lazarus/components/tachart/taexpressionseries.pas

1025 lines
26 KiB
ObjectPascal

{
Function series with expression parser for TAChart.
*****************************************************************************
See the file COPYING.modifiedLGPL.txt, included in this distribution,
for details about the license.
*****************************************************************************
Author: Werner Pamler
}
unit TAExpressionSeries;
{$H+}
interface
uses
Classes, Graphics, typ, Types, SysUtils, fpexprpars,
TAChartUtils, TAFuncSeries;
type
TExpressionSeries = class;
TChartExprParam = class(TCollectionItem)
private
FName: String;
FValue: Double;
public
procedure Assign(Source: TPersistent); override;
published
property Name: String read FName write FName;
property Value: Double read FValue write FValue;
end;
TChartExprParams = class(TCollection)
private
FParser: TFpExpressionParser;
function GetP(AIndex: Integer): TChartExprParam;
procedure SetP(AIndex: Integer; AValue: TChartExprParam);
protected
procedure UpdateIdentifier(const AName: String; const AValue: Double);
public
function AddParam(const AName: String; const AValue: Double): TChartExprParam;
procedure Update(AItem: TCollectionItem); override;
property Params[AIndex: Integer]: TChartExprParam read GetP write SetP; default;
end;
TDomainParts = array[0..4] of String;
// parts of a domain expression '1 >= x > 0' --> '1', '>=', 'x', '>', '0'
TChartDomainScanner = class
private
FParser: TFpExpressionParser;
FVariable: String;
FExpression: String;
FEpsilon: Double;
protected
procedure Analyze(AList, ADomain: TIntervalList; const AParts: TDomainParts);
procedure ConvertToExclusions(AList, ADomain: TIntervalList);
procedure ExpressionError;
procedure ParseExpression(AList, ADomain: TIntervalList);
public
constructor Create(ASeries: TExpressionSeries);
procedure ExtractDomainExclusions(AList: TIntervalList);
property Epsilon: Double read FEpsilon write FEpsilon;
property Expression: String read FExpression write FExpression;
property Variable: String read FVariable write FVariable;
end;
TExpressionSeries = class(TCustomFuncSeries)
private
FParser: TFpExpressionParser;
FDomainScanner: TChartDomainScanner;
FParams: TChartExprParams;
FX: TFPExprIdentifierDef;
FVariable: String;
function GetDomain: String;
function GetDomainEpsilon: Double;
function GetExpression: String;
procedure SetDomain(const AValue: String);
procedure SetDomainEpsilon(const AValue: Double);
procedure SetExpression(const AValue: string);
procedure SetParams(const AValue: TChartExprParams);
procedure SetVariable(const AValue: String);
protected
function DoCalculate(AX: Double): Double; override;
public
constructor Create(AOwner: TComponent); override;
destructor Destroy; override;
procedure Assign(ASource: TPersistent); override;
function IsEmpty: Boolean; override;
published
property Domain: String read GetDomain write SetDomain;
property DomainEpsilon: Double read GetDomainEpsilon write SetDomainEpsilon;
property Expression: String read GetExpression write SetExpression;
property Params: TChartExprParams read FParams write SetParams;
property Variable: String read FVariable write SetVariable;
end;
implementation
uses
Math, TAGraph, TAChartStrConsts;
{ TChartExprParam }
procedure TChartExprParam.Assign(Source: TPersistent);
begin
if Source is TChartExprParam then begin
FName := TChartExprParam(Source).Name;
FValue := TChartExprParam(Source).Value;
end else
inherited Assign(Source);
end;
{ TChartExprParams }
function TChartExprParams.AddParam(const AName: String;
const AValue: Double): TChartExprParam;
begin
Result := Add as TChartExprParam;
Result.FName := AName;
Result.FValue := AValue;
UpdateIdentifier(AName, AValue);
//Changed;
end;
function TChartExprParams.GetP(AIndex: Integer): TChartExprParam;
begin
Result := TChartExprParam(Items[AIndex]);
end;
procedure TChartExprParams.SetP(AIndex: Integer;
AValue: TChartExprParam);
begin
Items[AIndex] := AValue;
UpdateIdentifier(AValue.Name, AValue.Value);
end;
procedure TChartExprParams.Update(AItem: TCollectionItem);
var
p: TChartExprParam;
begin
if Assigned(FParser) then begin
p := TChartExprParam(AItem);
if p <> nil then UpdateIdentifier(p.Name, p.Value);
end;
end;
procedure TChartExprParams.UpdateIdentifier(const AName: String;
const AValue: Double);
var
ident: TFpExprIdentifierDef;
s: String;
begin
Str(AValue:0, s);
ident := FParser.Identifiers.FindIdentifier(AName);
if ident = nil then
FParser.Identifiers.AddFloatVariable(AName, AValue)
else
ident.Value := s;
end;
{ TChartDomainScanner }
constructor TChartDomainScanner.Create(ASeries: TExpressionSeries);
begin
FParser := ASeries.FParser;
FVariable := ASeries.Variable;
end;
{ Analyzes the parts of the domain expression and extract the intervals on
which the function is defined (--> ADomain).
NOTE: Although supported by the scanner the method does not distinguish
between cases < and <=, as well as between > and >=. }
procedure TChartDomainScanner.Analyze(AList, ADomain: TIntervalList;
const AParts: TDomainParts);
var
a, b: Double;
begin
// two-sided interval, e.g. "0 < x <= 1", or "2 > x >= 1"
if (AParts[2] = FVariable) and (AParts[3] <> '') and (AParts[4] <> '') then
begin
FParser.Expression := AParts[0];
a := ArgToFloat(FParser.Evaluate);
FParser.Expression := AParts[4];
b := ArgToFloat(FParser.Evaluate);
if (AParts[1][1] = '<') and (AParts[3][1] = '<') and (a < b) then
ADomain.AddRange(a, b)
else
if (AParts[1][1] = '>') and (AParts[3][1] = '>') and (a > b) then
ADomain.AddRange(b, a);
end else
// one-sided interval, variable is at left
if (AParts[0] = FVariable) and (AParts[3] = '') and (AParts[4] = '') then
begin
FParser.Expression := AParts[2];
a := ArgToFloat(FParser.Evaluate);
case AParts[1] of
'<>' : AList.AddPoint(a); // x <> a
'<', '<=' : ADomain.AddRange(-Infinity, a); // x < a, x <= a
'>', '>=' : ADomain.AddRange(a, Infinity); // x > a, x >= a
else Expressionerror;
end;
end else
// one-sided interval, variable is at right
if (AParts[2] = FVariable) and (AParts[3] = '') and (AParts[4] = '') then
begin
FParser.Expression := AParts[0];
a := ArgToFloat(FParser.Evaluate);
case AParts[1] of
'<>' : AList.AddPoint(a); // a <> x
'<', '<=' : ADomain.AddRange(a, Infinity); // a < x, a <= x
'>', '>=' : ADomain.AddRange(-Infinity, a); // a > x, a >= x
else ExpressionError;
end;
end else
ExpressionError;
end;
{ Converts the intervals in ADomain on which the function is defined to
intervals in AList in which the function is NOT defined (= DomainExclusion) }
procedure TChartDomainScanner.ConvertToExclusions(AList, ADomain: TIntervalList);
function IsPoint(i: Integer): Boolean;
begin
Result := (i >= 0) and (i < ADomain.IntervalCount) and
(ADomain.Interval[i].FStart = ADomain.Interval[i].FEnd);
end;
type
TIntervalPoint = record
Value: Double;
Contained: Boolean;
end;
var
a, b: Double;
i, j: Integer;
intervalWithStart: Boolean;
intervalWithEnd: Boolean;
points: array of TIntervalPoint;
npoints: Integer;
begin
if ADomain.IntervalCount = 0 then
exit;
j := 0;
SetLength(points, ADomain.IntervalCount*2);
for i:=0 to ADomain.IntervalCount-1 do begin
if IsPoint(i) then
Continue;
if ADomain.Interval[i].FStart <> -Infinity then begin
points[j].Value := ADomain.Interval[i].FStart;
points[j].Contained := IsPoint(i-1);
inc(j);
end;
if ADomain.Interval[i].FEnd <> +Infinity then begin
points[j].Value := ADomain.Interval[i].FEnd;
points[j].Contained := IsPoint(i+1);
inc(j);
end;
end;
SetLength(points, j);
// Case 1: domain extends to neg infinity
// -INF <---------|xxxxxxxx|------|xxxx> INF with - = allowed, x = forbidden
// 0 1 2
if ADomain.Interval[0].FStart = -Infinity then
j := 0
else
// Case 2: domain begins at finite value
// -INF <xxxxxxxxx|--------|xxxxxx|------>INF
// 0 1 2
begin
a := -Infinity;
b := points[0].Value;
AList.AddRange(a, b);
if not points[0].Contained then
AList.AddPoint(b);
j := 1;
end;
while j < Length(points) do begin
a := points[j].Value;
if not points[j].Contained then
AList.AddPoint(a);
if j = High(points) then begin
AList.AddRange(a, Infinity);
end else
begin
b := points[j+1].Value;
AList.AddRange(a, b);
if not points[j+1].Contained then
AList.AddPoint(b);
end;
inc(j, 2);
end;
end;
procedure TChartDomainScanner.ExpressionError;
begin
raise Exception.Create('Incorrect domain expression in "' + FExpression + '"');
end;
procedure TChartDomainScanner.ExtractDomainExclusions(AList: TIntervalList);
var
domains: TIntervalList;
savedExpr: String;
begin
Assert(AList <> nil);
AList.Clear;
if FExpression = '' then
exit;
savedExpr := FParser.Expression;
domains := TIntervalList.Create;
try
AList.Epsilon := FEpsilon;
domains.Epsilon := FEpsilon;
ParseExpression(AList, domains);
ConvertToExclusions(AList, domains);
finally
domains.Free;
FParser.Expression := savedExpr;
end;
end;
{ Parses the expression string and creates an interval list with the
domain of the function, i.e. the intervals in which the function is DEFINED. }
procedure TChartDomainScanner.ParseExpression(AList, ADomain: TIntervalList);
var
i: Integer;
s: String;
parts: TDomainParts;
p: Integer; // 0=left, 1=operator left , 2=middle, 3=operator right, 4=right
// 0 <= x < 1
begin
for p := 0 to Length(parts)-1 do
parts[p] := '';
p := 0;
i := 1;
s := FExpression + ';'; // Simplify parsing...
while i <= Length(s) do begin
case s[i] of
' ': ;
';': begin
Analyze(AList, ADomain, parts);
for p := 0 to Length(parts)-1 do parts[p] := '';
p := 0;
end;
'<': if (i < Length(FExpression)) then begin
inc(p);
case s[i+1] of
'=': begin parts[p] := '<='; inc(i); end;
'>': begin parts[p] := '<>'; inc(i); end;
else parts[p] := '<';
end;
inc(p);
end else
ExpressionError;
'>': if (i < Length(FExpression)) then begin
inc(p);
if s[i+1] = '=' then begin
parts[p] := '>=';
inc(i);
end else
parts[p] := '>';
inc(p);
end else
ExpressionError;
'=': ExpressionError;
else
parts[p] := Parts[p] + s[i];
end;
inc(i);
end;
end;
{ TExpressionSeries }
constructor TExpressionSeries.Create(AOwner: TComponent);
begin
inherited Create(AOwner);
FVariable := 'x';
FParser := TFpExpressionParser.Create(self);
FParser.BuiltIns := [bcMath];
FX := FParser.Identifiers.AddFloatVariable(FVariable, 0.0);
FParser.Expression := FVariable;
FDomainScanner := TChartDomainScanner.Create(self);
FDomainScanner.Epsilon := DEFAULT_EPSILON;
FParams := TChartExprParams.Create(TChartExprParam);
FParams.FParser := FParser;
end;
destructor TExpressionSeries.Destroy;
begin
FX := nil;
FDomainScanner.Free;
inherited;
end;
procedure TExpressionSeries.Assign(ASource: TPersistent);
begin
if ASource is TExpressionSeries then begin
Domain := TExpressionSeries(ASource).Domain;
Expression := TExpressionSeries(ASource).Expression;
Params := TExpressionSeries(ASource).Params;
Variable := TExpressionSeries(ASource).Variable;
end;
inherited Assign(ASource);
end;
function TExpressionSeries.DoCalculate(AX: Double): Double;
var
res: TFPExpressionResult;
begin
Result := 0.0;
FX.AsFloat := AX;
try
res := FParser.Evaluate;
if res.ResultType=rtFloat then
Result := res.ResFloat
else
if res.ResultType=rtInteger then
Result := res.ResInteger;
except
end;
end;
function TExpressionSeries.GetDomain: String;
begin
Result := FDomainScanner.Expression;
end;
function TExpressionSeries.GetDomainEpsilon: Double;
begin
Result := FDomainScanner.Epsilon;
end;
function TExpressionSeries.GetExpression: String;
begin
Result := FParser.Expression;
end;
function TExpressionSeries.IsEmpty: Boolean;
begin
Result := FParser.Expression <> '';
end;
procedure TExpressionSeries.SetDomain(const AValue: String);
begin
FDomainScanner.Expression := AValue;
FDomainScanner.ExtractDomainExclusions(DomainExclusions);
UpdateParentChart;
end;
procedure TExpressionSeries.SetDomainEpsilon(const AValue: Double);
begin
FDomainScanner.Epsilon := AValue;
end;
procedure TExpressionSeries.SetExpression(const AValue: String);
begin
FParser.Expression := AValue;
if not (FParser.ResultType in [rtInteger, rtFLoat]) then
raise EExprParser.CreateFmt(rsErrInvalidResultType, [ResultTypeName(FParser.ResultType)]);
UpdateParentChart;
end;
procedure TExpressionSeries.SetParams(const AValue: TChartExprParams);
var
i: Integer;
p: TChartExprParam;
begin
FParams.Assign(AValue);
FParser.Identifiers.Clear;
FX := FParser.Identifiers.AddFloatVariable(FVariable, 0.0);
for i:=0 to FParams.Count-1 do begin
p := FParams[i];
FParser.Identifiers.AddFloatVariable(p.Name, p.Value);
end;
end;
procedure TExpressionSeries.SetVariable(const AValue: String);
begin
if FVariable = AValue then exit;
FVariable := AValue;
FDomainScanner.Variable := AValue;
SetParams(FParams);
end;
{ Additional functions for the parser }
procedure ExprDegToRad(var Result: TFPExpressionResult; const Args: TExprParameterArray);
var
x: Double;
begin
x := ArgToFloat(Args[0]);
Result.resFloat := degtorad(x);
end;
procedure ExprRadToDeg(var Result: TFPExpressionResult; const Args: TExprParameterArray);
var
x: Double;
begin
x := ArgToFloat(Args[0]);
Result.resFloat := radtodeg(x);
end;
procedure ExprTan(var Result: TFPExpressionResult; const Args: TExprParameterArray);
var
x: Double;
begin
x := ArgToFloat(Args[0]);
Result.resFloat := tan(x);
end;
procedure ExprCot(var Result: TFPExpressionResult; const Args: TExprParameterArray);
var
x: Double;
begin
x := ArgToFloat(Args[0]);
Result.resFloat := cot(x);
end;
(*
procedure ExprArcsin(var Result: TFPExpressionResult; const Args: TExprParameterArray);
var
x: Double;
begin
x := ArgToFloat(Args[0]);
if IsNumber(x) and InRange(x, -1.0, 1.0) then
Result.resFloat := arcsin(x)
else
Result.resFloat := NaN;
end;
procedure ExprArccos(Var Result: TFPExpressionResult; Const Args: TExprParameterArray);
var
x: Double;
begin
x := ArgToFloat(Args[0]);
if IsNumber(x) and InRange(x, -1.0, 1.0) then
Result.resFloat := arccos(x)
else
Result.resFloat := NaN;
end;
Procedure ExprArccot(Var Result: TFPExpressionResult; Const Args: TExprParameterArray);
var
x: Double;
begin
x := ArgToFloat(Args[0]);
if IsNumber(x) and InRange(x, -1.0, 1.0) then
Result.resFloat := pi/2 - arctan(x)
else
Result.resFloat := NaN;
end;
procedure ExprCosh(Var Result: TFPExpressionResult; Const Args: TExprParameterArray);
var
x: Double;
begin
x := ArgToFloat(Args[0]);
if IsNumber(x) then
Result.resFloat := cosh(x)
else
Result.resFloat := NaN;
end;
procedure ExprCoth(Var Result: TFPExpressionResult; Const Args: TExprParameterArray);
var
x: Double;
begin
x := ArgToFloat(Args[0]);
if IsNumber(x) and (x <> 0.0) then
Result.resFloat := 1/tanh(x)
else
Result.resFloat := NaN;
end;
procedure ExprSinh(Var Result: TFPExpressionResult; Const Args: TExprParameterArray);
var
x: Double;
begin
x := ArgToFloat(Args[0]);
if IsNumber(x) then
Result.resFloat := sinh(x)
else
Result.resFloat := NaN;
end;
procedure ExprTanh(Var Result: TFPExpressionResult; Const Args: TExprParameterArray);
var
x: Double;
begin
x := ArgToFloat(Args[0]);
if IsNumber(x) then
Result.resFloat := tanh(x)
else
Result.resFloat := NaN;
end;
procedure ExprArcosh(Var Result: TFPExpressionResult; Const Args: TExprParameterArray);
var
x: Double;
begin
x := ArgToFloat(Args[0]);
if IsNumber(x) and (x >= 1.0) then
Result.resFloat := arcosh(x)
else
Result.resFloat := NaN;
end;
procedure ExprArsinh(Var Result: TFPExpressionResult; Const Args: TExprParameterArray);
var
x: Double;
begin
x := ArgtoFloat(Args[0]);
if IsNumber(x) then
Result.resFloat := arsinh(x)
else
Result.resFloat := NaN;
end;
procedure ExprArtanh(Var Result: TFPExpressionResult; Const Args: TExprParameterArray);
var
x: Double;
begin
x := ArgToFloat(Args[0]);
if IsNumber(x) and (x > -1.0) and (x < 1.0) then
Result.resFloat := artanh(x)
else
Result.resFloat := NaN;
end;
procedure ExprArcoth(Var Result: TFPExpressionResult; Const Args: TExprParameterArray);
var
x: Double;
begin
x := ArgToFloat(Args[0]);
if IsNumber(x) and (x < -1.0) and (x > 1.0) then
Result.resFloat := artanh(1.0/x)
else
Result.resFloat := NaN;
end; *)
procedure ExprSinc(Var Result: TFPExpressionResult; Const Args: TExprParameterArray);
var
x: Double;
begin
x := ArgToFloat(Args[0]);
if x = 0 then
Result.ResFloat := 1.0
else
Result.resFloat := sin(x)/x;
end;
procedure ExprPower(Var Result: TFPExpressionResult; Const Args: TExprParameterArray);
var
x,y: Double;
begin
x := ArgToFloat(Args[0]);
y := ArgToFloat(Args[1]);
Result.resFloat := Power(x, y);
end;
procedure ExprHypot(Var Result: TFPExpressionResult; Const Args: TExprParameterArray);
var
x,y: Double;
begin
x := ArgToFloat(Args[0]);
y := ArgToFloat(Args[1]);
Result.resFloat := Hypot(x,y);
end;
(*
procedure ExprLg(Var Result: TFPExpressionResult; Const Args: TExprParameterArray);
var
x: Double;
begin
x := ArgToFloat(Args[0]);
if IsNumber(x) then
Result.resFloat := log10(x)
else
Result.resFloat := NaN;
end;
procedure ExprLog10(Var Result: TFPExpressionResult; Const Args: TExprParameterArray);
var
x: Double;
begin
x := ArgToFloat(Args[0]);
if IsNumber(x) then
Result.resFloat := log10(x)
else
Result.resFloat := NaN;
end;
procedure ExprLog2(Var Result: TFPExpressionResult; Const Args: TExprParameterArray);
var
x: Double;
begin
x := ArgToFloat(Args[0]);
if IsNumber(x) then
Result.resFloat := log2(x)
else
Result.resFloat := NaN;
end;
procedure ExprErf(Var Result: TFPExpressionResult; const Args: TExprParameterArray);
// Error function
var
x: Double;
begin
x := ArgToFloat(Args[0]);
if IsNumber(x) then
Result.resFloat := speerf(x)
else
Result.resFloat := NaN;
end;
procedure ExprErfc(Var Result: TFPExpressionResult; const Args: TExprParameterArray);
// Error function complement
var
x: Double;
begin
x := ArgToFloat(Args[0]);
if IsNumber(x) then
Result.resFloat := speefc(x)
else
Result.resFloat := NaN;
end;
// Incomplete gamma function P
procedure ExprGammaP(var Result: TFPExpressionResult; Const Args: TExprParameterArray);
var
x, s: Double;
begin
s := ArgToFloat(Args[0]);
x := ArgToFloat(Args[1]);
if IsNumber(x) and IsNumber(s) then
Result.resFloat := gammap(s, x)
else
Result.resFloat := NaN;
end;
// Incomplete gamma function Q
procedure ExprGammaQ(var Result: TFPExpressionResult; Const Args: TExprParameterArray);
var
x, s: Double;
begin
s := ArgToFloat(Args[0]);
x := ArgToFloat(Args[1]);
if IsNumber(x) and IsNumber(s) then
Result.resFloat := gammaq(s, x)
else
Result.resFloat := NaN;
end;
// Incomplete beta function
procedure ExprBetaI(var Result: TFPExpressionResult; Const Args: TExprParameterArray);
var
a, b, x: Double;
begin
a := ArgToFloat(Args[0]);
b := ArgToFloat(Args[1]);
x := ArgToFloat(Args[2]);
if IsNumber(x) and IsNumber(a) and IsNumber(b) then
Result.resFloat := betai(a, b, x)
else
Result.resFloat := NaN;
end;
procedure ExprChi2Dist(var Result: TFPExpressionResult; const Args: TExprParameterArray);
var
x: Double;
n: Double;
begin
x := ArgToFloat(Args[0]);
n := ArgToFloat(Args[1]);
if IsNumber(x) and IsNumber(n) then
Result.resFloat := chi2dist(x, round(n))
else
Result.resFloat := NaN;
end;
procedure ExprtDist(var Result: TFPExpressionResult; const Args: TExprParameterArray);
var
x: Double;
n: Double;
begin
x := ArgToFloat(Args[0]);
n := ArgToFloat(Args[1]);
if IsNumber(x) and IsNumber(n) then
Result.resFloat := tdist(x, round(n))
else
Result.resFloat := NaN;
end;
procedure ExprFDist(var Result: TFPExpressionResult; const Args: TExprParameterArray);
var
x: Double;
n1, n2: Double;
begin
x := ArgToFloat(Args[0]);
n1 := ArgToFloat(Args[1]);
n2 := ArgToFloat(Args[2]);
if IsNumber(x) and IsNumber(n1) and IsNumber(n2) then
Result.resFloat := Fdist(x, round(n1), round(n2))
else
Result.resFloat := NaN;
end;
procedure ExprI0(Var Result: TFPExpressionResult; Const Args: TExprParameterArray);
// Bessel function of the first kind I0(x)
var
x: Double;
begin
x := ArgToFloat(Args[0]);
if IsNumber(x) then
Result.resFloat := spebi0(x)
else
Result.resFloat := NaN;
end;
procedure ExprI1(Var Result: TFPExpressionResult; Const Args: TExprParameterArray);
// Bessel function of the first kind I1(x)
var
x: Double;
begin
x := ArgToFloat(Args[0]);
if IsNumber(x) then
Result.resFloat := spebi1(x)
else
Result.resFloat := NaN;
end;
procedure ExprJ0(Var Result: TFPExpressionResult; Const Args: TExprParameterArray);
// Bessel function of the first kind J0(x)
var
x: Double;
begin
x := ArgToFloat(Args[0]);
if IsNumber(x) then
Result.resFloat := spebj0(x)
else
Result.resFloat := NaN;
end;
procedure ExprJ1(Var Result: TFPExpressionResult; Const Args: TExprParameterArray);
// Bessel function of the first kind J1(x)
var
x: Double;
begin
x := ArgToFloat(Args[0]);
if IsNumber(x) then
Result.resFloat := spebj1(x)
else
Result.resFloat := NaN;
end;
procedure ExprK0(Var Result: TFPExpressionResult; Const Args: TExprParameterArray);
// Bessel function of the second kind K0(x)
var
x: Double;
begin
x := ArgToFloat(Args[0]);
if IsNumber(x) then
Result.resFloat := spebk0(x)
else
Result.resFloat := NaN;
end;
procedure ExprK1(Var Result: TFPExpressionResult; Const Args: TExprParameterArray);
// Bessel function of the second kind K1(x)
var
x: Double;
begin
x := ArgToFloat(Args[0]);
if IsNumber(x) then
Result.resFloat := spebk1(x)
else
Result.resFloat := NaN;
end;
procedure ExprY0(Var Result: TFPExpressionResult; Const Args: TExprParameterArray);
// Bessel function of the second kind Y0(x)
var
x: Double;
begin
x := ArgToFloat(Args[0]);
if IsNumber(x) then
Result.resFloat := speby0(x)
else
Result.resFloat := NaN;
end;
procedure ExprY1(Var Result: TFPExpressionResult; Const Args: TExprParameterArray);
// Bessel function of the second kind Y1(x)
var
x: Double;
begin
x := ArgToFloat(Args[0]);
if IsNumber(x) then
Result.resFloat := speby1(x)
else
Result.resFloat := NaN;
end;
procedure ExprMax(Var Result: TFPExpressionResult; Const Args: TExprParameterArray);
var
x1, x2: Double;
begin
x1 := ArgToFloat(Args[0]);
x2 := ArgToFloat(Args[1]);
if IsNumber(x1) and IsNumber(x2) then
Result.resFloat := Max(x1, x2)
else
Result.resFloat := NaN;
end;
procedure ExprMin(Var Result: TFPExpressionResult; Const Args: TExprParameterArray);
var
x1, x2: Double;
begin
x1 := ArgToFloat(Args[0]);
x2 := ArgToFloat(Args[1]);
if IsNumber(x1) and IsNumber(x2) then
Result.resFloat := Min(x1, x2)
else
Result.resFloat := NaN;
end;
function FixDecSep(const AExpression: String): String;
var
i: Integer;
begin
Result := AExpression;
for i:=1 to Length(Result) do begin
if Result[i] = ',' then Result[i] := '.';
end;
end;*)
procedure ExtendBuiltins;
begin
with BuiltinIdentifiers do begin
AddFunction(bcMath, 'degtorad', 'F', 'F', @ExprDegtorad);
AddFunction(bcMath, 'radtodeg', 'F', 'F', @ExprRadtodeg);
AddFunction(bcMath, 'tan', 'F', 'F', @ExprTan);
AddFunction(bcMath, 'cot', 'F', 'F', @ExprCot);
(*
AddFunction(bcMath, 'arcsin', 'F', 'F', @ExprArcSin);
AddFunction(bcMath, 'arccos', 'F', 'F', @ExprArcCos);
AddFunction(bcMath, 'arccot', 'F', 'F', @ExprArcCot);
AddFunction(bcMath, 'cosh', 'F', 'F', @ExprCosh);
AddFunction(bcMath, 'coth', 'F', 'F', @ExprCoth);
AddFunction(bcMath, 'sinh', 'F', 'F', @ExprSinh);
AddFunction(bcMath, 'tanh', 'F', 'F', @ExprTanh);
AddFunction(bcMath, 'arcosh', 'F', 'F', @ExprArcosh);
AddFunction(bcMath, 'arsinh', 'F', 'F', @ExprArsinh);
AddFunction(bcMath, 'artanh', 'F', 'F', @ExprArtanh);
AddFunction(bcMath, 'arcoth', 'F', 'F', @ExprArcoth);
*)
AddFunction(bcMath, 'sinc', 'F', 'F', @ExprSinc);
AddFunction(bcMath, 'power', 'F', 'FF', @ExprPower);
AddFunction(bcMath, 'hypot', 'F', 'FF', @ExprHypot);
(*
AddFunction(bcMath, 'lg', 'F', 'F', @ExprLog10);
AddFunction(bcMath, 'log10', 'F', 'F', @ExprLog10);
AddFunction(bcMath, 'log2', 'F', 'F', @ExprLog2);
// Error function
AddFunction(bcMath, 'erf', 'F', 'F', @ExprErf);
AddFunction(bcMath, 'erfc', 'F', 'F', @ExprErfc);
// Incomplete gamma and beta functions
AddFunction(bcMath, 'gammap', 'F', 'FF', @ExprGammaP);
AddFunction(bcMath, 'gammaq', 'F', 'FF', @ExprGammaQ);
AddFunction(bcMath, 'betai', 'F', 'FFF', @ExprBetaI);
// Probability distributions
AddFunction(bcMath, 'chi2dist', 'F', 'FI', @ExprChi2Dist);
AddFunction(bcMath, 'tdist', 'F', 'FI', @Exprtdist);
AddFunction(bcMath, 'Fdist', 'F', 'FII', @ExprFDist);
// Bessel functions of the first kind
AddFunction(bcMath, 'I0', 'F', 'F', @ExprI0);
AddFunction(bcMath, 'I1', 'F', 'F', @ExprI1);
AddFunction(bcMath, 'J0', 'F', 'F', @ExprJ0);
AddFunction(bcMath, 'J1', 'F', 'F', @ExprJ1);
// Bessel functions of the second kind
AddFunction(bcMath, 'K0', 'F', 'F', @ExprK0);
AddFunction(bcMath, 'K1', 'F', 'F', @ExprK1);
AddFunction(bcMath, 'Y0', 'F', 'F', @ExprY0);
AddFunction(bcMath, 'Y1', 'F', 'F', @ExprY1);
// Max/min
AddFunction(bcMath, 'max', 'F', 'FF', @ExprMax);
AddFunction(bcMath, 'min', 'F', 'FF', @ExprMin);
*)
end;
end;
initialization
ExtendBuiltins;
RegisterSeriesClass(TExpressionSeries, @rsExpressionSeries);
end.