mirror of
https://gitlab.com/freepascal.org/lazarus/lazarus.git
synced 2025-04-06 01:38:01 +02:00
1185 lines
36 KiB
ObjectPascal
1185 lines
36 KiB
ObjectPascal
{
|
|
/***************************************************************************
|
|
GraphMath.pp
|
|
------------
|
|
Math helper routines for use within Graphics/Drawing & related
|
|
Initial Revision : Wed Aug 07 2002
|
|
|
|
|
|
***************************************************************************/
|
|
|
|
*****************************************************************************
|
|
*
|
|
* This file is part of the Lazarus Component Library (LCL)
|
|
*
|
|
* See the file COPYING.LCL, included in this distribution,
|
|
* for details about the copyright.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
|
*
|
|
*****************************************************************************
|
|
}
|
|
{
|
|
@abstract(A Set of Math Helper routines to simply Cross-Platfrom Canvas,
|
|
etc)
|
|
@author(Andrew Johnson <AJ_Genius@Hotmail.com>)
|
|
@created(2002)
|
|
@lastmod(2002)
|
|
}
|
|
unit GraphMath;
|
|
|
|
{$Mode OBJFPC} {$H+}
|
|
|
|
interface
|
|
|
|
Uses
|
|
Classes, SysUtils, Math, LCLProc;
|
|
|
|
Type
|
|
TFloatPoint = Record
|
|
X, Y : Extended;
|
|
end;
|
|
|
|
TBezier = Array[0..3] of TFloatPoint;
|
|
|
|
PPoint = ^TPoint;
|
|
|
|
Procedure Angles2Coords(X,Y, Width, Height : Integer;
|
|
Angle1, Angle2 : Extended; var SX, SY, EX, EY : Integer);
|
|
|
|
Procedure Arc2Bezier(X, Y, Width, Height : Longint; Angle1, Angle2,
|
|
Rotation : Extended; var Points : TBezier);
|
|
|
|
Function Bezier(const C1,C2,C3,C4 : TFloatPoint): TBezier; Overload;
|
|
Function Bezier(const C1,C2,C3,C4 : TPoint): TBezier; Overload;
|
|
|
|
Procedure Bezier2Polyline(const Bezier : TBezier; var Points : PPoint;
|
|
var Count : Longint);
|
|
|
|
Procedure BezierArcPoints(X, Y, Width, Height : Longint; Angle1, Angle2,
|
|
Rotation : Extended; var Points : PPoint; var Count : Longint);
|
|
|
|
Function BezierMidPoint(Bezier : TBezier) : TFloatPoint;
|
|
|
|
Function CenterPoint(Rect : TRect) : TPoint;
|
|
|
|
Procedure Coords2Angles(X, Y, Width, Height : Integer; SX, SY,
|
|
EX, EY : Integer; var Angle1, Angle2 : Extended);
|
|
|
|
Function Distance(PT1,Pt2 : TPoint) : Extended; overload;
|
|
Function Distance(Pt, SP, EP : TFloatPoint) : Extended; overload;
|
|
|
|
Function EccentricAngle(PT : TPoint; Rect : TRect) : Extended;
|
|
|
|
Function EllipseRadialLength(Rect : TRect; EccentricAngle : Extended) : Longint;
|
|
|
|
Function FloatPoint(AX,AY : Extended): TFloatPoint;
|
|
|
|
Function LineEndPoint(StartPoint : TPoint; Angle, Length : Extended) : TPoint;
|
|
|
|
Procedure PolyBezier2Polyline(Beziers: Array of TBezier;
|
|
var Points : PPoint; var Count : Longint); Overload;
|
|
Procedure PolyBezier2Polyline(Beziers : Array of TPoint;
|
|
var Points : PPoint; var Count : Longint;
|
|
Continuous : Boolean); Overload;
|
|
Procedure PolyBezier2Polyline(Beziers : PPoint; BCount : Longint;
|
|
var Points : PPoint; var Count : Longint;
|
|
Continuous : Boolean); Overload;
|
|
|
|
Procedure PolyBezierArcPoints(X, Y, Width, Height : Longint; Angle1,
|
|
Angle2, Rotation : Extended; var Points : PPoint; var Count : Longint);
|
|
|
|
Function Quadrant(PT, Center : TPoint) : Integer;
|
|
|
|
Function RadialPoint(EccentricAngle : Extended; Rect : TRect) : TPoint;
|
|
|
|
Procedure SplitBezier(Bezier : TBezier; var Left, Right : TBezier);
|
|
|
|
Operator + (Addend1, Addend2 : TFloatPoint) : TFloatPoint;
|
|
Operator + (Addend1 : TFloatPoint; Addend2 : Extended) : TFloatPoint;
|
|
Operator + (Addend1 : Extended; Addend2 : TFloatPoint) : TFloatPoint;
|
|
Operator + (Addend1 : TFloatPoint; Addend2 : TPoint) : TFloatPoint;
|
|
Operator + (Addend1 : TPoint; Addend2 : TFloatPoint) : TFloatPoint;
|
|
|
|
Operator - (Minuend : TFloatPoint; Subtrahend : Extended) : TFloatPoint;
|
|
Operator - (Minuend, Subtrahend : TFloatPoint) : TFloatPoint;
|
|
Operator - (Minuend : TFloatPoint; Subtrahend : TPoint) : TFloatPoint;
|
|
Operator - (Minuend : TPoint; Subtrahend : TFloatPoint) : TFloatPoint;
|
|
|
|
Operator * (Multiplicand, Multiplier : TFloatPoint) : TFloatPoint;
|
|
Operator * (Multiplicand : TFloatPoint; Multiplier : Extended) : TFloatPoint;
|
|
Operator * (Multiplicand : Extended; Multiplier : TFloatPoint) : TFloatPoint;
|
|
Operator * (Multiplicand : TFloatPoint; Multiplier : TPoint) : TFloatPoint;
|
|
Operator * (Multiplicand : TPoint; Multiplier : TFloatPoint) : TFloatPoint;
|
|
|
|
Operator / (Dividend, Divisor : TFloatPoint) : TFloatPoint;
|
|
Operator / (Dividend : TFloatPoint; Divisor : Extended) : TFloatPoint;
|
|
Operator / (Dividend : TFloatPoint; Divisor : TPoint) : TFloatPoint;
|
|
Operator / (Dividend : TPoint; Divisor : TFloatPoint) : TFloatPoint;
|
|
|
|
Operator = (Compare1, Compare2 : TPoint) : Boolean;
|
|
Operator = (Compare1, Compare2 : TFloatPoint) : Boolean;
|
|
|
|
Operator := (Value : TFloatPoint) : TPoint;
|
|
|
|
{$IfNdef ver1_0}
|
|
Operator := (Value : TPoint) : TFloatPoint;
|
|
{$EndIf}
|
|
|
|
Operator = (Compare1, Compare2 : TRect) : Boolean;
|
|
|
|
|
|
implementation
|
|
|
|
|
|
Operator + (Addend1, Addend2 : TFloatPoint) : TFloatPoint;
|
|
Begin
|
|
With Result do begin
|
|
X := Addend1.X + Addend2.X;
|
|
Y := Addend1.Y + Addend2.Y;
|
|
end;
|
|
end;
|
|
|
|
Operator + (Addend1 : TFloatPoint; Addend2 : Extended) : TFloatPoint;
|
|
Begin
|
|
With Result do begin
|
|
X := Addend1.X + Addend2;
|
|
Y := Addend1.Y + Addend2;
|
|
end;
|
|
end;
|
|
|
|
Operator + (Addend1 : Extended; Addend2 : TFloatPoint) : TFloatPoint;
|
|
begin
|
|
Result := Addend2 + Addend1;
|
|
end;
|
|
|
|
Operator + (Addend1 : TFloatPoint; Addend2 : TPoint) : TFloatPoint;
|
|
Begin
|
|
With Result do begin
|
|
X := Addend1.X + Addend2.X;
|
|
Y := Addend1.Y + Addend2.Y;
|
|
end;
|
|
end;
|
|
|
|
Operator + (Addend1 : TPoint; Addend2 : TFloatPoint) : TFloatPoint;
|
|
begin
|
|
Result := Addend2 + Addend1;
|
|
end;
|
|
|
|
Operator - (Minuend, Subtrahend:TFloatPoint) : TFloatPoint;
|
|
Begin
|
|
With Result do begin
|
|
X := Minuend.X - Subtrahend.X;
|
|
Y := Minuend.Y - Subtrahend.Y;
|
|
end;
|
|
end;
|
|
|
|
Operator - (Minuend : TFloatPoint; Subtrahend : Extended) : TFloatPoint;
|
|
Begin
|
|
With Result do begin
|
|
X := Minuend.X - Subtrahend;
|
|
Y := Minuend.Y - Subtrahend;
|
|
end;
|
|
end;
|
|
|
|
Operator - (Minuend : TFloatPoint; Subtrahend : TPoint) : TFloatPoint;
|
|
begin
|
|
With Result do begin
|
|
X := Minuend.X - Subtrahend.X;
|
|
Y := Minuend.Y - Subtrahend.Y;
|
|
end;
|
|
end;
|
|
|
|
Operator - (Minuend : TPoint; Subtrahend : TFloatPoint) : TFloatPoint;
|
|
begin
|
|
With Result do begin
|
|
X := Minuend.X - Subtrahend.X;
|
|
Y := Minuend.Y - Subtrahend.Y;
|
|
end;
|
|
end;
|
|
|
|
Operator * (Multiplicand, Multiplier : TFloatPoint) : TFloatPoint;
|
|
Begin
|
|
With Result do begin
|
|
X := Multiplicand.X * Multiplier.X;
|
|
Y := Multiplicand.Y * Multiplier.Y;
|
|
end;
|
|
end;
|
|
|
|
Operator * (Multiplicand : TFloatPoint; Multiplier : Extended) : TFloatPoint;
|
|
Begin
|
|
With Result do begin
|
|
X := Multiplicand.X * Multiplier;
|
|
Y := Multiplicand.Y * Multiplier;
|
|
end;
|
|
end;
|
|
|
|
Operator * (Multiplicand : Extended; Multiplier : TFloatPoint) : TFloatPoint;
|
|
Begin
|
|
Result := Multiplier*Multiplicand;
|
|
end;
|
|
|
|
Operator * (Multiplicand : TFloatPoint; Multiplier : TPoint) : TFloatPoint;
|
|
begin
|
|
With Result do begin
|
|
X := Multiplicand.X * Multiplier.X;
|
|
Y := Multiplicand.Y * Multiplier.Y;
|
|
end;
|
|
end;
|
|
|
|
Operator * (Multiplicand : TPoint; Multiplier : TFloatPoint) : TFloatPoint;
|
|
begin
|
|
Result := Multiplier*Multiplicand;
|
|
end;
|
|
|
|
Operator / (Dividend, Divisor : TFloatPoint) : TFloatPoint;
|
|
Begin
|
|
With Result do begin
|
|
X := Dividend.X / Divisor.X;
|
|
Y := Dividend.Y / Divisor.Y;
|
|
end;
|
|
end;
|
|
|
|
Operator / (Dividend : TFloatPoint; Divisor : Extended) : TFloatPoint;
|
|
begin
|
|
With Result do begin
|
|
X := Dividend.X / Divisor;
|
|
Y := Dividend.Y / Divisor;
|
|
end;
|
|
end;
|
|
|
|
Operator / (Dividend : TFloatPoint; Divisor : TPoint) : TFloatPoint;
|
|
begin
|
|
With Result do begin
|
|
X := Dividend.X / Divisor.X;
|
|
Y := Dividend.Y / Divisor.Y;
|
|
end;
|
|
end;
|
|
|
|
Operator / (Dividend : TPoint; Divisor : TFloatPoint) : TFloatPoint;
|
|
begin
|
|
With Result do begin
|
|
X := Dividend.X / Divisor.X;
|
|
Y := Dividend.Y / Divisor.Y;
|
|
end;
|
|
end;
|
|
|
|
Operator = (Compare1, Compare2 : TPoint) : Boolean;
|
|
begin
|
|
Result := (Compare1.X = Compare2.X) and (Compare1.Y = Compare2.Y);
|
|
end;
|
|
|
|
Operator = (Compare1, Compare2 : TFloatPoint) : Boolean;
|
|
begin
|
|
Result := (Compare1.X = Compare2.X) and (Compare1.Y = Compare2.Y);
|
|
end;
|
|
|
|
Operator := (Value : TFloatPoint) : TPoint;
|
|
begin
|
|
With Result do begin
|
|
X := LCLProc.RoundToInt(Value.X);
|
|
Y := LCLProc.RoundToInt(Value.Y);
|
|
end;
|
|
end;
|
|
|
|
{$IfNdef ver1_0}
|
|
Operator := (Value : TPoint) : TFloatPoint;
|
|
begin
|
|
With Result do begin
|
|
X := Value.X;
|
|
Y := Value.Y;
|
|
end;
|
|
end;
|
|
{$EndIf}
|
|
|
|
Operator = (Compare1, Compare2 : TRect) : Boolean;
|
|
begin
|
|
Result := (Compare1.Left = Compare2.Left) and
|
|
(Compare1.Top = Compare2.Top) and
|
|
(Compare1.Right = Compare2.Right) and
|
|
(Compare1.Bottom = Compare2.Bottom);
|
|
end;
|
|
|
|
{------------------------------------------------------------------------------
|
|
Method: Angles2Coords
|
|
Params: x,y,width,height,angle1,angle2, sx, sy, ex, ey
|
|
Returns: Nothing
|
|
|
|
Use Angles2Coords to convert an Eccentric(aka Radial) Angle and an
|
|
Angle-Length, such as are used in X-Windows and GTK, into the coords,
|
|
for Start and End Radial-Points, such as are used in the Windows API Arc
|
|
Pie and Chord routines. The angles are 1/16th of a degree. For example, a
|
|
full circle equals 5760 (16*360). Positive values of Angle and AngleLength
|
|
mean counter-clockwise while negative values mean clockwise direction.
|
|
Zero degrees is at the 3'o clock position.
|
|
|
|
------------------------------------------------------------------------------}
|
|
Procedure Angles2Coords(X, Y, Width, Height : Integer;
|
|
Angle1, Angle2 : Extended; var SX, SY, EX, EY : Integer);
|
|
var
|
|
aRect : TRect;
|
|
SP, EP : TPoint;
|
|
begin
|
|
aRect := Rect(X,Y,X + Width,Y + Height);
|
|
SP := RadialPoint(Angle1 , aRect);
|
|
If Angle2 + Angle1 > 360*16 then
|
|
Angle2 := (Angle2 + Angle1) - 360*16
|
|
else
|
|
Angle2 := Angle2 + Angle1;
|
|
EP := RadialPoint(Angle2, aRect);
|
|
SX := SP.X;
|
|
SY := SP.Y;
|
|
EX := EP.X;
|
|
EY := EP.Y;
|
|
end;
|
|
|
|
{------------------------------------------------------------------------------
|
|
Method: Arc2Bezier
|
|
Params: X, Y, Width, Height, Angle1, Angle2, Rotation, Points, Count
|
|
Returns: Nothing
|
|
|
|
Use Arc2Bezier to convert an Arc and ArcLength into a Bezier Aproximation
|
|
of the Arc. The Rotation parameter accepts a Rotation-Angle for a rotated
|
|
Ellipse'- for a non-rotated ellipse this value would be 0, or 360. If the
|
|
AngleLength is greater than 90 degrees, or is equal to 0, it automatically
|
|
exits, as Bezier cannot accurately aproximate any angle greater then 90
|
|
degrees, and in fact for best result no angle greater than 45 should be
|
|
converted, instead an array of Bezier's should be created, each Bezier
|
|
descibing a portion of the total arc no greater than 45 degrees. The angles
|
|
are 1/16th of a degree. For example, a full circle equals 5760 (16*360).
|
|
Positive values of Angle and AngleLength mean counter-clockwise while
|
|
negative values mean clockwise direction. Zero degrees is at the 3'o clock
|
|
position.
|
|
|
|
------------------------------------------------------------------------------}
|
|
Procedure Arc2Bezier(X, Y, Width, Height : Longint; Angle1, Angle2,
|
|
Rotation : Extended; var Points : TBezier);
|
|
|
|
Function Rotate(Point : TFloatPoint; Rotation : Extended) : TFloatPoint;
|
|
var
|
|
SinA,CosA : Extended;
|
|
begin
|
|
CosA := cos(Rotation);
|
|
SinA := Sin(Rotation);
|
|
Result.X := Point.X*CosA + Point.Y*SinA;
|
|
Result.Y := Point.X*SinA - Point.Y*CosA;
|
|
end;
|
|
|
|
Function Scale(Point : TFloatPoint; ScaleX, ScaleY : Extended) : TFloatPoint;
|
|
begin
|
|
Result := Point*FloatPoint(ScaleX,ScaleY);
|
|
end;
|
|
|
|
var
|
|
Beta : Extended;
|
|
P : array[0..3] of TFLoatPoint;
|
|
SinA,CosA : Extended;
|
|
A,B : Extended;
|
|
I : Longint;
|
|
PT : TPoint;
|
|
ScaleX, ScaleY : Extended;
|
|
begin
|
|
If ABS(Angle2) > 90*16 then
|
|
exit;
|
|
If Angle2 = 0 then
|
|
exit;
|
|
|
|
B := Extended(Height) / 2;
|
|
A := Extended(Width) / 2;
|
|
|
|
If A <> B then begin
|
|
If A > B then begin
|
|
ScaleX := Extended(Width) / Height;
|
|
ScaleY := 1;
|
|
A := B;
|
|
end
|
|
else begin
|
|
ScaleX := 1;
|
|
ScaleY := Extended(Height) / Width;
|
|
B := A;
|
|
end;
|
|
end
|
|
else begin
|
|
ScaleX := 1;
|
|
ScaleY := 1;
|
|
end;
|
|
|
|
Angle1 := DegToRad(Angle1/16);
|
|
Angle2 := DegToRad(Angle2/16);
|
|
Rotation := -DegToRad(Rotation/16);
|
|
Beta := (4/3)*(1 - Cos(Angle2/2))/(Sin(Angle2/2));
|
|
PT := CenterPoint(Rect(X, Y, X+Width, Y + Height));
|
|
|
|
CosA := cos(Angle1);
|
|
SinA := sin(Angle1);
|
|
|
|
P[0].X := A *CosA;
|
|
P[0].Y := B *SinA;
|
|
P[1].X := P[0].X - Beta * A * SinA;
|
|
P[1].Y := P[0].Y + Beta * B * CosA;
|
|
|
|
CosA := cos(Angle1 + Angle2);
|
|
SinA := sin(Angle1 + Angle2);
|
|
|
|
P[3].X := A *CosA;
|
|
P[3].Y := B *SinA;
|
|
P[2].X := P[3].X + Beta * A * SinA;
|
|
P[2].Y := P[3].Y - Beta * B * CosA;
|
|
|
|
For I := 0 to 3 do
|
|
begin
|
|
Points[I] := Scale(P[I],ScaleX, ScaleY); //Scale to proper size
|
|
Points[I] := Rotate(Points[I], Rotation); //Rotate Counter-Clockwise
|
|
Points[I] := Points[I] + PT; //Translate to Center
|
|
end;
|
|
end;
|
|
|
|
{------------------------------------------------------------------------------
|
|
Method: Bezier
|
|
Params: C1,C2,C3,C4
|
|
Returns: TBezier
|
|
|
|
Use Bezier to get a TBezier. It is Primarily for use with and in Bezier
|
|
routines.
|
|
|
|
------------------------------------------------------------------------------}
|
|
Function Bezier(const C1,C2,C3,C4 : TFloatPoint): TBezier;
|
|
begin
|
|
Result[0] := C1;
|
|
Result[1] := C2;
|
|
Result[2] := C3;
|
|
Result[3] := C4;
|
|
end;
|
|
|
|
{------------------------------------------------------------------------------
|
|
Method: Bezier
|
|
Params: C1,C2,C3,C4
|
|
Returns: TBezier
|
|
|
|
Use Bezier to get a TBezier. It is Primarily for use with and in Bezier
|
|
routines.
|
|
|
|
------------------------------------------------------------------------------}
|
|
Function Bezier(const C1,C2,C3,C4 : TPoint): TBezier;
|
|
begin
|
|
Result[0] := FloatPoint(C1.X,C1.Y);
|
|
Result[1] := FloatPoint(C2.X,C2.Y);
|
|
Result[2] := FloatPoint(C3.X,C3.Y);
|
|
Result[3] := FloatPoint(C4.X,C4.Y);
|
|
end;
|
|
|
|
{------------------------------------------------------------------------------
|
|
Method: Bezier2Polyline
|
|
Params: Bezier, Points, Count
|
|
Returns: Nothing
|
|
|
|
Use BezierToPolyline to convert a 4-Point Bezier into a Pointer Array of
|
|
TPoint and a Count variable which can then be used within either a Polyline,
|
|
or Polygon routine. It is primarily for use within PolyBezier2Polyline. If
|
|
Points is not initialized or Count is less then 0, it is automatically
|
|
initialized and the array starts at 0, otherwise it tries too append points
|
|
to the array starting at Count. Points should ALWAYS be Freed when done
|
|
by calling to ReallocMem(Points, 0).
|
|
|
|
------------------------------------------------------------------------------}
|
|
Procedure Bezier2Polyline(const Bezier : TBezier; var Points : PPoint;
|
|
var Count : Longint);
|
|
var
|
|
Pt : TPoint;
|
|
|
|
Procedure AddPoint(const Point : TFloatPoint);
|
|
var
|
|
P : TPoint;
|
|
begin
|
|
P.X := RoundToInt(Point.X);
|
|
P.Y := RoundToInt(Point.Y);
|
|
If (Pt.X <> P.X) or (Pt.Y <> P.Y) then begin
|
|
Inc(Count);
|
|
ReallocMem(Points,SizeOf(TPoint)*Count);
|
|
Points[Count - 1] := P;
|
|
Pt := P;
|
|
end;
|
|
end;
|
|
|
|
Function Colinear(BP : TBezier; Tolerance : Extended) : Boolean;
|
|
var
|
|
D : Extended;
|
|
begin
|
|
D := SQR(Distance(BP[1], BP[0], BP[3]));
|
|
Result := D < Tolerance;
|
|
D := SQR(Distance(BP[2], BP[0], BP[3]));
|
|
If Result then
|
|
Result := Result and (D < Tolerance);
|
|
end;
|
|
|
|
Procedure SplitRecursive(B : TBezier);
|
|
var
|
|
Left,
|
|
Right : TBezier;
|
|
begin
|
|
If Colinear(B, 1) then begin
|
|
AddPoint(B[0]);
|
|
AddPoint(B[3]);
|
|
end
|
|
else begin
|
|
SplitBezier(B,left,right);
|
|
SplitRecursive(left);
|
|
SplitRecursive(right);
|
|
end;
|
|
end;
|
|
|
|
begin
|
|
Pt := Point(-1,-1);
|
|
If (not Assigned(Points)) or (Count <= 0) then begin
|
|
Points := AllocMem(SizeOf(TPoint));
|
|
Count := 0;
|
|
end;
|
|
SplitRecursive(Bezier);
|
|
end;
|
|
|
|
{------------------------------------------------------------------------------
|
|
Method: BezierArcPoints
|
|
Params: X, Y, Width, Height, Angle1, Angle2, Rotation, Points, Count
|
|
Returns: Nothing
|
|
|
|
Use BezierArcPoints to convert an Arc and ArcLength into a Pointer Array
|
|
of TPoints for use with Polyline or Polygon. The Rotation parameter accepts
|
|
a Rotation-Angle for a rotated Ellipse'- for a non-rotated ellipse this
|
|
value would be 0, or 360. The result is an Aproximation based on 1 or more
|
|
Beziers. If the AngleLength is greater than 90 degrees, it calls
|
|
PolyBezierArcPoints, otherwise it Converts the angles into a Bezier by
|
|
calling to Arc2Bezier, and then converts the Bezier into an array of Points
|
|
by calling to Bezier2Polyline. The angles are 1/16th of a degree. For example,
|
|
a full circle equals 5760 (16*360). Positive values of Angle and AngleLength
|
|
mean counter-clockwise while negative values mean clockwise direction. Zero
|
|
degrees is at the 3'o clock position. If Points is not initialized or Count
|
|
is less then 0, it is automatically initialized and the array starts at 0,
|
|
otherwise it tries too append points to the array starting at Count. Points
|
|
should ALWAYS be Freed when done by calling to ReallocMem(Points, 0).
|
|
|
|
------------------------------------------------------------------------------}
|
|
Procedure BezierArcPoints(X, Y, Width, Height : Longint; Angle1, Angle2,
|
|
Rotation : Extended; var Points : PPoint; var Count : Longint);
|
|
var
|
|
B : TBezier;
|
|
begin
|
|
If ABS(Angle2) > 90*16 then begin
|
|
PolyBezierArcPoints(X, Y, Width, Height, Angle1, Angle2, Rotation, Points,
|
|
Count);
|
|
Exit;
|
|
end;
|
|
If Angle2 = 0 then
|
|
exit;
|
|
If (not Assigned(Points)) or (Count <= 0) then begin
|
|
Points := AllocMem(SizeOf(TPoint));
|
|
Count := 0;
|
|
end;
|
|
Arc2Bezier(X, Y, Width, Height, Angle1, Angle2, Rotation, B);
|
|
Bezier2Polyline(B,Points,Count);
|
|
end;
|
|
|
|
{------------------------------------------------------------------------------
|
|
Method: BezierMidPoint
|
|
Params: Bezier
|
|
Returns: TFloatPoint
|
|
|
|
Use BezierMidPoint to get the Mid-Point of any 4-Point Bezier. It is
|
|
primarily for use in SplitBezier.
|
|
|
|
------------------------------------------------------------------------------}
|
|
Function BezierMidPoint(Bezier : TBezier) : TFloatPoint;
|
|
begin
|
|
Result := (Bezier[0] + 3*Bezier[1] + 3*Bezier[2] + Bezier[3]) / 8;
|
|
end;
|
|
|
|
{------------------------------------------------------------------------------
|
|
Method: CenterPoint
|
|
Params: Rect
|
|
Returns: TPoint
|
|
|
|
Use CenterPoint to get the Center-Point of any rectangle. It is primarily
|
|
for use with, and in, other routines such as Quadrant, and RadialPoint.
|
|
|
|
------------------------------------------------------------------------------}
|
|
Function CenterPoint(Rect : TRect) : TPoint;
|
|
var
|
|
Tmp : Longint;
|
|
begin
|
|
With Rect do begin
|
|
|
|
If Right < Left then begin
|
|
Tmp := Right;
|
|
Right := Left;
|
|
Left := Tmp;
|
|
end;
|
|
|
|
If Bottom < Top then begin
|
|
Tmp := Bottom;
|
|
Bottom := Top;
|
|
Top := Tmp;
|
|
end;
|
|
|
|
Result.X := Left + (Right - Left) div 2;
|
|
Result.Y := Top + (Bottom - Top) div 2;
|
|
end;
|
|
end;
|
|
|
|
{------------------------------------------------------------------------------
|
|
Method: Coords2Angles
|
|
Params: x,y,width,height,sx,sy,ex,ey, angle1,angle2
|
|
Returns: Nothing
|
|
|
|
Use Coords2Angles to convert the coords for Start and End Radial-Points, such
|
|
as are used in the Windows API Arc Pie and Chord routines, into an Eccentric
|
|
(aka Radial) counter clockwise Angle and an Angle-Length, such as are used in
|
|
X-Windows and GTK. The angles angle1 and angle2 are returned in 1/16th of a
|
|
degree. For example, a full circle equals 5760 (16*360). Zero degrees is at
|
|
the 3'o clock position.
|
|
|
|
------------------------------------------------------------------------------}
|
|
Procedure Coords2Angles(X, Y, Width, Height : Integer; SX, SY,
|
|
EX, EY : Integer; var Angle1, Angle2 : Extended);
|
|
var
|
|
aRect : TRect;
|
|
SP,EP : TPoint;
|
|
begin
|
|
aRect := Rect(X,Y,X + Width,Y + Height);
|
|
SP := Point(SX,SY);
|
|
EP := Point(EX,EY);
|
|
Angle1 := EccentricAngle(SP, aRect);
|
|
Angle2 := EccentricAngle(EP, aRect);
|
|
If Angle2 < Angle1 then
|
|
Angle2 := 360*16 - (Angle1 - Angle2)
|
|
else
|
|
Angle2 := Angle2 - Angle1;
|
|
end;
|
|
|
|
{------------------------------------------------------------------------------
|
|
Method: Distance
|
|
Params: PT1, PT2
|
|
Returns: Extended
|
|
|
|
Use Distance to get the distance between any two Points. It is primarily
|
|
for use in other routines such as EccentricAngle.
|
|
|
|
------------------------------------------------------------------------------}
|
|
Function Distance(Pt1,Pt2 : TPoint) : Extended;
|
|
begin
|
|
Result := Sqrt(Sqr(Pt2.X - Pt1.X) + Sqr(Pt2.Y - Pt1.Y));
|
|
end;
|
|
|
|
{------------------------------------------------------------------------------
|
|
Method: Distance
|
|
Params: PT, SP,EP
|
|
Returns: Extended
|
|
|
|
Use Distance to get the distance between any point(PT) and a line defined
|
|
by any two points(SP, EP). Intended for use in Bezier2Polyline, so params
|
|
are TFloatPoint's, NOT TPoint's.
|
|
|
|
------------------------------------------------------------------------------}
|
|
Function Distance(Pt, SP, EP : TFloatPoint) : Extended;
|
|
var
|
|
A, B, C : Extended;
|
|
|
|
Function Slope(PT1,Pt2 : TFloatPoint) : Extended;
|
|
begin
|
|
If Pt2.X <> Pt1.X then
|
|
Result := (Pt2.Y - Pt1.Y) / (Pt2.X - Pt1.X)
|
|
else
|
|
Result := 1;
|
|
end;
|
|
|
|
Function YIntercept(PT1,Pt2 : TFloatPoint) : Extended;
|
|
begin
|
|
Result := Pt1.Y - Slope(Pt1,Pt2)*Pt1.X;
|
|
end;
|
|
|
|
begin
|
|
A := -Slope(SP,EP);
|
|
B := 1;
|
|
C := -YIntercept(SP, EP);
|
|
Result := ABS(A*Pt.X + B*Pt.Y + C)/Sqrt(Sqr(A) + Sqr(B));
|
|
end;
|
|
|
|
{------------------------------------------------------------------------------
|
|
Method: EccentricAngle
|
|
Params: Pt, Rect
|
|
Returns: Extended
|
|
|
|
Use EccentricAngle to get the Eccentric( aka Radial ) Angle of a given
|
|
point on any non-rotated ellipse. It is primarily for use in Coords2Angles.
|
|
The result is in 1/16th of a degree. For example, a full circle equals
|
|
5760 (16*360). Zero degrees is at the 3'o clock position.
|
|
|
|
------------------------------------------------------------------------------}
|
|
Function EccentricAngle(PT : TPoint; Rect : TRect) : Extended;
|
|
var
|
|
CenterPt : TPoint;
|
|
Quad : Integer;
|
|
Theta : Extended;
|
|
begin
|
|
CenterPt := CenterPoint(Rect);
|
|
Quad := Quadrant(Pt,CenterPt);
|
|
Theta := -1;
|
|
Case Quad of
|
|
1..4:
|
|
begin
|
|
Theta := Distance(CenterPt,Pt);
|
|
If Theta > 0 then
|
|
Theta := RadToDeg(ArcSin(ABS(PT.Y - CenterPt.Y) / Theta));
|
|
end;
|
|
end;
|
|
Case Quad of
|
|
0:{ 0, 0}
|
|
Theta := -1;
|
|
1:{ X, Y}
|
|
Theta := Theta;
|
|
2:{-X, Y}
|
|
Theta := 180 - Theta;
|
|
3:{-X,-Y}
|
|
Theta := 180 + Theta;
|
|
4:{ X,-Y}
|
|
Theta := 360 - Theta;
|
|
5:{ 0, Y}
|
|
Theta := 90;
|
|
6:{ X, 0}
|
|
Theta := 0;
|
|
7:{ 0,-Y}
|
|
Theta := 270;
|
|
8:{-X, 0}
|
|
Theta := 180;
|
|
end;
|
|
Result := Theta*16;
|
|
end;
|
|
|
|
{------------------------------------------------------------------------------
|
|
Method: EllipseRadialLength
|
|
Params: Rect, EccentricAngle
|
|
Returns: Longint
|
|
|
|
Use EllipseRadialLength to get the Radial-Length of non-rotated ellipse at
|
|
any given Eccentric( aka Radial ) Angle. It is primarily for use in other
|
|
routines such as RadialPoint. The Eccentric angle is in 1/16th of a degree.
|
|
For example, a full circle equals 5760 (16*360). Zero degrees is at the
|
|
3'o clock position.
|
|
|
|
------------------------------------------------------------------------------}
|
|
Function EllipseRadialLength(Rect : TRect; EccentricAngle : Extended) : Longint;
|
|
var
|
|
a, b, R : Extended;
|
|
begin
|
|
a := (Rect.Right - Rect.Left) div 2;
|
|
b := (Rect.Bottom - Rect.Top) div 2;
|
|
R := Sqr(a)*Sqr(b);
|
|
R := Sqrt(R / ((Sqr(b)*Sqr(Cos(DegToRad(EccentricAngle/16)))) +
|
|
(Sqr(a)*Sqr(Sin(DegToRad(EccentricAngle/16))))));
|
|
Result := TruncToInt(R);
|
|
end;
|
|
|
|
{------------------------------------------------------------------------------
|
|
Method: FloatPoint
|
|
Params: AX, AY
|
|
Returns: TFloatPoint
|
|
|
|
Use FloatPoint to get a TFloatPoint. It is essentialy like Classes. Point in
|
|
use, except that it excepts Extended Parameters. It is Primarily for use with
|
|
and in Bezier routines.
|
|
|
|
------------------------------------------------------------------------------}
|
|
Function FloatPoint(AX,AY : Extended): TFloatPoint;
|
|
begin
|
|
With Result do begin
|
|
X := AX;
|
|
Y := AY;
|
|
end;
|
|
end;
|
|
|
|
{------------------------------------------------------------------------------
|
|
Method: LineEndPoint
|
|
Params: StartPoint, Angle, Length
|
|
Returns: TPoint
|
|
|
|
Use LineEndPoint to get the End-Point of a line of any given Length at
|
|
any given angle with any given Start-Point. It is primarily for use in
|
|
other routines such as RadialPoint. The angle is in 1/16th of a degree.
|
|
For example, a full circle equals 5760 (16*360). Zero degrees is at the
|
|
3'o clock position.
|
|
|
|
------------------------------------------------------------------------------}
|
|
Function LineEndPoint(StartPoint : TPoint; Angle, Length : Extended) :
|
|
TPoint;
|
|
begin
|
|
if Angle > 360*16 then
|
|
Angle := Frac(Angle / 360*16) * 360*16;
|
|
|
|
if Angle < 0 then
|
|
Angle := 360*16 - abs(Angle);
|
|
|
|
Result.Y := StartPoint.Y - Round(Length*Sin(DegToRad(Angle/16)));
|
|
Result.X := StartPoint.X + Round(Length*Cos(DegToRad(Angle/16)));
|
|
end;
|
|
|
|
|
|
{------------------------------------------------------------------------------
|
|
Method: PolyBezier2Polyline
|
|
Params: Beziers, Points, Count
|
|
Returns: Nothing
|
|
|
|
Use BezierToPolyline to convert an array of 4-Point Bezier into a Pointer
|
|
Array of TPoint and a Count variable which can then be used within either a
|
|
Polyline, or Polygon routine. Points is automatically initialized, so any
|
|
existing information is lost, and the array starts at 0. Points should ALWAYS
|
|
be Freed when done by calling to ReallocMem(Points, 0).
|
|
|
|
------------------------------------------------------------------------------}
|
|
Procedure PolyBezier2Polyline(Beziers: Array of TBezier;
|
|
var Points : PPoint; var Count : Longint);
|
|
var
|
|
I : Integer;
|
|
begin
|
|
If (High(Beziers) < 1) then
|
|
exit;
|
|
Count := 0;
|
|
If Assigned(Points) then
|
|
Try
|
|
ReallocMem(Points, 0)
|
|
Finally
|
|
Points := nil;
|
|
end;
|
|
For I := 0 to High(Beziers) - 1 do
|
|
Bezier2PolyLine(Beziers[I], Points, Count);
|
|
end;
|
|
|
|
{------------------------------------------------------------------------------
|
|
Method: PolyBezier2Polyline
|
|
Params: Beziers, Points, Count, Continuous
|
|
Returns: Nothing
|
|
|
|
Use BezierToPolyline to convert an array of TPoints descibing 1 or more
|
|
4-Point Beziers into a Pointer Array of TPoint and a Count variable which
|
|
can then be used within either a Polyline, or Polygon routine. If Continuous
|
|
is set to true then the first point of each Bezier is the last point of
|
|
the preceding Bezier, so every bezier must have 3 described points, in
|
|
addition to the initial Starting Point; otherwise each Bezier must have 4
|
|
points. If there are an uneven number of points then the last set of points
|
|
is ignored. Points is automatically initialized, so any existing information
|
|
is lost, and the array starts at 0. Points should ALWAYS be Freed when done
|
|
by calling to ReallocMem(Points, 0).
|
|
|
|
------------------------------------------------------------------------------}
|
|
Procedure PolyBezier2Polyline(Beziers : Array of TPoint; var Points : PPoint;
|
|
var Count : Longint; Continuous : Boolean);
|
|
begin
|
|
PolyBezier2Polyline(@Beziers[0],High(Beziers) + 1, Points, Count,
|
|
Continuous);
|
|
end;
|
|
|
|
Procedure PolyBezier2Polyline(Beziers : PPoint; BCount : Longint;
|
|
var Points : PPoint; var Count : Longint; Continuous : Boolean);
|
|
var
|
|
I : Integer;
|
|
NB : Longint;
|
|
begin
|
|
If BCount < 4 then
|
|
exit;
|
|
Count := 0;
|
|
If Assigned(Points) then
|
|
Try
|
|
ReallocMem(Points, 0)
|
|
Finally
|
|
Points := nil;
|
|
end;
|
|
If Not Continuous then begin
|
|
NB := BCount;
|
|
NB := Floor(NB div 4);
|
|
For I := 0 to NB - 1 do
|
|
Bezier2PolyLine(Bezier(Beziers[I*4],Beziers[I*4+1],
|
|
Beziers[I*4+2],Beziers[I*4+3]), Points, Count);
|
|
end
|
|
else begin
|
|
NB := BCount - 1;
|
|
NB := Floor(NB div 3);
|
|
For I := 0 to NB do
|
|
Bezier2PolyLine(Bezier(Beziers[(I - 1)*3 + 3],Beziers[I*3 + 1],
|
|
Beziers[I*3+2],Beziers[I*3+3]), Points, Count);
|
|
end;
|
|
end;
|
|
|
|
{------------------------------------------------------------------------------
|
|
Method: PolyBezierArcPoints
|
|
Params: X, Y, Width, Height, Angle1, Angle2, Rotation, Points, Count
|
|
Returns: Nothing
|
|
|
|
Use PolyBezierArcPoints to convert an Arc and ArcLength into a Pointer Array
|
|
of TPoints for use with Polyline or Polygon. The Rotation parameter accepts
|
|
a Rotation-Angle for a rotated Ellipse'- for a non-rotated ellipse this
|
|
value would be 0, or 360. The result is an Aproximation based on 1 or more
|
|
Beziers. If the AngleLength is greater than 45 degrees, it recursively breaks
|
|
the Arc into Arcs of 45 degrees or less, and converts them into Beziers with
|
|
BezierArcPoints. The angles are 1/16th of a degree. For example, a full circle
|
|
equals 5760 (16*360). Positive values of Angle and AngleLength mean
|
|
counter-clockwise while negative values mean clockwise direction. Zero
|
|
degrees is at the 3'o clock position. Points is automatically initialized,
|
|
so any existing information is lost, and the array starts at 0. Points
|
|
should ALWAYS be Freed when done by calling to ReallocMem(Points, 0).
|
|
|
|
------------------------------------------------------------------------------}
|
|
Procedure PolyBezierArcPoints(X, Y, Width, Height : Longint; Angle1, Angle2,
|
|
Rotation : Extended; var Points : PPoint; var Count : Longint);
|
|
var
|
|
I,K : Integer;
|
|
FullAngle : Extended;
|
|
TST : Boolean;
|
|
begin
|
|
If Abs(Angle2) > 360*16 then begin
|
|
Angle2 := 360*16;
|
|
Angle1 := 0;
|
|
end;
|
|
If Abs(Rotation) > 360*16 then
|
|
Rotation := Frac(Rotation / 360*16)*360*16;
|
|
FullAngle := Angle1 + Angle2;
|
|
K := Ceil(ABS(Angle2/16) / 45);
|
|
Count := 0;
|
|
If Assigned(Points) then
|
|
Try
|
|
ReallocMem(Points, 0)
|
|
Finally
|
|
Points := nil;
|
|
end;
|
|
If Angle2 > 45*16 then
|
|
Angle2 := 45*16
|
|
else
|
|
If Angle2 < -45*16 then
|
|
Angle2 := -45*16;
|
|
For I := 0 to K - 1 do begin
|
|
BezierArcPoints(X, Y, Width,Height,Angle1,Angle2,Rotation,Points,Count);
|
|
Angle1 := Angle1 + Angle2;
|
|
If Angle2 > 0 then
|
|
TST := (FullAngle - Angle1) > 45*16
|
|
else
|
|
TST := ABS(FullAngle - Angle1) > 45*16;
|
|
If TST then begin
|
|
If Angle2 > 0 then
|
|
Angle2 := 45*16
|
|
else
|
|
Angle2 := -45*16;
|
|
end
|
|
else begin
|
|
If Angle2 > 0 then
|
|
Angle2 := FullAngle - Angle1
|
|
else
|
|
Angle2 := -(FullAngle - Angle1);
|
|
end;
|
|
end;
|
|
end;
|
|
|
|
{------------------------------------------------------------------------------
|
|
Method: Quadrant
|
|
Params: PT, Center
|
|
Returns: Integer
|
|
|
|
Use Quadrant to determine the Quadrant of any point, given the Center.
|
|
It is primarily for use in other routines such as EccentricAngle. A result
|
|
of 1-4 represents the primary 4 quardants. A result of 5-8 means the point
|
|
lies on one of the Axis', 5 = -Y Axis, 6 = +X Axis, 7 = +Y Axis, and
|
|
8 = -X Axis. A result of -1 means that it does not fall in any quadrant,
|
|
that is, it is the Center.
|
|
|
|
------------------------------------------------------------------------------}
|
|
Function Quadrant(Pt,Center : TPoint) : Integer;
|
|
var
|
|
X,Y,CX,CY : Longint;
|
|
begin
|
|
X := Pt.X;
|
|
Y := Pt.Y;
|
|
CX := Center.X;
|
|
CY := Center.Y;
|
|
Result := -1;
|
|
If (Y < CY) then begin
|
|
If (X > CX) then begin
|
|
Result := 1;
|
|
end
|
|
else
|
|
If (X < CX) then begin
|
|
Result := 2;
|
|
end
|
|
else begin
|
|
Result := 5;
|
|
end;
|
|
end
|
|
else
|
|
If (Y > CY) then begin
|
|
If (X < CX) then begin
|
|
Result := 3;
|
|
end
|
|
else
|
|
If (X > CX) then begin
|
|
Result := 4;
|
|
end
|
|
else begin
|
|
Result := 7;
|
|
end;
|
|
end
|
|
else
|
|
If (Y = CY) then begin
|
|
If (X > CX) then begin
|
|
Result := 6;
|
|
end
|
|
else
|
|
If (X < CX) then begin
|
|
Result := 8;
|
|
end;
|
|
end;
|
|
end;
|
|
|
|
{------------------------------------------------------------------------------
|
|
Method: RadialPointAngle
|
|
Params: EccentricAngle, Rect
|
|
Returns: TPoint
|
|
|
|
Use RadialPoint to get the Radial-Point at any given Eccentric( aka Radial )
|
|
angle on any non-rotated ellipse. It is primarily for use in Angles2Coords.
|
|
The EccentricAngle is in 1/16th of a degree. For example, a full circle
|
|
equals 5760 (16*360). Zero degrees is at the 3'o clock position.
|
|
|
|
------------------------------------------------------------------------------}
|
|
Function RadialPoint(EccentricAngle : Extended; Rect : TRect) : TPoint;
|
|
var
|
|
R : Longint;
|
|
Begin
|
|
R := EllipseRadialLength(Rect,EccentricAngle);
|
|
Result := LineEndPoint(CenterPoint(Rect), EccentricAngle, R);
|
|
end;
|
|
|
|
{------------------------------------------------------------------------------
|
|
Method: SplitBezier
|
|
Params: Bezier, Left, Right
|
|
Returns: Nothing
|
|
|
|
Use SplitBezier to split any 4-Point Bezier into two 4-Point Bezier's :
|
|
a 'Left' and a 'Right'. It is primarily for use in Bezier2Polyline.
|
|
|
|
------------------------------------------------------------------------------}
|
|
Procedure SplitBezier(Bezier : TBezier; var Left, Right : TBezier);
|
|
var
|
|
Tmp : TFloatPoint;
|
|
begin
|
|
Tmp := (Bezier[1] + Bezier[2]) / 2;
|
|
|
|
left[0] := Bezier[0];
|
|
Left[1] := (Bezier[0] + Bezier[1]) / 2;
|
|
left[2] := (Left[1] + Tmp) / 2;
|
|
Left[3] := BezierMidPoint(Bezier);
|
|
|
|
right[3] := Bezier[3];
|
|
right[2] := (Bezier[2] + Bezier[3]) / 2;
|
|
Right[1] := (Right[2] + Tmp) / 2;
|
|
right[0] := BezierMidPoint(Bezier);
|
|
end;
|
|
|
|
end.
|
|
{ =============================================================================
|
|
|
|
$Log$
|
|
Revision 1.6 2004/05/11 11:42:26 mattias
|
|
replaced writeln by debugln
|
|
|
|
Revision 1.5 2003/12/25 14:17:07 mattias
|
|
fixed many range check warnings
|
|
|
|
Revision 1.4 2003/11/10 19:05:44 mattias
|
|
fixed some bugs by Andreas
|
|
|
|
Revision 1.3 2003/08/18 19:24:18 mattias
|
|
fixed TCanvas.Pie
|
|
|
|
Revision 1.2 2002/11/12 10:16:14 lazarus
|
|
MG: fixed TMainMenu creation
|
|
|
|
Revision 1.1 2002/10/26 15:15:46 lazarus
|
|
MG: broke LCL<->interface circles
|
|
|
|
Revision 1.9 2002/10/25 17:49:43 lazarus
|
|
AJ: disable TFloatPoint := TPoint if FPC 1.0
|
|
|
|
Revision 1.8 2002/10/18 16:08:09 lazarus
|
|
AJ: Partial HintWindow Fix; Added Screen.Font & Font.Name PropEditor; Started to fix ComboBox DropDown size/pos
|
|
|
|
Revision 1.7 2002/09/27 20:52:21 lazarus
|
|
MWE: Applied patch from "Andrew Johnson" <aj_genius@hotmail.com>
|
|
|
|
Here is the run down of what it includes -
|
|
|
|
-Vasily Volchenko's Updated Russian Localizations
|
|
|
|
-improvements to GTK Styles/SysColors
|
|
-initial GTK Palette code - (untested, and for now useless)
|
|
|
|
-Hint Windows and Modal dialogs now try to stay transient to
|
|
the main program form, aka they stay on top of the main form
|
|
and usually minimize/maximize with it.
|
|
|
|
-fixes to Form BorderStyle code(tool windows needed a border)
|
|
|
|
-fixes DrawFrameControl DFCS_BUTTONPUSH to match Win32 better
|
|
when flat
|
|
|
|
-fixes DrawFrameControl DFCS_BUTTONCHECK to match Win32 better
|
|
and to match GTK theme better. It works most of the time now,
|
|
but some themes, noteably Default, don't work.
|
|
|
|
-fixes bug in Bitmap code which broke compiling in NoGDKPixbuf
|
|
mode.
|
|
|
|
-misc other cleanups/ fixes in gtk interface
|
|
|
|
-speedbutton's should now draw correctly when flat in Win32
|
|
|
|
-I have included an experimental new CheckBox(disabled by
|
|
default) which has initial support for cbGrayed(Tri-State),
|
|
and WordWrap, and misc other improvements. It is not done, it
|
|
is mostly a quick hack to test DrawFrameControl
|
|
DFCS_BUTTONCHECK, however it offers many improvements which
|
|
can be seen in cbsCheck/cbsCrissCross (aka non-themed) state.
|
|
|
|
-fixes Message Dialogs to more accurately determine
|
|
button Spacing/Size, and Label Spacing/Size based on current
|
|
System font.
|
|
-fixes MessageDlgPos, & ShowMessagePos in Dialogs
|
|
-adds InputQuery & InputBox to Dialogs
|
|
|
|
-re-arranges & somewhat re-designs Control Tabbing, it now
|
|
partially works - wrapping around doesn't work, and
|
|
subcontrols(Panels & Children, etc) don't work. TabOrder now
|
|
works to an extent. I am not sure what is wrong with my code,
|
|
based on my other tests at least wrapping and TabOrder SHOULD
|
|
work properly, but.. Anyone want to try and fix?
|
|
|
|
-SynEdit(Code Editor) now changes mouse cursor to match
|
|
position(aka over scrollbar/gutter vs over text edit)
|
|
|
|
-adds a TRegion property to Graphics.pp, and Canvas. Once I
|
|
figure out how to handle complex regions(aka polygons) data
|
|
properly I will add Region functions to the canvas itself
|
|
(SetClipRect, intersectClipRect etc.)
|
|
|
|
-BitBtn now has a Stored flag on Glyph so it doesn't store to
|
|
lfm/lrs if Glyph is Empty, or if Glyph is not bkCustom(aka
|
|
bkOk, bkCancel, etc.) This should fix most crashes with older
|
|
GDKPixbuf libs.
|
|
|
|
Revision 1.6 2002/09/18 17:07:24 lazarus
|
|
MG: added patch from Andrew
|
|
|
|
Revision 1.5 2002/08/19 20:34:47 lazarus
|
|
MG: improved Clipping, TextOut, Polygon functions
|
|
|
|
|
|
Revision 1.5 2002/08/15
|
|
Andrew: Added more overloaded operations for use with TFloatPoint & TPoint
|
|
|
|
}
|