fpc/utils/tply/yaccpars.pas
fpc 50778076c3 initial import
git-svn-id: trunk@1 -
2005-05-16 18:37:41 +00:00

582 lines
18 KiB
ObjectPascal

{
Yacc parse table construction.
Copyright (c) 1990-92 Albert Graef <ag@muwiinfa.geschichte.uni-mainz.de>
Copyright (C) 1996 Berend de Boer <berend@pobox.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
$Revision: 1.2 $
$Modtime: 96-07-31 14:09 $
$History: YACCPARS.PAS $
*
* ***************** Version 2 *****************
* User: Berend Date: 96-10-10 Time: 21:16
* Updated in $/Lex and Yacc/tply
* Updated for protected mode, windows and Delphi 1.X and 2.X.
}
unit YaccPars;
interface
procedure parse_table;
(* Constructs the parse table from the information in the state,
transition and reduction table, and writes parse and rule table
information to the output file.
Rules never reduced are detected, and parsing conflicts resolved
according to the usual disambiguting rules:
- by default, shift/reduce conflicts are resolved in favour of
shift, and reduce/reduce conflicts are resolved in favour of
the rule appearing first in the grammar
- in the presence of precedence information, shift/reduce conflicts
are resolved as follows:
- if the rule has higher precedence than the input symbol,
reduce
- if the input symbol has higher precedence than the rule,
shift
- if rule and input symbol have the same precedence, use
associativity to resolve the conflict: if the symbol is
left-associative, reduce; if right-associative, shift;
if nonassociative, error.
The default action for any state is error, unless the state
only has a single reduce action, and no shift (or nonassoc-induced
error) actions, in which case the default action is the reduction.
An accept action is generated for the shift-endmarker action.
If the verbose option is enabled, the parse_table routine also writes
a readable listing of the generated parser to the .LST file, including
descriptions of parse conflicts and rules never reduced.
Parse table actions are encoded as follows:
- positive: next state (shift or goto action)
- negative: rule to reduce (reduce action)
- 0: error (in default action table) or accept (in shift/reduce
action table)
The tables are written out as a collection of typed array constants:
type YYARec = record { action record }
sym, act : Integer; { symbol and action }
end;
YYRRec = record { rule record }
len, sym : Integer; { length and lhs symbol }
end;
const
yynacts = ...; { number of parse table (shift and reduce) actions }
yyngotos = ...; { number of goto actions }
yynstates = ...; { number of states }
yynrules = ...; { number of rules }
yya : array [1..yynacts] of YYARec = ...;
{ shift and reduce actions }
yyg : array [1..yyngotos] of YYARec = ...;
{ goto actions }
yyd : array [0..yynstates-1] of Integer = ...;
{ default actions }
yyal, yyah,
yygl, yygh : array [0..yynstates-1] of Integer = ...;
{ offsets into action and goto table }
yyr : array [1..yynrules] of YYRRec = ...;
*)
var shift_reduce, reduce_reduce, never_reduced : Integer;
(* number of parsing conflicts and unreduced rules detected during
parse table generation *)
implementation
uses YaccBase, YaccTabl;
var reduced : array [1..max_rules] of Boolean;
var yynacts, yyngotos, yynstates : Integer;
yyd : array [0..max_states-1] of Integer;
yyal, yyah, yygl, yygh : array [0..max_states-1] of Integer;
function ruleStr ( i : Integer ) : String;
(* returns print representation of rule number i *)
var str : String; j : Integer;
begin
with rule_table^[i]^ do
begin
str := pname(lhs_sym)+' :';
for j := 1 to rhs_len do
str := str+' '+pname(rhs_sym[j]);
end;
ruleStr := str;
end(*ruleStr*);
function itemStr ( var item_set : ItemSet; i : Integer ) : String;
(* returns print representation of item number i in item_set *)
var str : String; j : Integer;
begin
with item_set, item[i], rule_table^[rule_no]^ do
begin
str := pname(lhs_sym)+' :';
for j := 1 to pos_no-1 do
str := str+' '+pname(rhs_sym[j]);
str := str+' _';
for j := pos_no to rhs_len do
str := str+' '+pname(rhs_sym[j]);
end;
itemStr := str;
end(*itemStr*);
procedure build;
(* build the parse table, resolve conflicts *)
var
i, j, k, s,
n_errors,
n_shifts,
n_gotos,
n_reductions,
n_conflicts : Integer;
item_set : ItemSet;
begin
(* initialize: *)
shift_reduce := 0; reduce_reduce := 0; never_reduced := 0;
for i := 1 to n_rules do reduced[i] := false;
(* traverse the state table: *)
for s := 0 to n_states-1 do with state_table^[s] do
begin
if verbose then
begin
writeln(yylst);
writeln(yylst, 'state ', s, ':');
end;
(* Check shift and reduce actions, resolve conflicts.
The number of error actions generated by nonassoc's is counted
in n_errors, the number of conflicts reported in n_conflicts.
Shift actions ruled out by disambiguating rules are flagged by
setting the corresponding next_state to -1. *)
n_errors := 0; n_conflicts := 0;
for i := trans_lo to trans_hi do with trans_table^[i] do
if sym>=0 then
for j := redns_lo to redns_hi do with redn_table^[j] do
if member(sym, symset^) then
if (sym_prec^[sym]>0) and (rule_prec^[rule_no]>0) then
(* resolve conflict using precedence: *)
if rule_prec^[rule_no]=sym_prec^[sym] then
case prec_table^[sym_prec^[sym]] of
left : (* reduce *)
next_state := -1;
right : (* shift *)
exclude(symset^, sym);
nonassoc : (* error *)
begin
inc(n_errors);
next_state := -1;
exclude(symset^, sym);
end;
end
else if rule_prec^[rule_no]>sym_prec^[sym] then
(* reduce *)
next_state := -1
else
(* shift *)
exclude(symset^, sym)
else
(* shift/reduce conflict: *)
begin
if verbose then
begin
if n_conflicts=0 then
begin
writeln(yylst);
writeln(yylst, tab, '*** conflicts:');
writeln(yylst);
end;
writeln(yylst, tab,
'shift ', next_state, ', ',
'reduce ', rule_no-1, ' on ',
pname(sym));
end;
inc(n_conflicts); inc(shift_reduce);
exclude(symset^, sym);
end;
for i := redns_lo to redns_hi do
for j := i+1 to redns_hi do with redn_table^[j] do
begin
for k := 1 to size(symset^) do
if member(symset^[k], redn_table^[i].symset^) then
(* reduce/reduce conflict: *)
begin
if verbose then
begin
if n_conflicts=0 then
begin
writeln(yylst);
writeln(yylst, tab, '*** conflicts:');
writeln(yylst);
end;
writeln(yylst, tab,
'reduce ',
redn_table^[i].rule_no-1, ', ',
'reduce ', rule_no-1, ' on ',
pname(symset^[k]));
end;
inc(n_conflicts); inc(reduce_reduce);
end;
setminus(symset^, redn_table^[i].symset^);
end;
(* Count goto, shift and reduce actions to generate. *)
n_gotos := 0; n_shifts := 0; n_reductions := 0;
for i := trans_lo to trans_hi do with trans_table^[i] do
if next_state<>-1 then
if sym<0 then
inc(n_gotos)
else
inc(n_shifts);
for i := redns_lo to redns_hi do with redn_table^[i] do
if size(symset^)>0 then
inc(n_reductions);
(* Determine default action. *)
if (n_shifts+n_errors=0) and (n_reductions=1) then
(* default action is the reduction *)
with redn_table^[redns_lo] do
yyd[s] := -(rule_no-1)
else
(* default action is error *)
yyd[s] := 0;
(* Flag reduced rules. *)
for i := redns_lo to redns_hi do
with redn_table^[i] do
reduced[rule_no] := true;
if verbose then
begin
(* List kernel items. *)
writeln(yylst);
get_item_set(s, item_set);
closure(item_set);
sort_item_set(item_set);
with item_set do
begin
for i := 1 to n_items do
with item[i], rule_table^[rule_no]^ do
if (rule_no=1) or (pos_no>1) or (rhs_len=0) then
if pos_no>rhs_len then
writeln(yylst, tab,
itemStr(item_set, i), tab,
'(', rule_no-1, ')')
else
writeln(yylst, tab, itemStr(item_set, i));
end;
(* List parse actions. *)
(* shift, reduce and default actions: *)
if (n_shifts+n_errors=0) and (n_reductions=1) then
(* default action is the reduction *)
with redn_table^[redns_lo] do
begin
writeln(yylst);
writeln(yylst, tab, '.', tab, 'reduce ', rule_no-1 );
end
else
(* default action is error *)
begin
writeln(yylst);
for i := trans_lo to trans_hi do with trans_table^[i] do
if next_state<>-1 then
if sym=0 then
(* accept action *)
writeln(yylst, tab, pname(sym), tab, 'accept')
else if sym>0 then
(* shift action *)
writeln(yylst, tab,
pname(sym), tab, 'shift ', next_state);
for i := redns_lo to redns_hi do
with redn_table^[i] do
for j := 1 to size(symset^) do
(* reduce action *)
writeln(yylst, tab,
pname(symset^[j]), tab, 'reduce ',
rule_no-1);
(* error action *)
writeln(yylst, tab, '.', tab, 'error');
end;
(* goto actions: *)
if n_gotos>0 then
begin
writeln(yylst);
for i := trans_lo to trans_hi do with trans_table^[i] do
if sym<0 then
writeln(yylst, tab,
pname(sym), tab, 'goto ', next_state);
end;
end;
end;
for i := 2 to n_rules do
if not reduced[i] then inc(never_reduced);
if verbose then
begin
writeln(yylst);
if shift_reduce>0 then
writeln(yylst, shift_reduce, ' shift/reduce conflicts.');
if reduce_reduce>0 then
writeln(yylst, reduce_reduce, ' reduce/reduce conflicts.');
if never_reduced>0 then
writeln(yylst, never_reduced, ' rules never reduced.');
end;
(* report rules never reduced: *)
if (never_reduced>0) and verbose then
begin
writeln(yylst);
writeln(yylst, '*** rules never reduced:');
for i := 2 to n_rules do if not reduced[i] then
begin
writeln(yylst);
writeln(yylst, ruleStr(i), tab, '(', i-1, ')');
end;
end;
end(*build*);
procedure counters;
(* initialize counters and offsets *)
var s, i : Integer;
begin
yynstates := n_states; yynacts := 0; yyngotos := 0;
for s := 0 to n_states-1 do with state_table^[s] do
begin
yyal[s] := yynacts+1; yygl[s] := yyngotos+1;
if yyd[s]=0 then
begin
for i := trans_lo to trans_hi do with trans_table^[i] do
if (sym>=0) and (next_state<>-1) then
inc(yynacts);
for i := redns_lo to redns_hi do with redn_table^[i] do
inc(yynacts, size(symset^));
end;
for i := trans_lo to trans_hi do with trans_table^[i] do
if sym<0 then
inc(yyngotos);
yyah[s] := yynacts; yygh[s] := yyngotos;
end;
end(*counters*);
procedure tables;
(* write tables to output file *)
var s, i, j, count : Integer;
begin
writeln(yyout);
writeln(yyout, 'type YYARec = record');
writeln(yyout, ' sym, act : Integer;');
writeln(yyout, ' end;');
writeln(yyout, ' YYRRec = record');
writeln(yyout, ' len, sym : Integer;');
writeln(yyout, ' end;');
writeln(yyout);
writeln(yyout, 'const');
(* counters: *)
writeln(yyout);
writeln(yyout, 'yynacts = ', yynacts, ';');
writeln(yyout, 'yyngotos = ', yyngotos, ';');
writeln(yyout, 'yynstates = ', yynstates, ';');
writeln(yyout, 'yynrules = ', n_rules-1, ';');
(* shift/reduce table: *)
writeln(yyout);
writeln(yyout, 'yya : array [1..yynacts] of YYARec = (');
count := 0;
for s := 0 to n_states-1 do with state_table^[s] do
begin
writeln(yyout, '{ ', s, ': }');
if yyd[s]=0 then
begin
for i := trans_lo to trans_hi do with trans_table^[i] do
if (next_state<>-1) and (sym>=0) then
begin
inc(count);
if sym=0 then
write(yyout, ' ( sym: 0; act: 0 )')
else
write(yyout, ' ( sym: ', sym, '; act: ',
next_state, ' )');
if count<yynacts then write(yyout, ',');
writeln(yyout);
end;
for i := redns_lo to redns_hi do with redn_table^[i] do
for j := 1 to size(symset^) do
begin
inc(count);
write(yyout, ' ( sym: ', symset^[j], '; act: ',
-(rule_no-1), ' )');
if count<yynacts then write(yyout, ',');
writeln(yyout);
end;
end;
end;
writeln(yyout, ');');
(* goto table: *)
writeln(yyout);
writeln(yyout, 'yyg : array [1..yyngotos] of YYARec = (');
count := 0;
for s := 0 to n_states-1 do with state_table^[s] do
begin
writeln(yyout, '{ ', s, ': }');
for i := trans_lo to trans_hi do with trans_table^[i] do
if sym<0 then
begin
inc(count);
write(yyout, ' ( sym: ', sym, '; act: ', next_state, ' )');
if count<yyngotos then write(yyout, ',');
writeln(yyout);
end;
end;
writeln(yyout, ');');
(* default action table: *)
writeln(yyout);
writeln(yyout, 'yyd : array [0..yynstates-1] of Integer = (');
for s := 0 to n_states-1 do
begin
write(yyout, '{ ', s, ': } ', yyd[s]);
if s<n_states-1 then write(yyout, ',');
writeln(yyout);
end;
writeln(yyout, ');');
(* offset tables: *)
writeln(yyout);
writeln(yyout, 'yyal : array [0..yynstates-1] of Integer = (');
for s := 0 to n_states-1 do
begin
write(yyout, '{ ', s, ': } ', yyal[s]);
if s<n_states-1 then write(yyout, ',');
writeln(yyout);
end;
writeln(yyout, ');');
writeln(yyout);
writeln(yyout, 'yyah : array [0..yynstates-1] of Integer = (');
for s := 0 to n_states-1 do
begin
write(yyout, '{ ', s, ': } ', yyah[s]);
if s<n_states-1 then write(yyout, ',');
writeln(yyout);
end;
writeln(yyout, ');');
writeln(yyout);
writeln(yyout, 'yygl : array [0..yynstates-1] of Integer = (');
for s := 0 to n_states-1 do
begin
write(yyout, '{ ', s, ': } ', yygl[s]);
if s<n_states-1 then write(yyout, ',');
writeln(yyout);
end;
writeln(yyout, ');');
writeln(yyout);
writeln(yyout, 'yygh : array [0..yynstates-1] of Integer = (');
for s := 0 to n_states-1 do
begin
write(yyout, '{ ', s, ': } ', yygh[s]);
if s<n_states-1 then write(yyout, ',');
writeln(yyout);
end;
writeln(yyout, ');');
(* rule table: *)
writeln(yyout);
writeln(yyout, 'yyr : array [1..yynrules] of YYRRec = (');
for i := 2 to n_rules do with rule_table^[i]^ do
begin
write(yyout, '{ ', i-1, ': } ', '( len: ', rhs_len,
'; sym: ', lhs_sym, ' )');
if i<n_rules then write(yyout, ',');
writeln(yyout);
end;
writeln(yyout, ');');
writeln(yyout);
end(*tables*);
procedure parse_table;
begin
build; counters; tables;
end(*parse_table*);
end(*YaccParseTable*).