pas2js/demo/webgl/Noise.pas
2019-03-16 16:54:19 +00:00

245 lines
6.3 KiB
ObjectPascal

unit Noise;
interface
uses
Math;
const
kNoisekPerumationMax = 256;
type
TNoiseValue = byte;
TNoiseSeedArray = array[0..kNoisekPerumationMax-1] of TNoiseValue;
TNoiseFloat = double;
type
TNoise = class (TObject)
public
constructor Create; overload;
constructor Create (seed: TNoiseSeedArray); overload;
function GetValue (x, y, z: TNoiseFloat): TNoiseFloat; overload;
function GetValue (x, y, z: TNoiseFloat; octaves: integer; persistence: TNoiseFloat): TNoiseFloat; overload;
function GetNoise (x, y: integer; width, height: integer; scale: TNoiseFloat; frequency: integer): TNoiseFloat; overload;
private
repeatValue: integer;
p: array[0..(kNoisekPerumationMax * 2)-1] of TNoiseValue;
function Inc (num: integer): integer; inline;
function Grad (hash: integer; x, y, z: TNoiseFloat): TNoiseFloat; inline;
function Fade (t: TNoiseFloat): TNoiseFloat; inline;
function Lerp (a, b, x: TNoiseFloat): TNoiseFloat; inline;
end;
function RandomNoiseSeed (seed: cardinal = 0): TNoiseSeedArray;
implementation
function RandomNoiseSeed (seed: cardinal = 0): TNoiseSeedArray;
var
i: integer;
begin
for i := 0 to kNoisekPerumationMax - 1 do
result[i] := Random(kNoisekPerumationMax);
end;
function TNoise.GetValue (x, y, z: TNoiseFloat; octaves: integer; persistence: TNoiseFloat): TNoiseFloat;
var
total: TNoiseFloat = 0;
frequency: TNoiseFloat = 1;
amplitude: TNoiseFloat = 1;
maxValue: TNoiseFloat = 0; // Used for normalizing result to 0.0 - 1.0
i: integer;
begin
for i := 0 to octaves - 1 do
begin
total += GetValue(x * frequency, y * frequency, z * frequency) * amplitude;
maxValue += amplitude;
amplitude *= persistence;
frequency *= 2;
end;
result := total/maxValue;
end;
function TNoise.GetNoise (x, y: integer; width, height: integer; scale: TNoiseFloat; frequency: integer): TNoiseFloat;
var
nx, ny: TNoiseFloat;
begin
nx := x/width - 0.5;
ny := y/height - 0.5;
result := GetValue(nx * scale, ny * scale, 0, frequency, 0.5) / 2 + 0.5;
end;
function TNoise.GetValue (x, y, z: TNoiseFloat): TNoiseFloat;
function FMod(const a, b: TNoiseFloat): TNoiseFloat;
begin
result:= a-b * trunc(a/b);
end;
var
xi, yi, zi: integer;
xf, yf, zf: TNoiseFloat;
u, v, w: TNoiseFloat;
aaa, aba, aab, abb, baa, bba, bab, bbb: integer;
x1, x2, y1, y2: TNoiseFloat;
begin
// If we have any repeat on, change the coordinates to their "local" repetitions
if (repeatValue > 0) then
begin
x := FMod(x, repeatValue);
y := FMod(y, repeatValue);
z := FMod(z, repeatValue);
// ??? mod overloading for singles in trunk 3.1.1
{x := x mod repeatValue;
y := y mod repeatValue;
z := z mod repeatValue;}
end;
xi := Floor(x) and 255; // Calculate the "unit cube" that the point asked will be located in
yi := Floor(y) and 255; // The left bound is ( |_x_|,|_y_|,|_z_| ) and the right bound is that
zi := Floor(z) and 255; // plus 1. Next we calculate the location (from 0.0 to 1.0) in that cube.
xf := x-Floor(x); // We also fade the location to smooth the result.
yf := y-Floor(y);
zf := z-Floor(z);
u := Fade(xf);
v := Fade(yf);
w := Fade(zf);
aaa := p[p[p[ xi ]+ yi ]+ zi ];
aba := p[p[p[ xi ]+self.Inc(yi)]+ zi ];
aab := p[p[p[ xi ]+ yi ]+self.Inc(zi)];
abb := p[p[p[ xi ]+self.Inc(yi)]+self.Inc(zi)];
baa := p[p[p[self.Inc(xi)]+ yi ]+ zi ];
bba := p[p[p[self.Inc(xi)]+self.Inc(yi)]+ zi ];
bab := p[p[p[self.Inc(xi)]+ yi ]+self.Inc(zi)];
bbb := p[p[p[self.Inc(xi)]+self.Inc(yi)]+self.Inc(zi)];
x1 := Lerp( Grad(aaa, xf , yf , zf), // The gradient function calculates the dot product between a pseudorandom
Grad(baa, xf-1, yf , zf), // gradient vector and the vector from the input coordinate to the 8
u); // surrounding points in its unit cube.
x2 := Lerp( Grad(aba, xf , yf-1, zf), // This is all then lerped together as a sort of weighted average based on the faded (u,v,w)
Grad(bba, xf-1, yf-1, zf), // values we made earlier.
u);
y1 := Lerp(x1, x2, v);
x1 := Lerp( Grad(aab, xf , yf , zf-1),
Grad(bab, xf-1, yf , zf-1),
u);
x2 := Lerp( Grad(abb, xf , yf-1, zf-1),
Grad(bbb, xf-1, yf-1, zf-1),
u);
y2 := Lerp(x1, x2, v);
result := (Lerp(y1, y2, w)+1)/2; // For convenience we bound it to 0 - 1 (theoretical min/max before is -1 - 1)
end;
function TNoise.Inc (num: integer): integer;
begin
num += 1;
if repeatValue > 0 then
num := num mod repeatValue;
result := num;
end;
// http://riven8192.blogspot.com/2010/08/calculate-perlinnoise-twice-as-fast.html
function TNoise.Grad (hash: integer; x, y, z: TNoiseFloat): TNoiseFloat;
begin
case (hash and $F) of
$0:
result := x + y;
$1:
result := -x + y;
$2:
result := x - y;
$3:
result := -x - y;
$4:
result := x + z;
$5:
result := -x + z;
$6:
result := x - z;
$7:
result := -x - z;
$8:
result := y + z;
$9:
result := -y + z;
$A:
result := y - z;
$B:
result := -y - z;
$C:
result := y + x;
$D:
result := -y + z;
$E:
result := y - x;
$F:
result := -y - z;
otherwise
result := 0; // never happens
end;
end;
{
function TNoise.Grad (hash: integer; x, y, z: TNoiseFloat): TNoiseFloat;
var
h: integer;
u, v: TNoiseFloat;
begin
h := hash and 15; // Take the hashed value and take the first 4 bits of it (15 == 0b1111)
if h < 8 then
u := x
else
u := y;
if h < 4 then
v := y
else if (h = 12) or (h = 14) then
v := x
else
v := z;
if h and 1 = 0 then
result := u
else
result := -u;
if h and 2 = 0 then
result := result + v
else
result := result - v;
end;
}
function TNoise.Fade (t: TNoiseFloat): TNoiseFloat;
begin
// Fade function as defined by Ken Perlin. This eases coordinate values
// so that they will "ease" towards integral values. This ends up smoothing
// the final output.
result := t * t * t * (t * (t * 6 - 15) + 10); // 6t^5 - 15t^4 + 10t^3
end;
function TNoise.Lerp (a, b, x: TNoiseFloat): TNoiseFloat;
begin
result := a + x * (b - a);
end;
constructor TNoise.Create;
begin
Create(RandomNoiseSeed);
end;
constructor TNoise.Create (seed: TNoiseSeedArray);
var
i: integer;
begin
repeatValue := -1;
for i := 0 to high(p) do
p[i] := seed[i mod kNoisekPerumationMax];
end;
end.