fpc/packages/base/pasjpeg/jdtrans.pas
2005-02-14 17:13:06 +00:00

193 lines
6.1 KiB
ObjectPascal

Unit JdTrans;
{ This file contains library routines for transcoding decompression,
that is, reading raw DCT coefficient arrays from an input JPEG file.
The routines in jdapimin.c will also be needed by a transcoder. }
{ Original : jdtrans.c ; Copyright (C) 1995-1997, Thomas G. Lane. }
interface
{$I jconfig.inc}
uses
jmorecfg,
jinclude,
jdeferr,
jerror,
jpeglib,
jdhuff, jdphuff, jdcoefct;
{ Read the coefficient arrays from a JPEG file.
jpeg_read_header must be completed before calling this.
The entire image is read into a set of virtual coefficient-block arrays,
one per component. The return value is a pointer to the array of
virtual-array descriptors. These can be manipulated directly via the
JPEG memory manager, or handed off to jpeg_write_coefficients().
To release the memory occupied by the virtual arrays, call
jpeg_finish_decompress() when done with the data.
An alternative usage is to simply obtain access to the coefficient arrays
during a buffered-image-mode decompression operation. This is allowed
after any jpeg_finish_output() call. The arrays can be accessed until
jpeg_finish_decompress() is called. (Note that any call to the library
may reposition the arrays, so don't rely on access_virt_barray() results
to stay valid across library calls.)
Returns NIL if suspended. This case need be checked only if
a suspending data source is used. }
{GLOBAL}
function jpeg_read_coefficients
(cinfo : j_decompress_ptr) : jvirt_barray_tbl_ptr;
implementation
{ Forward declarations }
{LOCAL}
procedure transdecode_master_selection (cinfo : j_decompress_ptr); forward;
{ Read the coefficient arrays from a JPEG file.
jpeg_read_header must be completed before calling this.
The entire image is read into a set of virtual coefficient-block arrays,
one per component. The return value is a pointer to the array of
virtual-array descriptors. These can be manipulated directly via the
JPEG memory manager, or handed off to jpeg_write_coefficients().
To release the memory occupied by the virtual arrays, call
jpeg_finish_decompress() when done with the data.
Returns NIL if suspended. This case need be checked only if
a suspending data source is used. }
{GLOBAL}
function jpeg_read_coefficients
(cinfo : j_decompress_ptr) : jvirt_barray_tbl_ptr;
var
retcode : int;
begin
if (cinfo^.global_state = DSTATE_READY) then
begin
{ First call: initialize active modules }
transdecode_master_selection(cinfo);
cinfo^.global_state := DSTATE_RDCOEFS;
end;
if (cinfo^.global_state = DSTATE_RDCOEFS) then
begin
{ Absorb whole file into the coef buffer }
while TRUE do
begin
{ Call progress monitor hook if present }
if (cinfo^.progress <> NIL) then
cinfo^.progress^.progress_monitor (j_common_ptr(cinfo));
{ Absorb some more input }
retcode := cinfo^.inputctl^.consume_input (cinfo);
if (retcode = JPEG_SUSPENDED) then
begin
jpeg_read_coefficients := NIL;
exit;
end;
if (retcode = JPEG_REACHED_EOI) then
break;
{ Advance progress counter if appropriate }
if (cinfo^.progress <> NIL) and
((retcode = JPEG_ROW_COMPLETED) or (retcode = JPEG_REACHED_SOS)) then
begin
Inc(cinfo^.progress^.pass_counter);
if (cinfo^.progress^.pass_counter >= cinfo^.progress^.pass_limit) then
begin
{ startup underestimated number of scans; ratchet up one scan }
Inc(cinfo^.progress^.pass_limit, long(cinfo^.total_iMCU_rows));
end;
end;
end;
{ Set state so that jpeg_finish_decompress does the right thing }
cinfo^.global_state := DSTATE_STOPPING;
end;
{ At this point we should be in state DSTATE_STOPPING if being used
standalone, or in state DSTATE_BUFIMAGE if being invoked to get access
to the coefficients during a full buffered-image-mode decompression. }
if ((cinfo^.global_state = DSTATE_STOPPING) or
(cinfo^.global_state = DSTATE_BUFIMAGE)) and (cinfo^.buffered_image) then
begin
jpeg_read_coefficients := cinfo^.coef^.coef_arrays;
exit;
end;
{ Oops, improper usage }
ERREXIT1(j_common_ptr(cinfo), JERR_BAD_STATE, cinfo^.global_state);
jpeg_read_coefficients := NIL; { keep compiler happy }
end;
{ Master selection of decompression modules for transcoding.
This substitutes for jdmaster.c's initialization of the full decompressor. }
{LOCAL}
procedure transdecode_master_selection (cinfo : j_decompress_ptr);
var
nscans : int;
begin
{ This is effectively a buffered-image operation. }
cinfo^.buffered_image := TRUE;
{ Entropy decoding: either Huffman or arithmetic coding. }
if (cinfo^.arith_code) then
begin
ERREXIT(j_common_ptr(cinfo), JERR_ARITH_NOTIMPL);
end
else
begin
if (cinfo^.progressive_mode) then
begin
{$ifdef D_PROGRESSIVE_SUPPORTED}
jinit_phuff_decoder(cinfo);
{$else}
ERREXIT(j_common_ptr(cinfo), JERR_NOT_COMPILED);
{$endif}
end
else
jinit_huff_decoder(cinfo);
end;
{ Always get a full-image coefficient buffer. }
jinit_d_coef_controller(cinfo, TRUE);
{ We can now tell the memory manager to allocate virtual arrays. }
cinfo^.mem^.realize_virt_arrays (j_common_ptr(cinfo));
{ Initialize input side of decompressor to consume first scan. }
cinfo^.inputctl^.start_input_pass (cinfo);
{ Initialize progress monitoring. }
if (cinfo^.progress <> NIL) then
begin
{ Estimate number of scans to set pass_limit. }
if (cinfo^.progressive_mode) then
begin
{ Arbitrarily estimate 2 interleaved DC scans + 3 AC scans/component. }
nscans := 2 + 3 * cinfo^.num_components;
end
else
if (cinfo^.inputctl^.has_multiple_scans) then
begin
{ For a nonprogressive multiscan file, estimate 1 scan per component. }
nscans := cinfo^.num_components;
end
else
begin
nscans := 1;
end;
cinfo^.progress^.pass_counter := long(0);
cinfo^.progress^.pass_limit := long(cinfo^.total_iMCU_rows * nscans);
cinfo^.progress^.completed_passes := 0;
cinfo^.progress^.total_passes := 1;
end;
end;
end.