fpvectorial: Replace separate sin() and cos() calls by sincos(). Issue #40475

This commit is contained in:
wp_xyz 2023-08-31 00:42:24 +02:00
parent 3b062e3689
commit ffe2e33f69
3 changed files with 79 additions and 42 deletions

View File

@ -2881,10 +2881,12 @@ function T2DEllipticalArcSegment.AlignedEllipseCenterEquationT1(
AParam: Double): Double;
var
lLeftSide, lRightSide, lArg: Double;
sinParam, cosParam: Double;
begin
// E1.Y - RY*sin(t1) = E2.Y - RY*sin(arccos((- E1.X + RX*cos(t1) + E2.X)/RX))
lLeftSide := E1.Y - RY*sin(AParam);
lArg := (- E1.X + RX*cos(AParam) + E2.X)/RX;
SinCos(AParam, sinParam, cosParam);
lLeftSide := E1.Y - RY*sinParam;
lArg := (- E1.X + RX*cosParam + E2.X)/RX;
if (lArg > 1) or (lArg < -1) then Exit($FFFFFFFF);
lRightSide := E2.Y - RY*sin(arccos(lArg));
Result := lLeftSide - lRightSide;
@ -3027,6 +3029,7 @@ procedure T2DEllipticalArcSegment.CalculateCenter;
var
XStart, YStart, lT1: Double;
CX1, CY1, CX2, CY2, LeftMostX, LeftMostY, RightMostX, RightMostY: Double;
Sin0, Cos0, SinXRot, CosXRot, SinLT1, CosLT1: Double;
RotatedCenter: T3DPoint;
begin
if CenterSetByUser then Exit;
@ -3040,8 +3043,10 @@ begin
if Previous = nil then
begin
CX := X - RX*Cos(0)*Cos(XRotation) + RY*Sin(0)*Sin(XRotation);
CY := Y - RY*Sin(0)*Cos(XRotation) - RX*Cos(0)*Sin(XRotation);
SinCos(0.0, Sin0, Cos0);
SinCos(XRotation, SinXRot, CosXRot);
CX := X - RX*Cos0*CosXRot + RY*Sin0*SinXRot;
CY := Y - RY*Sin0*CosXRot - RX*Cos0*SinXRot;
Exit;
end;
@ -3069,9 +3074,10 @@ begin
// SolveNumerically
lT1 := SolveNumericallyAngle(@AlignedEllipseCenterEquationT1, 0.0001, 20);
SinCos(lT1, SinLT1, CosLT1);
CX1 := E1.X - RX*cos(lt1);
CY1 := E1.Y - RY*sin(lt1);
CX1 := E1.X - RX*CosLT1;
CY1 := E1.Y - RY*SinLT1;
// Rotate back!
RotatedCenter := Rotate3DPointInXY(Make3DPoint(CX1,CY1), Make3DPoint(0,0),XRotation);
@ -3122,6 +3128,7 @@ var
t1, t2, t3: Double;
x1, x2, x3: Double;
y1, y2, y3: Double;
SinXRot, CosXRot, SinT1, CosT1, SinT2, CosT2: Double;
begin
ALeft := 0;
ATop := 0;
@ -3171,8 +3178,12 @@ begin
t2 := arctan(-RY*tan(XRotation)/RX) + pi; //Pi/2; // why add pi/2 ??
// t3 := arctan(-RY*tan(XRotation)/RX) + Pi;
x1 := Cx + RX*Cos(t1)*Cos(XRotation)-RY*Sin(t1)*Sin(XRotation);
x2 := Cx + RX*Cos(t2)*Cos(XRotation)-RY*Sin(t2)*Sin(XRotation);
SinCos(t1, SinT1, CosT1);
SinCos(t2, SinT2, CosT2);
SinCos(XRotation, SinXRot, CosXRot);
x1 := Cx + RX*CosT1*CosXRot - RY*SinT1*SinXRot;
x2 := Cx + RX*CosT2*CosXRot - RY*SinT2*SinXRot;
// x3 := Cx + RX*Cos(t3)*Cos(XRotation)-RY*Sin(t3)*Sin(XRotation);
ALeft := Min(x1, x2);
@ -3187,8 +3198,11 @@ begin
t2 := arctan(RY*cotan(XRotation)/RX) + pi; //Pi/2; // why add pi/2 ??
// t3 := arctan(RY*cotan(XRotation)/RX) + 3*Pi/2;
y1 := CY + RY*Sin(t1)*Cos(XRotation)+RX*Cos(t1)*Sin(XRotation);
y2 := CY + RY*Sin(t2)*Cos(XRotation)+RX*Cos(t2)*Sin(XRotation);
SinCos(t1, SinT1, CosT1);
SinCos(t2, SinT2, CosT2);
y1 := CY + RY*SinT1*CosXRot + RX*CosT1*SinXRot;
y2 := CY + RY*SinT2*CosXRot + RX*CosT2*SinXRot;
// y3 := CY + RY*Sin(t3)*Cos(XRotation)+RX*Cos(t3)*Sin(XRotation);
ATop := Max(y1, y2);
@ -4133,6 +4147,8 @@ procedure TvEntityWithPenAndBrush.DrawPolygonBrushLinearGradient(
var ARenderInfo: TvRenderInfo;
const APoints: TPointsArray; const APolyStarts: TIntegerDynArray;
ARect: TRect; AGradientStart, AGradientEnd: T2DPoint);
const
sinPi4 = sin(pi/4);
var
ADest: TFPCustomCanvas absolute ARenderInfo.Canvas;
//
@ -4141,7 +4157,7 @@ var
pf: Double; // fraction of path travelled along gradient vector
px, py: Double;
phi: Double;
sinphi, cosphi: float;
sinphi, cosphi: Double;
coord, coord1, coord2, dcoord: Double;
coordIsX: Boolean;
p1, p2: T2dPoint;
@ -4203,7 +4219,7 @@ begin
begin // Run along gradient vector, lines perpendicular to gradient vector
phi := arctan2(gv.y, gv.x);
Sincos(phi, sinphi, cosphi);
coordIsX := (abs(sinphi) <= sin(pi/4));
coordIsX := (abs(sinphi) <= sinPi4); // sinPi4 = sin(pi/4)
if not coordIsX then begin
phi := -(pi/2 - phi);
Sincos(phi, sinphi, cosphi);
@ -6132,6 +6148,7 @@ procedure TvEllipse.CalculateBoundingBox(constref ARenderInfo: TvRenderInfo;
out ALeft, ATop, ARight, ABottom: Double);
var
t, tmp: Double;
sint, cost, sinAngle, cosAngle: Double;
begin
{ To calculate the bounding rectangle we can do this:
@ -6157,11 +6174,14 @@ begin
if Angle <> 0.0 then
begin
t := arctan(-VertHalfAxis*tan(Angle)/HorzHalfAxis);
tmp := abs(HorzHalfAxis*cos(t)*cos(Angle) - VertHalfAxis*sin(t)*sin(Angle));
SinCos(t, sint, cost);
SinCos(Angle, sinAngle, cosAngle);
tmp := abs(HorzHalfAxis*cost*cosAngle - VertHalfAxis*sint*sinAngle);
ALeft := X - Round(tmp);
ARight := X + Round(tmp);
t := arctan(VertHalfAxis*cot(Angle) / HorzHalfAxis);
tmp := abs(VertHalfAxis*sin(t)*cos(Angle) + HorzHalfAxis*cos(t)*sin(Angle));
SinCos(t, sint, cost);
tmp := abs(VertHalfAxis*sint*cosAngle + HorzHalfAxis*cost*sinAngle);
tmp := tmp * ARenderInfo.Page.GetTopLeftCoords_Adjustment;
ATop := Y - Round(tmp);
ABottom := Y + Round(tmp);
@ -6932,6 +6952,7 @@ var
Points: array of TPoint = nil;
lTriangleCenter, lTriangleCorner: T3DPoint;
txt: String;
sinAngle, cosAngle: Double;
begin
ADest.Pen.FPColor := colYellow;//AdjustColorToBackground(colBlack, ARenderInfo);
ADest.Pen.Width := 1;
@ -6957,8 +6978,9 @@ begin
// Left Arrow
Points[0] := Point(CoordToCanvasX(ArcLeft.X), CoordToCanvasY(ArcLeft.Y));
lTriangleCenter.X := Cos(AngleLeft+Pi/2) * -(ArcRadius/10) + ArcLeft.X;
lTriangleCenter.Y := Sin(AngleLeft+Pi/2) * -(ArcRadius/10) + ArcLeft.Y;
SinCos(AngleLeft + pi/2, SinAngle, CosAngle);
lTriangleCenter.X := CosAngle * -(ArcRadius/10) + ArcLeft.X;
lTriangleCenter.Y := SinAngle * -(ArcRadius/10) + ArcLeft.Y;
lTriangleCorner := Rotate3DPointInXY(lTriangleCenter, ArcLeft, Pi * 10 / 180);
Points[1] := Point(CoordToCanvasX(lTriangleCorner.X), CoordToCanvasY(lTriangleCorner.Y));
lTriangleCorner := Rotate3DPointInXY(lTriangleCenter, ArcLeft, - Pi * 10 / 180);
@ -6968,8 +6990,9 @@ begin
// Right Arrow
Points[0] := Point(CoordToCanvasX(ArcRight.X), CoordToCanvasY(ArcRight.Y));
lTriangleCenter.X := Cos(AngleRight+Pi/2) * (ArcRadius/10) + ArcRight.X;
lTriangleCenter.Y := Sin(AngleRight+Pi/2) * (ArcRadius/10) + ArcRight.Y;
SinCos(AngleRight + Pi/2, SinAngle, CosAngle);
lTriangleCenter.X := CosAngle * (ArcRadius/10) + ArcRight.X;
lTriangleCenter.Y := SinAngle * (ArcRadius/10) + ArcRight.Y;
lTriangleCorner := Rotate3DPointInXY(lTriangleCenter, ArcRight, Pi * 10 / 180);
Points[1] := Point(CoordToCanvasX(lTriangleCorner.X), CoordToCanvasY(lTriangleCorner.Y));
lTriangleCorner := Rotate3DPointInXY(lTriangleCenter, ArcRight, - Pi * 10 / 180);
@ -6990,6 +7013,8 @@ begin
end;
procedure TvArcDimension.CalculateExtraArcInfo;
var
SinAngle, CosAngle: Double;
begin
// Line equation of the Left line
AngleLeft := arctan(Abs(BaseLeft.Y-DimensionLeft.Y)/Abs(BaseLeft.X-DimensionLeft.X));
@ -7008,10 +7033,12 @@ begin
AngleBase.Y := al * AngleBase.X + bl;
// And also now the left and right points of the arc
ArcLeft.X := Cos(AngleLeft) * ArcRadius + AngleBase.X;
ArcLeft.Y := Sin(AngleLeft) * ArcRadius + AngleBase.Y;
ArcRight.X := Cos(AngleRight) * ArcRadius + AngleBase.X;
ArcRight.Y := Sin(AngleRight) * ArcRadius + AngleBase.Y;
SinCos(AngleLeft, SinAngle, CosAngle);
ArcLeft.X := CosAngle * ArcRadius + AngleBase.X;
ArcLeft.Y := SinAngle * ArcRadius + AngleBase.Y;
SinCos(AngleRight, SinAngle, CosAngle);
ArcRight.X := CosAngle * ArcRadius + AngleBase.X;
ArcRight.Y := SinAngle * ArcRadius + AngleBase.Y;
end;
function TvArcDimension.GenerateDebugTree(ADestRoutine: TvDebugAddItemProc;
@ -7276,6 +7303,7 @@ var
lPointD, lPointE, lPointF: T3DPoint;
lPoints: array[0..2] of TPoint;
AlfaAngle: Double;
SinAlfa, CosAlfa: Double;
begin
ApplyPenToCanvas(ARenderInfo);
ApplyBrushToCanvas(ARenderInfo);
@ -7329,12 +7357,13 @@ begin
AlfaAngle := 0
else
AlfaAngle := ArcTan((Base.Y - Y) / (Base.X - X));
lPointD.Y := Sin(AlfaAngle) * ArrowLength + Y;
lPointD.X := Cos(AlfaAngle) * ArrowLength + X;
lPointE.X := Sin(AlfaAngle) * (ArrowBaseLength/2) + lPointD.X;
lPointE.Y := Cos(AlfaAngle) * (ArrowBaseLength/2) + lPointD.Y;
lPointF.X := - Sin(AlfaAngle) * (ArrowBaseLength/2) + lPointD.X;
lPointF.Y := - Cos(AlfaAngle) * (ArrowBaseLength/2) + lPointD.Y;
SinCos(AlfaAngle, SinAlfa, CosAlfa);
lPointD.Y := SinAlfa * ArrowLength + Y;
lPointD.X := CosAlfa * ArrowLength + X;
lPointE.X := SinAlfa * (ArrowBaseLength/2) + lPointD.X;
lPointE.Y := CosAlfa * (ArrowBaseLength/2) + lPointD.Y;
lPointF.X := - SinAlfa * (ArrowBaseLength/2) + lPointD.X;
lPointF.Y := - CosAlfa * (ArrowBaseLength/2) + lPointD.Y;
lPoints[1].X := CoordToCanvasX(lPointE.X);
lPoints[1].Y := CoordToCanvasY(lPointE.Y);
lPoints[2].X := CoordToCanvasX(lPointF.X);

View File

@ -327,25 +327,28 @@ procedure EllipticalArcToBezier(Xc, Yc, Rx, Ry, startAngle, endAngle: Double;
var P1, P2, P3, P4: T3DPoint);
var
halfLength, arcLength, alfa: Double;
sinStartAngle, cosStartAngle, sinEndAngle, cosEndAngle: Double;
begin
arcLength := endAngle - startAngle;
halfLength := (endAngle - startAngle) / 2;
alfa := sin(arcLength) * (Sqrt(4 + 3*sqr(tan(halfLength))) - 1) / 3;
// Start point
P1.X := Xc + Rx * cos(startAngle);
P1.Y := Yc + Ry * sin(startAngle);
SinCos(startAngle, sinStartAngle, cosStartAngle);
P1.X := Xc + Rx * cosStartAngle;
P1.Y := Yc + Ry * sinStartAngle;
// End point
P4.X := Xc + Rx * cos(endAngle);
P4.Y := Yc + Ry * sin(endAngle);
SinCos(endAngle, sinEndAngle, cosEndAngle);
P4.X := Xc + Rx * cosEndAngle;
P4.Y := Yc + Ry * sinEndAngle;
// Control points
P2.X := P1.X + alfa * -1 * Rx * sin(startAngle);
P2.Y := P1.Y + alfa * Ry * cos(startAngle);
P2.X := P1.X + alfa * -1 * Rx * sinStartAngle;
P2.Y := P1.Y + alfa * Ry * cosStartAngle;
P3.X := P4.X - alfa * -1 * Rx * sin(endAngle);
P3.Y := P4.Y - alfa * Ry * cos(endAngle);
P3.X := P4.X - alfa * -1 * Rx * sinEndAngle;
P3.Y := P4.Y - alfa * Ry * cosEndAngle;
end;
// (x2,y2)=(x1+L⋅cos(a),y1+L⋅sin(a)).
@ -353,12 +356,14 @@ end;
function LineEquation_GetPointAndTangentForLength(AStart, AEnd: T3DPoint; ADistance: Double; out AX, AY, ATangentAngle: Double): Boolean;
var
lLineAngle: Double; // to X axis
sinAngle, cosAngle: Double;
begin
Result := False;
// lLineAngle := arctan((AEnd.Y-AStart.Y) / (AEnd.X - AStart.X));
lLineAngle := arctan2(AEnd.Y - AStart.Y, AEnd.X - AStart.X);
AX := AStart.X + ADistance * Cos(lLineAngle);
AY := AStart.Y + ADistance * Sin(lLineAngle);
SinCos(lLineAngle, sinAngle, cosAngle);
AX := AStart.X + ADistance * cosAngle;
AY := AStart.Y + ADistance * sinAngle;
end;
procedure CircularArcToBezier(Xc, Yc, R, startAngle, endAngle: Double; var P1,

View File

@ -921,6 +921,7 @@ procedure TvODGVectorialReader.ConvertPathStringToTPath(AStr: string;
var
x1, y1, x2, y2: double;
t1, t2, lSrcX, lSrcY, lDestX, lDestY: Double;
sin1, cos1, sin2, cos2: Double;
j: Integer;
lTokenizer: TSVGPathTokenizer;
CurToken: TSVGToken;
@ -1013,10 +1014,12 @@ begin
ConvertViewBoxDeltaToFPVDelta(AInfo, x2, y2, x2, y2);
// Parametrized Ellipse equation
lSrcX := x2 * Cos(t1) + x1;
lSrcY := y2 * Sin(t1) + y1;
lDestX := x2 * Cos(t2) + x1;
lDestY := y2 * Sin(t2) + y1;
SinCos(t1, sin1, cos1);
SinCos(t2, sin2, cos2);
lSrcX := x2 * cos1 + x1;
lSrcY := y2 * sin1 + y1;
lDestX := x2 * cos2 + x1;
lDestY := y2 * sin2 + y1;
// See http://www.w3.org/TR/SVG/paths.html#PathDataEllipticalArcCommands
ADest.AppendMoveToSegment(lSrcX, lSrcY);