mirror of
				https://gitlab.com/freepascal.org/fpc/source.git
				synced 2025-10-30 05:11:29 +01:00 
			
		
		
		
	
		
			
				
	
	
		
			702 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			ObjectPascal
		
	
	
	
	
	
			
		
		
	
	
			702 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			ObjectPascal
		
	
	
	
	
	
| {
 | |
|     $Id$
 | |
|     This file is part of the Free Pascal run time library.
 | |
|     Copyright (c) 1998 by Florian Klaempfl
 | |
|     member of the Free Pascal development team
 | |
| 
 | |
|     See the file COPYING.FPC, included in this distribution,
 | |
|     for details about the copyright.
 | |
| 
 | |
|     This program is distributed in the hope that it will be useful,
 | |
|     but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
 | |
| 
 | |
|  **********************************************************************}
 | |
| {
 | |
|   This unit is an equivalent to the Delphi math unit
 | |
|   (with some improvements)
 | |
| 
 | |
|   About assembler usage:
 | |
|   ----------------------
 | |
|   I used as few as possible assembler to allow an easy port
 | |
|   to other processors. Today, I think it's wasted time to write
 | |
|   assembler because different versions of a family of processors
 | |
|   need different implementations.
 | |
| 
 | |
|   To improve performance, I changed all integer arguments and
 | |
|   functions results to longint, because 16 bit instructions are
 | |
|   lethal for a modern intel processor.
 | |
|                                                       (FK)
 | |
| 
 | |
|   What's to do:
 | |
|     o a lot of function :), search for !!!!
 | |
|     o some statistical functions
 | |
|     o all financial functions
 | |
|     o optimizations
 | |
| }
 | |
| 
 | |
| unit math;
 | |
| interface
 | |
| 
 | |
| {$MODE objfpc}
 | |
| 
 | |
|     uses
 | |
|        sysutils;
 | |
| 
 | |
|     type
 | |
|        { the original delphi functions use extended as argument, }
 | |
|        { but I would prefer double, because 8 bytes is a very    }
 | |
|        { natural size for the processor                          }
 | |
|        float = extended;
 | |
| 
 | |
|        tpaymenttime = (ptendofperiod,ptstartofperiod);
 | |
| 
 | |
|        einvalidargument = class(ematherror);
 | |
| 
 | |
| { Min/max determination }
 | |
| function MinIntValue(const Data: array of Integer): Integer;
 | |
| function MaxIntValue(const Data: array of Integer): Integer;
 | |
| 
 | |
| { Extra, not present in Delphi, but used frequently  }
 | |
| function Min(Int1,Int2:Integer):Integer;
 | |
| function Min(Int1,Int2:Cardinal):Cardinal;
 | |
| function Max(Int1,Int2:Integer):Integer;
 | |
| function Max(Int1,Int2:Cardinal):Cardinal;
 | |
| 
 | |
| { angle conversion }
 | |
| 
 | |
| function degtorad(deg : float) : float;
 | |
| function radtodeg(rad : float) : float;
 | |
| function gradtorad(grad : float) : float;
 | |
| function radtograd(rad : float) : float;
 | |
| function degtograd(deg : float) : float;
 | |
| function gradtodeg(grad : float) : float;
 | |
| { one cycle are 2*Pi rad }
 | |
| function cycletorad(cycle : float) : float;
 | |
| function radtocycle(rad : float) : float;
 | |
| 
 | |
| { trigoniometric functions }
 | |
| 
 | |
| function tan(x : float) : float;
 | |
| function cotan(x : float) : float;
 | |
| procedure sincos(theta : float;var sinus,cosinus : float);
 | |
| 
 | |
| { inverse functions }
 | |
| 
 | |
| function arccos(x : float) : float;
 | |
| function arcsin(x : float) : float;
 | |
| 
 | |
| { calculates arctan(x/y) and returns an angle in the correct quadrant }
 | |
| function arctan2(x,y : float) : float;
 | |
| 
 | |
| { hyperbolic functions }
 | |
| 
 | |
| function cosh(x : float) : float;
 | |
| function sinh(x : float) : float;
 | |
| function tanh(x : float) : float;
 | |
| 
 | |
| { area functions }
 | |
| 
 | |
| { delphi names: }
 | |
| function arccosh(x : float) : float;
 | |
| function arcsinh(x : float) : float;
 | |
| function arctanh(x : float) : float;
 | |
| { IMHO the function should be called as follows (FK) }
 | |
| function arcosh(x : float) : float;
 | |
| function arsinh(x : float) : float;
 | |
| function artanh(x : float) : float;
 | |
| 
 | |
| { triangle functions }
 | |
| 
 | |
| { returns the length of the hypotenuse of a right triangle }
 | |
| { if x and y are the other sides                           }
 | |
| function hypot(x,y : float) : float;
 | |
| 
 | |
| { logarithm functions }
 | |
| 
 | |
| function log10(x : float) : float;
 | |
| function log2(x : float) : float;
 | |
| function logn(n,x : float) : float;
 | |
| 
 | |
| { returns natural logarithm of x+1 }
 | |
| function lnxpi(x : float) : float;
 | |
| 
 | |
| { exponential functions }
 | |
| 
 | |
| function power(base,exponent : float) : float;
 | |
| { base^exponent }
 | |
| function intpower(base : float;exponent : longint) : float;
 | |
| 
 | |
| { number converting }
 | |
| 
 | |
| { rounds x towards positive infinity }
 | |
| function ceil(x : float) : longint;
 | |
| { rounds x towards negative infinity }
 | |
| function floor(x : float) : longint;
 | |
| 
 | |
| { misc. functions }
 | |
| 
 | |
| { splits x into mantissa and exponent (to base 2) }
 | |
| procedure frexp(x : float;var mantissa,exponent : float);
 | |
| { returns x*(2^p) }
 | |
| function ldexp(x : float;p : longint) : float;
 | |
| 
 | |
| { statistical functions }
 | |
| 
 | |
| function mean(const data : array of float) : float;
 | |
| function sum(const data : array of float) : float;
 | |
| function sumofsquares(const data : array of float) : float;
 | |
| { calculates the sum and the sum of squares of data }
 | |
| procedure sumsandsquares(const data : array of float;
 | |
|   var sum,sumofsquares : float);
 | |
| function minvalue(const data : array of float) : float;
 | |
| function maxvalue(const data : array of float) : float;
 | |
| { calculates the standard deviation }
 | |
| function stddev(const data : array of float) : float;
 | |
| { calculates the mean and stddev }
 | |
| procedure meanandstddev(const data : array of float;
 | |
|   var mean,stddev : float);
 | |
| function variance(const data : array of float) : float;
 | |
| function totalvariance(const data : array of float) : float;
 | |
| { returns random values with gaussian distribution }
 | |
| function randg(mean,stddev : float) : float;
 | |
| 
 | |
| { I don't know what the following functions do: }
 | |
| function popnstddev(const data : array of float) : float;
 | |
| function popnvariance(const data : array of float) : float;
 | |
| procedure momentskewkurtosis(const data : array of float;
 | |
|   var m1,m2,m3,m4,skew,kurtosis : float);
 | |
| 
 | |
| { geometrical function }
 | |
| 
 | |
| { returns the euclidean L2 norm }
 | |
| function norm(const data : array of float) : float;
 | |
| 
 | |
| implementation
 | |
| 
 | |
| Procedure DoMathError(Const S : String);
 | |
| begin
 | |
|   writeln (StdErr,'Math Error : ',S);
 | |
| end;
 | |
| 
 | |
| Procedure InvalidArgument;
 | |
| 
 | |
| begin
 | |
|   DoMathError ('Invalid argument');
 | |
| end;
 | |
| 
 | |
| function degtorad(deg : float) : float;
 | |
| 
 | |
|   begin
 | |
|      degtorad:=deg*(pi/180.0);
 | |
|   end;
 | |
| 
 | |
| function radtodeg(rad : float) : float;
 | |
| 
 | |
|   begin
 | |
|      radtodeg:=rad*(180.0/pi);
 | |
|   end;
 | |
| 
 | |
| function gradtorad(grad : float) : float;
 | |
| 
 | |
|   begin
 | |
|      gradtorad:=grad*(pi/200.0);
 | |
|   end;
 | |
| 
 | |
| function radtograd(rad : float) : float;
 | |
| 
 | |
|   begin
 | |
|      radtograd:=rad*(200.0/pi);
 | |
|   end;
 | |
| 
 | |
| function degtograd(deg : float) : float;
 | |
| 
 | |
|   begin
 | |
|      degtograd:=deg*(200.0/180.0);
 | |
|   end;
 | |
| 
 | |
| function gradtodeg(grad : float) : float;
 | |
| 
 | |
|   begin
 | |
|      gradtodeg:=grad*(180.0/200.0);
 | |
|   end;
 | |
| 
 | |
| function cycletorad(cycle : float) : float;
 | |
| 
 | |
|   begin
 | |
|      cycletorad:=(2*pi)*cycle;
 | |
|   end;
 | |
| 
 | |
| function radtocycle(rad : float) : float;
 | |
| 
 | |
|   begin
 | |
|      { avoid division }
 | |
|      radtocycle:=rad*(1/(2*pi));
 | |
|   end;
 | |
| 
 | |
| function tan(x : float) : float;
 | |
| 
 | |
|   begin
 | |
|      Tan:=Sin(x)/Cos(x)
 | |
|   end;
 | |
| 
 | |
| function cotan(x : float) : float;
 | |
| 
 | |
|   begin
 | |
|      cotan:=Cos(X)/Sin(X);
 | |
|   end;
 | |
| 
 | |
| procedure sincos(theta : float;var sinus,cosinus : float);
 | |
| 
 | |
|   begin
 | |
|   {$ifndef i386}
 | |
|   sinus:=sin(theta);
 | |
|   cosinus:=cos(theta);
 | |
|   {$else}
 | |
|   asm
 | |
|     fldl 8(%ebp)
 | |
|     fsincos
 | |
|     fwait
 | |
|     movl 20(%ebp),%eax
 | |
|     fstpl (%eax)
 | |
|     movl 16(%ebp),%eax
 | |
|     fstpl (%eax)
 | |
|   end;
 | |
|   {$endif}
 | |
|   end;
 | |
| 
 | |
| function arccos(x : float) : float;
 | |
| 
 | |
| { There is some discussion as to what the correct formula is
 | |
|   for arccos and arcsin is, but I take the one from my book...}
 | |
| 
 | |
|   begin
 | |
|      ArcCos:=ArcTan2(Sqrt(1-x*x),x);
 | |
|   end;
 | |
| 
 | |
| function arcsin(x : float) : float;
 | |
| 
 | |
|   begin
 | |
|      ArcSin:=ArcTan2(x,Sqrt(1-x*x))
 | |
|   end;
 | |
| 
 | |
| function arctan2( x,y : float) : float;
 | |
| 
 | |
|   begin
 | |
|   {$ifndef i386}
 | |
|   ArcTan2:=ArcTan(x/y);
 | |
|   {$else}
 | |
|     asm
 | |
|     fldt 8(%ebp)
 | |
|     fldt 18(%ebp)
 | |
|     fpatan
 | |
|     leave
 | |
|     ret $20
 | |
|     end;
 | |
|   {$endif}
 | |
|   end;
 | |
| 
 | |
| function cosh(x : float) : float;
 | |
| 
 | |
|   var
 | |
|      temp : float;
 | |
| 
 | |
|   begin
 | |
|      temp:=exp(x);
 | |
|      cosh:=0.5*(temp+1.0/temp);
 | |
|   end;
 | |
| 
 | |
| function sinh(x : float) : float;
 | |
| 
 | |
|   var
 | |
|      temp : float;
 | |
| 
 | |
|   begin
 | |
|      temp:=exp(x);
 | |
|      sinh:=0.5*(temp-1.0/temp);
 | |
|   end;
 | |
| 
 | |
| Const MaxTanh=5000; { rather arbitrary, but more or less correct }
 | |
| 
 | |
| function tanh(x : float) : float;
 | |
| 
 | |
|   var Temp : float;
 | |
| 
 | |
|   begin
 | |
|      if x>MaxTanh then exit(1.0)
 | |
|      else if x<-MaxTanh then exit (-1.0);
 | |
|      temp:=exp(-2*x);
 | |
|      tanh:=(1-temp)/(1+temp)
 | |
|   end;
 | |
| 
 | |
| function arccosh(x : float) : float;
 | |
| 
 | |
|   begin
 | |
|      arccosh:=arcosh(x);
 | |
|   end;
 | |
| 
 | |
| function arcsinh(x : float) : float;
 | |
| 
 | |
|   begin
 | |
|      arcsinh:=arsinh(x);
 | |
|   end;
 | |
| 
 | |
| function arctanh(x : float) : float;
 | |
| 
 | |
|   begin
 | |
|      if x>1 then InvalidArgument;
 | |
|      arctanh:=artanh(x);
 | |
|   end;
 | |
| 
 | |
| function arcosh(x : float) : float;
 | |
| 
 | |
|   begin
 | |
|      if x<1 then InvalidArgument;
 | |
|      arcosh:=Ln(x+Sqrt(x*x-1));
 | |
|   end;
 | |
| 
 | |
| function arsinh(x : float) : float;
 | |
| 
 | |
|   begin
 | |
|      arsinh:=Ln(x-Sqrt(1+x*x));
 | |
|   end;
 | |
| 
 | |
| function artanh(x : float) : float;
 | |
|   begin
 | |
|     If abs(x)>1 then InvalidArgument;
 | |
|     artanh:=(Ln((1+x)/(1-x)))*0.5;
 | |
|   end;
 | |
| 
 | |
| function hypot(x,y : float) : float;
 | |
| 
 | |
|   begin
 | |
|      hypot:=Sqrt(x*x+y*y)
 | |
|   end;
 | |
| 
 | |
| function log10(x : float) : float;
 | |
| 
 | |
|   begin
 | |
|      log10:=ln(x)/ln(10);
 | |
|   end;
 | |
| 
 | |
| function log2(x : float) : float;
 | |
| 
 | |
|   begin
 | |
|      log2:=ln(x)/ln(2)
 | |
|   end;
 | |
| 
 | |
| function logn(n,x : float) : float;
 | |
| 
 | |
|   begin
 | |
|      if n<0 then InvalidArgument;
 | |
|      logn:=ln(x)/ln(n);
 | |
|   end;
 | |
| 
 | |
| function lnxpi(x : float) : float;
 | |
| 
 | |
|   begin
 | |
|      lnxpi:=ln(1+x);
 | |
|   end;
 | |
| 
 | |
| function power(base,exponent : float) : float;
 | |
| 
 | |
|   begin
 | |
|      Power:=exp(exponent * ln (base));
 | |
|   end;
 | |
| 
 | |
| function intpower(base : float;exponent : longint) : float;
 | |
| 
 | |
|   var
 | |
|      i : longint;
 | |
| 
 | |
|   begin
 | |
|      i:=abs(exponent);
 | |
|      intpower:=1.0;
 | |
|      while i>0 do
 | |
|        begin
 | |
|           while (i and 1)=0 do
 | |
|             begin
 | |
|                i:=i shr 1;
 | |
|                base:=sqr(base);
 | |
|             end;
 | |
|           i:=i-1;
 | |
|           intpower:=intpower*base;
 | |
|        end;
 | |
|      if exponent<0 then
 | |
|        intpower:=1.0/intpower;
 | |
|   end;
 | |
| 
 | |
| function ceil(x : float) : longint;
 | |
| 
 | |
|   begin
 | |
|     Ceil:=Trunc(x);
 | |
|     If Frac(x)>0 then
 | |
|       Ceil:=Ceil+1;
 | |
|   end;
 | |
| 
 | |
| function floor(x : float) : longint;
 | |
| 
 | |
|   begin
 | |
|      Floor:=Trunc(x);
 | |
|      If Frac(x)<0 then
 | |
|        Floor := Floor-1;
 | |
|   end;
 | |
| 
 | |
| procedure frexp(x : float;var mantissa,exponent : float);
 | |
| 
 | |
|   begin
 | |
|      { !!!!!!! }
 | |
|   end;
 | |
| 
 | |
| function ldexp(x : float;p : longint) : float;
 | |
| 
 | |
|   begin
 | |
|      ldexp:=x*intpower(2.0,p);
 | |
|   end;
 | |
| 
 | |
| function mean(const data : array of float) : float;
 | |
| 
 | |
|   begin
 | |
|      mean:=sum(data);
 | |
|      mean:=mean/(high(data)-low(data)+1);
 | |
|   end;
 | |
| 
 | |
| function sum(const data : array of float) : float;
 | |
| 
 | |
|   var
 | |
|      i : longint;
 | |
| 
 | |
|   begin
 | |
|      sum:=0.0;
 | |
|      for i:=low(data) to high(data) do
 | |
|        sum:=sum+data[i];
 | |
|   end;
 | |
| 
 | |
| function sumofsquares(const data : array of float) : float;
 | |
| 
 | |
|   var
 | |
|      i : longint;
 | |
| 
 | |
|   begin
 | |
|      sumofsquares:=0.0;
 | |
|      for i:=low(data) to high(data) do
 | |
|        sumofsquares:=sumofsquares+sqr(data[i]);
 | |
|   end;
 | |
| 
 | |
| procedure sumsandsquares(const data : array of float;
 | |
|   var sum,sumofsquares : float);
 | |
| 
 | |
|   var
 | |
|      i : longint;
 | |
|      temp : float;
 | |
| 
 | |
|   begin
 | |
|      sumofsquares:=0.0;
 | |
|      sum:=0.0;
 | |
|      for i:=low(data) to high(data) do
 | |
|        begin
 | |
|           temp:=data[i];
 | |
|           sumofsquares:=sumofsquares+sqr(temp);
 | |
|           sum:=sum+temp;
 | |
|        end;
 | |
|   end;
 | |
| 
 | |
| function minvalue(const data : array of float) : float;
 | |
| 
 | |
|   var
 | |
|      i : longint;
 | |
| 
 | |
|   begin
 | |
|      { get an initial value }
 | |
|      minvalue:=data[low(data)];
 | |
|      for i:=low(data) to high(data) do
 | |
|        if data[i]<minvalue then
 | |
|          minvalue:=data[i];
 | |
|   end;
 | |
| 
 | |
| function maxvalue(const data : array of float) : float;
 | |
| 
 | |
|   var
 | |
|      i : longint;
 | |
| 
 | |
|   begin
 | |
|      { get an initial value }
 | |
|      maxvalue:=data[low(data)];
 | |
|      for i:=low(data) to high(data) do
 | |
|        if data[i]>maxvalue then
 | |
|          maxvalue:=data[i];
 | |
|   end;
 | |
| 
 | |
| function stddev(const data : array of float) : float;
 | |
| 
 | |
|   begin
 | |
|      StdDev:=Sqrt(Variance(Data));
 | |
|   end;
 | |
| 
 | |
| procedure meanandstddev(const data : array of float;
 | |
|   var mean,stddev : float);
 | |
| 
 | |
|   begin
 | |
| 
 | |
|   end;
 | |
| 
 | |
| function variance(const data : array of float) : float;
 | |
| 
 | |
|   begin
 | |
|      Variance:=TotalVariance(Data)/(High(Data)-Low(Data));
 | |
|   end;
 | |
| 
 | |
| function totalvariance(const data : array of float) : float;
 | |
| 
 | |
|    var S,SS : Float;
 | |
| 
 | |
|   begin
 | |
|      SumsAndSquares(Data,S,SS);
 | |
|      TotalVariance := SS-Sqr(S)/(High(Data)-Low(Data));
 | |
|   end;
 | |
| 
 | |
| function randg(mean,stddev : float) : float;
 | |
| 
 | |
|   Var U1,S2 : Float;
 | |
| 
 | |
|   begin
 | |
|      repeat
 | |
|        u1:= 2*random-1;
 | |
|        S2:=Sqr(U1)+sqr(2*random-1);
 | |
|      until s2<1;
 | |
|      randg:=Sqrt(-2*ln(S2)/S2)*u1*stddev+Mean;
 | |
|   end;
 | |
| 
 | |
| function popnstddev(const data : array of float) : float;
 | |
| 
 | |
|   begin
 | |
|      PopnStdDev:=Sqrt(PopnVariance(Data));
 | |
|   end;
 | |
| 
 | |
| function popnvariance(const data : array of float) : float;
 | |
| 
 | |
|   begin
 | |
|      PopnVariance:=TotalVariance(Data)/(High(Data)-Low(Data)+1);
 | |
|   end;
 | |
| 
 | |
| procedure momentskewkurtosis(const data : array of float;
 | |
|   var m1,m2,m3,m4,skew,kurtosis : float);
 | |
| 
 | |
|   Var S,SS,SC,SQ,invN,Acc,M1S,S2N,S3N,temp : Float;
 | |
|       I : Longint;
 | |
| 
 | |
|   begin
 | |
|      invN:=1.0/(High(Data)-Low(Data)+1);
 | |
|      s:=0;
 | |
|      ss:=0;
 | |
|      sq:=0;
 | |
|      sc:=0;
 | |
|      for i:=Low(Data) to High(Data) do
 | |
|        begin
 | |
|        temp:=Data[i];   { faster }
 | |
|        S:=S+temp;
 | |
|        acc:=temp*temp;
 | |
|        ss:=ss+acc;
 | |
|        Acc:=acc*temp;
 | |
|        Sc:=sc+acc;
 | |
|        acc:=acc*temp;
 | |
|        sq:=sq+acc;
 | |
|        end;
 | |
|      M1:=s*invN;
 | |
|      M1S:=M1*M1;
 | |
|      S2N:=SS*invN;
 | |
|      S3N:=SC*invN;
 | |
|      M2:=S2N-M1S;
 | |
|      M3:=S3N-(M1*3*S2N) + 2*M1S*M1;
 | |
|      M4:=SQ*invN - (M1 * 4 * S3N) + (M1S*6*S2N-3*Sqr(M1S));
 | |
|      Skew:=M3*power(M2,-3/2);
 | |
|      Kurtosis:=M4 / Sqr(M2);
 | |
|   end;
 | |
| 
 | |
| function norm(const data : array of float) : float;
 | |
| 
 | |
|   begin
 | |
|      norm:=sqrt(sumofsquares(data));
 | |
|   end;
 | |
| 
 | |
| 
 | |
| function MinIntValue(const Data: array of Integer): Integer;
 | |
| var
 | |
|   I: Integer;
 | |
| begin
 | |
|   Result := Data[Low(Data)];
 | |
|   For I := Succ(Low(Data)) To High(Data) Do
 | |
|     If Data[I] < Result Then Result := Data[I];
 | |
| end;
 | |
| 
 | |
| function MaxIntValue(const Data: array of Integer): Integer;
 | |
| var
 | |
|   I: Integer;
 | |
| begin
 | |
|   Result := Data[Low(Data)];
 | |
|   For I := Succ(Low(Data)) To High(Data) Do
 | |
|     If Data[I] > Result Then Result := Data[I];
 | |
| end;
 | |
| 
 | |
| function Min(Int1,Int2:Integer):Integer;
 | |
| begin
 | |
|   If Int1 < Int2 Then Result := Int1
 | |
|                  Else Result := Int2;
 | |
| end;
 | |
| 
 | |
| function Min(Int1,Int2:Cardinal):Cardinal;
 | |
| begin
 | |
|   If Int1 < Int2 Then Result := Int1
 | |
|                  Else Result := Int2;
 | |
| end;
 | |
| 
 | |
| function Max(Int1,Int2:Integer):Integer;
 | |
| begin
 | |
|   If Int1 > Int2 Then Result := Int1
 | |
|                  Else Result := Int2;
 | |
| end;
 | |
| 
 | |
| function Max(Int1,Int2:Cardinal):Cardinal;
 | |
| begin
 | |
|   If Int1 > Int2 Then Result := Int1
 | |
|                  Else Result := Int2;
 | |
| end;
 | |
| 
 | |
| 
 | |
| end.
 | |
| {
 | |
|     $Log$
 | |
|     Revision 1.12  1999-09-21 20:47:05  florian
 | |
|       * ceil and floor still had bugs :), hopefully it's the final fix now
 | |
| 
 | |
|     Revision 1.11  1999/06/04 08:44:34  jonas
 | |
|       * Ceil and Floor are now really fixed :)
 | |
| 
 | |
|     Revision 1.10  1999/06/03 16:22:57  jonas
 | |
|       * fixed ceil function
 | |
| 
 | |
|     Revision 1.9  1999/06/03 13:37:30  jonas
 | |
|       * fixed floor function
 | |
| 
 | |
|     Revision 1.8  1999/01/15 11:44:56  peter
 | |
|       * fixed unresolved forwards
 | |
| 
 | |
|     Revision 1.7  1998/12/21 13:07:06  peter
 | |
|       * use -FE
 | |
| 
 | |
|     Revision 1.6  1998/11/02 12:52:46  michael
 | |
|     Minimum/maximum functions
 | |
| 
 | |
|     Revision 1.5  1998/09/24 23:45:26  peter
 | |
|       * updated for auto objpas loading
 | |
| 
 | |
|     Revision 1.4  1998/09/18 23:57:27  michael
 | |
|     * Changed use_excepions to useexceptions
 | |
| 
 | |
|     Revision 1.3  1998/09/09 15:29:05  peter
 | |
|       * removed some warnings
 | |
| 
 | |
|     Revision 1.2  1998/07/29 15:44:34  michael
 | |
|      included sysutils and math.pp as target. They compile now.
 | |
| }
 | 
