fpc/compiler/ninl.pas
2010-06-22 19:15:08 +00:00

3189 lines
123 KiB
ObjectPascal

{
Copyright (c) 1998-2007 by Florian Klaempfl
Type checking and register allocation for inline nodes
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
****************************************************************************
}
unit ninl;
{$i fpcdefs.inc}
interface
uses
node,htypechk,cpuinfo,symtype;
{$i compinnr.inc}
type
tinlinenode = class(tunarynode)
inlinenumber : byte;
constructor create(number : byte;is_const:boolean;l : tnode);virtual;
constructor ppuload(t:tnodetype;ppufile:tcompilerppufile);override;
procedure ppuwrite(ppufile:tcompilerppufile);override;
function dogetcopy : tnode;override;
function pass_1 : tnode;override;
function pass_typecheck:tnode;override;
function simplify: tnode;override;
function docompare(p: tnode): boolean; override;
{ pack and unpack are changed into for-loops by the compiler }
function first_pack_unpack: tnode; virtual;
{ All the following routines currently
call compilerprocs, unless they are
overriden in which case, the code
generator handles them.
}
function first_pi: tnode ; virtual;
function first_arctan_real: tnode; virtual;
function first_abs_real: tnode; virtual;
function first_sqr_real: tnode; virtual;
function first_sqrt_real: tnode; virtual;
function first_ln_real: tnode; virtual;
function first_cos_real: tnode; virtual;
function first_sin_real: tnode; virtual;
function first_exp_real: tnode; virtual;
function first_frac_real: tnode; virtual;
function first_round_real: tnode; virtual;
function first_trunc_real: tnode; virtual;
function first_int_real: tnode; virtual;
function first_abs_long: tnode; virtual;
private
function handle_str: tnode;
function handle_reset_rewrite_typed: tnode;
function handle_text_read_write(filepara,params:Ttertiarynode;var newstatement:Tnode):boolean;
function handle_typed_read_write(filepara,params:Ttertiarynode;var newstatement:Tnode):boolean;
function handle_read_write: tnode;
function handle_val: tnode;
end;
tinlinenodeclass = class of tinlinenode;
var
cinlinenode : tinlinenodeclass;
function geninlinenode(number : byte;is_const:boolean;l : tnode) : tinlinenode;
implementation
uses
verbose,globals,systems,constexp,
globtype, cutils,
symconst,symdef,symsym,symtable,paramgr,defutil,
pass_1,
ncal,ncon,ncnv,nadd,nld,nbas,nflw,nmem,nmat,nutils,
nobjc,objcdef,
cgbase,procinfo
;
function geninlinenode(number : byte;is_const:boolean;l : tnode) : tinlinenode;
begin
geninlinenode:=cinlinenode.create(number,is_const,l);
end;
{*****************************************************************************
TINLINENODE
*****************************************************************************}
constructor tinlinenode.create(number : byte;is_const:boolean;l : tnode);
begin
inherited create(inlinen,l);
if is_const then
include(flags,nf_inlineconst);
inlinenumber:=number;
end;
constructor tinlinenode.ppuload(t:tnodetype;ppufile:tcompilerppufile);
begin
inherited ppuload(t,ppufile);
inlinenumber:=ppufile.getbyte;
end;
procedure tinlinenode.ppuwrite(ppufile:tcompilerppufile);
begin
inherited ppuwrite(ppufile);
ppufile.putbyte(inlinenumber);
end;
function tinlinenode.dogetcopy : tnode;
var
n : tinlinenode;
begin
n:=tinlinenode(inherited dogetcopy);
n.inlinenumber:=inlinenumber;
result:=n;
end;
function tinlinenode.handle_str : tnode;
var
lenpara,
fracpara,
newparas,
tmppara,
dest,
source : tcallparanode;
procname: string;
is_real,is_enum : boolean;
rt : aint;
begin
result := cerrornode.create;
{ make sure we got at least two parameters (if we got only one, }
{ this parameter may not be encapsulated in a callparan) }
if not assigned(left) or
(left.nodetype <> callparan) then
begin
CGMessage1(parser_e_wrong_parameter_size,'Str');
exit;
end;
{ get destination string }
dest := tcallparanode(left);
{ get source para (number) }
source := dest;
while assigned(source.right) do
source := tcallparanode(source.right);
{ destination parameter must be a normal (not a colon) parameter, this
check is needed because str(v:len) also has 2 parameters }
if (source=dest) or
(cpf_is_colon_para in tcallparanode(dest).callparaflags) then
begin
CGMessage1(parser_e_wrong_parameter_size,'Str');
exit;
end;
is_real:=(source.resultdef.typ = floatdef) or is_currency(source.resultdef);
is_enum:=source.left.resultdef.typ=enumdef;
if ((dest.left.resultdef.typ<>stringdef) and
not(is_chararray(dest.left.resultdef))) or
not(is_real or is_enum or
(source.left.resultdef.typ=orddef)) then
begin
CGMessagePos(fileinfo,parser_e_illegal_expression);
exit;
end;
{ get len/frac parameters }
lenpara := nil;
fracpara := nil;
if (cpf_is_colon_para in tcallparanode(dest.right).callparaflags) then
begin
lenpara := tcallparanode(dest.right);
{ we can let the callnode do the type checking of these parameters too, }
{ but then the error messages aren't as nice }
if not is_integer(lenpara.resultdef) then
begin
CGMessagePos1(lenpara.fileinfo,
type_e_integer_expr_expected,lenpara.resultdef.typename);
exit;
end;
if (cpf_is_colon_para in tcallparanode(lenpara.right).callparaflags) then
begin
{ parameters are in reverse order! }
fracpara := lenpara;
lenpara := tcallparanode(lenpara.right);
if not is_real then
begin
CGMessagePos(lenpara.fileinfo,parser_e_illegal_colon_qualifier);
exit
end;
if not is_integer(lenpara.resultdef) then
begin
CGMessagePos1(lenpara.fileinfo,
type_e_integer_expr_expected,lenpara.resultdef.typename);
exit;
end;
end;
end;
{ generate the parameter list for the compilerproc }
newparas := dest;
{ if we have a float parameter, insert the realtype, len and fracpara parameters }
if is_real then
begin
{ insert realtype parameter }
if not is_currency(source.resultdef) then
begin
rt:=ord(tfloatdef(source.left.resultdef).floattype);
newparas.right := ccallparanode.create(cordconstnode.create(
rt,s32inttype,true),newparas.right);
tmppara:=tcallparanode(newparas.right);
end
else
tmppara:=newparas;
{ if necessary, insert a fraction parameter }
if not assigned(fracpara) then
begin
tmppara.right := ccallparanode.create(
cordconstnode.create(int64(-1),s32inttype,false),
tmppara.right);
fracpara := tcallparanode(tmppara.right);
end;
{ if necessary, insert a length para }
if not assigned(lenpara) then
fracpara.right := ccallparanode.create(
cordconstnode.create(int64(-32767),s32inttype,false),
fracpara.right);
end
else if is_enum then
begin
{Insert a reference to the ord2string index.}
newparas.right:=Ccallparanode.create(
Caddrnode.create_internal(
Crttinode.create(Tenumdef(source.left.resultdef),fullrtti,rdt_normal)
),
newparas.right);
{Insert a reference to the typinfo.}
newparas.right:=Ccallparanode.create(
Caddrnode.create_internal(
Crttinode.create(Tenumdef(source.left.resultdef),fullrtti,rdt_ord2str)
),
newparas.right);
{Insert a type conversion from the enumeration to longint.}
source.left:=Ctypeconvnode.create_internal(source.left,s32inttype);
typecheckpass(source.left);
{ if necessary, insert a length para }
if not assigned(lenpara) then
Tcallparanode(Tcallparanode(newparas.right).right).right:=
Ccallparanode.create(
cordconstnode.create(int64(-1),s32inttype,false),
Tcallparanode(Tcallparanode(newparas.right).right).right
);
end
else
{ for a normal parameter, insert a only length parameter if one is missing }
if not assigned(lenpara) then
newparas.right := ccallparanode.create(cordconstnode.create(int64(-1),s32inttype,false),
newparas.right);
{ remove the parameters from the original node so they won't get disposed, }
{ since they're reused }
left := nil;
{ create procedure name }
if is_chararray(dest.resultdef) then
procname:='fpc_chararray_'
else
procname := 'fpc_' + tstringdef(dest.resultdef).stringtypname+'_';
if is_real then
if is_currency(source.resultdef) then
procname := procname + 'currency'
else
procname := procname + 'float'
else if is_enum then
procname:=procname+'enum'
else
case torddef(source.resultdef).ordtype of
{$ifdef cpu64bitaddr}
u64bit:
procname := procname + 'uint';
{$else}
u32bit:
procname := procname + 'uint';
u64bit:
procname := procname + 'qword';
scurrency,
s64bit:
procname := procname + 'int64';
{$endif}
else
procname := procname + 'sint';
end;
{ free the errornode we generated in the beginning }
result.free;
{ create the call node, }
result := ccallnode.createintern(procname,newparas);
end;
function tinlinenode.handle_reset_rewrite_typed: tnode;
begin
{ since this is a "in_xxxx_typedfile" node, we can be sure we have }
{ a typed file as argument and we don't have to check it again (JM) }
{ add the recsize parameter }
{ note: for some reason, the parameter of intern procedures with only one }
{ parameter is gets lifted out of its original tcallparanode (see round }
{ line 1306 of ncal.pas), so recreate a tcallparanode here (JM) }
left := ccallparanode.create(cordconstnode.create(
tfiledef(left.resultdef).typedfiledef.size,s32inttype,true),
ccallparanode.create(left,nil));
{ create the correct call }
if inlinenumber=in_reset_typedfile then
result := ccallnode.createintern('fpc_reset_typed',left)
else
result := ccallnode.createintern('fpc_rewrite_typed',left);
{ make sure left doesn't get disposed, since we use it in the new call }
left := nil;
end;
procedure maybe_convert_to_string(var n: tnode);
begin
{ stringconstnodes are arrays of char. It's much more }
{ efficient to write a constant string, so convert }
{ either to shortstring or ansistring depending on }
{ length }
if (n.nodetype=stringconstn) then
if is_chararray(n.resultdef) then
if (tstringconstnode(n).len<=255) then
inserttypeconv(n,cshortstringtype)
else
inserttypeconv(n,cansistringtype)
else if is_widechararray(n.resultdef) then
inserttypeconv(n,cwidestringtype);
end;
function Tinlinenode.handle_text_read_write(filepara,params:Ttertiarynode;var newstatement:Tnode):boolean;
{Read(ln)/write(ln) for text files.}
const procprefixes:array[boolean] of string[15]=('fpc_write_text_','fpc_read_text_');
var error_para,is_real,special_handling,found_error,do_read:boolean;
p1:Tnode;
nextpara,
indexpara,
lenpara,
para,
fracpara:Tcallparanode;
temp:Ttempcreatenode;
readfunctype:Tdef;
name:string[31];
begin
para:=Tcallparanode(params);
found_error:=false;
do_read:=inlinenumber in [in_read_x,in_readln_x,in_readstr_x];
while assigned(para) do
begin
{ is this parameter faulty? }
error_para:=false;
{ is this parameter a real? }
is_real:=false;
{ type used for the read(), this is used to check
whether a temp is needed for range checking }
readfunctype:=nil;
{ can't read/write types }
if (para.left.nodetype=typen) and not(ttypenode(para.left).typedef.typ=undefineddef) then
begin
CGMessagePos(para.fileinfo,type_e_cant_read_write_type);
error_para := true;
end;
{ support writeln(procvar) }
if para.left.resultdef.typ=procvardef then
begin
p1:=ccallnode.create_procvar(nil,para.left);
typecheckpass(p1);
para.left:=p1;
end;
if inlinenumber in [in_write_x,in_writeln_x] then
{ prefer strings to chararrays }
maybe_convert_to_string(para.left);
case para.left.resultdef.typ of
stringdef :
name:=procprefixes[do_read]+tstringdef(para.left.resultdef).stringtypname;
pointerdef :
begin
if (not is_pchar(para.left.resultdef)) or do_read then
begin
CGMessagePos(para.fileinfo,type_e_cant_read_write_type);
error_para := true;
end
else
name:=procprefixes[do_read]+'pchar_as_pointer';
end;
floatdef :
begin
is_real:=true;
if Tfloatdef(para.left.resultdef).floattype=s64currency then
name := procprefixes[do_read]+'currency'
else
begin
name := procprefixes[do_read]+'float';
readfunctype:=pbestrealtype^;
end;
end;
enumdef:
begin
name:=procprefixes[do_read]+'enum';
readfunctype:=s32inttype;
end;
orddef :
begin
case Torddef(para.left.resultdef).ordtype of
{$ifdef cpu64bitaddr}
s64bit,
{$endif cpu64bitaddr}
s8bit,
s16bit,
s32bit :
begin
name := procprefixes[do_read]+'sint';
readfunctype:=sinttype;
end;
{$ifdef cpu64bitaddr}
u64bit,
{$endif cpu64bitaddr}
u8bit,
u16bit,
u32bit :
begin
name := procprefixes[do_read]+'uint';
readfunctype:=uinttype;
end;
uchar :
begin
name := procprefixes[do_read]+'char';
readfunctype:=cchartype;
end;
uwidechar :
begin
name := procprefixes[do_read]+'widechar';
readfunctype:=cwidechartype;
end;
{$ifndef cpu64bitaddr}
s64bit :
begin
name := procprefixes[do_read]+'int64';
readfunctype:=s64inttype;
end;
u64bit :
begin
name := procprefixes[do_read]+'qword';
readfunctype:=u64inttype;
end;
{$endif not cpu64bitaddr}
scurrency:
begin
name := procprefixes[do_read]+'currency';
readfunctype:=s64currencytype;
is_real:=true;
end;
pasbool,
bool8bit,
bool16bit,
bool32bit,
bool64bit:
if do_read then
begin
CGMessagePos(para.fileinfo,type_e_cant_read_write_type);
error_para := true;
end
else
begin
name := procprefixes[do_read]+'boolean';
readfunctype:=booltype;
end
else
begin
CGMessagePos(para.fileinfo,type_e_cant_read_write_type);
error_para := true;
end;
end;
end;
variantdef :
name:=procprefixes[do_read]+'variant';
arraydef :
begin
if is_chararray(para.left.resultdef) then
name := procprefixes[do_read]+'pchar_as_array'
else
begin
CGMessagePos(para.fileinfo,type_e_cant_read_write_type);
error_para := true;
end
end;
{ generic parameter }
undefineddef:
{ don't try to generate any code for a writeln on a generic parameter }
error_para:=true;
else
begin
CGMessagePos(para.fileinfo,type_e_cant_read_write_type);
error_para := true;
end;
end;
{ check for length/fractional colon para's }
fracpara:=nil;
lenpara:=nil;
indexpara:=nil;
if assigned(para.right) and
(cpf_is_colon_para in tcallparanode(para.right).callparaflags) then
begin
lenpara := tcallparanode(para.right);
if assigned(lenpara.right) and
(cpf_is_colon_para in tcallparanode(lenpara.right).callparaflags) then
fracpara:=tcallparanode(lenpara.right);
end;
{ get the next parameter now already, because we're going }
{ to muck around with the pointers }
if assigned(fracpara) then
nextpara := tcallparanode(fracpara.right)
else if assigned(lenpara) then
nextpara := tcallparanode(lenpara.right)
else
nextpara := tcallparanode(para.right);
{ check if a fracpara is allowed }
if assigned(fracpara) and not is_real then
begin
CGMessagePos(fracpara.fileinfo,parser_e_illegal_colon_qualifier);
error_para := true;
end
else if assigned(lenpara) and do_read then
begin
{ I think this is already filtered out by parsing, but I'm not sure (JM) }
CGMessagePos(lenpara.fileinfo,parser_e_illegal_colon_qualifier);
error_para := true;
end;
{ adjust found_error }
found_error := found_error or error_para;
if not error_para then
begin
special_handling:=false;
{ create dummy frac/len para's if necessary }
if not do_read then
begin
{ difference in default value for floats and the rest :( }
if not is_real then
begin
if not assigned(lenpara) then
lenpara := ccallparanode.create(
cordconstnode.create(0,s32inttype,false),nil)
else
{ make sure we don't pass the successive }
{ parameters too. We also already have a }
{ reference to the next parameter in }
{ nextpara }
lenpara.right := nil;
end
else
begin
if not assigned(lenpara) then
lenpara := ccallparanode.create(
cordconstnode.create(int64(-32767),s32inttype,false),nil);
{ also create a default fracpara if necessary }
if not assigned(fracpara) then
fracpara := ccallparanode.create(
cordconstnode.create(int64(-1),s32inttype,false),nil);
{ add it to the lenpara }
lenpara.right := fracpara;
if not is_currency(para.left.resultdef) then
begin
{ and add the realtype para (this also removes the link }
{ to any parameters coming after it) }
fracpara.right := ccallparanode.create(
cordconstnode.create(ord(tfloatdef(para.left.resultdef).floattype),
s32inttype,true),nil);
end
else
fracpara.right:=nil;
end;
if para.left.resultdef.typ=enumdef then
begin
{To write(ln) an enum we need a some extra parameters.}
{Insert a reference to the ord2string index.}
indexpara:=Ccallparanode.create(
Caddrnode.create_internal(
Crttinode.create(Tenumdef(para.left.resultdef),fullrtti,rdt_normal)
),
nil);
{Insert a reference to the typinfo.}
indexpara:=Ccallparanode.create(
Caddrnode.create_internal(
Crttinode.create(Tenumdef(para.left.resultdef),fullrtti,rdt_ord2str)
),
indexpara);
{Insert a type conversion to to convert the enum to longint.}
para.left:=Ctypeconvnode.create_internal(para.left,s32inttype);
typecheckpass(para.left);
end;
end
else
begin
{To read(ln) an enum we need a an extra parameter.}
if para.left.resultdef.typ=enumdef then
begin
{Insert a reference to the string2ord index.}
indexpara:=Ccallparanode.create(Caddrnode.create_internal(
Crttinode.create(Tenumdef(para.left.resultdef),fullrtti,rdt_str2ord)
),nil);
{Insert a type conversion to to convert the enum to longint.}
para.left:=Ctypeconvnode.create_internal(para.left,s32inttype);
typecheckpass(para.left);
end;
{ special handling of reading small numbers, because the helpers }
{ expect a longint/card/bestreal var parameter. Use a temp. can't }
{ use functions because then the call to FPC_IOCHECK destroys }
{ their result before we can store it }
if (readfunctype<>nil) and (para.left.resultdef<>readfunctype) then
special_handling:=true;
end;
if special_handling then
begin
{ since we're not going to pass the parameter as var-parameter }
{ to the read function, manually check whether the parameter }
{ can be used as var-parameter (e.g., whether it isn't a }
{ property) }
valid_for_var(para.left,true);
{ create the parameter list: the temp ... }
temp := ctempcreatenode.create(readfunctype,readfunctype.size,tt_persistent,false);
addstatement(Tstatementnode(newstatement),temp);
{ ... and the file }
p1 := ccallparanode.create(ctemprefnode.create(temp),
filepara.getcopy);
Tcallparanode(Tcallparanode(p1).right).right:=indexpara;
{ create the call to the helper }
addstatement(Tstatementnode(newstatement),
ccallnode.createintern(name,tcallparanode(p1)));
{ assign the result to the original var (this automatically }
{ takes care of range checking) }
addstatement(Tstatementnode(newstatement),
cassignmentnode.create(para.left,
ctemprefnode.create(temp)));
{ release the temp location }
addstatement(Tstatementnode(newstatement),ctempdeletenode.create(temp));
{ statement of para is used }
para.left := nil;
{ free the enclosing tcallparanode, but not the }
{ parameters coming after it }
para.right := nil;
para.free;
end
else
{ read of non s/u-8/16bit, or a write }
begin
{ add the filepara to the current parameter }
para.right := filepara.getcopy;
{Add the lenpara and the indexpara(s) (fracpara and realtype are
already linked with the lenpara if necessary).}
if indexpara=nil then
Tcallparanode(para.right).right:=lenpara
else
begin
if lenpara=nil then
Tcallparanode(para.right).right:=indexpara
else
begin
Tcallparanode(para.right).right:=lenpara;
lenpara.right:=indexpara;
end;
{ indexpara.right:=lenpara;}
end;
{ in case of writing a chararray, add whether it's }
{ zero-based }
if para.left.resultdef.typ=arraydef then
para := ccallparanode.create(cordconstnode.create(
ord(tarraydef(para.left.resultdef).lowrange=0),booltype,false),para);
{ create the call statement }
addstatement(Tstatementnode(newstatement),
ccallnode.createintern(name,para));
end
end
else
{ error_para = true }
begin
{ free the parameter, since it isn't referenced anywhere anymore }
para.right := nil;
para.free;
if assigned(lenpara) then
begin
lenpara.right := nil;
lenpara.free;
end;
if assigned(fracpara) then
begin
fracpara.right := nil;
fracpara.free;
end;
end;
{ process next parameter }
para := nextpara;
end;
{ if no error, add the write(ln)/read(ln) end calls }
if not found_error then
begin
case inlinenumber of
in_read_x,
in_readstr_x:
name:='fpc_read_end';
in_write_x,
in_writestr_x:
name:='fpc_write_end';
in_readln_x:
name:='fpc_readln_end';
in_writeln_x:
name:='fpc_writeln_end';
end;
addstatement(Tstatementnode(newstatement),ccallnode.createintern(name,filepara));
end;
handle_text_read_write:=found_error;
end;
function Tinlinenode.handle_typed_read_write(filepara,params:Ttertiarynode;var newstatement:Tnode):boolean;
{Read/write for typed files.}
const procprefixes:array[boolean] of string[15]=('fpc_typed_write','fpc_typed_read');
procnamesdisplay:array[boolean,boolean] of string[8] = (('Write','Read'),('WriteStr','ReadStr'));
var found_error,do_read,is_rwstr:boolean;
para,nextpara:Tcallparanode;
p1:Tnode;
temp:Ttempcreatenode;
begin
found_error:=false;
para:=Tcallparanode(params);
do_read:=inlinenumber in [in_read_x,in_readln_x,in_readstr_x];
is_rwstr := inlinenumber in [in_readstr_x,in_writestr_x];
{ add the typesize to the filepara }
if filepara.resultdef.typ=filedef then
filepara.right := ccallparanode.create(cordconstnode.create(
tfiledef(filepara.resultdef).typedfiledef.size,s32inttype,true),nil);
{ check for "no parameters" (you need at least one extra para for typed files) }
if not assigned(para) then
begin
CGMessage1(parser_e_wrong_parameter_size,procnamesdisplay[is_rwstr,do_read]);
found_error := true;
end;
{ process all parameters }
while assigned(para) do
begin
{ check if valid parameter }
if para.left.nodetype=typen then
begin
CGMessagePos(para.left.fileinfo,type_e_cant_read_write_type);
found_error := true;
end;
{ support writeln(procvar) }
if (para.left.resultdef.typ=procvardef) then
begin
p1:=ccallnode.create_procvar(nil,para.left);
typecheckpass(p1);
para.left:=p1;
end;
if filepara.resultdef.typ=filedef then
inserttypeconv(para.left,tfiledef(filepara.resultdef).typedfiledef);
if assigned(para.right) and
(cpf_is_colon_para in tcallparanode(para.right).callparaflags) then
begin
CGMessagePos(para.right.fileinfo,parser_e_illegal_colon_qualifier);
{ skip all colon para's }
nextpara := tcallparanode(tcallparanode(para.right).right);
while assigned(nextpara) and (cpf_is_colon_para in nextpara.callparaflags) do
nextpara := tcallparanode(nextpara.right);
found_error := true;
end
else
{ get next parameter }
nextpara := tcallparanode(para.right);
{ When we have a call, we have a problem: you can't pass the }
{ result of a call as a formal const parameter. Solution: }
{ assign the result to a temp and pass this temp as parameter }
{ This is not very efficient, but write(typedfile,x) is }
{ already slow by itself anyway (no buffering) (JM) }
{ Actually, thge same goes for every non-simple expression }
{ (such as an addition, ...) -> put everything but load nodes }
{ into temps (JM) }
{ of course, this must only be allowed for writes!!! (JM) }
if not(do_read) and (para.left.nodetype <> loadn) then
begin
{ create temp for result }
temp := ctempcreatenode.create(para.left.resultdef,
para.left.resultdef.size,tt_persistent,false);
addstatement(Tstatementnode(newstatement),temp);
{ assign result to temp }
addstatement(Tstatementnode(newstatement),
cassignmentnode.create(ctemprefnode.create(temp),
para.left));
{ replace (reused) paranode with temp }
para.left := ctemprefnode.create(temp);
end;
{ add fileparameter }
para.right := filepara.getcopy;
{ create call statment }
{ since the parameters are in the correct order, we have to insert }
{ the statements always at the end of the current block }
addstatement(Tstatementnode(newstatement),
Ccallnode.createintern(procprefixes[do_read],para
));
{ if we used a temp, free it }
if para.left.nodetype = temprefn then
addstatement(Tstatementnode(newstatement),ctempdeletenode.create(temp));
{ process next parameter }
para := nextpara;
end;
{ free the file parameter }
filepara.free;
handle_typed_read_write:=found_error;
end;
function tinlinenode.handle_read_write: tnode;
var
filepara,
nextpara,
params : tcallparanode;
newstatement : tstatementnode;
newblock : tblocknode;
filetemp : Ttempcreatenode;
name : string[31];
textsym : ttypesym;
is_typed,
do_read,
is_rwstr,
found_error : boolean;
begin
filepara := nil;
is_typed := false;
filetemp := nil;
do_read := inlinenumber in [in_read_x,in_readln_x,in_readstr_x];
is_rwstr := inlinenumber in [in_readstr_x,in_writestr_x];
{ if we fail, we can quickly exit this way. We must generate something }
{ instead of the inline node, because firstpass will bomb with an }
{ internalerror if it encounters a read/write }
result := cerrornode.create;
{ reverse the parameters (needed to get the colon parameters in the }
{ correct order when processing write(ln) }
left := reverseparameters(tcallparanode(left));
if is_rwstr then
begin
filepara := tcallparanode(left);
{ needs at least two parameters: source/dest string + min. 1 value }
if not(assigned(filepara)) or
not(assigned(filepara.right)) then
begin
CGMessagePos1(fileinfo,parser_e_wrong_parameter_size,'ReadStr/WriteStr');
exit;
end
else if (filepara.resultdef.typ <> stringdef) then
begin
{ convert chararray to string, or give an appropriate error message }
{ (if you want to optimize to use shortstring, keep in mind that }
{ readstr internally always uses ansistring, and to account for }
{ chararrays with > 255 characters) }
inserttypeconv(filepara.left,cansistringtype);
filepara.resultdef:=filepara.left.resultdef;
if codegenerror then
exit;
end
end
else if assigned(left) then
begin
{ check if we have a file parameter and if yes, what kind it is }
filepara := tcallparanode(left);
if (filepara.resultdef.typ=filedef) then
begin
if (tfiledef(filepara.resultdef).filetyp=ft_untyped) then
begin
CGMessagePos(fileinfo,type_e_no_read_write_for_untyped_file);
exit;
end
else
begin
if (tfiledef(filepara.resultdef).filetyp=ft_typed) then
begin
if (inlinenumber in [in_readln_x,in_writeln_x]) then
begin
CGMessagePos(fileinfo,type_e_no_readln_writeln_for_typed_file);
exit;
end;
is_typed := true;
end
end;
end
else
filepara := nil;
end;
{ create a blocknode in which the successive write/read statements will be }
{ put, since they belong together. Also create a dummy statement already to }
{ make inserting of additional statements easier }
newblock:=internalstatements(newstatement);
{ if we don't have a filepara, create one containing the default }
if not assigned(filepara) or
is_rwstr then
begin
{ since the input/output variables are threadvars loading them into
a temp once is faster. Create a temp which will hold a pointer to the file }
filetemp := ctempcreatenode.create(voidpointertype,voidpointertype.size,tt_persistent,true);
addstatement(newstatement,filetemp);
{ make sure the resultdef of the temp (and as such of the }
{ temprefs coming after it) is set (necessary because the }
{ temprefs will be part of the filepara, of which we need }
{ the resultdef later on and temprefs can only be }
{ typecheckpassed if the resultdef of the temp is known) }
typecheckpass(tnode(filetemp));
if not is_rwstr then
begin
{ assign the address of the file to the temp }
if do_read then
name := 'input'
else
name := 'output';
addstatement(newstatement,
cassignmentnode.create(ctemprefnode.create(filetemp),
ccallnode.createintern('fpc_get_'+name,nil)));
end
else
begin
if (do_read) then
name := 'fpc_setupreadstr_'
else
name := 'fpc_setupwritestr_';
name:=name+tstringdef(filepara.resultdef).stringtypname;
{ remove the source/destination string parameter from the }
{ parameter chain }
left:=filepara.right;
filepara.right:=nil;
{ pass the source/destination string to the setup routine, which }
{ will store the string's address in the returned textrec }
addstatement(newstatement,
cassignmentnode.create(ctemprefnode.create(filetemp),
ccallnode.createintern(name,filepara)));
end;
{ create a new fileparameter as follows: file_type(temp^) }
{ (so that we pass the value and not the address of the temp }
{ to the read/write routine) }
textsym:=search_system_type('TEXT');
filepara := ccallparanode.create(ctypeconvnode.create_internal(
cderefnode.create(ctemprefnode.create(filetemp)),textsym.typedef),nil);
end
else
{ remove filepara from the parameter chain }
begin
left := filepara.right;
filepara.right := nil;
{ the file para is a var parameter, but it must be valid already }
set_varstate(filepara.left,vs_readwritten,[vsf_must_be_valid]);
{ check if we should make a temp to store the result of a complex }
{ expression (better heuristics, anyone?) (JM) }
if (filepara.left.nodetype <> loadn) then
begin
{ create a temp which will hold a pointer to the file }
filetemp := ctempcreatenode.create(voidpointertype,voidpointertype.size,tt_persistent,true);
{ add it to the statements }
addstatement(newstatement,filetemp);
{ make sure the resultdef of the temp (and as such of the }
{ temprefs coming after it) is set (necessary because the }
{ temprefs will be part of the filepara, of which we need }
{ the resultdef later on and temprefs can only be }
{ typecheckpassed if the resultdef of the temp is known) }
typecheckpass(tnode(filetemp));
{ assign the address of the file to the temp }
addstatement(newstatement,
cassignmentnode.create(ctemprefnode.create(filetemp),
caddrnode.create_internal(filepara.left)));
typecheckpass(newstatement.left);
{ create a new fileparameter as follows: file_type(temp^) }
{ (so that we pass the value and not the address of the temp }
{ to the read/write routine) }
nextpara := ccallparanode.create(ctypeconvnode.create_internal(
cderefnode.create(ctemprefnode.create(filetemp)),filepara.left.resultdef),nil);
{ replace the old file para with the new one }
filepara.left := nil;
filepara.free;
filepara := nextpara;
end;
end;
{ the resultdef of the filepara must be set since it's }
{ used below }
filepara.get_paratype;
{ now, filepara is nowhere referenced anymore, so we can safely dispose it }
{ if something goes wrong or at the end of the procedure }
{ we're going to reuse the paranodes, so make sure they don't get freed }
{ twice }
params:=Tcallparanode(left);
left := nil;
if is_typed then
found_error:=handle_typed_read_write(filepara,Ttertiarynode(params),tnode(newstatement))
else
found_error:=handle_text_read_write(filepara,Ttertiarynode(params),tnode(newstatement));
{ if we found an error, simply delete the generated blocknode }
if found_error then
newblock.free
else
begin
{ deallocate the temp for the file para if we used one }
if assigned(filetemp) then
addstatement(newstatement,ctempdeletenode.create(filetemp));
{ otherwise return the newly generated block of instructions, }
{ but first free the errornode we generated at the beginning }
result.free;
result := newblock
end;
end;
function tinlinenode.handle_val: tnode;
var
procname,
suffix : string[31];
sourcepara,
destpara,
codepara,
sizepara,
newparas : tcallparanode;
orgcode,tc : tnode;
newstatement : tstatementnode;
newblock : tblocknode;
tempcode : ttempcreatenode;
begin
{ for easy exiting if something goes wrong }
result := cerrornode.create;
{ check the amount of parameters }
if not(assigned(left)) or
not(assigned(tcallparanode(left).right)) then
begin
CGMessage1(parser_e_wrong_parameter_size,'Val');
exit;
end;
{ reverse parameters for easier processing }
left := reverseparameters(tcallparanode(left));
{ get the parameters }
tempcode := nil;
orgcode := nil;
sizepara := nil;
sourcepara := tcallparanode(left);
destpara := tcallparanode(sourcepara.right);
codepara := tcallparanode(destpara.right);
{ check if codepara is valid }
if assigned(codepara) and
(
not is_integer(codepara.resultdef)
{$ifndef cpu64bitaddr}
or is_64bitint(codepara.resultdef)
{$endif not cpu64bitaddr}
) then
begin
CGMessagePos1(codepara.fileinfo,type_e_integer_expr_expected,codepara.resultdef.typename);
exit;
end;
{ check if dest para is valid }
if not is_integer(destpara.resultdef) and
not is_currency(destpara.resultdef) and
not(destpara.resultdef.typ in [floatdef,enumdef]) then
begin
CGMessagePos(destpara.fileinfo,type_e_integer_or_real_expr_expected);
exit;
end;
{ we're going to reuse the exisiting para's, so make sure they }
{ won't be disposed }
left := nil;
{ create the blocknode which will hold the generated statements + }
{ an initial dummy statement }
newblock:=internalstatements(newstatement);
{ do we need a temp for code? Yes, if no code specified, or if }
{ code is not a 32bit parameter (we already checked whether the }
{ the code para, if specified, was an orddef) }
if not assigned(codepara) or
(codepara.resultdef.size<>sinttype.size) then
begin
tempcode := ctempcreatenode.create(sinttype,sinttype.size,tt_persistent,false);
addstatement(newstatement,tempcode);
{ set the resultdef of the temp (needed to be able to get }
{ the resultdef of the tempref used in the new code para) }
typecheckpass(tnode(tempcode));
{ create a temp codepara, but save the original code para to }
{ assign the result to later on }
if assigned(codepara) then
begin
orgcode := codepara.left;
codepara.left := ctemprefnode.create(tempcode);
end
else
codepara := ccallparanode.create(ctemprefnode.create(tempcode),nil);
{ we need its resultdef later on }
codepara.get_paratype;
end
else if (torddef(codepara.resultdef).ordtype = torddef(sinttype).ordtype) then
{ because code is a var parameter, it must match types exactly }
{ however, since it will return values in [0..255], both longints }
{ and cardinals are fine. Since the formal code para type is }
{ longint, insert a typecoversion to longint for cardinal para's }
begin
codepara.left := ctypeconvnode.create_internal(codepara.left,sinttype);
{ make it explicit, oterwise you may get a nonsense range }
{ check error if the cardinal already contained a value }
{ > $7fffffff }
codepara.get_paratype;
end;
{ create the procedure name }
procname := 'fpc_val_';
case destpara.resultdef.typ of
orddef:
begin
case torddef(destpara.resultdef).ordtype of
{$ifdef cpu64bitaddr}
s64bit,
{$endif cpu64bitaddr}
s8bit,
s16bit,
s32bit:
begin
suffix := 'sint_';
{ we also need a destsize para in this case }
sizepara := ccallparanode.create(cordconstnode.create
(destpara.resultdef.size,s32inttype,true),nil);
end;
{$ifdef cpu64bitaddr}
u64bit,
{$endif cpu64bitaddr}
u8bit,
u16bit,
u32bit:
suffix := 'uint_';
{$ifndef cpu64bitaddr}
s64bit: suffix := 'int64_';
u64bit: suffix := 'qword_';
{$endif not cpu64bitaddr}
scurrency: suffix := 'currency_';
else
internalerror(200304225);
end;
end;
floatdef:
suffix:='real_';
enumdef:
begin
suffix:='enum_';
sizepara:=Ccallparanode.create(Caddrnode.create_internal(
Crttinode.create(Tenumdef(destpara.resultdef),fullrtti,rdt_str2ord)
),nil);
end;
end;
procname := procname + suffix;
{ play a trick to have tcallnode handle invalid source parameters: }
{ the shortstring-longint val routine by default }
if (sourcepara.resultdef.typ = stringdef) then
procname := procname + tstringdef(sourcepara.resultdef).stringtypname
{ zero-based arrays (of char) can be implicitely converted to ansistring }
else if is_zero_based_array(sourcepara.resultdef) then
procname := procname + 'ansistr'
else
procname := procname + 'shortstr';
{ set up the correct parameters for the call: the code para... }
newparas := codepara;
{ and the source para }
codepara.right := sourcepara;
{ sizepara either contains nil if none is needed (which is ok, since }
{ then the next statement severes any possible links with other paras }
{ that sourcepara may have) or it contains the necessary size para and }
{ its right field is nil }
sourcepara.right := sizepara;
{ create the call and assign the result to dest (val helpers are functions).
Use a trick to prevent a type size mismatch warning to be generated by the
assignment node. First convert implicitly to the resultdef. This will insert
the range check. The Second conversion is done explicitly to hide the implicit conversion
for the assignment node and therefor preventing the warning (PFV)
The implicit conversion is avoided for enums because implicit conversion between
longint (which is what fpc_val_enum_shortstr returns) and enumerations is not
possible. (DM).
The implicit conversion is also avoided for COMP type if it is handled by FPU (x86)
to prevent warning about automatic type conversion. }
if (destpara.resultdef.typ=enumdef) or
((destpara.resultdef.typ=floatdef) and (tfloatdef(destpara.resultdef).floattype=s64comp))
then
tc:=ccallnode.createintern(procname,newparas)
else
tc:=ctypeconvnode.create(ccallnode.createintern(procname,newparas),destpara.left.resultdef);
addstatement(newstatement,cassignmentnode.create(
destpara.left,ctypeconvnode.create_internal(tc,destpara.left.resultdef)));
{ dispose of the enclosing paranode of the destination }
destpara.left := nil;
destpara.right := nil;
destpara.free;
{ check if we used a temp for code and whether we have to store }
{ it to the real code parameter }
if assigned(orgcode) then
addstatement(newstatement,cassignmentnode.create(
orgcode,
ctypeconvnode.create_internal(
ctemprefnode.create(tempcode),orgcode.resultdef)));
{ release the temp if we allocated one }
if assigned(tempcode) then
addstatement(newstatement,ctempdeletenode.create(tempcode));
{ free the errornode }
result.free;
{ and return it }
result := newblock;
end;
{$maxfpuregisters 0}
function getpi : bestreal;
begin
{$ifdef x86}
{ x86 has pi in hardware }
result:=pi;
{$else x86}
{$ifdef cpuextended}
result:=MathPiExtended.Value;
{$else cpuextended}
result:=MathPi.Value;
{$endif cpuextended}
{$endif x86}
end;
function tinlinenode.simplify: tnode;
function do_lowhigh(def:tdef) : tnode;
var
v : tconstexprint;
enum : tenumsym;
hp : tnode;
i : integer;
begin
case def.typ of
orddef:
begin
set_varstate(left,vs_read,[]);
if inlinenumber=in_low_x then
v:=torddef(def).low
else
v:=torddef(def).high;
hp:=cordconstnode.create(v,def,true);
typecheckpass(hp);
do_lowhigh:=hp;
end;
enumdef:
begin
set_varstate(left,vs_read,[]);
if inlinenumber=in_high_x then
v:=tenumdef(def).maxval
else
v:=tenumdef(def).minval;
enum:=nil;
for i := 0 to tenumdef(def).symtable.SymList.Count - 1 do
if tenumsym(tenumdef(def).symtable.SymList[i]).value=v then
begin
enum:=tenumsym(tenumdef(def).symtable.SymList[i]);
break;
end;
if not assigned(enum) then
internalerror(309993)
else
hp:=genenumnode(enum);
do_lowhigh:=hp;
end;
else
internalerror(87);
end;
end;
function getconstrealvalue : bestreal;
begin
case left.nodetype of
ordconstn:
getconstrealvalue:=tordconstnode(left).value;
realconstn:
getconstrealvalue:=trealconstnode(left).value_real;
else
internalerror(309992);
end;
end;
procedure setconstrealvalue(r : bestreal);
begin
result:=crealconstnode.create(r,pbestrealtype^);
end;
function handle_ln_const(r : bestreal) : tnode;
begin
if r<=0.0 then
if floating_point_range_check_error then
begin
result:=crealconstnode.create(0,pbestrealtype^);
CGMessage(type_e_wrong_math_argument)
end
else
begin
if r=0.0 then
result:=crealconstnode.create(MathQNaN.Value,pbestrealtype^)
else
result:=crealconstnode.create(MathNegInf.Value,pbestrealtype^)
end
else
result:=crealconstnode.create(ln(r),pbestrealtype^)
end;
function handle_sqrt_const(r : bestreal) : tnode;
begin
if r<0.0 then
if floating_point_range_check_error then
begin
result:=crealconstnode.create(0,pbestrealtype^);
CGMessage(type_e_wrong_math_argument)
end
else
result:=crealconstnode.create(MathQNaN.Value,pbestrealtype^)
else
result:=crealconstnode.create(sqrt(r),pbestrealtype^)
end;
function handle_const_sar : tnode;
var
vl,vl2 : TConstExprInt;
bits,shift: integer;
mask : qword;
def : tdef;
begin
result:=nil;
if (left.nodetype=ordconstn) or ((left.nodetype=callparan) and (tcallparanode(left).left.nodetype=ordconstn)) then
begin
if (left.nodetype=callparan) and
assigned(tcallparanode(left).right) then
begin
if (tcallparanode(tcallparanode(left).right).left.nodetype=ordconstn) then
begin
def:=tcallparanode(tcallparanode(left).right).left.resultdef;
vl:=tordconstnode(tcallparanode(left).left).value;
vl2:=tordconstnode(tcallparanode(tcallparanode(left).right).left).value;
end
else
exit;
end
else
begin
def:=left.resultdef;
vl:=1;
vl2:=tordconstnode(left).value;
end;
bits:=def.size*8;
shift:=vl.svalue and (bits-1);
case bits of
8:
mask:=$ff;
16:
mask:=$ffff;
32:
mask:=$ffffffff;
64:
mask:=qword($ffffffffffffffff);
else
mask:=qword(1 shl bits)-1;
end;
{$push}
{$r-,q-}
if shift=0 then
result:=cordconstnode.create(vl2.svalue,def,false)
else if vl2.svalue<0 then
result:=cordconstnode.create(((vl2.svalue shr shift) or (mask shl (bits-shift))) and mask,def,false)
else
result:=cordconstnode.create((vl2.svalue shr shift) and mask,def,false);
{$pop}
end
else
end;
var
hp : tnode;
vl,vl2 : TConstExprInt;
vr : bestreal;
begin { simplify }
result:=nil;
{ handle intern constant functions in separate case }
if nf_inlineconst in flags then
begin
{ no parameters? }
if not assigned(left) then
internalerror(200501231)
else
begin
vl:=0;
vl2:=0; { second parameter Ex: ptr(vl,vl2) }
case left.nodetype of
realconstn :
begin
{ Real functions are all handled with internproc below }
CGMessage1(type_e_integer_expr_expected,left.resultdef.typename)
end;
ordconstn :
vl:=tordconstnode(left).value;
callparan :
begin
{ both exists, else it was not generated }
vl:=tordconstnode(tcallparanode(left).left).value;
vl2:=tordconstnode(tcallparanode(tcallparanode(left).right).left).value;
end;
else
CGMessage(parser_e_illegal_expression);
end;
case inlinenumber of
in_const_abs :
if vl.signed then
hp:=genintconstnode(abs(vl.svalue))
else
hp:=genintconstnode(vl.uvalue);
in_const_sqr:
if vl.signed then
hp:=genintconstnode(sqr(vl.svalue))
else
hp:=genintconstnode(sqr(vl.uvalue));
in_const_odd :
hp:=cordconstnode.create(qword(odd(int64(vl))),booltype,true);
in_const_swap_word :
hp:=cordconstnode.create((vl and $ff) shl 8+(vl shr 8),left.resultdef,true);
in_const_swap_long :
hp:=cordconstnode.create((vl and $ffff) shl 16+(vl shr 16),left.resultdef,true);
in_const_swap_qword :
hp:=cordconstnode.create((vl and $ffff) shl 32+(vl shr 32),left.resultdef,true);
in_const_ptr:
begin
{Don't construct pointers from negative values.}
if (vl.signed and (vl.svalue<0)) or (vl2.signed and (vl2.svalue<0)) then
cgmessage(parser_e_range_check_error);
hp:=cpointerconstnode.create((vl2.uvalue shl 4)+vl.uvalue,voidfarpointertype);
end
else
internalerror(88);
end;
end;
if hp=nil then
hp:=cerrornode.create;
result:=hp;
end
else
begin
case inlinenumber of
in_lo_long,
in_hi_long,
in_lo_qword,
in_hi_qword,
in_lo_word,
in_hi_word :
begin
if left.nodetype=ordconstn then
begin
case inlinenumber of
in_lo_word :
result:=cordconstnode.create(tordconstnode(left).value and $ff,u8inttype,true);
in_hi_word :
result:=cordconstnode.create(tordconstnode(left).value shr 8,u8inttype,true);
in_lo_long :
result:=cordconstnode.create(tordconstnode(left).value and $ffff,u16inttype,true);
in_hi_long :
result:=cordconstnode.create(tordconstnode(left).value shr 16,u16inttype,true);
in_lo_qword :
result:=cordconstnode.create(tordconstnode(left).value and $ffffffff,u32inttype,true);
in_hi_qword :
result:=cordconstnode.create(tordconstnode(left).value shr 32,u32inttype,true);
end;
end;
end;
in_ord_x:
begin
case left.resultdef.typ of
orddef :
begin
case torddef(left.resultdef).ordtype of
pasbool,
uchar:
begin
{ change to byte() }
result:=ctypeconvnode.create_internal(left,u8inttype);
left:=nil;
end;
uwidechar :
begin
{ change to word() }
result:=ctypeconvnode.create_internal(left,u16inttype);
left:=nil;
end;
bool8bit:
begin
{ change to shortint() }
result:=ctypeconvnode.create_internal(left,s8inttype);
left:=nil;
end;
bool16bit :
begin
{ change to smallint() }
result:=ctypeconvnode.create_internal(left,s16inttype);
left:=nil;
end;
bool32bit :
begin
{ change to longint() }
result:=ctypeconvnode.create_internal(left,s32inttype);
left:=nil;
end;
bool64bit :
begin
{ change to int64() }
result:=ctypeconvnode.create_internal(left,s64inttype);
left:=nil;
end;
uvoid :
CGMessage1(type_e_ordinal_expr_expected,left.resultdef.typename);
else
begin
{ all other orddef need no transformation }
result:=left;
left:=nil;
end;
end;
end;
enumdef :
begin
result:=ctypeconvnode.create_internal(left,s32inttype);
left:=nil;
end;
pointerdef :
begin
if m_mac in current_settings.modeswitches then
begin
result:=ctypeconvnode.create_internal(left,ptruinttype);
left:=nil;
end
end;
end;
(*
if (left.nodetype=ordconstn) then
begin
result:=cordconstnode.create(
tordconstnode(left).value,sinttype,true);
end
else if (m_mac in current_settings.modeswitches) and
(left.ndoetype=pointerconstn) then
result:=cordconstnode.create(
tpointerconstnode(left).value,ptruinttype,true);
*)
end;
in_chr_byte:
begin
{ convert to explicit char() }
result:=ctypeconvnode.create_internal(left,cchartype);
left:=nil;
end;
in_length_x:
begin
case left.resultdef.typ of
stringdef :
begin
if (left.nodetype=stringconstn) then
begin
result:=cordconstnode.create(
tstringconstnode(left).len,sinttype,true);
end;
end;
orddef :
begin
{ length of char is always one }
if is_char(left.resultdef) or
is_widechar(left.resultdef) then
begin
result:=cordconstnode.create(1,sinttype,false);
end
end;
arraydef :
begin
if not is_open_array(left.resultdef) and
not is_array_of_const(left.resultdef) and
not is_dynamic_array(left.resultdef) then
result:=cordconstnode.create(tarraydef(left.resultdef).highrange-
tarraydef(left.resultdef).lowrange+1,
sinttype,true);
end;
end;
end;
in_assigned_x:
begin
if is_constnode(tcallparanode(left).left) or
(tcallparanode(left).left.nodetype = pointerconstn) then
begin
{ let an add node figure it out }
result:=caddnode.create(unequaln,tcallparanode(left).left,cnilnode.create);
tcallparanode(left).left := nil;
end;
end;
in_pred_x,
in_succ_x:
begin
if (left.nodetype=ordconstn) then
begin
if (inlinenumber=in_succ_x) then
vl:=tordconstnode(left).value+1
else
vl:=tordconstnode(left).value-1;
if is_integer(left.resultdef) then
{ the type of the original integer constant is irrelevant,
it should be automatically adapted to the new value }
result:=genintconstnode(vl)
else
{ check the range for enums, chars, booleans }
result:=cordconstnode.create(vl,left.resultdef,true)
end
end;
in_low_x,
in_high_x:
begin
case left.resultdef.typ of
orddef,
enumdef:
begin
result:=do_lowhigh(left.resultdef);
end;
setdef:
begin
result:=do_lowhigh(tsetdef(left.resultdef).elementdef);
end;
arraydef:
begin
if (inlinenumber=in_low_x) then
begin
result:=cordconstnode.create(int64(tarraydef(
left.resultdef).lowrange),tarraydef(left.resultdef).rangedef,true);
end
else if not is_open_array(left.resultdef) and
not is_array_of_const(left.resultdef) and
not is_dynamic_array(left.resultdef) then
result:=cordconstnode.create(int64(tarraydef(left.resultdef).highrange),
tarraydef(left.resultdef).rangedef,true);
end;
stringdef:
begin
if inlinenumber=in_low_x then
begin
result:=cordconstnode.create(0,u8inttype,false);
end
else if not is_ansistring(left.resultdef) and
not is_wide_or_unicode_string(left.resultdef) then
result:=cordconstnode.create(tstringdef(left.resultdef).len,u8inttype,true)
end;
end;
end;
in_exp_real :
begin
if left.nodetype in [ordconstn,realconstn] then
begin
result:=crealconstnode.create(exp(getconstrealvalue),pbestrealtype^);
if (trealconstnode(result).value_real=MathInf.Value) and
floating_point_range_check_error then
begin
result:=crealconstnode.create(0,pbestrealtype^);
CGMessage(parser_e_range_check_error);
end;
end
end;
in_trunc_real :
begin
if left.nodetype in [ordconstn,realconstn] then
begin
vr:=getconstrealvalue;
if (vr>=9223372036854775807.5) or (vr<=-9223372036854775808.5) then
begin
CGMessage(parser_e_range_check_error);
result:=cordconstnode.create(1,s64inttype,false)
end
else
result:=cordconstnode.create(trunc(vr),s64inttype,true)
end
end;
in_round_real :
begin
if left.nodetype in [ordconstn,realconstn] then
begin
vr:=getconstrealvalue;
if (vr>=9223372036854775807.5) or (vr<=-9223372036854775808.5) then
begin
CGMessage(parser_e_range_check_error);
result:=cordconstnode.create(1,s64inttype,false)
end
else
result:=cordconstnode.create(round(vr),s64inttype,true)
end
end;
in_frac_real :
begin
if left.nodetype in [ordconstn,realconstn] then
setconstrealvalue(frac(getconstrealvalue))
end;
in_int_real :
begin
if left.nodetype in [ordconstn,realconstn] then
setconstrealvalue(int(getconstrealvalue));
end;
in_pi_real :
begin
if block_type=bt_const then
setconstrealvalue(getpi)
end;
in_cos_real :
begin
if left.nodetype in [ordconstn,realconstn] then
setconstrealvalue(cos(getconstrealvalue))
end;
in_sin_real :
begin
if left.nodetype in [ordconstn,realconstn] then
setconstrealvalue(sin(getconstrealvalue))
end;
in_arctan_real :
begin
if left.nodetype in [ordconstn,realconstn] then
setconstrealvalue(arctan(getconstrealvalue))
end;
in_abs_real :
begin
if left.nodetype in [ordconstn,realconstn] then
setconstrealvalue(abs(getconstrealvalue))
end;
in_abs_long:
begin
if left.nodetype=ordconstn then
begin
if tordconstnode(left).value<0 then
result:=cordconstnode.create((-tordconstnode(left).value),s32inttype,false)
else
result:=cordconstnode.create((tordconstnode(left).value),s32inttype,false);
end
end;
in_sqr_real :
begin
if left.nodetype in [ordconstn,realconstn] then
setconstrealvalue(sqr(getconstrealvalue))
end;
in_sqrt_real :
begin
if left.nodetype in [ordconstn,realconstn] then
begin
vr:=getconstrealvalue;
if vr<0.0 then
result:=handle_sqrt_const(vr)
else
setconstrealvalue(sqrt(vr));
end
end;
in_ln_real :
begin
if left.nodetype in [ordconstn,realconstn] then
begin
vr:=getconstrealvalue;
if vr<=0.0 then
result:=handle_ln_const(vr)
else
setconstrealvalue(ln(vr));
end
end;
in_assert_x_y :
begin
if not(cs_do_assertion in current_settings.localswitches) then
{ we need a valid node, so insert a nothingn }
result:=cnothingnode.create;
end;
in_sar_x,
in_sar_x_y :
begin
result:=handle_const_sar;
end;
end;
end;
end;
function tinlinenode.pass_typecheck:tnode;
procedure setfloatresultdef;
begin
if (left.resultdef.typ=floatdef) and
(tfloatdef(left.resultdef).floattype in [s32real,s64real,s80real,sc80real,s128real]) then
resultdef:=left.resultdef
else
begin
if (left.nodetype <> ordconstn) then
inserttypeconv(left,pbestrealtype^);
resultdef:=pbestrealtype^;
end;
end;
procedure handle_pack_unpack;
var
source, target, index: tcallparanode;
unpackedarraydef, packedarraydef: tarraydef;
tempindex: TConstExprInt;
begin
resultdef:=voidtype;
unpackedarraydef := nil;
packedarraydef := nil;
source := tcallparanode(left);
if (inlinenumber = in_unpack_x_y_z) then
begin
target := tcallparanode(source.right);
index := tcallparanode(target.right);
{ source must be a packed array }
if not is_packed_array(source.left.resultdef) then
CGMessagePos2(source.left.fileinfo,type_e_got_expected_packed_array,'1',source.left.resultdef.GetTypeName)
else
packedarraydef := tarraydef(source.left.resultdef);
{ target can be any kind of array, as long as it's not packed }
if (target.left.resultdef.typ <> arraydef) or
is_packed_array(target.left.resultdef) then
CGMessagePos2(target.left.fileinfo,type_e_got_expected_unpacked_array,'2',target.left.resultdef.GetTypeName)
else
unpackedarraydef := tarraydef(target.left.resultdef);
end
else
begin
index := tcallparanode(source.right);
target := tcallparanode(index.right);
{ source can be any kind of array, as long as it's not packed }
if (source.left.resultdef.typ <> arraydef) or
is_packed_array(source.left.resultdef) then
CGMessagePos2(source.left.fileinfo,type_e_got_expected_unpacked_array,'1',source.left.resultdef.GetTypeName)
else
unpackedarraydef := tarraydef(source.left.resultdef);
{ target must be a packed array }
if not is_packed_array(target.left.resultdef) then
CGMessagePos2(target.left.fileinfo,type_e_got_expected_packed_array,'3',target.left.resultdef.GetTypeName)
else
packedarraydef := tarraydef(target.left.resultdef);
end;
if assigned(unpackedarraydef) then
begin
{ index must be compatible with the unpacked array's indextype }
inserttypeconv(index.left,unpackedarraydef.rangedef);
{ range check at compile time if possible }
if assigned(packedarraydef) and
(index.left.nodetype = ordconstn) and
not is_special_array(unpackedarraydef) then
begin
testrange(unpackedarraydef,tordconstnode(index.left).value,false);
tempindex := tordconstnode(index.left).value + packedarraydef.highrange-packedarraydef.lowrange;
testrange(unpackedarraydef,tempindex,false);
end;
end;
{ source array is read and must be valid }
set_varstate(source.left,vs_read,[vsf_must_be_valid]);
{ target array is written }
valid_for_assignment(target.left,true);
set_varstate(target.left,vs_written,[]);
{ index in the unpacked array is read and must be valid }
set_varstate(index.left,vs_read,[vsf_must_be_valid]);
{ if the size of the arrays is 0 (array of empty records), }
{ do nothing }
if (source.resultdef.size = 0) then
result:=cnothingnode.create;
end;
function handle_objc_encode: tnode;
var
encodedtype: ansistring;
errordef: tdef;
begin
encodedtype:='';
if not objctryencodetype(left.resultdef,encodedtype,errordef) then
Message1(type_e_objc_type_unsupported,errordef.typename);
result:=cstringconstnode.createpchar(ansistring2pchar(encodedtype),length(encodedtype));
end;
var
hightree,
hp : tnode;
begin
result:=nil;
{ when handling writeln "left" contains no valid address }
if assigned(left) then
begin
if left.nodetype=callparan then
tcallparanode(left).get_paratype
else
typecheckpass(left);
end;
if not(nf_inlineconst in flags) then
begin
case inlinenumber of
in_lo_long,
in_hi_long,
in_lo_qword,
in_hi_qword,
in_lo_word,
in_hi_word :
begin
{ give warning for incompatibility with tp and delphi }
if (inlinenumber in [in_lo_long,in_hi_long,in_lo_qword,in_hi_qword]) and
((m_tp7 in current_settings.modeswitches) or
(m_delphi in current_settings.modeswitches)) then
CGMessage(type_w_maybe_wrong_hi_lo);
set_varstate(left,vs_read,[vsf_must_be_valid]);
if not is_integer(left.resultdef) then
CGMessage1(type_e_integer_expr_expected,left.resultdef.typename);
case inlinenumber of
in_lo_word,
in_hi_word :
resultdef:=u8inttype;
in_lo_long,
in_hi_long :
resultdef:=u16inttype;
in_lo_qword,
in_hi_qword :
resultdef:=u32inttype;
end;
end;
in_sizeof_x:
begin
{ the constant evaluation of in_sizeof_x happens in pexpr where possible }
set_varstate(left,vs_read,[]);
if paramanager.push_high_param(vs_value,left.resultdef,current_procinfo.procdef.proccalloption) then
begin
hightree:=load_high_value_node(tparavarsym(tloadnode(left).symtableentry));
if assigned(hightree) then
begin
hp:=caddnode.create(addn,hightree,
cordconstnode.create(1,sinttype,false));
if (left.resultdef.typ=arraydef) then
if not is_packed_array(tarraydef(left.resultdef)) then
begin
if (tarraydef(left.resultdef).elesize<>1) then
hp:=caddnode.create(muln,hp,cordconstnode.create(tarraydef(
left.resultdef).elesize,sinttype,true));
end
else if (tarraydef(left.resultdef).elepackedbitsize <> 8) then
begin
{ no packed open array support yet }
if (hp.nodetype <> ordconstn) then
internalerror(2006081511);
hp.free;
hp := cordconstnode.create(left.resultdef.size,sinttype,true);
{
hp:=
ctypeconvnode.create_explicit(sinttype,
cmoddivnode.create(divn,
caddnode.create(addn,
caddnode.create(muln,hp,cordconstnode.create(tarraydef(
left.resultdef).elepackedbitsize,s64inttype,true)),
cordconstnode.create(a,s64inttype,true)),
cordconstnode.create(8,s64inttype,true)),
sinttype);
}
end;
result:=hp;
end;
end
else
resultdef:=sinttype;
end;
in_typeof_x:
begin
set_varstate(left,vs_read,[]);
resultdef:=voidpointertype;
end;
in_ord_x:
begin
set_varstate(left,vs_read,[vsf_must_be_valid]);
case left.resultdef.typ of
orddef,
enumdef :
;
pointerdef :
begin
if not(m_mac in current_settings.modeswitches) then
CGMessage1(type_e_ordinal_expr_expected,left.resultdef.typename);
end
else
CGMessage1(type_e_ordinal_expr_expected,left.resultdef.typename);
end;
end;
in_chr_byte:
begin
set_varstate(left,vs_read,[vsf_must_be_valid]);
end;
in_length_x:
begin
if ((left.resultdef.typ=arraydef) and
(not is_special_array(left.resultdef) or
is_open_array(left.resultdef))) or
(left.resultdef.typ=orddef) then
set_varstate(left,vs_read,[])
else
set_varstate(left,vs_read,[vsf_must_be_valid]);
case left.resultdef.typ of
variantdef:
begin
inserttypeconv(left,cansistringtype);
end;
stringdef :
begin
{ we don't need string convertions here, }
{ except if from widestring to ansistring }
{ and vice versa (that can change the }
{ length) }
if (left.nodetype=typeconvn) and
(ttypeconvnode(left).left.resultdef.typ=stringdef) and
not(is_wide_or_unicode_string(left.resultdef) xor
is_wide_or_unicode_string(ttypeconvnode(left).left.resultdef)) then
begin
hp:=ttypeconvnode(left).left;
ttypeconvnode(left).left:=nil;
left.free;
left:=hp;
end;
end;
orddef :
begin
{ will be handled in simplify }
if not is_char(left.resultdef) and
not is_widechar(left.resultdef) then
CGMessage(type_e_mismatch);
end;
pointerdef :
begin
if is_pchar(left.resultdef) then
begin
hp := ccallparanode.create(left,nil);
result := ccallnode.createintern('fpc_pchar_length',hp);
{ make sure the left node doesn't get disposed, since it's }
{ reused in the new node (JM) }
left:=nil;
exit;
end
else if is_pwidechar(left.resultdef) then
begin
hp := ccallparanode.create(left,nil);
result := ccallnode.createintern('fpc_pwidechar_length',hp);
{ make sure the left node doesn't get disposed, since it's }
{ reused in the new node (JM) }
left:=nil;
exit;
end
else
CGMessage(type_e_mismatch);
end;
arraydef :
begin
if is_open_array(left.resultdef) or
is_array_of_const(left.resultdef) then
begin
hightree:=load_high_value_node(tparavarsym(tloadnode(left).symtableentry));
if assigned(hightree) then
result:=caddnode.create(addn,hightree,
cordconstnode.create(1,sinttype,false));
exit;
end
else if is_dynamic_array(left.resultdef) then
begin
hp := ccallparanode.create(ctypeconvnode.create_internal(left,voidpointertype),nil);
result := ccallnode.createintern('fpc_dynarray_length',hp);
{ make sure the left node doesn't get disposed, since it's }
{ reused in the new node (JM) }
left:=nil;
exit;
end
else
begin
{ will be handled in simplify }
end;
end
else
CGMessage(type_e_mismatch);
end;
{ shortstring return an 8 bit value as the length
is the first byte of the string }
if is_shortstring(left.resultdef) then
resultdef:=u8inttype
else
resultdef:=sinttype;
end;
in_typeinfo_x:
begin
if (left.resultdef.typ=enumdef) and
(tenumdef(left.resultdef).has_jumps) then
CGMessage(type_e_no_type_info);
set_varstate(left,vs_read,[vsf_must_be_valid]);
resultdef:=voidpointertype;
end;
in_assigned_x:
begin
{ the parser has already made sure the expression is valid }
{ there could be a procvar, which is 2*sizeof(pointer), while we }
{ must only check the first pointer -> can't just convert to an }
{ add node in all cases }
set_varstate(tcallparanode(left).left,vs_read,[vsf_must_be_valid]);
resultdef:=booltype;
end;
in_ofs_x :
internalerror(2000101001);
in_seg_x :
begin
set_varstate(left,vs_read,[]);
result:=cordconstnode.create(0,s32inttype,false);
end;
in_pred_x,
in_succ_x:
begin
set_varstate(left,vs_read,[vsf_must_be_valid]);
resultdef:=left.resultdef;
if not is_ordinal(resultdef) then
CGMessage(type_e_ordinal_expr_expected)
else
begin
if (resultdef.typ=enumdef) and
(tenumdef(resultdef).has_jumps) and
not(m_delphi in current_settings.modeswitches) then
CGMessage(type_e_succ_and_pred_enums_with_assign_not_possible);
end;
end;
in_initialize_x,
in_finalize_x,
in_setlength_x:
begin
{ inlined from pinline }
internalerror(200204231);
end;
in_inc_x,
in_dec_x:
begin
resultdef:=voidtype;
if assigned(left) then
begin
{ first param must be var }
valid_for_var(tcallparanode(left).left,true);
set_varstate(tcallparanode(left).left,vs_readwritten,[vsf_must_be_valid]);
if (left.resultdef.typ in [enumdef,pointerdef]) or
is_ordinal(left.resultdef) or
is_currency(left.resultdef) then
begin
{ value of left gets changed -> must be unique }
set_unique(tcallparanode(left).left);
{ two paras ? }
if assigned(tcallparanode(left).right) then
begin
if is_integer(tcallparanode(left).right.resultdef) then
begin
set_varstate(tcallparanode(tcallparanode(left).right).left,vs_read,[vsf_must_be_valid]);
{ when range/overflow checking is on, we
convert this to a regular add, and for proper
checking we need the original type }
if ([cs_check_range,cs_check_overflow]*current_settings.localswitches=[]) then
if is_integer(tcallparanode(left).left.resultdef) then
inserttypeconv(tcallparanode(tcallparanode(left).right).left,tcallparanode(left).left.resultdef)
else
inserttypeconv_internal(tcallparanode(tcallparanode(left).right).left,tcallparanode(left).left.resultdef);
if assigned(tcallparanode(tcallparanode(left).right).right) then
{ should be handled in the parser (JM) }
internalerror(2006020901);
end
else
CGMessagePos(tcallparanode(left).right.fileinfo,type_e_ordinal_expr_expected);
end;
end
else
CGMessagePos(left.fileinfo,type_e_ordinal_expr_expected);
end
else
CGMessagePos(fileinfo,type_e_mismatch);
end;
in_read_x,
in_readln_x,
in_readstr_x,
in_write_x,
in_writeln_x,
in_writestr_x :
begin
result := handle_read_write;
end;
in_settextbuf_file_x :
begin
resultdef:=voidtype;
{ now we know the type of buffer }
hp:=ccallparanode.create(cordconstnode.create(
tcallparanode(left).left.resultdef.size,s32inttype,true),left);
result:=ccallnode.createintern('SETTEXTBUF',hp);
left:=nil;
end;
{ the firstpass of the arg has been done in firstcalln ? }
in_reset_typedfile,
in_rewrite_typedfile :
begin
result := handle_reset_rewrite_typed;
end;
in_str_x_string :
begin
result:=handle_str;
end;
in_val_x :
begin
result:=handle_val;
end;
in_include_x_y,
in_exclude_x_y:
begin
resultdef:=voidtype;
{ the parser already checks whether we have two (and exactly two) }
{ parameters (JM) }
{ first param must be var }
valid_for_var(tcallparanode(left).left,true);
set_varstate(tcallparanode(left).left,vs_readwritten,[vsf_must_be_valid]);
{ check type }
if (left.resultdef.typ=setdef) then
begin
{ insert a type conversion }
{ to the type of the set elements }
set_varstate(tcallparanode(tcallparanode(left).right).left,vs_read,[vsf_must_be_valid]);
inserttypeconv(tcallparanode(tcallparanode(left).right).left,
tsetdef(left.resultdef).elementdef);
end
else
CGMessage(type_e_mismatch);
end;
in_pack_x_y_z,
in_unpack_x_y_z :
begin
handle_pack_unpack;
end;
in_slice_x:
begin
result:=nil;
resultdef:=tcallparanode(left).left.resultdef;
if (resultdef.typ <> arraydef) then
CGMessagePos(left.fileinfo,type_e_mismatch)
else if is_packed_array(resultdef) then
CGMessagePos2(left.fileinfo,type_e_got_expected_unpacked_array,'1',resultdef.typename);
if not(is_integer(tcallparanode(tcallparanode(left).right).left.resultdef)) then
CGMessagePos1(tcallparanode(left).right.fileinfo,
type_e_integer_expr_expected,
tcallparanode(tcallparanode(left).right).left.resultdef.typename);
end;
in_low_x,
in_high_x:
begin
case left.resultdef.typ of
orddef,
enumdef,
setdef:
;
arraydef:
begin
if (inlinenumber=in_low_x) then
set_varstate(left,vs_read,[])
else
begin
if is_open_array(left.resultdef) or
is_array_of_const(left.resultdef) then
begin
set_varstate(left,vs_read,[]);
result:=load_high_value_node(tparavarsym(tloadnode(left).symtableentry));
end
else
if is_dynamic_array(left.resultdef) then
begin
set_varstate(left,vs_read,[vsf_must_be_valid]);
{ can't use inserttypeconv because we need }
{ an explicit type conversion (JM) }
hp := ccallparanode.create(ctypeconvnode.create_internal(left,voidpointertype),nil);
result := ccallnode.createintern('fpc_dynarray_high',hp);
{ make sure the left node doesn't get disposed, since it's }
{ reused in the new node (JM) }
left:=nil;
end
else
begin
set_varstate(left,vs_read,[]);
end;
end;
end;
stringdef:
begin
if inlinenumber=in_low_x then
begin
set_varstate(left,vs_read,[]);
end
else
begin
if is_open_string(left.resultdef) then
begin
set_varstate(left,vs_read,[]);
result:=load_high_value_node(tparavarsym(tloadnode(left).symtableentry))
end
else if is_ansistring(left.resultdef) or
is_wide_or_unicode_string(left.resultdef) then
CGMessage(type_e_mismatch)
end;
end;
else
CGMessage(type_e_mismatch);
end;
end;
in_exp_real,
in_frac_real,
in_int_real,
in_cos_real,
in_sin_real,
in_arctan_real,
in_abs_real,
in_ln_real :
begin
set_varstate(left,vs_read,[vsf_must_be_valid]);
{ converting an int64 to double on platforms without }
{ extended can cause precision loss }
if not(left.nodetype in [ordconstn,realconstn]) then
inserttypeconv(left,pbestrealtype^);
resultdef:=pbestrealtype^;
end;
in_trunc_real,
in_round_real :
begin
set_varstate(left,vs_read,[vsf_must_be_valid]);
{ for direct float rounding, no best real type cast should be necessary }
if not((left.resultdef.typ=floatdef) and
(tfloatdef(left.resultdef).floattype in [s32real,s64real,s80real,sc80real,s128real])) and
{ converting an int64 to double on platforms without }
{ extended can cause precision loss }
not(left.nodetype in [ordconstn,realconstn]) then
inserttypeconv(left,pbestrealtype^);
resultdef:=s64inttype;
end;
in_pi_real :
begin
resultdef:=pbestrealtype^;
end;
in_abs_long:
begin
set_varstate(left,vs_read,[vsf_must_be_valid]);
inserttypeconv(left,s32inttype);
resultdef:=s32inttype;
end;
in_sqr_real,
in_sqrt_real :
begin
set_varstate(left,vs_read,[vsf_must_be_valid]);
setfloatresultdef;
end;
{$ifdef SUPPORT_MMX}
in_mmx_pcmpeqb..in_mmx_pcmpgtw:
begin
end;
{$endif SUPPORT_MMX}
in_unaligned_x:
begin
resultdef:=left.resultdef;
end;
in_assert_x_y :
begin
resultdef:=voidtype;
if assigned(left) then
begin
set_varstate(tcallparanode(left).left,vs_read,[vsf_must_be_valid]);
{ check type }
if is_boolean(left.resultdef) then
begin
set_varstate(tcallparanode(tcallparanode(left).right).left,vs_read,[vsf_must_be_valid]);
{ must always be a string }
inserttypeconv(tcallparanode(tcallparanode(left).right).left,cshortstringtype);
end
else
CGMessage1(type_e_boolean_expr_expected,left.resultdef.typename);
end
else
CGMessage(type_e_mismatch);
if (cs_do_assertion in current_settings.localswitches) then
include(current_procinfo.flags,pi_do_call);
end;
in_prefetch_var:
resultdef:=voidtype;
in_get_frame,
in_get_caller_frame,
in_get_caller_addr:
begin
resultdef:=voidpointertype;
end;
in_rol_x,
in_ror_x,
in_sar_x:
begin
set_varstate(left,vs_read,[vsf_must_be_valid]);
resultdef:=left.resultdef;
end;
in_rol_x_x,
in_ror_x_x,
in_sar_x_y:
begin
set_varstate(tcallparanode(left).left,vs_read,[vsf_must_be_valid]);
set_varstate(tcallparanode(tcallparanode(left).right).left,vs_read,[vsf_must_be_valid]);
resultdef:=tcallparanode(tcallparanode(left).right).left.resultdef;
end;
in_objc_selector_x:
begin
result:=cobjcselectornode.create(left);
{ reused }
left:=nil;
end;
in_objc_protocol_x:
begin
result:=cobjcprotocolnode.create(left);
{ reused }
left:=nil;
end;
in_objc_encode_x:
begin
result:=handle_objc_encode;
end;
else
internalerror(8);
end;
end;
if not assigned(result) and not
codegenerror then
result:=simplify;
end;
function tinlinenode.pass_1 : tnode;
var
hp,hpp,resultnode : tnode;
shiftconst: longint;
tempnode: ttempcreatenode;
newstatement: tstatementnode;
newblock: tblocknode;
begin
result:=nil;
{ if we handle writeln; left contains no valid address }
if assigned(left) then
begin
if left.nodetype=callparan then
tcallparanode(left).firstcallparan
else
firstpass(left);
end;
{ intern const should already be handled }
if nf_inlineconst in flags then
internalerror(200104044);
case inlinenumber of
in_lo_qword,
in_hi_qword,
in_lo_long,
in_hi_long,
in_lo_word,
in_hi_word:
begin
shiftconst := 0;
case inlinenumber of
in_hi_qword:
shiftconst := 32;
in_hi_long:
shiftconst := 16;
in_hi_word:
shiftconst := 8;
end;
if shiftconst <> 0 then
result := ctypeconvnode.create_internal(cshlshrnode.create(shrn,left,
cordconstnode.create(shiftconst,u32inttype,false)),resultdef)
else
result := ctypeconvnode.create_internal(left,resultdef);
left := nil;
firstpass(result);
end;
in_sizeof_x:
begin
expectloc:=LOC_REGISTER;
end;
in_typeof_x:
begin
expectloc:=LOC_REGISTER;
end;
in_length_x:
begin
if is_shortstring(left.resultdef) then
expectloc:=left.expectloc
else
begin
{ ansi/wide string }
expectloc:=LOC_REGISTER;
end;
end;
in_typeinfo_x:
begin
expectloc:=LOC_REGISTER;
end;
in_assigned_x:
begin
expectloc := LOC_JUMP;
end;
in_pred_x,
in_succ_x:
begin
expectloc:=LOC_REGISTER;
{ in case of range/overflow checking, use a regular addnode
because it's too complex to handle correctly otherwise }
if ([cs_check_overflow,cs_check_range]*current_settings.localswitches)<>[] then
begin
{ create constant 1 }
hp:=cordconstnode.create(1,left.resultdef,false);
typecheckpass(hp);
if not is_integer(hp.resultdef) then
inserttypeconv_internal(hp,sinttype);
{ avoid type errors from the addn/subn }
if not is_integer(left.resultdef) then
inserttypeconv_internal(left,sinttype);
{ addition/substraction depending on succ/pred }
if inlinenumber=in_succ_x then
hp:=caddnode.create(addn,left,hp)
else
hp:=caddnode.create(subn,left,hp);
{ assign result of addition }
if not(is_integer(resultdef)) then
inserttypeconv(hp,torddef.create(
{$ifdef cpu64bitaddr}
s64bit,
{$else cpu64bitaddr}
s32bit,
{$endif cpu64bitaddr}
get_min_value(resultdef),
get_max_value(resultdef)))
else
inserttypeconv(hp,resultdef);
{ avoid any possible errors/warnings }
inserttypeconv_internal(hp,resultdef);
{ firstpass it }
firstpass(hp);
{ left is reused }
left:=nil;
{ return new node }
result:=hp;
end;
end;
in_setlength_x,
in_initialize_x,
in_finalize_x:
begin
expectloc:=LOC_VOID;
end;
in_inc_x,
in_dec_x:
begin
expectloc:=LOC_VOID;
{ range/overflow checking doesn't work properly }
{ with the inc/dec code that's generated (JM) }
if (current_settings.localswitches * [cs_check_overflow,cs_check_range] <> []) and
{ No overflow check for pointer operations, because inc(pointer,-1) will always
trigger an overflow. For uint32 it works because then the operation is done
in 64bit. Range checking is not applicable to pointers either }
(tcallparanode(left).left.resultdef.typ<>pointerdef) then
{ convert to simple add (JM) }
begin
newblock := internalstatements(newstatement);
{ extra parameter? }
if assigned(tcallparanode(left).right) then
begin
{ Yes, use for add node }
hpp := tcallparanode(tcallparanode(left).right).left;
tcallparanode(tcallparanode(left).right).left := nil;
if assigned(tcallparanode(tcallparanode(left).right).right) then
CGMessage(parser_e_illegal_expression);
end
else
begin
{ no, create constant 1 }
hpp := cordconstnode.create(1,tcallparanode(left).left.resultdef,false);
end;
typecheckpass(hpp);
if not((hpp.resultdef.typ=orddef) and
{$ifndef cpu64bitaddr}
(torddef(hpp.resultdef).ordtype=u32bit)) then
{$else not cpu64bitaddr}
(torddef(hpp.resultdef).ordtype=u64bit)) then
{$endif not cpu64bitaddr}
inserttypeconv_internal(hpp,sinttype);
{ make sure we don't call functions part of the left node twice (and generally }
{ optimize the code generation) }
if node_complexity(tcallparanode(left).left) > 1 then
begin
tempnode := ctempcreatenode.create(voidpointertype,voidpointertype.size,tt_persistent,true);
addstatement(newstatement,tempnode);
addstatement(newstatement,cassignmentnode.create(ctemprefnode.create(tempnode),
caddrnode.create_internal(tcallparanode(left).left.getcopy)));
hp := cderefnode.create(ctemprefnode.create(tempnode));
inserttypeconv_internal(hp,tcallparanode(left).left.resultdef);
end
else
begin
hp := tcallparanode(left).left.getcopy;
tempnode := nil;
end;
resultnode := hp.getcopy;
{ avoid type errors from the addn/subn }
if not is_integer(resultnode.resultdef) then
begin
inserttypeconv_internal(hp,sinttype);
inserttypeconv_internal(hpp,sinttype);
end;
{ addition/substraction depending on inc/dec }
if inlinenumber = in_inc_x then
hpp := caddnode.create(addn,hp,hpp)
else
hpp := caddnode.create(subn,hp,hpp);
{ assign result of addition }
if not(is_integer(resultnode.resultdef)) then
inserttypeconv(hpp,torddef.create(
{$ifdef cpu64bitaddr}
s64bit,
{$else cpu64bitaddr}
s32bit,
{$endif cpu64bitaddr}
get_min_value(resultnode.resultdef),
get_max_value(resultnode.resultdef)))
else
inserttypeconv(hpp,resultnode.resultdef);
{ avoid any possible warnings }
inserttypeconv_internal(hpp,resultnode.resultdef);
addstatement(newstatement,cassignmentnode.create(resultnode,hpp));
{ deallocate the temp }
if assigned(tempnode) then
addstatement(newstatement,ctempdeletenode.create(tempnode));
{ firstpass it }
firstpass(tnode(newblock));
{ return new node }
result := newblock;
end;
end;
in_include_x_y,
in_exclude_x_y:
begin
expectloc:=LOC_VOID;
end;
in_pack_x_y_z,
in_unpack_x_y_z:
begin
result:=first_pack_unpack;
end;
in_exp_real:
begin
result:= first_exp_real;
end;
in_round_real:
begin
result:= first_round_real;
end;
in_trunc_real:
begin
result:= first_trunc_real;
end;
in_int_real:
begin
result:= first_int_real;
end;
in_frac_real:
begin
result:= first_frac_real;
end;
in_cos_real:
begin
result:= first_cos_real;
end;
in_sin_real:
begin
result := first_sin_real;
end;
in_arctan_real:
begin
result := first_arctan_real;
end;
in_pi_real :
begin
result := first_pi;
end;
in_abs_real:
begin
result := first_abs_real;
end;
in_abs_long:
begin
result := first_abs_long;
end;
in_sqr_real:
begin
result := first_sqr_real;
end;
in_sqrt_real:
begin
result := first_sqrt_real;
end;
in_ln_real:
begin
result := first_ln_real;
end;
{$ifdef SUPPORT_MMX}
in_mmx_pcmpeqb..in_mmx_pcmpgtw:
begin
end;
{$endif SUPPORT_MMX}
in_assert_x_y :
begin
expectloc:=LOC_VOID;
end;
in_low_x,
in_high_x:
internalerror(200104047);
in_slice_x:
internalerror(2005101501);
in_ord_x,
in_chr_byte:
begin
{ should not happend as it's converted to typeconv }
internalerror(200104045);
end;
in_ofs_x :
internalerror(2000101001);
in_seg_x :
internalerror(200104046);
in_settextbuf_file_x,
in_reset_typedfile,
in_rewrite_typedfile,
in_str_x_string,
in_val_x,
in_read_x,
in_readln_x,
in_write_x,
in_writeln_x :
begin
{ should be handled by pass_typecheck }
internalerror(200108234);
end;
in_get_frame:
begin
include(current_procinfo.flags,pi_needs_stackframe);
expectloc:=LOC_CREGISTER;
end;
in_get_caller_frame:
begin
expectloc:=LOC_REGISTER;
end;
in_get_caller_addr:
begin
expectloc:=LOC_REGISTER;
end;
in_prefetch_var:
begin
expectloc:=LOC_VOID;
end;
in_unaligned_x:
begin
expectloc:=tcallparanode(left).left.expectloc;
end;
in_rol_x,
in_rol_x_x,
in_ror_x,
in_ror_x_x,
in_sar_x,
in_sar_x_y:
expectloc:=LOC_REGISTER;
else
internalerror(89);
end;
end;
{$maxfpuregisters default}
function tinlinenode.docompare(p: tnode): boolean;
begin
docompare :=
inherited docompare(p) and
(inlinenumber = tinlinenode(p).inlinenumber);
end;
function tinlinenode.first_pi : tnode;
begin
result:=crealconstnode.create(getpi,pbestrealtype^);
end;
function tinlinenode.first_arctan_real : tnode;
begin
{ create the call to the helper }
{ on entry left node contains the parameter }
first_arctan_real := ccallnode.createintern('fpc_arctan_real',
ccallparanode.create(left,nil));
left := nil;
end;
function tinlinenode.first_abs_real : tnode;
begin
{ create the call to the helper }
{ on entry left node contains the parameter }
first_abs_real := ccallnode.createintern('fpc_abs_real',
ccallparanode.create(left,nil));
left := nil;
end;
function tinlinenode.first_sqr_real : tnode;
begin
{ create the call to the helper }
{ on entry left node contains the parameter }
first_sqr_real := ctypeconvnode.create(ccallnode.createintern('fpc_sqr_real',
ccallparanode.create(left,nil)),resultdef);
left := nil;
end;
function tinlinenode.first_sqrt_real : tnode;
begin
{ create the call to the helper }
{ on entry left node contains the parameter }
first_sqrt_real := ctypeconvnode.create(ccallnode.createintern('fpc_sqrt_real',
ccallparanode.create(left,nil)),resultdef);
left := nil;
end;
function tinlinenode.first_ln_real : tnode;
begin
{ create the call to the helper }
{ on entry left node contains the parameter }
first_ln_real := ccallnode.createintern('fpc_ln_real',
ccallparanode.create(left,nil));
left := nil;
end;
function tinlinenode.first_cos_real : tnode;
begin
{ create the call to the helper }
{ on entry left node contains the parameter }
first_cos_real := ccallnode.createintern('fpc_cos_real',
ccallparanode.create(left,nil));
left := nil;
end;
function tinlinenode.first_sin_real : tnode;
begin
{ create the call to the helper }
{ on entry left node contains the parameter }
first_sin_real := ccallnode.createintern('fpc_sin_real',
ccallparanode.create(left,nil));
left := nil;
end;
function tinlinenode.first_exp_real : tnode;
begin
{ create the call to the helper }
{ on entry left node contains the parameter }
result := ccallnode.createintern('fpc_exp_real',ccallparanode.create(left,nil));
left := nil;
end;
function tinlinenode.first_int_real : tnode;
begin
{ create the call to the helper }
{ on entry left node contains the parameter }
result := ccallnode.createintern('fpc_int_real',ccallparanode.create(left,nil));
left := nil;
end;
function tinlinenode.first_frac_real : tnode;
begin
{ create the call to the helper }
{ on entry left node contains the parameter }
result := ccallnode.createintern('fpc_frac_real',ccallparanode.create(left,nil));
left := nil;
end;
function tinlinenode.first_round_real : tnode;
begin
{ create the call to the helper }
{ on entry left node contains the parameter }
result := ccallnode.createintern('fpc_round_real',ccallparanode.create(left,nil));
left := nil;
end;
function tinlinenode.first_trunc_real : tnode;
begin
{ create the call to the helper }
{ on entry left node contains the parameter }
result := ccallnode.createintern('fpc_trunc_real',ccallparanode.create(left,nil));
left := nil;
end;
function tinlinenode.first_abs_long : tnode;
begin
expectloc:=LOC_REGISTER;
result:=nil;
end;
function tinlinenode.first_pack_unpack: tnode;
var
loopstatement : tstatementnode;
loop : tblocknode;
loopvar : ttempcreatenode;
tempnode,
source,
target,
index,
unpackednode,
packednode,
sourcevecindex,
targetvecindex,
loopbody : tnode;
temprangedef : tdef;
ulorange,
uhirange,
plorange,
phirange : TConstExprInt;
begin
{ transform into a for loop which assigns the data of the (un)packed }
{ array to the other one }
source := left;
if (inlinenumber = in_unpack_x_y_z) then
begin
target := tcallparanode(source).right;
index := tcallparanode(target).right;
packednode := tcallparanode(source).left;
unpackednode := tcallparanode(target).left;
end
else
begin
index := tcallparanode(source).right;
target := tcallparanode(index).right;
packednode := tcallparanode(target).left;
unpackednode := tcallparanode(source).left;
end;
source := tcallparanode(source).left;
target := tcallparanode(target).left;
index := tcallparanode(index).left;
loop := internalstatements(loopstatement);
loopvar := ctempcreatenode.create(
tarraydef(packednode.resultdef).rangedef,
tarraydef(packednode.resultdef).rangedef.size,
tt_persistent,true);
addstatement(loopstatement,loopvar);
{ For range checking: we have to convert to an integer type (in case the index type }
{ is an enum), add the index and loop variable together, convert the result }
{ implicitly to an orddef with range equal to the rangedef to get range checking }
{ and finally convert it explicitly back to the actual rangedef to avoid type }
{ errors }
temprangedef:=nil;
getrange(unpackednode.resultdef,ulorange,uhirange);
getrange(packednode.resultdef,plorange,phirange);
temprangedef:=torddef.create(torddef(sinttype).ordtype,ulorange,uhirange);
sourcevecindex := ctemprefnode.create(loopvar);
targetvecindex := ctypeconvnode.create_internal(index.getcopy,sinttype);
targetvecindex := caddnode.create(subn,targetvecindex,cordconstnode.create(plorange,sinttype,true));
targetvecindex := caddnode.create(addn,targetvecindex,ctemprefnode.create(loopvar));
targetvecindex := ctypeconvnode.create(targetvecindex,temprangedef);
targetvecindex := ctypeconvnode.create_explicit(targetvecindex,tarraydef(unpackednode.resultdef).rangedef);
if (inlinenumber = in_pack_x_y_z) then
begin
{ swap source and target vec indices }
tempnode := sourcevecindex;
sourcevecindex := targetvecindex;
targetvecindex := tempnode;
end;
{ create the assignment in the loop body }
loopbody :=
cassignmentnode.create(
cvecnode.create(target.getcopy,targetvecindex),
cvecnode.create(source.getcopy,sourcevecindex)
);
{ create the actual for loop }
tempnode := cfornode.create(
ctemprefnode.create(loopvar),
cinlinenode.create(in_low_x,false,packednode.getcopy),
cinlinenode.create(in_high_x,false,packednode.getcopy),
loopbody,
false);
addstatement(loopstatement,tempnode);
{ free the loop counter }
addstatement(loopstatement,ctempdeletenode.create(loopvar));
result := loop;
end;
begin
cinlinenode:=tinlinenode;
end.