly: TPolygon);
|
|
var
|
|
lastAngle: Double;
|
|
|
|
procedure SafeAddPoint(APoint: TPoint; AAngle: Double);
|
|
begin
|
|
if APoly.LastPoint <> APoint then begin
|
|
APoly.Add(APoint);
|
|
lastAngle := AAngle;
|
|
end;
|
|
end;
|
|
|
|
procedure Rec(ALo, AHi: Double);
|
|
var
|
|
pt: TPoint;
|
|
begin
|
|
pt := RoundPoint(GetPoint(AHi));
|
|
if PointDist(APoly.LastPoint, pt) <= Sqr(AStep) then
|
|
SafeAddPoint(pt, AHi)
|
|
else begin
|
|
Rec(ALo, (ALo + AHi) / 2);
|
|
Rec(lastAngle, AHi)
|
|
end;
|
|
end;
|
|
|
|
procedure Add(AAngle: Double);
|
|
begin
|
|
SafeAddPoint(RoundPoint(GetPoint(AAngle)), AAngle)
|
|
end;
|
|
|
|
const
|
|
HalfPi = Pi / 2;
|
|
var
|
|
t, tprev, tlast: Double;
|
|
begin
|
|
tprev := AAngleStart;
|
|
tlast := AAngleStart + AAngleLength;
|
|
APoly.Add(RoundPoint(GetPoint(tprev)));
|
|
if (FR.X < 1) or (FR.Y < 1) then begin
|
|
// Ellipse has degenerated into a line.
|
|
Add(tlast);
|
|
exit;
|
|
end;
|
|
APoly.Add(RoundPoint(GetPoint(tprev)));
|
|
lastAngle := tprev;
|
|
t := Ceil(tprev / HalfPi) * HalfPi;
|
|
while t < tlast do begin
|
|
Add(tprev);
|
|
Rec(tprev, t);
|
|
tprev := t;
|
|
t += HalfPi;
|
|
end;
|
|
Rec(tprev, tlast);
|
|
Add(tlast);
|
|
end;
|
|
|
|
// Represent the ellipse sector with a polygon on an integer grid.
|
|
// Polygon vertices are no more then AStep pixels apart.
|
|
function TEllipse.TesselateRadialPie(
|
|
AAngleStart, AAngleLength: Double; AStep: Integer): TPointArray;
|
|
var
|
|
resultPoly: TPolygon;
|
|
begin
|
|
resultPoly.Init;
|
|
SliceToPolygon(AAngleStart, AAngleLength, AStep, resultPoly);
|
|
resultPoly.AddNoDup(RoundPoint(FC));
|
|
Result := resultPoly.Purge;
|
|
end;
|
|
|
|
end.
|
|
|