lazarus/components/fpdebug/fpdbgdisasriscv.pas
2025-03-02 11:23:28 +01:00

2864 lines
96 KiB
ObjectPascal

{ $Id$ }
{
---------------------------------------------------------------------------
fpdbgdisasriscv.pp - Native Freepascal debugger - RISC-V Disassembler
---------------------------------------------------------------------------
This unit contains an RISC-V disassembler for the Native Freepascal debugger
---------------------------------------------------------------------------
@created(Tue Jul 16th, 2024)
@lastmod($Date$)
@author()
***************************************************************************
* *
* This source is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This code is distributed in the hope that it will be useful, but *
* WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU *
* General Public License for more details. *
* *
* A copy of the GNU General Public License is available on the World *
* Wide Web at <http://www.gnu.org/copyleft/gpl.html>. You can also *
* obtain it by writing to the Free Software Foundation, *
* Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1335, USA. *
* *
***************************************************************************
}
unit FpDbgDisasRiscv;
{$mode objfpc}{$H+}
interface
uses
SysUtils,
FpDbgUtil, FpDbgInfo, DbgIntfBaseTypes, FpdMemoryTools, {$ifdef FORCE_LAZLOGGER_DUMMY} LazLoggerDummy {$else} LazLoggerBase {$endif},
FpDbgClasses;
const
RiscvABIRegisterNames: array[0..32] of string = (
'zero',
'ra',
'sp',
'gp',
'tp',
't0',
't1',
't2',
's0',
's1',
'a0',
'a1',
'a2',
'a3',
'a4',
'a5',
'a6',
'a7',
's2',
's3',
's4',
's5',
's6',
's7',
's8',
's9',
's10',
's11',
't3',
't4',
't5',
't6',
'pc'
);
type
//The function Disassemble decodes the instruction at the given address.
TRiscvAsmDecoder = class;
TRiscvOpCode = (
A_INVALID, A_CUSTOM, A_RESERVED,
A_LB, A_LH, A_LW, A_LD, A_LBU, A_LHU, A_LWU, // Load instructions
A_FLH, A_FLW, A_FLD, A_FLQ, // Load floating point
A_FENCE_TSO, A_PAUSE, A_FENCE, A_FENCE_I, // fence instructions
A_CBO_INVAL, A_CBO_CLEAN, A_CBO_FLUSH, A_CBO_ZERO, // cache block operations
A_ADDI, A_SLLI, A_SLTI, A_SLTIU, A_XORI, A_SRLI, A_SRAI, A_ORI, A_ANDI, // immediate operands
A_AUIPC, A_LUI,
A_ADDIW, A_SLLIW, A_CLZW, A_CTZW, A_SRAIW, A_SRLIW, A_RORIW, A_SLLI_UW, // immediate operands - 32 bits
A_SB, A_SH, A_SW, A_SD, // Store instructions
A_FSH, A_FSW, A_FSD, A_FSQ, // Store floating point
A_LR, A_SC, A_AMOADD, A_AMOSWAP, A_AMOXOR, A_AMOAND, A_AMOOR, A_AMOMIN, A_AMOMAX, A_AMOMINU, A_AMOMAXU, // AMO
// Operand quadrant
A_ADD, A_SUB, A_SLL, A_SLT, A_SLTU, A_XOR, A_SRL, A_SRA, A_OR, A_AND, // Operand
A_MUL, A_MULH, A_MULHSU, A_MULHU, A_DIV, A_DIVU, A_REM, A_REMU,
A_CLMUL, A_BSET, A_BCLR, A_ROL, A_CLMULR, A_SH1ADD, A_CLMULH, A_PACK, A_SH2ADD, A_XNOR,
A_BINV, A_MINU, A_SH3ADD, A_BEXT, A_ROR, A_MAX, A_ORN, A_PACKH, A_MAXU, A_ANDN,
// 32 bit Operand quadrant
A_ADDW, A_SUBW, A_SLLW, A_SRLW, A_SRAW, A_MULW, A_DIVW, A_DIVUW, A_REMW, A_REMUW,
A_ADD_UW, A_ROLW, A_SH1ADD_UW, A_ZEXT_H, A_SH2ADD_UW, A_RORW, A_SH3ADD_UW,
// MADD
A_FMADD, A_FMSUB, A_FNMADD, A_FNMSUB,
A_FADD, A_FSUB, A_FMUL, A_FDIV, A_FSGNJ, A_FSGNJN, A_FSGNJX, A_FSQRT, A_FCVT_D_S,
A_FCVT_S_D, A_FMIN, A_FMAX, A_FLE, A_FLT, A_FEQ, A_FCVT_Int_S, A_FCVT_UInt_S,
A_FCVT_S_Int, A_FCVT_S_UInt,
A_BEQ, A_BNE, A_BLT, A_BGE, A_BLTU, A_BGEU,
A_JALR, A_JAL,
A_ECALL, A_EBREAK, // unprivileged instructions
A_SRET, A_MRET, A_WFI, // privileged instructions
// 16 bit specific
A_NOP, A_ILL,
// Zicsr extension
A_CSRRW, A_CSRRS, A_CSRRC, A_CSRRWI, A_CSRRSI, A_CSRRCI,
// Pseudo instructions
A_RET
);
TRiscvFormat = (
rvfInstructionDestSrcOffset, // lw rd, imm(rs1)
rvfLoadFDestSrcOffset, // flw rd, imm(rs1)
rvfStoreSrc2Src1Offset, // sw rs2, imm(rs1)
rvfStoreFSrc2Src1Offset, // fsw rs2, imm(rs1)
rvfBranchSrc1Src2Imm, // beq rs1, rs2, imm
rvfInstruction, // ebreak
rvfFence, // fence [iorw], [iorw]
rvfCustom, // custom-imm
rvfInstructionSrcOffset, // cbo.clean (rs1)
rvfInstructionDestSrcImm, // addi rd, rs1, imm
rvfInstructionDestSrc1Src2, // sub rd, rs2, rs1
rvfInstructionSrc1Src2Imm, // beq rs1, rs2, imm
rvfAmoDestSrc2Src1, // sc.w rd, rs2, rs1
rvfAmoDestSrc1, // lr.w rd, rs1
rvfAmoDestSrc2Src1_addr, // amoswap.w rd, rs2, (rs1)
rvfInstructionDestImm, // auipc rd, imm
rvfInstructionDestSrc, // clzw rd, rs1
rvfFloatInstrDestSrc1, // fsqrt.s rd, rs1
rvfFloatInstrDestSrc1Src2, // fsub.s rd, rs1, rs2 => rd = rs1 - rs2
rvfFloatInstrDestSrc1Src2Src3, // fmadd.s rd, rs1, rs2, rs3 => (rs1 x rs2) + rs3
rvfCSRDestCsrSrc1, // csrrw rd, #csr, rs1
rvfCSRDestCsrImm // csrrw rd, #csr, imm
);
TAmoInfo = record
aquire: boolean;
release: boolean;
width: byte; // 2=h, 3=d
end;
TRiscvInstruction = record
OpCode: TRiscvOpCode;
Size: integer;
imm: int32;
rd, rs1, rs2: byte;
format: TRiscvFormat;
case integer of
0: (AmoInfo: TAmoInfo);
1: (rs3, fpwidth: byte);
2: (csr: int32);
end;
{ TRiscvDisassembler }
TRiscvDisassembler = object
private type
// Different encoding formats used for some immediate values
TImmEncoding = (ieImm5376, ieImm54876, ieImm5326);
TImmEncoding2 = (ie2Imm5386, ie2Imm5496, ie2Imm5276);
private
procedure decodeR(instr: uint32; out funct7, rs2, rs1, funct3, rd: byte);
procedure decodeI(instr: uint32; out imm: int32; out rs1, funct3, rd: byte);
procedure decodeS(instr: uint32; out imm: int32; out rs2, rs1, funct3: byte);
procedure decodeB(instr: uint32; out imm: int32; out rs2, rs1, funct3: byte);
procedure decodeU(instr: uint32; out imm: int32; out rd: byte);
procedure decodeJ(instr: uint32; out imm: int32; out rd: byte);
function decodeLoad(instr: uint32): TRiscvInstruction;
function decodeLoadF(instr: uint32): TRiscvInstruction;
function customMap(i: integer; instr: uint32): TRiscvInstruction;
procedure decodeFence(imm: uint32; out fm, pred, succ: byte);
function decodeMiscMem(instr: uint32): TRiscvInstruction;
function decodeOpIm(instr: uint32): TRiscvInstruction;
function decodeAUIPC_LUI(instr: uint32; opcode: byte): TRiscvInstruction;
function decodeOpIm32(instr: uint32): TRiscvInstruction;
function decodeStore(instr: uint32): TRiscvInstruction;
function decodeStoreF(instr: uint32): TRiscvInstruction;
function decodeAMO(instr: uint32): TRiscvInstruction;
function decodeOp(instr: uint32): TRiscvInstruction;
function decodeOp32(instr: uint32): TRiscvInstruction;
procedure decodeR_fmt(instr: uint32; out rs3, fmt, rs2, rs1, roundingMode, rd: byte);
function decodeMAdd(instr: uint32): TRiscvInstruction;
function decodeMSub(instr: uint32): TRiscvInstruction;
function decodeNMSub(instr: uint32): TRiscvInstruction;
function decodeNMAdd(instr: uint32): TRiscvInstruction;
function decodeOP_FP(instr: uint32): TRiscvInstruction;
function decodeBranch(instr: uint32): TRiscvInstruction;
function decodeJALR(instr: uint32): TRiscvInstruction;
function decodeJAL(instr: uint32): TRiscvInstruction;
function decodeSystem(instr: uint32): TRiscvInstruction;
function formatOpcode(instr: TRiscvInstruction): string;
procedure decodeCIW(instr: uint16; out imm: uint16; out rd_: byte);
procedure decodeCLS(instr: uint16; out imm: uint16; out rs1_, rd_rs2_: byte; const immType: TImmEncoding);
procedure decodeCI(instr: uint16; out rs1_rd: byte; out imm: byte);
procedure decodeCJ(instr: uint16; out imm: int16);
procedure decodeCB(instr: uint16; out rs1_: byte; out imm: int16);
procedure decodeCSS(instr: uint16; out uimm: uint16; out rs2: byte; const immtype: TImmEncoding2);
function decodeAddi4spn(instr: uint16):TRiscvInstruction;
function decodeFLD(instr: uint16):TRiscvInstruction;
function decodeLW(instr: uint16):TRiscvInstruction;
function decodeFLW(instr: uint16):TRiscvInstruction;
function decodeFSD(instr: uint16):TRiscvInstruction;
function decodeSW(instr: uint16):TRiscvInstruction;
function decodeFSW(instr: uint16):TRiscvInstruction;
function decodeAddI(instr: uint16): TRiscvInstruction;
function decodeCJAL(instr: uint16): TRiscvInstruction;
function decodeLI(instr: uint16): TRiscvInstruction;
function decodeLUI(instr: uint16): TRiscvInstruction;
function decodeALU(instr: uint16):TRiscvInstruction;
function decodeCJ(instr: uint16): TRiscvInstruction;
function decodeCBNEQZ(instr: uint16; funct3: byte): TRiscvInstruction;
function decodeSLLI(instr: uint16): TRiscvInstruction;
function decodeFLDSP(instr: uint16): TRiscvInstruction;
function decodeLWSP(instr: uint16): TRiscvInstruction;
function decodeFLWSP(instr: uint16): TRiscvInstruction;
function decodeJR(instr: uint16): TRiscvInstruction;
function decodeCStore(instr: uint16; funct3: byte): TRiscvInstruction;
public
procedure Disassemble(var AAddress: Pointer; out AnInstruction: TRiscvInstruction);
end;
{ TRiscvAsmInstruction }
TRiscvAsmInstruction = class(TDbgAsmInstruction)
private const
INSTR_CODEBIN_LEN = 4;
private
FAsmDecoder: TRiscvAsmDecoder;
FAddress: TDBGPtr;
FCodeBin: array[0..INSTR_CODEBIN_LEN-1] of byte;
FFlags: set of (diCodeRead, diCodeReadError);
protected
procedure ReadCode; inline;
public
constructor Create(AAsmDecoder: TRiscvAsmDecoder);
procedure SetAddress(AnAddress: TDBGPtr);
function IsCallInstruction: boolean; override;
function IsReturnInstruction: boolean; override;
function IsLeaveStackFrame: boolean; override;
function InstructionLength: Integer; override;
end;
{ TRiscvAsmDecoder }
TRiscvAsmDecoder = class(TDbgAsmDecoder)
private const
MaxPrologueSize = 63; // Bytes, so ~22 instructions
MaxEpilogueSize = MaxPrologueSize; // Perhaps a bit smaller, since the locals/parameters do not have to be initialized
MAX_CODEBIN_LEN = MaxPrologueSize; // About 22 instructions
private
FProcess: TDbgProcess;
FLastErrWasMem: Boolean;
FCodeBin: array[0..MAX_CODEBIN_LEN-1] of byte;
FLastInstr: TRiscvAsmInstruction;
function FParsePrologue(AnAddress, AStartPC, AEndPC: TDBGPtr; out
returnAddressOffset, SPoffset: integer; out AnIsOutsideFrame: Boolean): Boolean;
function FParseEpilogue(AnAddress, AStartPC, AEndPC: TDBGPtr; out
returnAddressOffset: word; out AnIsOutsideFrame: Boolean): Boolean;
function FormatInstruction(instr: TRiscvInstruction): string;
protected
function GetLastErrorWasMemReadErr: Boolean; override;
function GetMaxInstrSize: integer; override;
function GetMinInstrSize: integer; override;
function GetCanReverseDisassemble: boolean; override;
function ReadCodeAt(AnAddress: TDBGPtr; ALen: Cardinal): Boolean; inline;
public
procedure Disassemble(var AAddress: Pointer; out ACodeBytes: String; out ACode: String); override; overload;
procedure Disassemble(var AAddress: Pointer; out ACodeBytes: String; out ACode: String; out AnInfo: TDbgInstInfo); override; overload;
function GetInstructionInfo(AnAddress: TDBGPtr): TDbgAsmInstruction; override;
// Rather use GetFunctionFrameReturnAddress
function GetFunctionFrameInfo(AnAddress: TDBGPtr; out
AnIsOutsideFrame: Boolean): Boolean; override;
function GetBreakInstruction(const ALocation: TDBGPtr; out
BreakInstructionLength: Integer): QWord;
function BreakInstructionOffset: Int8;
// AStartPC & AEndPC indicates proc limits to help with scanning for prologue/epilogue
function GetFunctionFrameReturnAddress(AnAddress, AStartPC, AEndPC: TDBGPtr;
out returnAddressOffset, SPoffset: integer; out AnIsOutsideFrame: Boolean): Boolean;
constructor Create(AProcess: TDbgProcess); override;
destructor Destroy;
end;
{ TDbgStackUnwinderRiscv }
TDbgStackUnwinderRiscv = class(TDbgStackUnwinder)
private
FThread: TDbgThread;
FProcess: TDbgProcess;
FAddressSize: Integer;
FLastFrameBaseIncreased: Boolean;
FSPchangeCount: integer;
FPreviousPC: TDBGPtr;
FCodeReadErrCnt: integer;
protected
property Process: TDbgProcess read FProcess;
property Thread: TDbgThread read FThread;
property AddressSize: Integer read FAddressSize;
public
constructor Create(AProcess: TDbgProcess);
procedure InitForThread(AThread: TDbgThread); override;
procedure InitForFrame(ACurrentFrame: TDbgCallstackEntry; out CodePointer,
StackPointer, FrameBasePointer: TDBGPtr); override;
procedure GetTopFrame(out CodePointer, StackPointer, FrameBasePointer: TDBGPtr;
out ANewFrame: TDbgCallstackEntry); override;
function Unwind(AFrameIndex: integer; var CodePointer, StackPointer,
FrameBasePointer: TDBGPtr; ACurrentFrame: TDbgCallstackEntry; out
ANewFrame: TDbgCallstackEntry): TTDbgStackUnwindResult; override;
end;
implementation
uses
StrUtils, LazClasses, Math,
FpDbgRiscvClasses;
var
DBG_WARNINGS: PLazLoggerLogGroup;
const
RiscvOpcodeString: array[TRiscvOpCode] of string = (
'invalid', 'custom', 'reserved',
'lb', 'lh', 'lw', 'ld', 'lbu', 'lhu', 'lwu',
'flh', 'flw', 'fld', 'flq',
'fence.tso', 'pause', 'fence', 'fence.i',
'cbo.inval', 'cbo.clean', 'cbo.flush', 'cbo.zero',
'addi', 'slli', 'slti', 'sltiu', 'xori', 'srli', 'srai', 'ori', 'andi',
'auipc', 'lui',
'addiw', 'slliw', 'clzw', 'ctzw', 'sraiw', 'srliw', 'roriw', 'slliw',
'sb', 'sh', 'sw', 'sd',
'fsh', 'fsw', 'fsd', 'fsq',
'lr', 'sc', 'amoadd', 'amoswap', 'amoxor', 'amoand', 'amoor', 'amomin', 'amomax', 'amominu', 'amomaxu',
// Operand quadrant
'add', 'sub', 'sll', 'slt', 'sltu', 'xor', 'srl', 'sra', 'or', 'and',
'mul', 'mulh', 'mulhsu', 'mulhu', 'div', 'divu', 'rem', 'remu',
'clmul', 'bset', 'bclr', 'rol', 'clmulr', 'sh1add', 'clmulh', 'pack', 'sh2add', 'xnor',
'binv', 'minu', 'sh3add', 'bext', 'ror', 'max', 'orn', 'packh', 'maxu', 'andn',
// 32 bit Operand quadrant
'addw', 'subw', 'sllw', 'srlw', 'sraw', 'mulw', 'divw', 'divuw', 'remw', 'remuw',
'add.uw', 'rolw', 'sh1add.uw', 'zext.h', 'sh2add.uw', 'rorw', 'sh3add.uw',
// MADD
'fmadd', 'fmsub', 'fnmadd', 'fnmsub',
'fadd', 'fsub', 'fmul', 'fdiv', 'fsgnj', 'fsgnjn', 'fsgnnjx', 'fsqrt', 'fcvt.d.s',
'fcvt.s.d', 'fmin', 'fmax', 'fle', 'flt', 'feq', 'fcvt.%s.s' {A_FCVT_Int_S}, 'fcvt.%s.s' {A_FCVT_UInt_S},
'fcvt.s.%s' {A_FCVT_S_Int}, 'fcvt.s.%s' {A_FCVT_S_UInt},
'beq', 'bne', 'blt', 'bge', 'bltu', 'bgeu',
'jalr', 'jal',
'ecall', 'ebreak', // unprivileged instructions
'sret', 'mret', 'wfi', // privileged instructions
// 16 bit specific
'nop', 'ill',
// Zicsr extension
'csrrw', 'csrrs', 'csrrc', 'csrrwi', 'csrrsi', 'csrrci',
// Pseudo instructions
'ret'
);
function CsrRegNumToName(regnum: integer): string;
begin
case regnum of
$001: Result := 'fflags'; // Floating-Point Accrued Exceptions
$002: Result := 'frm'; // Floating-Point Dynamic Rounding Mode
$003: Result := 'fcsr'; // Floating-Point Control and Status Register (frm + fflags)
$017: Result := 'jvt'; // Table jump base vector and control register
$300: Result := 'mstatus'; // Machine Status (lower 32 bits).
$301: Result := 'misa'; // Machine ISA
$304: Result := 'mie'; // Machine Interrupt Enable Register
$305: Result := 'mtvec'; // Machine Trap-Handler Base Address
$307: Result := 'mtvt'; // Machine Trap-Handler Vector Table Base Address
$310: Result := 'mstatush'; // Machine Status (upper 32 bits).
$320: Result := 'mcountinhibit'; // (HPM) Machine Counter-Inhibit Register
$323: Result := 'mhpmevent3'; // (HPM) Machine Performance-Monitoring Event Selector 3
$324: Result := 'mhpmevent4'; // (HPM) Machine Performance-Monitoring Event Selector 4
$325: Result := 'mhpmevent5'; // (HPM) Machine Performance-Monitoring Event Selector 5
$326: Result := 'mhpmevent6'; // (HPM) Machine Performance-Monitoring Event Selector 6
$327: Result := 'mhpmevent7'; // (HPM) Machine Performance-Monitoring Event Selector 7
$328: Result := 'mhpmevent8'; // (HPM) Machine Performance-Monitoring Event Selector 8
$329: Result := 'mhpmevent9'; // (HPM) Machine Performance-Monitoring Event Selector 9
$32A: Result := 'mhpmevent10'; // (HPM) Machine Performance-Monitoring Event Selector 10
$32B: Result := 'mhpmevent11'; // (HPM) Machine Performance-Monitoring Event Selector 11
$32C: Result := 'mhpmevent12'; // (HPM) Machine Performance-Monitoring Event Selector 12
$32D: Result := 'mhpmevent13'; // (HPM) Machine Performance-Monitoring Event Selector 13
$32E: Result := 'mhpmevent14'; // (HPM) Machine Performance-Monitoring Event Selector 14
$32F: Result := 'mhpmevent15'; // (HPM) Machine Performance-Monitoring Event Selector 15
$330: Result := 'mhpmevent16'; // (HPM) Machine Performance-Monitoring Event Selector 16
$331: Result := 'mhpmevent17'; // (HPM) Machine Performance-Monitoring Event Selector 17
$332: Result := 'mhpmevent18'; // (HPM) Machine Performance-Monitoring Event Selector 18
$333: Result := 'mhpmevent19'; // (HPM) Machine Performance-Monitoring Event Selector 19
$334: Result := 'mhpmevent20'; // (HPM) Machine Performance-Monitoring Event Selector 20
$335: Result := 'mhpmevent21'; // (HPM) Machine Performance-Monitoring Event Selector 21
$336: Result := 'mhpmevent22'; // (HPM) Machine Performance-Monitoring Event Selector 22
$337: Result := 'mhpmevent23'; // (HPM) Machine Performance-Monitoring Event Selector 23
$338: Result := 'mhpmevent24'; // (HPM) Machine Performance-Monitoring Event Selector 24
$339: Result := 'mhpmevent25'; // (HPM) Machine Performance-Monitoring Event Selector 25
$33A: Result := 'mhpmevent26'; // (HPM) Machine Performance-Monitoring Event Selector 26
$33B: Result := 'mhpmevent27'; // (HPM) Machine Performance-Monitoring Event Selector 27
$33C: Result := 'mhpmevent28'; // (HPM) Machine Performance-Monitoring Event Selector 28
$33D: Result := 'mhpmevent29'; // (HPM) Machine Performance-Monitoring Event Selector 29
$33E: Result := 'mhpmevent30'; // (HPM) Machine Performance-Monitoring Event Selector 30
$33F: Result := 'mhpmevent31'; // (HPM) Machine Performance-Monitoring Event Selector 31
$340: Result := 'mscratch'; // Machine Scratch
$341: Result := 'mepc'; // Machine Exception Program Counter
$342: Result := 'mcause'; // Machine Trap Cause
$343: Result := 'mtval'; // Machine Trap Value
$344: Result := 'mip'; // Machine Interrupt Pending Register
$345: Result := 'mnxti'; // Interrupt handler address and enable modifier
$347: Result := 'mintthresh'; // Interrupt-level threshold
$349: Result := 'mscratchcswl'; // Conditional scratch swap on level change
$7A0: Result := 'tselect'; // Trigger Select Register
$7A1: Result := 'tdata1'; // Trigger Data Register 1
$7A2: Result := 'tdata2'; // Trigger Data Register 2
$7A4: Result := 'tinfo'; // Trigger Info
$7B0: Result := 'dcsr'; // Debug Control and Status
$7B1: Result := 'dpc'; // Debug PC
$7B2: Result := 'dscratch0'; // Debug Scratch Register 0
$7B3: Result := 'dscratch1'; // Debug Scratch Register 1
$B00: Result := 'mcycle'; // (HPM) Machine Cycle Counter
$B02: Result := 'minstret'; // (HPM) Machine Instructions-Retired Counter
$B03: Result := 'mhpmcounter3'; // (HPM) Machine Performance-Monitoring Counter 3
$B04: Result := 'mhpmcounter4'; // (HPM) Machine Performance-Monitoring Counter 4
$B05: Result := 'mhpmcounter5'; // (HPM) Machine Performance-Monitoring Counter 5
$B06: Result := 'mhpmcounter6'; // (HPM) Machine Performance-Monitoring Counter 6
$B07: Result := 'mhpmcounter7'; // (HPM) Machine Performance-Monitoring Counter 7
$B08: Result := 'mhpmcounter8'; // (HPM) Machine Performance-Monitoring Counter 8
$B09: Result := 'mhpmcounter9'; // (HPM) Machine Performance-Monitoring Counter 9
$B0A: Result := 'mhpmcounter10'; // (HPM) Machine Performance-Monitoring Counter 10
$B0B: Result := 'mhpmcounter11'; // (HPM) Machine Performance-Monitoring Counter 11
$B0C: Result := 'mhpmcounter12'; // (HPM) Machine Performance-Monitoring Counter 12
$B0D: Result := 'mhpmcounter13'; // (HPM) Machine Performance-Monitoring Counter 13
$B0E: Result := 'mhpmcounter14'; // (HPM) Machine Performance-Monitoring Counter 14
$B0F: Result := 'mhpmcounter15'; // (HPM) Machine Performance-Monitoring Counter 15
$B10: Result := 'mhpmcounter16'; // (HPM) Machine Performance-Monitoring Counter 16
$B11: Result := 'mhpmcounter17'; // (HPM) Machine Performance-Monitoring Counter 17
$B12: Result := 'mhpmcounter18'; // (HPM) Machine Performance-Monitoring Counter 18
$B13: Result := 'mhpmcounter19'; // (HPM) Machine Performance-Monitoring Counter 19
$B14: Result := 'mhpmcounter20'; // (HPM) Machine Performance-Monitoring Counter 20
$B15: Result := 'mhpmcounter21'; // (HPM) Machine Performance-Monitoring Counter 21
$B16: Result := 'mhpmcounter22'; // (HPM) Machine Performance-Monitoring Counter 22
$B17: Result := 'mhpmcounter23'; // (HPM) Machine Performance-Monitoring Counter 23
$B18: Result := 'mhpmcounter24'; // (HPM) Machine Performance-Monitoring Counter 24
$B19: Result := 'mhpmcounter25'; // (HPM) Machine Performance-Monitoring Counter 25
$B1A: Result := 'mhpmcounter26'; // (HPM) Machine Performance-Monitoring Counter 26
$B1B: Result := 'mhpmcounter27'; // (HPM) Machine Performance-Monitoring Counter 27
$B1C: Result := 'mhpmcounter28'; // (HPM) Machine Performance-Monitoring Counter 28
$B1D: Result := 'mhpmcounter29'; // (HPM) Machine Performance-Monitoring Counter 29
$B1E: Result := 'mhpmcounter30'; // (HPM) Machine Performance-Monitoring Counter 30
$B1F: Result := 'mhpmcounter31'; // (HPM) Machine Performance-Monitoring Counter 31
$B80: Result := 'mcycleh'; // (HPM) Upper 32 Machine Cycle Counter
$B82: Result := 'minstreth'; // (HPM) Upper 32 Machine Instructions-Retired Counter
$B83: Result := 'mhpmcounterh3'; // (HPM) Upper 32 Machine Performance-Monitoring Counter 3
$B84: Result := 'mhpmcounterh4'; // (HPM) Upper 32 Machine Performance-Monitoring Counter 4
$B85: Result := 'mhpmcounterh5'; // (HPM) Upper 32 Machine Performance-Monitoring Counter 5
$B86: Result := 'mhpmcounterh6'; // (HPM) Upper 32 Machine Performance-Monitoring Counter 6
$B87: Result := 'mhpmcounterh7'; // (HPM) Upper 32 Machine Performance-Monitoring Counter 7
$B88: Result := 'mhpmcounterh8'; // (HPM) Upper 32 Machine Performance-Monitoring Counter 8
$B89: Result := 'mhpmcounterh9'; // (HPM) Upper 32 Machine Performance-Monitoring Counter 9
$B8A: Result := 'mhpmcounterh10'; // (HPM) Upper 32 Machine Performance-Monitoring Counter 10
$B8B: Result := 'mhpmcounterh11'; // (HPM) Upper 32 Machine Performance-Monitoring Counter 11
$B8C: Result := 'mhpmcounterh12'; // (HPM) Upper 32 Machine Performance-Monitoring Counter 12
$B8D: Result := 'mhpmcounterh13'; // (HPM) Upper 32 Machine Performance-Monitoring Counter 13
$B8E: Result := 'mhpmcounterh14'; // (HPM) Upper 32 Machine Performance-Monitoring Counter 14
$B8F: Result := 'mhpmcounterh15'; // (HPM) Upper 32 Machine Performance-Monitoring Counter 15
$B90: Result := 'mhpmcounterh16'; // (HPM) Upper 32 Machine Performance-Monitoring Counter 16
$B91: Result := 'mhpmcounterh17'; // (HPM) Upper 32 Machine Performance-Monitoring Counter 17
$B92: Result := 'mhpmcounterh18'; // (HPM) Upper 32 Machine Performance-Monitoring Counter 18
$B93: Result := 'mhpmcounterh19'; // (HPM) Upper 32 Machine Performance-Monitoring Counter 19
$B94: Result := 'mhpmcounterh20'; // (HPM) Upper 32 Machine Performance-Monitoring Counter 20
$B95: Result := 'mhpmcounterh21'; // (HPM) Upper 32 Machine Performance-Monitoring Counter 21
$B96: Result := 'mhpmcounterh22'; // (HPM) Upper 32 Machine Performance-Monitoring Counter 22
$B97: Result := 'mhpmcounterh23'; // (HPM) Upper 32 Machine Performance-Monitoring Counter 23
$B98: Result := 'mhpmcounterh24'; // (HPM) Upper 32 Machine Performance-Monitoring Counter 24
$B99: Result := 'mhpmcounterh25'; // (HPM) Upper 32 Machine Performance-Monitoring Counter 25
$B9A: Result := 'mhpmcounterh26'; // (HPM) Upper 32 Machine Performance-Monitoring Counter 26
$B9B: Result := 'mhpmcounterh27'; // (HPM) Upper 32 Machine Performance-Monitoring Counter 27
$B9C: Result := 'mhpmcounterh28'; // (HPM) Upper 32 Machine Performance-Monitoring Counter 28
$B9D: Result := 'mhpmcounterh29'; // (HPM) Upper 32 Machine Performance-Monitoring Counter 29
$B9E: Result := 'mhpmcounterh30'; // (HPM) Upper 32 Machine Performance-Monitoring Counter 30
$B9F: Result := 'mhpmcounterh31'; // (HPM) Upper 32 Machine Performance-Monitoring Counter 31
$C00: Result := 'cycle'; // Cycle Counter
$C01: Result := 'time'; // Time
$C02: Result := 'instret'; // Instructions-Retired Counter
$C03: Result := 'hpmcounter3'; // (HPM) Performance-Monitoring Counter 3
$C04: Result := 'hpmcounter4'; // (HPM) Performance-Monitoring Counter 4
$C05: Result := 'hpmcounter5'; // (HPM) Performance-Monitoring Counter 5
$C06: Result := 'hpmcounter6'; // (HPM) Performance-Monitoring Counter 6
$C07: Result := 'hpmcounter7'; // (HPM) Performance-Monitoring Counter 7
$C08: Result := 'hpmcounter8'; // (HPM) Performance-Monitoring Counter 8
$C09: Result := 'hpmcounter9'; // (HPM) Performance-Monitoring Counter 9
$C0A: Result := 'hpmcounter10'; // (HPM) Performance-Monitoring Counter 10
$C0B: Result := 'hpmcounter11'; // (HPM) Performance-Monitoring Counter 11
$C0C: Result := 'hpmcounter12'; // (HPM) Performance-Monitoring Counter 12
$C0D: Result := 'hpmcounter13'; // (HPM) Performance-Monitoring Counter 13
$C0E: Result := 'hpmcounter14'; // (HPM) Performance-Monitoring Counter 14
$C0F: Result := 'hpmcounter15'; // (HPM) Performance-Monitoring Counter 15
$C10: Result := 'hpmcounter16'; // (HPM) Performance-Monitoring Counter 16
$C11: Result := 'hpmcounter17'; // (HPM) Performance-Monitoring Counter 17
$C12: Result := 'hpmcounter18'; // (HPM) Performance-Monitoring Counter 18
$C13: Result := 'hpmcounter19'; // (HPM) Performance-Monitoring Counter 19
$C14: Result := 'hpmcounter20'; // (HPM) Performance-Monitoring Counter 20
$C15: Result := 'hpmcounter21'; // (HPM) Performance-Monitoring Counter 21
$C16: Result := 'hpmcounter22'; // (HPM) Performance-Monitoring Counter 22
$C17: Result := 'hpmcounter23'; // (HPM) Performance-Monitoring Counter 23
$C18: Result := 'hpmcounter24'; // (HPM) Performance-Monitoring Counter 24
$C19: Result := 'hpmcounter25'; // (HPM) Performance-Monitoring Counter 25
$C1A: Result := 'hpmcounter26'; // (HPM) Performance-Monitoring Counter 26
$C1B: Result := 'hpmcounter27'; // (HPM) Performance-Monitoring Counter 27
$C1C: Result := 'hpmcounter28'; // (HPM) Performance-Monitoring Counter 28
$C1D: Result := 'hpmcounter29'; // (HPM) Performance-Monitoring Counter 29
$C1E: Result := 'hpmcounter30'; // (HPM) Performance-Monitoring Counter 30
$C1F: Result := 'hpmcounter31'; // (HPM) Performance-Monitoring Counter 31
$C80: Result := 'cycleh'; // Upper 32 Cycle Counter
$C81: Result := 'timeh'; // Upper 32 Time
$C82: Result := 'instreth'; // Upper 32 Instructions-Retired Counter
$C83: Result := 'hpmcounter3'; // (HPM) Upper 32 Performance-Monitoring Counter 3
$C84: Result := 'hpmcounter4'; // (HPM) Upper 32 Performance-Monitoring Counter 4
$C85: Result := 'hpmcounter5'; // (HPM) Upper 32 Performance-Monitoring Counter 5
$C86: Result := 'hpmcounter6'; // (HPM) Upper 32 Performance-Monitoring Counter 6
$C87: Result := 'hpmcounter7'; // (HPM) Upper 32 Performance-Monitoring Counter 7
$C88: Result := 'hpmcounter8'; // (HPM) Upper 32 Performance-Monitoring Counter 8
$C89: Result := 'hpmcounter9'; // (HPM) Upper 32 Performance-Monitoring Counter 9
$C8A: Result := 'hpmcounter10'; // (HPM) Upper 32 Performance-Monitoring Counter 10
$C8B: Result := 'hpmcounter11'; // (HPM) Upper 32 Performance-Monitoring Counter 11
$C8C: Result := 'hpmcounter12'; // (HPM) Upper 32 Performance-Monitoring Counter 12
$C8D: Result := 'hpmcounter13'; // (HPM) Upper 32 Performance-Monitoring Counter 13
$C8E: Result := 'hpmcounter14'; // (HPM) Upper 32 Performance-Monitoring Counter 14
$C8F: Result := 'hpmcounter15'; // (HPM) Upper 32 Performance-Monitoring Counter 15
$C90: Result := 'hpmcounter16'; // (HPM) Upper 32 Performance-Monitoring Counter 16
$C91: Result := 'hpmcounter17'; // (HPM) Upper 32 Performance-Monitoring Counter 17
$C92: Result := 'hpmcounter18'; // (HPM) Upper 32 Performance-Monitoring Counter 18
$C93: Result := 'hpmcounter19'; // (HPM) Upper 32 Performance-Monitoring Counter 19
$C94: Result := 'hpmcounter20'; // (HPM) Upper 32 Performance-Monitoring Counter 20
$C95: Result := 'hpmcounter21'; // (HPM) Upper 32 Performance-Monitoring Counter 21
$C96: Result := 'hpmcounter22'; // (HPM) Upper 32 Performance-Monitoring Counter 22
$C97: Result := 'hpmcounter23'; // (HPM) Upper 32 Performance-Monitoring Counter 23
$C98: Result := 'hpmcounter24'; // (HPM) Upper 32 Performance-Monitoring Counter 24
$C99: Result := 'hpmcounter25'; // (HPM) Upper 32 Performance-Monitoring Counter 25
$C9A: Result := 'hpmcounter26'; // (HPM) Upper 32 Performance-Monitoring Counter 26
$C9B: Result := 'hpmcounter27'; // (HPM) Upper 32 Performance-Monitoring Counter 27
$C9C: Result := 'hpmcounter28'; // (HPM) Upper 32 Performance-Monitoring Counter 28
$C9D: Result := 'hpmcounter29'; // (HPM) Upper 32 Performance-Monitoring Counter 29
$C9E: Result := 'hpmcounter30'; // (HPM) Upper 32 Performance-Monitoring Counter 30
$C9F: Result := 'hpmcounter31'; // (HPM) Upper 32 Performance-Monitoring Counter 31
$F11: Result := 'mvendorid'; // Machine Vendor ID
$F12: Result := 'marchid'; // Machine Architecture ID
$F13: Result := 'mimpid'; // Machine Implementation ID
$F14: Result := 'mhartid'; // Hardware Thread ID
$F15: Result := 'mconfigptr'; // Machine Configuration Pointer
$FB1: Result := 'mintstatus'; // Current interrupt levels
else
Result := '$'+HexStr(regnum, 3);
end;
end;
{ TRiscvAsmInstruction }
procedure TRiscvAsmInstruction.ReadCode;
begin
if not (diCodeRead in FFlags) then begin
if not FAsmDecoder.FProcess.ReadData(FAddress, INSTR_CODEBIN_LEN, FCodeBin) then
Include(FFlags, diCodeReadError);
Include(FFlags, diCodeRead);
end;
end;
constructor TRiscvAsmInstruction.Create(AAsmDecoder: TRiscvAsmDecoder);
begin
FAsmDecoder := AAsmDecoder;
inherited Create;
AddReference;
end;
procedure TRiscvAsmInstruction.SetAddress(AnAddress: TDBGPtr);
begin
FAddress := AnAddress;
FFlags := [];
end;
function TRiscvAsmInstruction.IsCallInstruction: boolean;
var
op0, op1, op2, r, m: byte;
begin
Result := False;
ReadCode;
op0 := lo(FCodeBin[0]);
op1 := lo(FCodeBin[2]);
op2 := hi(FCodeBin[2]);
r := hi(FCodeBin[1]);
m := FCodeBin[0] shr 6;
if ((op0 = 0) and (op1 = 0) and (op2 = 0) and
(r = 0) and (m = 3)) or // callx
(op0 = 5) then // call
Result := true;
end;
function TRiscvAsmInstruction.IsReturnInstruction: boolean;
var
op0, op1, op2, r, t, m, n: byte;
begin
Result := False;
ReadCode;
op0 := lo(FCodeBin[0]);
op1 := lo(FCodeBin[2]);
op2 := hi(FCodeBin[2]);
r := hi(FCodeBin[1]);
t := hi(FCodeBin[0]);
m := FCodeBin[0] shr 6;
n := hi(FCodeBin[0]) and 3;
if ((op0 = 0) and (op1 = 0) and (op2 = 0) and
(r = 0) and (m = 2) and (n in [0, 1])) or // ret, retw
((op0 = 13) and (r = 15) and (t in [0, 1])) then // ret.n, retw.n
Result := true;
end;
function TRiscvAsmInstruction.IsLeaveStackFrame: boolean;
begin
Result := false;
end;
function TRiscvAsmInstruction.InstructionLength: Integer;
begin
Result := 3;
ReadCode;
// op0 in 8..13
if lo(FCodeBin[0]) in [8..13] then // narrow instruction series
Result := 2;
end;
type
TPrologueState = (
psStart, // Start of state machine
psStackCreated, // First time call to addi sp,sp, -const1
psSavedReturnAddress, // Call to sw ra,const(sp). Return address is stored at: current sp + const1
psAdjustedSP, // Second adjustemnt of SP (addi sp,sp,-const2). Return address is located at sp + const1 + const2
psBody); // Start of code body, end of prologue
function TRiscvAsmDecoder.FParsePrologue(AnAddress, AStartPC, AEndPC: TDBGPtr;
out returnAddressOffset, SPoffset: integer; out
AnIsOutsideFrame: Boolean): Boolean;
var
decoder: TRiscvDisassembler;
ADataLen: Cardinal;
AData: PByte;
stackState: TPrologueState;
instr: TRiscvInstruction;
begin
{ RV32 function entry example
40380c9a <esp_timer_impl_set_alarm_id>:
40380c9a: 1141 addi sp,sp,-16 // Make space for saved registers
40380c9c: c606 sw ra,12(sp) // Save return address
40380c9e: c422 sw s0,8(sp) // Callee saved register (possibly frame pointer)
40380ca0: c226 sw s1,4(sp) // Callee saved register
40380ca2: c04a sw s2,0(sp) // Callee saved register
40380ca4: 4785 addi a5, zero, 1 // start of body
FPC also adjusts SP after storing parameters:
42000088 <main>:
42000088: ff410113 addi sp,sp,-12 // Make space for saved registers
4200008c: 00112423 sw ra,8(sp) // Save return address
42000090: 00812223 sw s0,4(sp) // Callee saved register (in this case used as frame pointer)
42000094: 00912023 sw s1,0(sp) // Callee saved register
42000098: 00c10413 addi s0,sp,12 // Adjust frame pointer
4200009c: fcc10113 addi sp,sp,-52 // Extend stack frame to 64 bytes total, not clear why?
420000a0: 00000097 auipc ra,0x0 // start of body
420000a4: 0c4080e7 jalr 196(ra) # 42000164 <FPC_INIT_FUNC_TABLE>
}
// Also read next instruction, for simple procs/interrupts it may not be easy to spot the end of prologue
// so the next instruction could tie break
ADataLen := Min(MaxPrologueSize, AnAddress - AStartPC);
Result := ReadCodeAt(AStartPC, ADataLen);
if not Result then
exit;
AData := @FCodeBin[0];
returnAddressOffset := 0;
SPoffset := 0;
AnIsOutsideFrame := true;
stackState := psStart;
// Loop until prologue buffer is empty, or stepped inside stack frame
while (ADataLen > 1) and AnIsOutsideFrame do
begin
decoder.Disassemble(AData, instr);
inc(AData, instr.Size);
dec(ADataLen, instr.Size);
case instr.OpCode of
// addi rd, rs1, imm
A_ADDI:
begin
if (instr.rs1 = SPindex) then
begin
if (instr.rd = SPindex) then
begin
inc(SPoffset, -instr.imm);
if instr.imm < 0 then
begin
if stackState = psStart then
begin
stackState := psStackCreated;
end
else if (stackState = psStackCreated) then
inc(returnAddressOffset, -instr.imm)
else
AnIsOutsideFrame := false; // Or error
end;
end;
end
else
AnIsOutsideFrame := false;
end;
// sw rs2, offset(rs1)
A_SW:
begin
if instr.rs1 = SPindex then
begin
if instr.rs2 = ReturnAddressIndex then
inc(returnAddressOffset, instr.imm);
end
else
AnIsOutsideFrame := false;
end;
else
AnIsOutsideFrame := false;
end;
end;
end;
function TRiscvAsmDecoder.FParseEpilogue(AnAddress, AStartPC, AEndPC: TDBGPtr;
out returnAddressOffset: word; out AnIsOutsideFrame: Boolean): Boolean;
begin
end;
function TRiscvAsmDecoder.FormatInstruction(instr: TRiscvInstruction): string;
var
s1, s2: string;
begin
Result := RiscvOpcodeString[instr.OpCode];
if instr.OpCode = A_INVALID then exit;
case instr.format of
rvfInstructionDestSrcOffset: // lw rd, imm(rs1)
Result := format('%-8s %s, %d(%s)', [Result, RiscvABIRegisterNames[instr.rd], instr.imm, RiscvABIRegisterNames[instr.rs1]]);
rvfLoadFDestSrcOffset: // flw rd, imm(rs1)
Result := format('%-8s ft%d, %d(%s)', [Result, instr.rd, instr.imm, RiscvABIRegisterNames[instr.rs1]]);
rvfStoreSrc2Src1Offset: // sw rs2, imm(rs1)
Result := format('%-8s %s, %d(%s)', [Result, RiscvABIRegisterNames[instr.rs2], instr.imm, RiscvABIRegisterNames[instr.rs1]]);
rvfStoreFSrc2Src1Offset: // fsw rs2, imm(rs1)
Result := format('%-8s ft%d, %d(%s)', [Result, instr.rs2, instr.imm, RiscvABIRegisterNames[instr.rs1]]);
rvfBranchSrc1Src2Imm: // beq rs1, rs2, imm
Result := format('%-8s %s, %s, %d', [Result, RiscvABIRegisterNames[instr.rs1], RiscvABIRegisterNames[instr.rs2], instr.imm]);
rvfInstruction: ; // ebreak
rvfFence: // fence [iorw], [iorw]
begin
// fence iorw, iorw is written as fence
if (instr.imm and $FF) = $FF then exit;
s1 := '';
if instr.imm and (1 shl 7) > 0 then
s1 := 'i';
if instr.imm and (1 shl 6) > 0 then
s1 := s1 + 'o';
if instr.imm and (1 shl 5) > 0 then
s1 := s1 + 'r';
if instr.imm and (1 shl 4) > 0 then
s1 := s1 + 'w';
s2 := '';
if instr.imm and (1 shl 3) > 0 then
s2 := 'i';
if instr.imm and (1 shl 2) > 0 then
s2 := s2 + 'o';
if instr.imm and (1 shl 1) > 0 then
s2 := s2 + 'r';
if instr.imm and 1 > 0 then
s2 := s2 + 'w';
if (s1 = '') and (s2 = '') then
Result := format('%-8s', [Result])
else
Result := format('%-8s %s, %s', [Result, s1, s2]);
end;
rvfCustom: // custom-imm
Result := format('%s-%d', [Result, instr.imm]);
rvfInstructionSrcOffset: // cbo.clean (rs1)
Result := format('%-8s (%s)', [Result, RiscvABIRegisterNames[instr.rs1]]);
rvfInstructionDestSrcImm: // addi rd, rs1, imm
Result := format('%-8s %s, %s, %d', [Result, RiscvABIRegisterNames[instr.rd], RiscvABIRegisterNames[instr.rs1], instr.imm]);
rvfInstructionDestSrc1Src2: // sub rd, rs1, rs2
Result := format('%-8s %s, %s, %s', [Result, RiscvABIRegisterNames[instr.rd], RiscvABIRegisterNames[instr.rs1], RiscvABIRegisterNames[instr.rs2]]);
rvfInstructionSrc1Src2Imm: // beq rs1, rs2, imm
Result := format('%-8s %s, %s, %d', [Result, RiscvABIRegisterNames[instr.rs1], RiscvABIRegisterNames[instr.rs2], instr.imm]);
rvfAmoDestSrc2Src1, rvfAmoDestSrc1, rvfAmoDestSrc2Src1_addr:
begin
s1 := '';
if instr.AmoInfo.width = 2 then
s1 := '.w'
else if instr.AmoInfo.width = 3 then
s1 := '.d';
s2 := '';
if instr.AmoInfo.aquire then
s2 := s2 + 'aq';
if instr.AmoInfo.release then
s2 := s2 + 'rel';
if s2 <> '' then
s2 := '.' + s2;
Result := Result + s1 + s2;
if instr.format = rvfAmoDestSrc2Src1 then // sc.w rd, rs2, rs1
Result := format('%-8s %s, %s, %s', [Result, RiscvABIRegisterNames[instr.rd], RiscvABIRegisterNames[instr.rs2], RiscvABIRegisterNames[instr.rs1]])
else if instr.format = rvfAmoDestSrc1 then // lr.w rd, rs1
Result := format('%-8s %s, %s', [Result, RiscvABIRegisterNames[instr.rd], RiscvABIRegisterNames[instr.rs1]])
else if instr.format = rvfAmoDestSrc2Src1_addr then // amoswap.w.aq rd, rs2, (rs1)
Result := format('%-8s %s, %s, (%s)', [Result, RiscvABIRegisterNames[instr.rd], RiscvABIRegisterNames[instr.rs2], RiscvABIRegisterNames[instr.rs1]]);
end;
rvfInstructionDestImm: // auipc rd, imm
Result := format('%-8s %s, 0x%x', [Result, RiscvABIRegisterNames[instr.rd], instr.imm]);
rvfInstructionDestSrc: // clzw rd, rs1
Result := format('%-8s %s, %s', [Result, RiscvABIRegisterNames[instr.rd], RiscvABIRegisterNames[instr.rs1]]);
rvfFloatInstrDestSrc1, rvfFloatInstrDestSrc1Src2, rvfFloatInstrDestSrc1Src2Src3:
begin
case instr.fpwidth of
0: s1 := '.S';
1: s1 := '.D';
2: s1 := '.H';
3: s1 := '.Q';
else
s1 := '?';
end;
Result := Result + s1;
if instr.format = rvfFloatInstrDestSrc1 then // fsqrt.s rd, rs1
Result := format('%-8s ft%d, ft%d', [Result, instr.rd, instr.rs1])
else if instr.format = rvfFloatInstrDestSrc1Src2 then // fsub.s rd, rs1, rs2 => rd = rs1 - rs2
Result := format('%-8s ft%d, ft%d, ft%d', [Result, instr.rd, instr.rs1, instr.rs2])
else if instr.format = rvfFloatInstrDestSrc1Src2Src3 then // fmadd.s rd, rs1, rs2, rs3 => (rs1 x rs2) + rs3
Result := format('%-8s ft%d, ft%d, ft%d, ft%d', [Result, instr.rd, instr.rs1, instr.rs2, instr.rs3]);
end;
rvfCSRDestCsrSrc1: // csrrw rd, #csr, rs1
Result := format('%-8s %s, %s, %s', [Result, RiscvABIRegisterNames[instr.rd], CsrRegNumToName(instr.csr), RiscvABIRegisterNames[instr.rs1]]);
rvfCSRDestCsrImm: // csrrw rd, #csr, imm
Result := format('%-8s %s, %s, %s', [Result, RiscvABIRegisterNames[instr.rd], CsrRegNumToName(instr.csr), instr.imm]);
else
Result := 'Invalid format specifier';
end;
end;
function TRiscvAsmDecoder.GetLastErrorWasMemReadErr: Boolean;
begin
Result := FLastErrWasMem;
end;
function TRiscvAsmDecoder.GetMaxInstrSize: integer;
begin
Result := 4;
end;
function TRiscvAsmDecoder.GetMinInstrSize: integer;
begin
Result := 2;
end;
function TRiscvAsmDecoder.GetCanReverseDisassemble: boolean;
begin
Result := False;
end;
function TRiscvAsmDecoder.ReadCodeAt(AnAddress: TDBGPtr; ALen: Cardinal
): Boolean;
begin
Result := FProcess.ReadData(AnAddress, ALen, FCodeBin[0], ALen);
FLastErrWasMem := not Result;
end;
procedure TRiscvAsmDecoder.Disassemble(var AAddress: Pointer; out
ACodeBytes: String; out ACode: String);
var
AnInfo: TDbgInstInfo;
begin
Disassemble(AAddress, ACodeBytes, ACode, AnInfo);
end;
procedure TRiscvAsmDecoder.Disassemble(var AAddress: Pointer; out ACodeBytes: String;
out ACode: String; out AnInfo: TDbgInstInfo);
var
decoder: TRiscvDisassembler;
k: byte;
pcode: PByte;
instr: TRiscvInstruction;
begin
AnInfo := default(TDbgInstInfo);
pcode := AAddress;
decoder.Disassemble(AAddress, instr);
Inc(AAddress, instr.Size);
ACodeBytes := '';
for k := 0 to instr.Size-1 do
ACodeBytes := ACodeBytes + HexStr(pcode[k], 2) + ' ';
Delete(ACodeBytes, length(ACodeBytes), 1);
ACode := FormatInstruction(instr);
// Todo: Indicate whether currrent instruction has a destination code address
// call jump branch(?)
// Return information in AnInfo
end;
function TRiscvAsmDecoder.GetInstructionInfo(AnAddress: TDBGPtr
): TDbgAsmInstruction;
begin
if (FLastInstr = nil) or (FLastInstr.RefCount > 1) then begin
ReleaseRefAndNil(FLastInstr);
FLastInstr := TRiscvAsmInstruction.Create(Self);
end;
FLastInstr.SetAddress(AnAddress);
Result := FLastInstr;
end;
function TRiscvAsmDecoder.GetFunctionFrameInfo(AnAddress: TDBGPtr; out
AnIsOutsideFrame: Boolean): Boolean;
begin
Result := False;
end;
function TRiscvAsmDecoder.GetBreakInstruction(const ALocation: TDBGPtr; out
BreakInstructionLength: Integer): QWord;
begin
BreakInstructionLength := GetInstructionInfo(ALocation).InstructionLength;
// Set the user fields s and t to 0
if BreakInstructionLength = 2 then
Result := $000000 { ILL} // $F0D2 { BREAK }
else
Result := $F06D { ILL.N }; // 4000 { BREAK.N }
end;
function TRiscvAsmDecoder.BreakInstructionOffset: Int8;
begin
Result := 0; // ?
end;
function TRiscvAsmDecoder.GetFunctionFrameReturnAddress(AnAddress, AStartPC,
AEndPC: TDBGPtr; out returnAddressOffset, SPoffset: integer; out
AnIsOutsideFrame: Boolean): Boolean;
begin
result := false;
{ Cases to consider:
A - if (AStartPC + MaxPrologueSize < AnAddress) and (AnAddress + MaxEpilogueSize < AEndPC)
then currently inside stack frame. Parse prologue to figure out
offset from frame pointer to return address.
B - if (AStartPC + MaxPrologueSize < AnAddress)
then possibly before final stack frame. Need to parse prologue up to AnAddress
to figure out how far the stack has moved since entry to calculate offset
from SP to return address. If frame pointer has been configured before
AnAddress, assume inside frame and return offset relative to frame pointer.
C - if (AnAddress + MaxEpilogueSize < AEndPC)
then possibly inside frame teardown. Need to reverse parse epilogue up to AnAddress
to figure out how much frame will unwind to calculate offset to return address.
If frame pointer has been restored before AnAddress then ouside frame.
}
// Return address always in register ra
returnAddressOffset := 0;
SPoffset := 0;
if (AnAddress = AStartPC) or (AnAddress = AEndPC) then
begin
AnIsOutsideFrame := true;
Exit(True);
end
else
result := FParsePrologue(AnAddress, AStartPC, AEndPC, returnAddressOffset,
SPoffset, AnIsOutsideFrame);
end;
constructor TRiscvAsmDecoder.Create(AProcess: TDbgProcess);
begin
FProcess := AProcess;
end;
destructor TRiscvAsmDecoder.Destroy;
begin
ReleaseRefAndNil(FLastInstr);
inherited Destroy;
end;
{ TDbgStackUnwinderRiscv }
constructor TDbgStackUnwinderRiscv.Create(AProcess: TDbgProcess);
begin
FProcess := AProcess;
FAddressSize := 4; // For RV32
FCodeReadErrCnt := 0;
end;
procedure TDbgStackUnwinderRiscv.InitForThread(AThread: TDbgThread);
begin
FThread := AThread;
end;
procedure TDbgStackUnwinderRiscv.InitForFrame(
ACurrentFrame: TDbgCallstackEntry; out CodePointer, StackPointer,
FrameBasePointer: TDBGPtr);
var
R: TDbgRegisterValue;
begin
CodePointer := ACurrentFrame.AnAddress;
// Frame pointer is x8 (if used). Assume no frame pointer for now
FrameBasePointer := ACurrentFrame.FrameAdress;
StackPointer := 0;
R := ACurrentFrame.RegisterValueList.FindRegisterByDwarfIndex(SPindexDwarf);
if R = nil then exit;
StackPointer := R.NumValue;
end;
procedure TDbgStackUnwinderRiscv.GetTopFrame(out CodePointer, StackPointer,
FrameBasePointer: TDBGPtr; out ANewFrame: TDbgCallstackEntry);
var
i: Integer;
R: TDbgRegisterValue;
begin
FLastFrameBaseIncreased := True;
FSPchangeCount := 1;
CodePointer := Thread.GetInstructionPointerRegisterValue;
StackPointer := Thread.GetStackPointerRegisterValue;
FrameBasePointer := Thread.GetStackBasePointerRegisterValue;
ANewFrame := TDbgCallstackEntry.create(Thread, 0, FrameBasePointer, CodePointer);
FPreviousPC := CodePointer;
// Frame pointer may not have been updated yet
if FrameBasePointer > StackPointer then
FrameBasePointer := StackPointer;
i := Thread.RegisterValueList.Count;
while i > 0 do begin
dec(i);
R := Thread.RegisterValueList[i];
ANewFrame.RegisterValueList.DbgRegisterAutoCreate[R.Name].SetValue(R.NumValue, R.StrValue, R.Size, R.DwarfIdx);
end;
end;
function TDbgStackUnwinderRiscv.Unwind(AFrameIndex: integer; var CodePointer,
StackPointer, FrameBasePointer: TDBGPtr; ACurrentFrame: TDbgCallstackEntry;
out ANewFrame: TDbgCallstackEntry): TTDbgStackUnwindResult;
{
add sp,sp,-12 // Move SP (x2) down by 12 bytes
sw ra,8(sp) // Store ra (x1, return address) at SP + 8
sw s0,4(sp) // Store s0 (x8, frame pointer) at SP + 4
sw s1,0(sp) // Store s1 (x9) at SP
add s0,sp,12 // Adjust frame pointer to point to start of this stack
add sp,sp,-52 // Move SP down to align to 64 byte boundary (?)
}
const
MAX_FRAMES = 50; // safety net
Size = 4; // Default size of pointer
var
LastFrameBase: TDBGPtr;
OutSideFrame: Boolean;
startPC, endPC: TDBGPtr;
returnAddrStackOffset, SPoffset: integer;
begin
ANewFrame := nil;
Result := suFailed;
if (StackPointer > $40000000) or (StackPointer < $3F000000) or
(CodePointer < $40000001) or {not FLastFrameBaseIncreased then}
(AFrameIndex - FSPchangeCount > 0) then
exit;
OutSideFrame := False;
LastFrameBase := FrameBasePointer;
// Get start/end PC of proc from debug info
if not Self.Process.FindProcStartEndPC(CodePointer, startPC, endPC) then
begin
{ Assume we are at beginning of proc. GetFunctionFrameReturnAddress should then
assume we are outside the stack frame (or no stack frame exists).
}
endPC := CodePointer;
end;
if not TRiscvAsmDecoder(Process.Disassembler).GetFunctionFrameReturnAddress(CodePointer, startPC, endPC,
returnAddrStackOffset, SPoffset, OutSideFrame) then
OutSideFrame := False;
if OutSideFrame then begin
// Before adjustment of frame pointer, or after restoration of frame pointer,
// If SP not yet adjusted then return address should be in register ra
if returnAddrStackOffset = 0 then
CodePointer := TDbgRiscvProcess(FProcess).MainThread.RegisterValueList[ReturnAddressIndexDwarf].NumValue
else if not Process.ReadData(int64(StackPointer) + returnAddrStackOffset, Size, CodePointer) or
(CodePointer = 0) then
exit;
{$PUSH}{$R-}{$Q-}
StackPointer := StackPointer + SPoffset;
FrameBasePointer := StackPointer; // After popping return-addr from "StackPtr"
{$POP}
end
else begin
// Inside stack frame, return PC should be located by offset from FP
if not Process.ReadData(int64(FrameBasePointer) + returnAddrStackOffset, Size, CodePointer) or (CodePointer = 0) then exit;
{$PUSH}{$R-}{$Q-}
FrameBasePointer := StackPointer + SPoffset; // After popping return-addr from stack
// An estimate of SP, needed when attempting unwinding of next frame
StackPointer := FrameBasePointer;
{$POP}
end;
FLastFrameBaseIncreased := (FrameBasePointer <> 0) and (FrameBasePointer > LastFrameBase);
if FLastFrameBaseIncreased or (FPreviousPC <> CodePointer) then
inc(FSPchangeCount)
else
exit;
FPreviousPC := CodePointer;
ANewFrame:= TDbgCallstackEntry.create(Thread, AFrameIndex, FrameBasePointer, CodePointer);
ANewFrame.RegisterValueList.DbgRegisterAutoCreate[nPC].SetValue(CodePointer, IntToStr(CodePointer), Size, PCIndexDwarf);
ANewFrame.RegisterValueList.DbgRegisterAutoCreate[nSP].SetValue(StackPointer, IntToStr(StackPointer), Size, SPindex);
FCodeReadErrCnt := 0;
Result := suSuccess;
end;
{ TRiscvDisassembler }
procedure TRiscvDisassembler.Disassemble(var AAddress: Pointer; out
AnInstruction: TRiscvInstruction);
var
pcode: PByte;
opcode, ophi, oplo: byte;
instr: uint32;
begin
pcode := AAddress;
AnInstruction.OpCode := A_INVALID;
oplo := pcode[0] and 3;
if oplo < 3 then
begin
// compressed (16 bit) instruction
instr := pcode[0] or (pcode[1] shl 8);
ophi := instr shr 13;
case oplo of
0:
case ophi of
0: AnInstruction := decodeAddi4spn(instr);
1: AnInstruction := decodeFLD(instr);
2: AnInstruction := decodeLW(instr);
3: AnInstruction := decodeFLW(instr);
4: AnInstruction.OpCode := A_RESERVED;
5: AnInstruction := decodeFSD(instr);
6: AnInstruction := decodeSW(instr);
7: AnInstruction := decodeFSW(instr);
end;
1:
case ophi of
0: AnInstruction := decodeAddI(instr);
1: AnInstruction := decodeCJAL(instr);
2: AnInstruction := decodeLI(instr);
3: AnInstruction := decodeLUI(instr);
4: AnInstruction := decodeALU(instr);
5: AnInstruction := decodeCJ(instr);
6, 7: AnInstruction := decodeCBNEQZ(instr, ophi);
end;
2:
case ophi of
0: AnInstruction := decodeSLLI(instr);
1: AnInstruction := decodeFLDSP(instr);
2: AnInstruction := decodeLWSP(instr);
3: AnInstruction := decodeFLWSP(instr);
4: AnInstruction := decodeJR(instr);
5, 6, 7: AnInstruction := decodeCStore(instr, ophi);
end;
end;
AnInstruction.Size := 2;
end
else
begin
instr := pcode[0] or (pcode[1] shl 8) or (pcode[2] shl 16) or (pcode[3] shl 24);
opcode := pcode[0] and $7F;
// Lookup based on table 70
case opcode of
%0000011: AnInstruction := decodeLoad(instr);
%0000111: AnInstruction := decodeLoadF(instr);
%0001011: AnInstruction := customMap(0, instr);
%0001111: AnInstruction := decodeMiscMem(instr);
%0010011: AnInstruction := decodeOpIm(instr);
%0010111: AnInstruction := decodeAUIPC_LUI(instr, opcode);
%0011011: AnInstruction := decodeOpIm32(instr);
//%0011111: ;
%0100011: AnInstruction := decodeStore(instr);
%0100111: AnInstruction := decodeStoreF(instr);
%0101011: AnInstruction := customMap(1, instr);
%0101111: AnInstruction := decodeAMO(instr);
%0110011: AnInstruction := decodeOp(instr);
%0110111: AnInstruction := decodeAUIPC_LUI(instr, opcode);
%0111011: AnInstruction := decodeOp32(instr);
//%0111111: ;
%1000011: AnInstruction := decodeMAdd(instr);
%1000111: AnInstruction := decodeMSub(instr);
%1001011: AnInstruction := decodeNMSub(instr);
%1001111: AnInstruction := decodeMAdd(instr);
%1010011: AnInstruction := decodeOP_FP(instr);
%1010111: ;//TODO ;
%1011011: AnInstruction := customMap(2, instr);
//%1011111: ;
%1100011: AnInstruction := decodeBranch(instr);
%1100111: AnInstruction := decodeJALR(instr);
%1101011: AnInstruction.OpCode := A_RESERVED;
%1101111: AnInstruction := decodeJAL(instr);
%1110011: AnInstruction := decodeSystem(instr);
%1110111: ;
%1111011: AnInstruction := customMap(3, instr);
//%1111111: ;
end;
AnInstruction.Size := 4;
end;
end;
procedure TRiscvDisassembler.decodeR(instr: uint32; out funct7, rs2, rs1, funct3, rd: byte);
begin
funct7 := instr shr 25;
rs2 := (instr shr 20) and $1F;
rs1 := (instr shr 15) and $1F;
funct3 := (instr shr 12) and 7;
rd := (instr shr 7) and $1F;
end;
procedure TRiscvDisassembler.decodeI(instr: uint32; out imm: int32; out rs1, funct3, rd: byte);
begin
imm := SarLongint(int32(instr), 20);
rs1 := (instr shr 15) and $1F;
funct3 := (instr shr 12) and 7;
rd := (instr shr 7) and $1F;
end;
procedure TRiscvDisassembler.decodeS(instr: uint32; out imm: int32; out rs2, rs1, funct3: byte);
begin
imm := SarLongint(int32(instr), 25) shl 5;
rs2 := (instr shr 20) and $1F;
rs1 := (instr shr 15) and $1F;
funct3 := (instr shr 12) and 7;
imm := imm or ((instr shr 7) and $1F);
end;
procedure TRiscvDisassembler.decodeB(instr: uint32; out imm: int32; out rs2, rs1, funct3: byte);
var
imm12, imm10_5, imm4_1, imm11: uint16;
begin
imm12 := instr shr 31;
imm10_5 := (instr shr 25) and $1F;
imm4_1 := (instr shr 8) and $0F;
imm11 := (instr shr 7) and 1;
imm := (imm12 shl 12) or (imm11 shl 11) or (imm10_5 shl 5) or (imm4_1 shl 1);
rs2 := (instr shr 20) and $1F;
rs1 := (instr shr 15) and $1F;
funct3 := (instr shr 12) and 7;
end;
procedure TRiscvDisassembler.decodeU(instr: uint32; out imm: int32; out rd: byte);
begin
imm := instr shr 12; //instr and $FFFFF000;
rd := (instr shr 7) and $1F;
end;
procedure TRiscvDisassembler.decodeJ(instr: uint32; out imm: int32; out rd: byte);
var
imm20, imm19_12, imm11, imm10_1: uint16;
begin
imm20 := instr shr 31;
imm19_12 := (instr shr 12) and $FF;
imm11 := (instr shr 20) and 1;
imm10_1 := (instr shr 21) and $1FF;
imm := (imm20 shl 20) or (imm19_12 shl 12) or (imm11 shl 11) or (imm10_1 shl 1);
rd := (instr shr 7) and $1F;
end;
function TRiscvDisassembler.decodeLoad(instr: uint32): TRiscvInstruction;
var
imm: int32;
rs1, funct3, rd: byte;
begin
FillByte(Result, SizeOf(Result), 0);
// lw rd, imm(rs1)
Result.format := rvfInstructionDestSrcOffset;
Result.Size := 4;
decodeI(instr, imm, rs1, funct3, rd);
Result.rd:= rd;
Result.rs1 := rs1;
Result.imm := imm;
case funct3 of
0: Result.OpCode := A_LB;
1: Result.OpCode := A_LH;
2: Result.OpCode := A_LW;
3: Result.OpCode := A_LD; // 64 bit
4: Result.OpCode := A_LBU;
5: Result.OpCode := A_LHU;
6: Result.OpCode := A_LWU; // 64 bit
//7: Result.OpCode := A_LDU;
else
Result.OpCode := A_INVALID;
end;
end;
function TRiscvDisassembler.decodeLoadF(instr: uint32): TRiscvInstruction;
var
imm: int32;
rs1, width, rd: byte;
begin
FillByte(Result, SizeOf(Result), 0);
Result.format := rvfLoadFDestSrcOffset;
Result.Size := 4;
decodeI(instr, imm, rs1, width, rd);
Result.rd := rd;
Result.rs1 := rs1;
Result.imm := imm;
case width of
1: Result.OpCode := A_FLH;
2: Result.OpCode := A_FLW;
3: Result.OpCode := A_FLD;
4: Result.OpCode := A_FLQ;
else
Result.OpCode := A_INVALID;
end;
end;
function TRiscvDisassembler.customMap(i: integer; instr: uint32): TRiscvInstruction;
begin
FillByte(Result, SizeOf(Result), 0);
Result.format := rvfCustom;
Result.Size := 4;
Result.imm := i;
end;
procedure TRiscvDisassembler.decodeFence(imm: uint32; out fm, pred, succ: byte);
begin
fm := imm shr 8;
pred := (imm shr 4) and $F;
succ := imm and $F;
end;
function TRiscvDisassembler.decodeMiscMem(instr: uint32): TRiscvInstruction;
var
imm: int32;
fm, pred, succ, rs1, funct3, rd: byte;
begin
FillByte(Result, SizeOf(Result), 0);
Result.OpCode := A_INVALID;
Result.Size := 4;
decodeI(instr, imm, rs1, funct3, rd);
case funct3 of
0:
begin
decodeFence(imm, fm, pred, succ);
// Fence mode (fm) = 0 for normal fence, %1000 for fence.tso
if (fm = 8) and (pred = 3) and (succ = 3) then
begin
Result.OpCode := A_FENCE_TSO;
Result.format := rvfInstruction;
end
else if fm = 0 then
begin
if (pred = 1) and (succ = 0) and (rs1 = 0) and (rd = 0) then
begin
Result.OpCode := A_PAUSE;
Result.format := rvfInstruction;
end
else
begin
// Pred/succ bits are mapped in the following sequence: msb to lsb: i,o,r,w
Result.OpCode := A_FENCE;
Result.format := rvfFence;
end
end
end; // funct3 = 0
1:
begin
Result.OpCode := A_FENCE_I;
Result.format := rvfInstruction;
end; // funct3 = 1
2:
begin
if rd = 0 then
begin
Result.format := rvfInstructionSrcOffset;
Result.rs1 := rs1;
Result.rd := rd;
case imm of
0: Result.OpCode := A_CBO_INVAL;
1: Result.OpCode := A_CBO_CLEAN;
2: Result.OpCode := A_CBO_FLUSH;
4: Result.OpCode := A_CBO_ZERO;
end;
end;
end; // funct3 = 2
end; // case funct3
end;
function TRiscvDisassembler.decodeOpIm(instr: uint32): TRiscvInstruction;
var
imm: int32;
immhi, immlo, rs1, funct3, rd: byte;
begin
FillByte(Result, SizeOf(Result), 0);
Result.OpCode := A_INVALID;
Result.format := rvfInstruction;
Result.Size := 4;
decodeI(instr, imm, rs1, funct3, rd);
immhi := byte(imm shr 6);
immlo := byte(imm and $3F);
Result.rd := rd;
Result.rs1 := rs1;
case funct3 of
0:
begin
Result.OpCode := A_ADDI;
Result.imm := imm;
Result.format := rvfInstructionDestSrcImm;
end;
1:
begin
Result.imm := immlo;
Result.format := rvfInstructionDestSrcImm;
if immhi = 0 then
Result.OpCode := A_SLLI
else
Result.format := rvfInstruction;
end;
2:
begin
Result.OpCode := A_SLTI;
Result.imm := imm;
Result.format := rvfInstructionDestSrcImm;
end;
3:
begin
Result.OpCode := A_SLTIU;
Result.imm := imm;
Result.format := rvfInstructionDestSrcImm;
end;
4:
begin
Result.OpCode := A_XORI;
Result.imm := imm;
Result.format := rvfInstructionDestSrcImm;
end;
5:
begin
Result.imm := immlo;
Result.format := rvfInstructionDestSrcImm;
if immhi = 0 then
Result.OpCode := A_SRLI
else if immhi = 16 then
Result.OpCode := A_SRAI
else
Result.format := rvfInstruction;
end;
6:
begin
Result.OpCode := A_ORI;
Result.imm := imm;
Result.format := rvfInstructionDestSrcImm;
end;
7:
begin
Result.OpCode := A_ANDI;
Result.imm := imm;
Result.format := rvfInstructionDestSrcImm;
end;
end;
end;
function TRiscvDisassembler.decodeAUIPC_LUI(instr: uint32; opcode: byte): TRiscvInstruction;
begin
FillChar(Result, SizeOf(Result), 0);
decodeU(instr, Result.imm, Result.rd);
Result.format := rvfInstructionDestImm;
Result.Size := 4;
if opcode = %0010111 then
Result.OpCode := A_AUIPC
else if opcode = %0110111 then
Result.OpCode := A_LUI
else
Result.OpCode := A_INVALID;
end;
function TRiscvDisassembler.decodeOpIm32(instr: uint32): TRiscvInstruction;
var
imm: int32;
immhi, immlo, rs1, funct3, rd: byte;
begin
FillByte(Result, SizeOf(Result), 0);
Result.OpCode := A_INVALID;
Result.format := rvfInstruction;
Result.Size := 4;
decodeI(instr, imm, rs1, funct3, rd);
immhi := imm shr 5;
immlo := imm and $1F;
Result.rd := rd;
Result.rs1 := rs1;
case funct3 of
0:
begin
Result.OpCode := A_ADDIW;
Result.imm := imm;
Result.format := rvfInstructionDestSrcImm;
end;
1:
begin
if immhi = 0 then
begin
Result.OpCode := A_SLLIW;
Result.imm := immlo;
Result.format := rvfInstructionDestSrcImm;
end
else if (immhi = 48) then
begin
if (immlo = 0) then
begin
Result.OpCode := A_CLZW;
Result.format := rvfInstructionDestSrc;
end
else if (immlo = 1) then
begin
Result.OpCode := A_CTZW;
Result.format := rvfInstructionDestSrc;
end
end
else if (immhi = 2) then
begin
Result.OpCode := A_SLLI_UW;
Result.format := rvfInstructionDestSrcImm;
end;
end;
5:
begin
Result.imm := immlo;
Result.format := rvfInstructionDestSrcImm;
if immhi = 0 then
Result.OpCode := A_SRLIW
else if immhi = 32 then
Result.OpCode := A_SRAIW
else if immhi = 48 then
Result.OpCode := A_RORIW
else
Result.format := rvfInstruction;
end;
6:
begin
Result.OpCode := A_ORI;
Result.imm := imm;
Result.format := rvfInstructionDestSrcImm;
end;
7:
begin
Result.OpCode := A_ANDI;
Result.imm := imm;
Result.format := rvfInstructionDestSrcImm;
end;
end;
end;
function TRiscvDisassembler.decodeStore(instr: uint32): TRiscvInstruction;
var
funct3: byte;
begin
FillByte(Result, SizeOf(Result), 0);
// sd rs2, imm(rs1)
Result.format := rvfStoreSrc2Src1Offset;
Result.Size := 4;
decodeS(instr, Result.imm, Result.rs2, Result.rs1, funct3);
case funct3 of
0: Result.OpCode := A_SB;
1: Result.OpCode := A_SH;
2: Result.OpCode := A_SW;
3: Result.OpCode := A_SD; // 64 bit
else
Result.OpCode := A_INVALID;
end;
end;
function TRiscvDisassembler.decodeStoreF(instr: uint32): TRiscvInstruction;
var
width: byte;
begin
FillByte(Result, SizeOf(Result), 0);
Result.format := rvfStoreFSrc2Src1Offset;
Result.Size := 4;
decodeS(instr, Result.imm, Result.rs2, Result.rs1, width);
case width of
1: Result.OpCode := A_FSH;
2: Result.OpCode := A_FSW;
3: Result.OpCode := A_FSD;
4: Result.OpCode := A_FSQ;
else
Result.OpCode := A_INVALID;
end;
end;
function TRiscvDisassembler.decodeAMO(instr: uint32): TRiscvInstruction;
var
funct7, funct3: byte;
begin
FillByte(Result, SizeOf(Result), 0);
decodeR(instr, funct7, Result.rs2, Result.rs1, funct3, Result.rd);
Result.AmoInfo.aquire := (funct7 and 1) = 1;
Result.AmoInfo.release := (funct7 and 2) = 2;
Result.AmoInfo.width := funct3;
Result.format := rvfAmoDestSrc2Src1_addr;
case (funct7 shr 2) of
0: Result.OpCode := A_AMOADD;
1: Result.OpCode := A_AMOSWAP;
2:
begin
Result.OpCode := A_LR;
Result.format := rvfAmoDestSrc1;
end;
3:
begin
Result.OpCode := A_SC;
Result.format := rvfAmoDestSrc2Src1;
end;
4: Result.OpCode := A_AMOXOR;
8: Result.OpCode := A_AMOOR;
12: Result.OpCode := A_AMOAND;
16: Result.OpCode := A_AMOMIN;
20: Result.OpCode := A_AMOMAX;
24: Result.OpCode := A_AMOMINU;
28: Result.OpCode := A_AMOMAXU;
else
begin
Result.OpCode := A_INVALID;
Result.format := rvfInstruction;
end;
end;
end;
function TRiscvDisassembler.decodeOp(instr: uint32): TRiscvInstruction;
var
funct3, funct7: byte;
begin
FillByte(Result, SizeOf(Result), 0);
decodeR(instr, funct7, Result.rs2, Result.rs1, funct3, Result.rd);
Result.format := rvfInstructionDestSrc1Src2;
Result.OpCode := A_INVALID;
case funct3 of
0:
begin
if funct7 = 0 then
Result.OpCode := A_ADD
else if funct7 = 1 then
Result.OpCode := A_MUL
else if funct7 = 32 then
Result.OpCode := A_SUB;
end;
1:
begin
if funct7 = 0 then
Result.OpCode := A_SLL
else if funct7 = 1 then
Result.OpCode := A_MULH
else if funct7 = 5 then
Result.OpCode := A_CLMUL
else if funct7 = 20 then
Result.OpCode := A_BSET
else if funct7 = 36 then
Result.OpCode := A_BCLR
else if funct7 = 48 then
Result.OpCode := A_ROL
end;
2:
begin
if funct7 = 0 then
Result.OpCode := A_SLT
else if funct7 = 1 then
Result.OpCode := A_MULHSU
else if funct7 = 5 then
Result.OpCode := A_CLMULR
else if funct7 = 16 then
Result.OpCode := A_SH1ADD
end;
3:
begin
if funct7 = 0 then
Result.OpCode := A_SLTU
else if funct7 = 1 then
Result.OpCode := A_MULHU
else if funct7 = 5 then
Result.OpCode := A_CLMULH
end;
4:
begin
if funct7 = 0 then
Result.OpCode := A_XOR
else if funct7 = 1 then
Result.OpCode := A_DIV
else if funct7 = 4 then
Result.OpCode := A_PACK // if rs2 = 0, alias: ZEXT.H
else if funct7 = 16 then
Result.OpCode := A_SH2ADD
else if funct7 = 32 then
Result.OpCode := A_XNOR
else if funct7 = 52 then
Result.OpCode := A_BINV
end;
5:
begin
if funct7 = 0 then
Result.OpCode := A_SRL
else if funct7 = 1 then
Result.OpCode := A_DIVU
else if funct7 = 5 then
Result.OpCode := A_MINU
else if funct7 = 16 then
Result.OpCode := A_SH3ADD
else if funct7 = 32 then
Result.OpCode := A_SRA
else if funct7 = 36 then
Result.OpCode := A_BEXT
else if funct7 = 48 then
Result.OpCode := A_ROR
end;
6:
begin
if funct7 = 0 then
Result.OpCode := A_OR
else if funct7 = 1 then
Result.OpCode := A_REM
else if funct7 = 5 then
Result.OpCode := A_MAX
else if funct7 = 32 then
Result.OpCode := A_ORN
end;
7:
begin
if funct7 = 0 then
Result.OpCode := A_AND
else if funct7 = 1 then
Result.OpCode := A_REMU
else if funct7 = 4 then
Result.OpCode := A_PACKH
else if funct7 = 5 then
Result.OpCode := A_MAXU
else if funct7 = 32 then
Result.OpCode := A_ANDN;
end;
end;
end;
function TRiscvDisassembler.decodeOp32(instr: uint32): TRiscvInstruction;
var
funct3, funct7: byte;
begin
FillByte(Result, SizeOf(Result), 0);
decodeR(instr, funct7, Result.rs2, Result.rs1, funct3, Result.rd);
Result.format := rvfInstructionDestSrc1Src2;
Result.OpCode := A_INVALID;
case funct3 of
0:
begin
if funct7 = 0 then
Result.OpCode := A_ADDW
else if funct7 = 1 then
Result.OpCode := A_MULW
else if funct7 = 4 then
Result.OpCode := A_ADD_UW
else if funct7 = 32 then
Result.OpCode := A_SUBW;
end;
1:
begin
if funct7 = 0 then
Result.OpCode := A_SLLW
else if funct7 = 48 then
Result.OpCode := A_ROLW;
end;
2:
begin
if funct7 = 16 then
Result.OpCode := A_SH1ADD_UW;
end;
//3:
//begin
// if funct7 = 0 then
// Result.OpCode := A_SLTU;
//end;
4:
begin
if funct7 = 1 then
Result.OpCode := A_DIVW
else if funct7 = 4 then
begin
Result.OpCode := A_ZEXT_H;
Result.format := rvfInstructionDestSrc;
end
else if funct7 = 16 then
Result.OpCode := A_SH2ADD_UW;
end;
5:
begin
if funct7 = 0 then
Result.OpCode := A_SRLW
else if funct7 = 1 then
Result.OpCode := A_DIVUW
else if funct7 = 32 then
Result.OpCode := A_SRAW
else if funct7 = 48 then
Result.OpCode := A_RORW;
end;
6:
begin
if funct7 = 0 then
Result.OpCode := A_OR
else if funct7 = 1 then
Result.OpCode := A_REMW
else if funct7 = 16 then
Result.OpCode := A_SH3ADD_UW
end;
7:
begin
if funct7 = 0 then
Result.OpCode := A_AND
else if funct7 = 1 then
Result.OpCode := A_REMUW;
end;
end;
end;
procedure TRiscvDisassembler.decodeR_fmt(instr: uint32; out rs3, fmt, rs2, rs1, roundingMode, rd: byte);
begin
rs3 := instr shr 27;
fmt := (instr shr 25) and 3;
rs2 := (instr shr 20) and $1F;
rs1 := (instr shr 15) and $1F;
roundingMode := (instr shr 12) and 7;
rd := (instr shr 7) and $1F;
end;
function TRiscvDisassembler.decodeMAdd(instr: uint32): TRiscvInstruction;
var
roundingMode: byte;
begin
FillByte(Result, SizeOf(Result), 0);
decodeR_fmt(instr, Result.rs3, Result.fpwidth, Result.rs2, Result.rs1, roundingMode, Result.rd);
Result.Size := 4;
Result.format := rvfFloatInstrDestSrc1Src2Src3;
// Rounding mode seems to be ignored
Result.OpCode := A_FMADD;
end;
function TRiscvDisassembler.decodeMSub(instr: uint32): TRiscvInstruction;
var
roundingMode: byte;
begin
FillByte(Result, SizeOf(Result), 0);
decodeR_fmt(instr, Result.rs3, Result.fpwidth, Result.rs2, Result.rs1, roundingMode, Result.rd);
Result.Size := 4;
Result.format := rvfFloatInstrDestSrc1Src2Src3;
// Rounding mode seems to be ignored
Result.OpCode := A_FMSUB;
end;
function TRiscvDisassembler.decodeNMSub(instr: uint32): TRiscvInstruction;
var
roundingMode: byte;
begin
FillByte(Result, SizeOf(Result), 0);
decodeR_fmt(instr, Result.rs3, Result.fpwidth, Result.rs2, Result.rs1, roundingMode, Result.rd);
Result.Size := 4;
Result.format := rvfFloatInstrDestSrc1Src2Src3;
// Rounding mode seems to be ignored
Result.OpCode := A_FNMSUB;
end;
function TRiscvDisassembler.decodeNMAdd(instr: uint32): TRiscvInstruction;
var
roundingMode: byte;
begin
FillByte(Result, SizeOf(Result), 0);
decodeR_fmt(instr, Result.rs3, Result.fpwidth, Result.rs2, Result.rs1, roundingMode, Result.rd);
Result.Size := 4;
Result.format := rvfFloatInstrDestSrc1Src2Src3;
// Rounding mode seems to be ignored
Result.OpCode := A_FNMADD;
end;
function TRiscvDisassembler.decodeOP_FP(instr: uint32): TRiscvInstruction;
var
funct3, roundingMode: byte;
begin
FillByte(Result, SizeOf(Result), 0);
decodeR_fmt(instr, funct3, Result.fpwidth, Result.rs2, Result.rs1, roundingMode, Result.rd);
Result.Size := 4;
Result.format := rvfFloatInstrDestSrc1Src2;
// Rounding mode seems to be ignored
case funct3 of
0: Result.OpCode := A_FADD;
1: Result.OpCode := A_FSUB;
2: Result.OpCode := A_FMUL;
3: Result.OpCode := A_FDIV;
4:
begin
case roundingMode of
0: Result.OpCode := A_FSGNJ;
1: Result.OpCode := A_FSGNJN;
2: Result.OpCode := A_FSGNJX;
end;
end;
5:
begin
if Result.rs2 = 0 then
begin
Result.OpCode := A_FSQRT;
Result.format := rvfFloatInstrDestSrc1;
end;
end;
8:
begin
Result.format := rvfFloatInstrDestSrc1;
if (Result.rs2 = 0) and (Result.fpwidth = 1) then
Result.OpCode := A_FCVT_D_S
else if (Result.rs2 = 1) and (Result.fpwidth = 0) then
Result.OpCode := A_FCVT_S_D;
end;
11:
begin
case roundingMode of
0: Result.OpCode := A_FMIN;
1: Result.OpCode := A_FMAX;
end;
end;
20:
begin
case roundingMode of
0: Result.OpCode := A_FLE;
1: Result.OpCode := A_FLT;
2: Result.OpCode := A_FEQ;
end;
end;
24:
begin
Result.format := rvfFloatInstrDestSrc1;
case Result.rs2 of
0, 2: Result.OpCode := A_FCVT_Int_S;
1, 3: Result.OpCode := A_FCVT_UInt_S;
end;
end;
26:
begin
case Result.rs2 of
0, 2: Result.OpCode := A_FCVT_S_Int;
1, 3: Result.OpCode := A_FCVT_S_UInt;
end;
end;
end;
end;
function TRiscvDisassembler.decodeBranch(instr: uint32): TRiscvInstruction;
var
funct3: byte;
begin
FillByte(Result, SizeOf(Result), 0);
decodeB(instr, Result.imm, Result.rs2, Result.rs1, funct3);
Result.format := rvfInstructionSrc1Src2Imm;
case funct3 of
0: Result.OpCode := A_BEQ;
1: Result.OpCode := A_BNE;
4: Result.OpCode := A_BLT;
5: Result.OpCode := A_BGE;
6: Result.OpCode := A_BLTU;
7: Result.OpCode := A_BGEU;
else
Result.OpCode := A_INVALID;
end;
end;
function TRiscvDisassembler.decodeJALR(instr: uint32): TRiscvInstruction;
var
funct3: byte;
begin
FillByte(Result, SizeOf(Result), 0);
decodeI(instr, Result.imm, Result.rs1, funct3, Result.rd);
Result.format := rvfInstructionDestSrcOffset;
if funct3 = 0 then
begin
if (Result.rs1 = 1) and (Result.rd = 0) and (Result.imm = 0) then
begin
Result.OpCode := A_RET;
Result.format := rvfInstruction;
end
else
Result.OpCode := A_JALR;
end
else
Result.OpCode := A_INVALID;
end;
function TRiscvDisassembler.decodeJAL(instr: uint32): TRiscvInstruction;
begin
FillByte(Result, SizeOf(Result), 0);
decodeJ(instr, Result.imm, Result.rd);
Result.format := rvfInstructionDestImm;
Result.OpCode := A_JAL
end;
function TRiscvDisassembler.decodeSystem(instr: uint32): TRiscvInstruction;
var
funct3, funct7: byte;
begin
FillByte(Result, SizeOf(Result), 0);
decodeI(instr, Result.imm, Result.rs1, funct3, Result.rd);
Result.format := rvfInstruction;
Result.OpCode := A_INVALID;
if (funct3 = 0) and (Result.rd = 0) and (Result.rs1 = 0) then
begin
if (Result.imm = 0) then
Result.OpCode := A_ECALL
else if (Result.imm = 1) then
Result.OpCode := A_EBREAK
else
begin
Result.rs2 := Result.imm and $1F;
funct7 := Result.imm shr 5;
if (funct7 = $08) and (Result.rs2 = $02) then
Result.OpCode := A_SRET
else if (funct7 = $08) and (Result.rs2 = $05) then
Result.OpCode := A_WFI
else if (funct7 = $18) and (Result.rs2 = $02) then
Result.OpCode := A_MRET;
end;
end
else
begin
Result.csr := Result.imm;
case funct3 of
1:
begin
Result.OpCode := A_CSRRW;
Result.format := rvfCSRDestCsrSrc1;
end;
2:
begin
Result.OpCode := A_CSRRS;
Result.format := rvfCSRDestCsrSrc1;
end;
3:
begin
Result.OpCode := A_CSRRC;
Result.format := rvfCSRDestCsrSrc1;
end;
5:
begin
Result.OpCode := A_CSRRWI;
Result.imm := Result.rs1;
Result.format := rvfCSRDestCsrImm;
end;
6:
begin
Result.OpCode := A_CSRRSI;
Result.imm := Result.rs1;
Result.format := rvfCSRDestCsrImm;
end;
7:
begin
Result.OpCode := A_CSRRCI;
Result.imm := Result.rs1;
Result.format := rvfCSRDestCsrImm;
end;
end;
end;
end;
function TRiscvDisassembler.formatOpcode(instr: TRiscvInstruction): string;
var
s1, s2: string;
begin
Result := RiscvOpcodeString[instr.OpCode];
if instr.OpCode = A_INVALID then exit;
case instr.format of
rvfInstructionDestSrcOffset: // lw rd, imm(rs1)
Result := format('%-8s %s, %d(%s)', [Result, RiscvABIRegisterNames[instr.rd], instr.imm, RiscvABIRegisterNames[instr.rs1]]);
rvfLoadFDestSrcOffset: // flw rd, imm(rs1)
Result := format('%-8s ft%d, %d(%s)', [Result, instr.rd, instr.imm, RiscvABIRegisterNames[instr.rs1]]);
rvfStoreSrc2Src1Offset: // sw rs2, imm(rs1)
Result := format('%-8s %s, %d(%s)', [Result, RiscvABIRegisterNames[instr.rs2], instr.imm, RiscvABIRegisterNames[instr.rs1]]);
rvfStoreFSrc2Src1Offset: // fsw rs2, imm(rs1)
Result := format('%-8s ft%d, %d(%s)', [Result, instr.rs2, instr.imm, RiscvABIRegisterNames[instr.rs1]]);
rvfBranchSrc1Src2Imm: // beq rs1, rs2, imm
Result := format('%-8s %s, %s, %d', [Result, RiscvABIRegisterNames[instr.rs1], RiscvABIRegisterNames[instr.rs2], instr.imm]);
rvfInstruction: ; // ebreak
rvfFence: // fence [iorw], [iorw]
begin
// fence iorw, iorw is written as fence
if (instr.imm and $FF) = $FF then exit;
s1 := '';
if instr.imm and (1 shl 7) > 0 then
s1 := 'i';
if instr.imm and (1 shl 6) > 0 then
s1 := s1 + 'o';
if instr.imm and (1 shl 5) > 0 then
s1 := s1 + 'r';
if instr.imm and (1 shl 4) > 0 then
s1 := s1 + 'w';
s2 := '';
if instr.imm and (1 shl 3) > 0 then
s2 := 'i';
if instr.imm and (1 shl 2) > 0 then
s2 := s2 + 'o';
if instr.imm and (1 shl 1) > 0 then
s2 := s2 + 'r';
if instr.imm and 1 > 0 then
s2 := s2 + 'w';
if (s1 = '') and (s2 = '') then
Result := format('%-8s', [Result])
else
Result := format('%-8s %s, %s', [Result, s1, s2]);
end;
rvfCustom: // custom-imm
Result := format('%s-%d', [Result, instr.imm]);
rvfInstructionSrcOffset: // cbo.clean (rs1)
Result := format('%-8s (%s)', [Result, RiscvABIRegisterNames[instr.rs1]]);
rvfInstructionDestSrcImm: // addi rd, rs1, imm
Result := format('%-8s %s, %s, %d', [Result, RiscvABIRegisterNames[instr.rd], RiscvABIRegisterNames[instr.rs1], instr.imm]);
rvfInstructionDestSrc1Src2: // sub rd, rs1, rs2
Result := format('%-8s %s, %s, %s', [Result, RiscvABIRegisterNames[instr.rd], RiscvABIRegisterNames[instr.rs1], RiscvABIRegisterNames[instr.rs2]]);
rvfInstructionSrc1Src2Imm: // beq rs1, rs2, imm
Result := format('%-8s %s, %s, %d', [Result, RiscvABIRegisterNames[instr.rs1], RiscvABIRegisterNames[instr.rs2], instr.imm]);
rvfAmoDestSrc2Src1, rvfAmoDestSrc1, rvfAmoDestSrc2Src1_addr:
begin
s1 := '';
if instr.AmoInfo.width = 2 then
s1 := '.w'
else if instr.AmoInfo.width = 3 then
s1 := '.d';
s2 := '';
if instr.AmoInfo.aquire then
s2 := s2 + 'aq';
if instr.AmoInfo.release then
s2 := s2 + 'rel';
if s2 <> '' then
s2 := '.' + s2;
Result := Result + s1 + s2;
if instr.format = rvfAmoDestSrc2Src1 then // sc.w rd, rs2, rs1
Result := format('%-8s %s, %s, %s', [Result, RiscvABIRegisterNames[instr.rd], RiscvABIRegisterNames[instr.rs2], RiscvABIRegisterNames[instr.rs1]])
else if instr.format = rvfAmoDestSrc1 then // lr.w rd, rs1
Result := format('%-8s %s, %s', [Result, RiscvABIRegisterNames[instr.rd], RiscvABIRegisterNames[instr.rs1]])
else if instr.format = rvfAmoDestSrc2Src1_addr then // amoswap.w.aq rd, rs2, (rs1)
Result := format('%-8s %s, %s, (%s)', [Result, RiscvABIRegisterNames[instr.rd], RiscvABIRegisterNames[instr.rs2], RiscvABIRegisterNames[instr.rs1]]);
end;
rvfInstructionDestImm: // auipc rd, imm
Result := format('%-8s %s, 0x%x', [Result, RiscvABIRegisterNames[instr.rd], instr.imm]);
rvfInstructionDestSrc: // clzw rd, rs1
Result := format('%-8s %s, %s', [Result, RiscvABIRegisterNames[instr.rd], RiscvABIRegisterNames[instr.rs1]]);
rvfFloatInstrDestSrc1, rvfFloatInstrDestSrc1Src2, rvfFloatInstrDestSrc1Src2Src3:
begin
case instr.fpwidth of
0: s1 := '.S';
1: s1 := '.D';
2: s1 := '.H';
3: s1 := '.Q';
else
s1 := '?';
end;
Result := Result + s1;
if instr.format = rvfFloatInstrDestSrc1 then // fsqrt.s rd, rs1
Result := format('%-8s ft%d, ft%d', [Result, instr.rd, instr.rs1])
else if instr.format = rvfFloatInstrDestSrc1Src2 then // fsub.s rd, rs1, rs2 => rd = rs1 - rs2
Result := format('%-8s ft%d, ft%d, ft%d', [Result, instr.rd, instr.rs1, instr.rs2])
else if instr.format = rvfFloatInstrDestSrc1Src2Src3 then // fmadd.s rd, rs1, rs2, rs3 => (rs1 x rs2) + rs3
Result := format('%-8s ft%d, ft%d, ft%d, ft%d', [Result, instr.rd, instr.rs1, instr.rs2, instr.rs3]);
end;
rvfCSRDestCsrSrc1: // csrrw rd, #csr, rs1
Result := format('%-8s %s, %s, %s', [Result, RiscvABIRegisterNames[instr.rd], CsrRegNumToName(instr.csr), RiscvABIRegisterNames[instr.rs1]]);
rvfCSRDestCsrImm: // csrrw rd, #csr, imm
Result := format('%-8s %s, %s, %s', [Result, RiscvABIRegisterNames[instr.rd], CsrRegNumToName(instr.csr), instr.imm]);
else
Result := 'Invalid format specifier';
end;
end;
{ =========================== 16 bit decoding ============================
Format Meaning 15 14 13 12 11 10 09 08 07 06 05 04 03 02 0100
CR Register funct4 | rd/rs1 | rs2 | op
CI Immediate funct3 |im| rd/rs1 | imm | op
CSS Stack-relative Store funct3 | imm | rs2 | op
CIW Wide Immediate funct3 | imm | rd' | op
CL Load funct3 | imm | rs1' | imm | rd' | op
CS Store funct3 | imm | rs1' | imm | rs2' | op
CA Arithmetic funct6 | rd/rs' |fnc2 | rs2' | op
CB Branch/Arithmetic funct3 | offset | rd/rs' | offset | op
CJ Jump funct3 | jump target | op
}
// Imm is 8 bits
procedure TRiscvDisassembler.decodeCIW(instr: uint16; out imm: uint16; out rd_: byte);
begin
imm := (instr and $1FFF) shr 5;
rd_ := ((instr and $1C) shr 2) + 8;
end;
// Compressed load & store decoding
// Imm is 5 bits wide and shifted according to immType
procedure TRiscvDisassembler.decodeCLS(instr: uint16; out imm: uint16; out rs1_, rd_rs2_: byte; const immType: TImmEncoding);
begin
case immType of
ieImm5376: imm := ((instr and $1C00) shr 7) or ((instr and $0060) shl 1);
ieImm54876: imm := ((instr and $0400) shr 2) or ((instr and $1800) shr 7) or ((instr and $60) shl 1);
ieImm5326: imm := ((instr and $1C00) shr 7) or ((instr and $0040) shr 4) or (instr and $20) shl 1;
end;
rs1_ := ((instr and $380) shr 7) + 8;
rd_rs2_ := ((instr and $1C) shr 2) + 8;
end;
procedure TRiscvDisassembler.decodeCI(instr: uint16; out rs1_rd: byte; out imm: byte);
begin
rs1_rd := ((instr and $0F80) shr 7);
imm := ((instr and $1000) shr 7) or ((instr and $7C) shr 2);
end;
procedure TRiscvDisassembler.decodeCJ(instr: uint16; out imm: int16);
begin
// instr[12:2] = 12 11 10 09 08 07 06 05 04 03 02
// imm = 11 04 09 08 10 06 07 03 02 01 05
imm := ((instr and $1000) shr 1) or // 12 => 11
((instr and $0800) shr 7) or // 11 => 4
((instr and $0600) shr 1) or // 10:9 => 9:8
((instr and $0100) shl 2) or // 8 => 10
((instr and $0080) shr 1) or // 7 => 6
((instr and $0040) shl 1) or // 6 => 7
((instr and $0038) shr 2) or // 5:3 => 3:1
((instr and $0004) shl 3); // 2 => 5
// Check if sign must be extended
if (imm and $800) > 0 then
imm := imm or int16($F000);
end;
procedure TRiscvDisassembler.decodeCB(instr: uint16; out rs1_: byte; out imm: int16);
begin
{ Format Meaning 15 14 13 12 11 10 09 08 07 06 05 04 03 02 0100
CB Branch/Arithmetic funct3 | offset | rd/rs | offset | op
}
rs1_ := ((instr and $0380) shr 7) + 8;
// instr[12:2] = 12 11 10 06 05 04 03 02
// imm = 08 04 03 07 06 02 01 05
imm := ((instr and $1000) shr 4) or // 12 => 8
((instr and $0C00) shr 7) or // 11:10 => 4:3
((instr and $0060) shl 1) or // 6:5 => 7:6
((instr and $0018) shr 2) or // 4:3 => 2:1
((instr and $0004) shl 3); // 2 => 5
if (imm and $100) > 0 then
imm := imm or int16($FE00);
end;
procedure TRiscvDisassembler.decodeCSS(instr: uint16; out uimm: uint16; out rs2: byte; const immtype: TImmEncoding2);
begin
rs2 := (instr shr 2) and $1F;
uimm := instr and $1F80;
case immtype of
// instr[12:10] => uimm[5:3] | instr[9:7] => uimm[8:6]
ie2Imm5386: uimm := ((uimm and $1C00) shr 7) or ((uimm and $0380) shr 1);
// instr[12:11] => uimm[5:4] | instr[10:7] => uimm[9:6]
ie2Imm5496: uimm := ((uimm and $1800) shr 7) or ((uimm and $0780) shr 1);
// instr[12:9] => uimm[5:2] | instr[8:7] => uimm[7:6]
ie2Imm5276: uimm := ((uimm and $1E00) shr 7) or ((uimm and $0180) shr 1);
end;
end;
function TRiscvDisassembler.decodeAddi4spn(instr: uint16):TRiscvInstruction;
var
imm: uint16;
begin
FillByte(Result, SizeOf(Result), 0);
Result.OpCode := A_INVALID;
decodeCIW(instr, imm, Result.rd);
if imm > 0 then
begin
// [7:6|5:2|1|0]
// [5:4|9:6|2|3]
Result.imm := ((imm and $C0) shr 2) or // 7:6 => 5:4
((imm and $3C) shl 4) or // 5:2 => 9:6
((imm and $02) shl 1) or // 1 => 2
((imm and $01) shl 3); // 0 => 3
Result.rs1 := 2;
Result.OpCode := A_ADDI;
Result.format := rvfInstructionDestSrcImm;
end
else if Result.rd = 0 then
begin
Result.OpCode := A_ILL;
Result.format := rvfInstruction;
end;
end;
function TRiscvDisassembler.decodeFLD(instr: uint16):TRiscvInstruction;
var
imm: uint16;
begin
FillByte(Result, SizeOf(Result), 0);
decodeCLS(instr, imm, Result.rs1, Result.rd, ieImm5376);
Result.imm := imm;
// For RV32/64. For RV128 this would be LQ
Result.OpCode := A_FLD;
Result.format := rvfLoadFDestSrcOffset;
end;
function TRiscvDisassembler.decodeLW(instr: uint16):TRiscvInstruction;
var
imm: uint16;
begin
FillByte(Result, SizeOf(Result), 0);
decodeCLS(instr, imm, Result.rs1, Result.rd, ieImm5326);
Result.imm := imm;
Result.OpCode := A_LW;
Result.format := rvfInstructionDestSrcOffset;
end;
function TRiscvDisassembler.decodeFLW(instr: uint16):TRiscvInstruction;
var
imm: uint16;
begin
FillByte(Result, SizeOf(Result), 0);
decodeCLS(instr, imm, Result.rs1, Result.rd, ieImm5326);
Result.imm := imm;
// For RV32. For RV64/128 this would be LD
Result.OpCode := A_FLW;
Result.format := rvfLoadFDestSrcOffset;
end;
function TRiscvDisassembler.decodeFSD(instr: uint16):TRiscvInstruction;
var
imm: uint16;
begin
FillByte(Result, SizeOf(Result), 0);
decodeCLS(instr, imm, Result.rs1, Result.rs2, ieImm5326);
Result.imm := imm;
// For RV32/64. For RV128 this would be SQ
Result.OpCode := A_FSD;
Result.format := rvfStoreFSrc2Src1Offset;
end;
function TRiscvDisassembler.decodeSW(instr: uint16):TRiscvInstruction;
var
imm: uint16;
begin
FillByte(Result, SizeOf(Result), 0);
decodeCLS(instr, imm, Result.rs1, Result.rs2, ieImm5326);
Result.imm := imm;
Result.OpCode := A_SW;
Result.format := rvfStoreSrc2Src1Offset;
end;
function TRiscvDisassembler.decodeFSW(instr: uint16):TRiscvInstruction;
var
imm: uint16;
begin
FillByte(Result, SizeOf(Result), 0);
decodeCLS(instr, imm, Result.rs1, Result.rs2, ieImm5376);
Result.imm := imm;
// For RV32. For RV64/128 this would be SD
Result.OpCode := A_FSW;
Result.format := rvfStoreFSrc2Src1Offset;
end;
function TRiscvDisassembler.decodeAddI(instr: uint16): TRiscvInstruction;
var
imm: byte;
begin
FillByte(Result, SizeOf(Result), 0);
decodeCI(instr, Result.rd, imm);
Result.imm := imm;
// Check sign bit
if imm > $1F then
Result.imm := Result.imm or int32($FFFFFFC0);
Result.rs1 := Result.rd;
// For RV32. For RV64/128 this would be SD
if (imm = 0) and (Result.rd = 0) then
begin
Result.OpCode := A_NOP;
Result.format := rvfInstruction;
end
else
begin
Result.OpCode := A_ADDI;
Result.format := rvfInstructionDestSrcImm;
end;
end;
function TRiscvDisassembler.decodeCJAL(instr: uint16): TRiscvInstruction;
var
imm: int16;
begin
FillByte(Result, SizeOf(Result), 0);
decodeCJ(instr, imm);
Result.imm := imm;
Result.OpCode := A_JAL;
Result.rd := 1;
Result.format := rvfInstructionDestImm;
end;
function TRiscvDisassembler.decodeLI(instr: uint16): TRiscvInstruction;
var
imm: byte;
begin
FillByte(Result, SizeOf(Result), 0);
decodeCI(instr, Result.rd, imm);
Result.rs1 := 0;
Result.imm := imm;
// Check sign bit
if (imm and $20) > 0 then
Result.imm := Result.imm or int32($FFFFFFC0);
Result.OpCode := A_ADDI;
Result.format := rvfInstructionDestSrcImm;
end;
function TRiscvDisassembler.decodeLUI(instr: uint16): TRiscvInstruction;
var
imm: byte;
begin
FillByte(Result, SizeOf(Result), 0);
decodeCI(instr, Result.rd, imm);
Result.rs1 := 0;
if imm = 0 then
begin
Result.OpCode := A_RESERVED;
Result.format := rvfInstruction;
end
else if Result.rd = 2 then
begin
Result.imm := (int32(imm and $20) shl 4) or // 5 => 9
(int32(imm and $10) shl 0) or // 4 => 4
(int32(imm and $08) shl 3) or // 3 => 6
(int32(imm and $06) shl 6) or // 2:1 => 8:7
(int32(imm and $01) shl 5); // 0 => 5
Result.rs1 := 2;
// Check sign bit
if (imm and $20) > 0 then
Result.imm := Result.imm or int32($FFFFFC00);
Result.OpCode := A_ADDI;
Result.format := rvfInstructionDestSrcImm;
end
else // if rd = 0 then hint
begin
Result.imm := imm;
// Check sign bit
if (imm and $20) > 0 then
Result.imm := Result.imm or int32($FFFFFC00);
Result.OpCode := A_LUI;
Result.format := rvfInstructionDestImm;
end;
end;
function TRiscvDisassembler.decodeALU(instr: uint16):TRiscvInstruction;
var
imm5, imm40, rs_rd, funct2: byte;
begin
FillByte(Result, SizeOf(Result), 0);
imm5 := (instr shr 12) and 1;
rs_rd := ((instr shr 7) and $07) + 8;
imm40 := (instr shr 2) and $1F;
funct2 := (instr shr 10) and $03;
Result.rd := rs_rd;
Result.rs1 := rs_rd;
case funct2 of
0:
begin
Result.imm := (imm5 shl 5) or imm40;
Result.OpCode := A_SRLI;
Result.format := rvfInstructionDestSrcImm;
end;
1:
begin
Result.imm := (imm5 shl 5) or imm40;
Result.OpCode := A_SRAI;
Result.format := rvfInstructionDestSrcImm;
end;
2:
begin
Result.imm := (imm5 shl 5) or imm40;
// Check sign
if imm5 = 1 then
Result.imm := Result.imm or int32($FFFFFFC0);
Result.OpCode := A_ANDI;
Result.format := rvfInstructionDestSrcImm;
end;
3:
begin
if imm5 = 1 then
begin
// TODO: Ignore 32 bit operations W on RV64/RV128
Result.OpCode := A_RESERVED;
Result.format := rvfInstruction;
end
else
begin
funct2 := imm40 shr 3;
Result.rs2 := (imm40 and $03) + 8;
Result.format := rvfInstructionDestSrc1Src2;
case funct2 of
0: Result.OpCode := A_SUB;
1: Result.OpCode := A_XOR;
2: Result.OpCode := A_OR;
3: Result.OpCode := A_AND;
end;
end;
end;
end;
end;
function TRiscvDisassembler.decodeCJ(instr: uint16): TRiscvInstruction;
var
imm: int16;
begin
FillByte(Result, SizeOf(Result), 0);
decodeCJ(instr, imm);
Result.imm := imm;
Result.OpCode := A_JAL;
Result.rd := 0;
Result.format := rvfInstructionDestImm;
end;
function TRiscvDisassembler.decodeCBNEQZ(instr: uint16; funct3: byte): TRiscvInstruction;
var
imm: int16;
begin
FillByte(Result, SizeOf(Result), 0);
decodeCB(instr, Result.rs1, imm);
Result.imm := imm;
Result.format := rvfInstructionSrc1Src2Imm;
Result.rs2 := 0;
if funct3 = 6 then
Result.OpCode := A_BEQ
else
Result.OpCode := A_BNE;
end;
function TRiscvDisassembler.decodeSLLI(instr: uint16): TRiscvInstruction;
var
imm: byte;
begin
FillByte(Result, SizeOf(Result), 0);
decodeCI(instr, Result.rd, imm);
// For RV32C, if imm = 0, then HINT
Result.imm := imm;
Result.rs1 := Result.rd;
if Result.imm < $20 then // Restriction only for RV32C
begin
Result.OpCode := A_SLLI;
Result.format := rvfInstructionDestSrcImm;
end
else
begin
Result.OpCode := A_CUSTOM;
Result.format := rvfCustom;
end;
end;
function TRiscvDisassembler.decodeFLDSP(instr: uint16): TRiscvInstruction;
var
imm: byte;
begin
FillByte(Result, SizeOf(Result), 0);
decodeCI(instr, Result.rd, imm);
Result.imm := (imm and $38) or
(imm and $07) shl 6;
Result.rs1 := 2;
// TODO: RV128C => C.LQSP
Result.OpCode := A_FLD;
Result.format := rvfLoadFDestSrcOffset;
end;
function TRiscvDisassembler.decodeLWSP(instr: uint16): TRiscvInstruction;
var
imm: byte;
begin
FillByte(Result, SizeOf(Result), 0);
decodeCI(instr, Result.rd, imm);
// uimm: 05 04 03 02 01 00
// imm: 05 04 03 02 07 06
Result.imm := (imm and $3C) or
(imm and $03) shl 6;
Result.rs1 := 2;
Result.OpCode := A_LW;
Result.format := rvfInstructionDestSrcOffset;
end;
function TRiscvDisassembler.decodeFLWSP(instr: uint16): TRiscvInstruction;
var
imm: byte;
begin
FillByte(Result, SizeOf(Result), 0);
decodeCI(instr, Result.rd, imm);
Result.imm := (imm and $30) or
(imm and $0F) shl 6;
Result.rs1 := 2;
// TODO: RV32/RV128C => C.LDSP
if Result.rd = 8 then
begin
Result.OpCode := A_RESERVED;
Result.format := rvfInstruction;
end
else
begin
Result.OpCode := A_FLW;
Result.format := rvfLoadFDestSrcOffset;
end;
end;
function TRiscvDisassembler.decodeJR(instr: uint16): TRiscvInstruction;
var
imm: byte;
imm5: boolean;
begin
FillByte(Result, SizeOf(Result), 0);
decodeCI(instr, Result.rd, imm);
imm5 := imm and $20 = $20;
Result.rs2 := (imm and $1F);
Result.rs1 := Result.rd;
if not imm5 then
begin
// TODO: RV32/RV128C => C.LDSP
if Result.rs2 = 0 then
begin
if Result.rs1 = 0 then
begin
Result.OpCode := A_RESERVED;
Result.format := rvfInstruction;
end
else
begin
Result.rd := 0;
if (Result.rs1 = 1) and (Result.imm = 0) then
begin
Result.OpCode := A_RET;
Result.format := rvfInstruction;
end
else
begin
Result.OpCode := A_JALR;
Result.format := rvfInstructionDestSrcOffset;
end;
end
end
else // rs2 > 0
begin
// if Result.rd = 0 then hint else
Result.rs1 := 0;
Result.OpCode := A_ADD;
Result.format := rvfInstructionDestSrc1Src2;
end;
end
else // imm5 > 0
begin
if (Result.rd = 0) and (Result.rs2 = 0) then
begin
Result.OpCode := A_EBREAK;
Result.format := rvfInstruction;
end
else if Result.rs2 = 0 then
begin
Result.rd := 1;
Result.OpCode := A_JALR;
Result.format := rvfInstructionDestSrcOffset;
end
else // if rs2 > 0 else hint
begin
Result.OpCode := A_ADD;
Result.format := rvfInstructionDestSrc1Src2;
end;
end;
end;
function TRiscvDisassembler.decodeCStore(instr: uint16; funct3: byte): TRiscvInstruction;
var
uimm: uint16;
begin
FillByte(Result, SizeOf(Result), 0);
Result.rs1 := 2;
case funct3 of
5:
begin
// if RV32 then
decodeCSS(instr, uimm, Result.rs2, ie2Imm5386);
Result.imm := uimm;
Result.OpCode := A_FSD;
Result.format := rvfStoreFSrc2Src1Offset;
end;
6:
begin
decodeCSS(instr, uimm, Result.rs2, ie2Imm5276);
Result.imm := uimm;
Result.OpCode := A_SW;
Result.format := rvfStoreSrc2Src1Offset;
end;
7:
begin
// if RV32 then
decodeCSS(instr, uimm, Result.rs2, ie2Imm5276);
Result.imm := uimm;
Result.OpCode := A_FSD;
Result.format := rvfStoreFSrc2Src1Offset;
end;
end;
end;
initialization
DebugLogger.FindOrRegisterLogGroup('DBG_WARNINGS' {$IFDEF DBG_WARNINGS} , True {$ENDIF} );
end.